Cirrus EP7311-CB-90 High-performance, low-power, system-on-chip with sdram & enhanced digital audio interface Datasheet

EP7311 Data Sheet
FEATURES
High-performance,
Low-power, System-on-chip
with SDRAM & Enhanced
Digital Audio Interface
■ ARM720T Processor
— ARM7TDMI CPU
— 8 KB of four-way set-associative cache
— MMU with 64-entry TLB
— Thumb code support enabled
■ Ultra low power
— 90 mW at 74 MHz typical
— 30 mW at 18 MHz typical
— 10 mW in the Idle State
— <1 mW in the Standby State
■ 48 KB of on-chip SRAM
■ MaverickKey™ IDs
OVERVIEW
The Maverick™ EP7311 is designed for ultra-low-power
applications such as PDAs, smart cellular phones, and
industrial hand held information appliances. The core-logic
functionality of the device is built around an ARM720T
processor with 8 KB of four-way set-associative unified cache
and a write buffer. Incorporated into the ARM720T is an
enhanced memory management unit (MMU) which allows for
support of sophisticated operating systems like Linux®.
— 32-bit unique ID can be used for SDMI compliance
— 128-bit random ID
■ Dynamically programmable clock speeds of
18, 36, 49, and 74 MHz
(cont.)
(cont.)
BLOCK DIAGRAM
EPB Bus
Serial
Interface
Power
Management
(2) UARTs
w/ IrDA
Clocks &
Timers
ARM720T
ICE-JTAG
Interrupts,
PWM & GPIO
ARM7TDMI CPU Core
8 KB
Cache
Boot
ROM
Write
Buffer
Bus
Bridge
MMU
Keypad&
Touch
Screen I/F
Internal Data Bus
Memory Controller
MaverickKeyTM
SRAM I/F
SDRAM I/F
On-chip SRAM
48 KB
USER INTERFACE
SERIAL PORTS
Multimedia
Codec Port
LCD
Controller
MEMORY AND STORAGE
©Copyright Cirrus Logic, Inc. 2005
http://www.cirrus.com
(All Rights Reserved)
AUG ‘05
DS506F1
EP7311
High-Performance, Low-Power System on Chip
FEATURES (cont)
■ LCD controller
— Interfaces directly to a single-scan panel monochrome
STN LCD
— Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
■ Full JTAG boundary scan and Embedded ICE® support
■ Integrated Peripheral Interfaces
— 32-bit SDRAM Interface up to 2 external banks
— 8/32/16-bit SRAM/FLASH/ROM Interface
— Multimedia Codec Port
— Two Synchronous Serial Interfaces (SSI1, SSI2)
— CODEC Sound Interface
— 8×8 Keypad Scanner
— 27 General Purpose Input/Output pins
— Dedicated LED flasher pin from the RTC
■ Internal Peripherals
— Two 16550 compatible UARTs
— IrDA Interface
— Two PWM Interfaces
— Real-time Clock
— Two general purpose 16-bit timers
— Interrupt Controller
— Boot ROM
■ Package
— 208-Pin LQFP
— 256-Ball PBGA
— 204-Ball TFBGA
■ The fully static EP7311 is optimized for low power
dissipation and is fabricated on a 0.25 micron CMOS
process
■ Development Kits
— EDB7312: Development Kit with color STN LCD on
board.
— EDB7312-LW: EDB7312 with Lynuxworks’ BlueCat
Linux Tools and software for Windows host (free 30
day BlueCat support from Lynuxworks).
— EDB7312-LL: EDB7312 with Lynuxworks’ BlueCat
Linux Tools and software for Linux host (free 30 day
BlueCat support from Lynuxworks).
Note:
* BlueCat available separately through Lynuxworks
only.
* Use the EDB7312 Development Kit for all the EP73xx
devices.
OVERVIEW (cont.)
The EP7311 is designed for low-power operation. Its core
operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V. The device has three basic power states:
operating, idle and standby.
One of its notable features is MaverickKey unique IDs. These
are factory programmed IDs in response to the growing
concern over secure web content and commerce. With Internet
security playing an important role in the delivery of digital
2
media such as books or music, traditional software methods are
quickly becoming unreliable. The MaverickKey unique IDs
consist of two registers, one 32-bit series register and one
random 128-bit register that may be used by an OEM for an
authentication mechanism.
Simply by adding desired memory and peripherals to the
highly integrated EP7311 completes a low-power system
solution. All necessary interface logic is integrated on-chip.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table of Contents
FEATURES...................................................................................................................................................................1
OVERVIEW ..................................................................................................................................................................1
Processor Core - ARM720T ..................................................................................................................................6
Power Management ..............................................................................................................................................6
MaverickKey™ Unique ID ......................................................................................................................................6
Memory Interfaces .................................................................................................................................................6
Digital Audio Capability .........................................................................................................................................6
Universal Asynchronous Receiver/Transmitters (UARTs) .....................................................................................6
Digital Audio Interface (DAI) ..................................................................................................................................7
CODEC Interface ..................................................................................................................................................7
SSI2 Interface ........................................................................................................................................................7
Synchronous Serial Interface ................................................................................................................................8
LCD Controller .......................................................................................................................................................8
Interrupt Controller ................................................................................................................................................8
Real-Time Clock ....................................................................................................................................................8
PLL and Clocking ..................................................................................................................................................9
DC-to-DC converter interface (PWM) ....................................................................................................................9
Timers ...................................................................................................................................................................9
General Purpose Input/Output (GPIO) ..................................................................................................................9
Hardware debug Interface .....................................................................................................................................9
Internal Boot ROM ...............................................................................................................................................10
Packaging ............................................................................................................................................................10
Pin Multiplexing ...................................................................................................................................................10
System Design ....................................................................................................................................................11
ELECTRICAL SPECIFICATIONS ......................................................................................................12
Absolute Maximum Ratings .................................................................................................................................12
Recommended Operating Conditions .................................................................................................................12
DC Characteristics ..............................................................................................................................................12
Timings ...............................................................................................................................................14
Timing Diagram Conventions ....................................................................................................................14
Timing Conditions ......................................................................................................................................14
Static Memory .....................................................................................................................................................15
Static Memory Single Read Cycle .............................................................................................................16
Static Memory Single Write Cycle .............................................................................................................17
Static Memory Burst Read Cycle ...............................................................................................................18
Static Memory Burst Write Cycle ...............................................................................................................19
SSI1 Interface ......................................................................................................................................................20
SSI2 Interface ......................................................................................................................................................21
LCD Interface ......................................................................................................................................................22
JTAG Interface .....................................................................................................................................................23
Packages ............................................................................................................................................24
208-Pin LQFP Package Characteristics ..............................................................................................................24
208-Pin LQFP Package Specifications ......................................................................................................24
208-Pin LQFP Pin Diagram .......................................................................................................................25
208-Pin LQFP Numeric Pin Listing ............................................................................................................26
204-Ball TFBGA Package Characteristics ...........................................................................................................29
204-Ball TFBGA Package Specifications ..................................................................................................29
204-Ball TFBGA Pinout (Top View) ...........................................................................................................30
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
3
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Ball Listing ...................................................................................................................... 31
256-Ball PBGA Package Characteristics ............................................................................................................ 38
256-Ball PBGA Package Specifications .................................................................................................... 38
256-Ball PBGA Pinout (Top View)) ............................................................................................................ 39
256-Ball PBGA Ball Listing ........................................................................................................................ 39
JTAG Boundary Scan Signal Ordering ............................................................................................................... 43
CONVENTIONS ................................................................................................................................. 48
Acronyms and Abbreviations .............................................................................................................................. 48
Units of Measurement ......................................................................................................................................... 48
General Conventions .......................................................................................................................................... 49
Pin Description Conventions ............................................................................................................................... 49
49
Ordering Information ....................................................................................................................... 50
Environmental, Manufacturing, & Handling Information .............................................................. 50
Revision History ............................................................................................................................... 51
4
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
List of Figures
Figure 1. A Maximum EP7309 Based System ..............................................................................................................11
Figure 2. Legend for Timing Diagrams .........................................................................................................................14
Figure 3. Static Memory Single Read Cycle Timing Measurement ...............................................................................16
Figure 4. Static Memory Single Write Cycle Timing Measurement ...............................................................................17
Figure 5. Static Memory Burst Read Cycle Timing Measurement ................................................................................18
Figure 6. Static Memory Burst Write Cycle Timing Measurement ................................................................................19
Figure 7. SSI1 Interface Timing Measurement .............................................................................................................20
Figure 8. SSI2 Interface Timing Measurement .............................................................................................................21
Figure 9. LCD Controller Timing Measurement ............................................................................................................22
Figure 10. JTAG Timing Measurement .........................................................................................................................23
Figure 11. 208-Pin LQFP Package Outline Drawing ....................................................................................................24
Figure 12. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram ..........................................................................25
Figure 13. 204-Ball TFBGA Package ............................................................................................................................29
Figure 14. 256-Ball PBGA Package ..............................................................................................................................38
List of Tables
Table 1. Power Management Pin Assignments ..............................................................................................................6
Table 2. Static Memory Interface Pin Assignments ........................................................................................................6
Table 3. Universal Asynchronous Receiver/Transmitters Pin Assignments ...................................................................7
Table 4. DAI Interface Pin Assignments .........................................................................................................................7
Table 5. CODEC Interface Pin Assignments ..................................................................................................................7
Table 6. SSI2 Interface Pin Assignments .......................................................................................................................7
Table 7. Serial Interface Pin Assignments ......................................................................................................................8
Table 8. LCD Interface Pin Assignments ........................................................................................................................8
Table 9. Keypad Interface Pin Assignments ...................................................................................................................8
Table 10. Interrupt Controller Pin Assignments ..............................................................................................................8
Table 11. Real-Time Clock Pin Assignments ..................................................................................................................9
Table 12. PLL and Clocking Pin Assignments ................................................................................................................9
Table 13. DC-to-DC Converter Interface Pin Assignments .............................................................................................9
Table 14. General Purpose Input/Output Pin Assignments ............................................................................................9
Table 15. Hardware Debug Interface Pin Assignments ..................................................................................................9
Table 16. LED Flasher Pin Assignments ........................................................................................................................9
Table 17. DAI/SSI2/CODEC Pin Multiplexing ...............................................................................................................10
Table 18. Pin Multiplexing .............................................................................................................................................10
Table 19. 208-Pin LQFP Numeric Pin Listing ...............................................................................................................26
Table 20. 204-Ball TFBGA Ball Listing .........................................................................................................................31
Table 21. 256-Ball PBGA Ball Listing ...........................................................................................................................39
Table 22. JTAG Boundary Scan Signal Ordering .........................................................................................................43
Table 23. Acronyms and Abbreviations ........................................................................................................................48
Table 24. Unit of Measurement .....................................................................................................................................48
Table 25. Pin Description Conventions .........................................................................................................................49
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
5
EP7311
High-Performance, Low-Power System on Chip
Processor Core - ARM720T
The EP7311 incorporates an ARM 32-bit RISC
microcontroller that controls a wide range of on-chip
peripherals. The processor utilizes a three-stage pipeline
consisting of fetch, decode and execute stages. Key features
include:
•
•
•
•
ARM (32-bit) and Thumb (16-bit compressed) instruction
sets
Enhanced MMU for Microsoft Windows CE and other
operating systems
8 KB of 4-way set-associative cache.
Translation Look Aside Buffers with 64 Translated Entries
Power Management
The EP7311 is designed for ultra-low-power operation. Its core
operates at only 2.5 V, while its I/O has an operation range of
2.5 V–3.3 V allowing the device to achieve a performance
level equivalent to 60 MIPS. The device has three basic power
states:
• Operating — This state is the full performance state.
All the clocks and peripheral logic are enabled.
• Idle — This state is the same as the Operating State,
except the CPU clock is halted while waiting for an
event such as a key press.
• Standby — This state is equivalent to the computer
being switched off (no display), and the main
oscillator shut down. An event such as a key press
can wake-up the processor.
Pin Mnemonic
I/O
Pin Description
Both a specific 32-bit ID as well as a 128-bit random ID is
programmed into the EP7311 through the use of laser probing
technology. These IDs can then be used to match secure
copyrighted content with the ID of the target device the
EP7311 is powering, and then deliver the copyrighted
information over a secure connection. In addition, secure
transactions can benefit by also matching device IDs to server
IDs. MaverickKey IDs provide a level of hardware security
required for today’s Internet appliances.
Memory Interfaces
There are two main external memory interfaces. The first one
is the ROM/SRAM/FLASH-style interface that has
programmable wait-state timings and includes burst-mode
capability, with six chip selects decoding six 256 MB sections
of addressable space. For maximum flexibility, each bank can
be specified to be 8-, 16-, or 32-bits wide. This allows the use
of 8-bit-wide boot ROM options to minimize overall system
cost. The on-chip boot ROM can be used in product
manufacturing to serially download system code into system
FLASH memory. To further minimize system memory
requirements and cost, the ARM Thumb instruction set is
supported, providing for the use of high-speed 32-bit
operations in 16-bit op-codes and yielding industry-leading
code density.
Pin Mnemonic
I/O
Pin Description
nCS[5:0]
O
Chip select out
A[27:0]
O
Address output
D[31:0]
I/O
Data I/O
nMOE/nSDCAS
(Note)
O
ROM expansion OP enable
nMWE/nSDWE
(Note)
O
ROM expansion write enable
BATOK
I
Battery ok input
HALFWORD
O
Halfword access select
output
nEXTPWR
I
External power supply sense
input
WORD
O
Word access select output
O
Transfer direction
nPWRFL
I
Power fail sense input
nBATCHG
I
Battery changed sense input
WRITE/nSDRAS
Table A. Power Management Pin Assignments
(Note)
Table B. Static Memory Interface Pin Assignments
Note:
Pins are multiplexed. See Table S on page 11 for more
information.
MaverickKey™ Unique ID
MaverickKey unique hardware programmed IDs are a solution
to the growing concern over secure web content and
commerce. With Internet security playing an important role in
the delivery of digital media such as books or music,
traditional software methods are quickly becoming unreliable.
The MaverickKey unique IDs provide OEMs with a method of
utilizing specific hardware IDs such as those assigned for
SDMI (Secure Digital Music Initiative) or any other
authentication mechanism.
6
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
The second is the programmable 16- or 32-bit-wide SDRAM
interface that allows direct connection of up to two banks of
SDRAM, totaling 512 Mb. To assure the lowest possible power
consumption, the EP7311 supports self-refresh SDRAMs,
which are placed in a low-power state by the device when it
enters the low-power Standby State.
Pin Mnemonic
I/O
Pin Description
UART 1 to enable these signals to drive an infrared
communication interface directly.
Pin Mnemonic
I/O
Pin Description
TXD[1]
O
UART 1 transmit
RXD[1]
I
UART 1 receive
CTS
I
UART 1 clear to send
SDCLK
O
SDRAM clock output
DCD
I
UART 1 data carrier detect
SDCKE
O
SDRAM clock enable output
DSR
I
UART 1 data set ready
nSDCS[1:0]
O
SDRAM chip select out
TXD[2]
O
UART 2 transmit
WRITE/nSDRAS
(Note 2)
O
SDRAM RAS signal output
RXD[2]
I
UART 2 receive
nMOE/nSDCAS
(Note 2)
O
SDRAM CAS control signal
LEDDRV
O
Infrared LED drive output
nMWE/nSDWE
(Note 2)
O
SDRAM write enable control
signal
PHDIN
I
Photo diode input
A[27:15]/DRA[0:12]
(Note 1)
O
SDRAM address
O
SDRAM internal bank select
I/O
SDRAM byte lane mask
SDQM[3:2]
O
SDRAM byte lane mask
D[31:0]
I/O
Data I/O
A[14:13]/DRA[12:14]
PD[7:6]/SDQM[1:0]
(Note 2)
Table C. SDRAM Interface Pin Assignments
Note:
1. Pins A[27:13] map to DRA[0:14] respectively.
(i.e. A[27}/DRA[0}, A[26}/DRA[1], etc.) This is to
balance the load for large memory systems.
2. Pins are multiplexed. See Table S on page 11 for
more information.
Digital Audio Capability
The EP7311 uses its powerful 32-bit RISC processing engine
to implement audio decompression algorithms in software. The
nature of the on-board RISC processor, and the availability of
efficient C-compilers and other software development tools,
ensures that a wide range of audio decompression algorithms
can easily be ported to and run on the EP7311
Table D. Universal Asynchronous Receiver/Transmitters Pin
Assignments
Multimedia Codec Port (MCP)
The Multimedia Codec Port provides access to an audio codec,
a telecom codec, a touchscreen interface, four general purpose
analog-to-digital converter inputs, and ten programmable
digital I/O lines.
Pin Mnemonic
I/O
Pin Description
SIBCLK
O
Serial bit clock
SIBDOUT
O
Serial data out
SIBDIN
I
Serial data in
SIBSYNC
O
Sample clock
Table E. MCP Interface Pin Assignments
Note:
See Table R on page 11 for information on pin
multiplexes.
Universal Asynchronous
Receiver/Transmitters (UARTs)
The EP7311 includes two 16550-type UARTs for RS-232
serial communications, both of which have two 16-byte FIFOs
for receiving and transmitting data. The UARTs support bit
rates up to 115.2 kbps. An IrDA SIR protocol encoder/decoder
can be optionally switched into the RX/TX signals to/from
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
7
EP7311
High-Performance, Low-Power System on Chip
CODEC Interface
Synchronous Serial Interface
The EP7311 includes an interface to telephony-type CODECs
for easy integration into voice-over-IP and other voice
communications systems. The CODEC interface is
multiplexed to the same pins as the MCP and SSI2.
•
Pin Mnemonic
I/O
•
Pin Description
ADC (SSI) Interface: Master mode only; SPI and
Microwire1-compatible (128 kbps operation)
Selectable serial clock polarity
Pin Mnemonic
I/O
Pin Description
PCMCLK
O
Serial bit clock
ADCLK
O
SSI1 ADC serial clock
PCMOUT
O
Serial data out
ADCIN
I
SSI1 ADC serial input
PCMIN
I
Serial data in
ADCOUT
O
SSI1 ADC serial output
PCMSYNC
O
Frame sync
nADCCS
O
SSI1 ADC chip select
SMPCLK
O
SSI1 ADC sample clock
Table F. CODEC Interface Pin Assignments
Note:
Table H. Serial Interface Pin Assignments
See Table R on page 11 for information on pin
multiplexes.
LCD Controller
SSI2 Interface
An additional SPI/Microwire1-compatible interface is
available for both master and slave mode communications. The
SSI2 unit shares the same pins as the MCP and CODEC
interfaces through a multiplexer.
•
•
•
•
Synchronous clock speeds of up to 512 kHz
Separate 16 entry TX and RX half-word wide FIFOs
Half empty/full interrupts for FIFOs
Separate RX and TX frame sync signals for asymmetric
traffic
A DMA address generator is provided that fetches video
display data for the LCD controller from memory. The display
frame buffer start address is programmable, allowing the LCD
frame buffer to be in SDRAM, internal SRAM or external
SRAM.
•
•
•
•
Pin Mnemonic
I/O
Pin Description
•
Interfaces directly to a single-scan panel monochrome STN
LCD
Interfaces to a single-scan panel color STN LCD with
minimal external glue logic
Panel width size is programmable from 32 to 1024 pixels in
16-pixel increments
Video frame buffer size programmable up to
128 KB
Bits per pixel of 1, 2, or 4 bits
SSICLK
I/O
Serial bit clock
SSITXDA
O
Serial data out
SSIRXDA
I
Serial data in
SSITXFR
I/O
Transmit frame sync
CL1
O
LCD line clock
SSIRXFR
I/O
Receive frame sync
CL2
O
LCD pixel clock out
DD[3:0]
O
LCD serial display data bus
FRM
O
LCD frame synchronization pulse
M
O
LCD AC bias drive
Table G. SSI2 Interface Pin Assignments
Note:
See Table R on page 11 for information on pin
multiplexes.
Pin Mnemonic
I/O
Pin Description
Table I. LCD Interface Pin Assignments
8
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
64-Keypad Interface
.
Pin Mnemonic
Matrix keyboards and keypads can be easily read by the
EP7311. A dedicated 8-bit column driver output generates
strobes for each keyboard column signal. The pins of Port A,
when configured as inputs, can be selectively OR'ed together
to provide a keyboard interrupt that is capable of waking the
system from a STANDBY or IDLE state.
•
•
•
•
•
Column outputs can be individually set high with the
remaining bits left at high-impedance
Column outputs can be driven all-low, all-high, or all-highimpedance
Keyboard interrupt driven by OR'ing together all Port A
bits
Keyboard interrupt can be used to wake up the system
8×8 keyboard matrix usable with no external logic, extra
keys can be added with minimal glue logic
I/O
Pin Description
O
Keyboard scanner column drive
COL[7:0]
I
External interrupt
EINT[3]
I
External interrupt
nEXTFIQ
I
External Fast Interrupt input
I
Media change interrupt input
nMEDCHG/nBROM
Note:
The EP7311 contains a 32-bit Real Time Clock (RTC) that can
be written to and read from in the same manner as the timer
counters. It also contains a 32-bit output match register which
can be programmed to generate an interrupt.
•
•
Driven by an external 32.768 kHz crystal oscillator
Pin Mnemonic
Pin Description
RTCIN
Real-Time Clock Oscillator Input
RTCOUT
Real-Time Clock Oscillator Output
VDDRTC
Real-Time Clock Oscillator Power
VSSRTC
Real-Time Clock Oscillator Ground
Table L. Real-Time Clock Pin Assignments
PLL and Clocking
•
•
Supports 22 interrupts from a variety of sources (such as
UARTs, SSI1, and key matrix.)
Routes interrupt sources to the ARM720T’s IRQ or FIQ
(Fast IRQ) inputs
Five dedicated off-chip interrupt lines operate as level
sensitive interrupts
Pins are multiplexed. See Table S on page 11 for more
information.
Real-Time Clock
Interrupt Controller
•
(Note)
Table K. Interrupt Controller Pin Assignments
Table J. Keypad Interface Pin Assignments
When unexpected events arise during the execution of a
program (i.e., interrupt or memory fault) an exception is
usually generated. When these exceptions occur at the same
time, a fixed priority system determines the order in which
they are handled. The EP7311 interrupt controller has two
interrupt types: interrupt request (IRQ) and fast interrupt
request (FIQ). The interrupt controller has the ability to control
interrupts from 22 different FIQ and IRQ sources.
Pin Description
nEINT[2:1]
•
Pin Mnemonic
I/O
Processor and Peripheral Clocks operate from a single
3.6864 MHz crystal or external 13 MHz clock
Programmable clock speeds allow the peripheral bus to run
at 18 MHz when the processor is set to 18 MHz and at
36 MHz when the processor is set to 36, 49 or 74 MHz
Pin Mnemonic
Pin Description
MOSCIN
Main Oscillator Input
MOSCOUT
Main Oscillator Output
VDDOSC
Main Oscillator Power
VSSOSC
Main Oscillator Ground
Table M. PLL and Clocking Pin Assignments
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
9
EP7311
High-Performance, Low-Power System on Chip
DC-to-DC converter interface (PWM)
Hardware debug Interface
•
•
Provides two 96 kHz clock outputs with programmable
duty ratio (from 1-in-16 to 15-in-16) that can be used to
drive a positive or negative DC to DC converter
Full JTAG boundary scan and Embedded ICE® support
Pin Mnemonic
Pin Mnemonic
DRIVE[1:0]
I/O
I/O
FB[1:0]
I
Pin Description
PWM drive output
PWM feedback input
Table N. DC-to-DC Converter Interface Pin Assignments
I
JTAG clock
TDI
I
JTAG data input
TDO
O
JTAG data output
nTRST
I
JTAG async reset input
TMS
I
JTAG mode select
Table P. Hardware Debug Interface Pin Assignments
Internal (RTC) timer
Two internal 16-bit programmable hardware count-down
timers
General Purpose Input/Output (GPIO)
•
•
Three 8-bit and one 3-bit GPIO ports
Supports scanning keyboard matrix
Pin Mnemonic
I/O
Pin Description
PA[7:0]
I/O
GPIO port A
PB[7:0]
I/O
GPIO port B
I/O
GPIO port D
I/O
GPIO port D
(Note)
I/O
GPIO port D
PE[1:0]/BOOTSEL[1:0] (Note)
I/O
GPIO port E
PE[2]/CLKSEL
I/O
GPIO port E
PD[0]/LEDFLSH
(Note)
PD[5:1]
PD[7:6]/SDQM[1:0]
(Note)
LED Flasher
A dedicated LED flasher module can be used to generate a low
frequency signal on Port D pin 0 for the purpose of blinking an
LED without CPU intervention. The LED flasher feature is
ideal as a visual annunciator in battery powered applications,
such as a voice mail indicator on a portable phone or an
appointment reminder on a PDA.
•
•
•
•
Software adjustable flash period and duty cycle
Operates from 32 kHz RTC clock
Will continue to flash in IDLE and STANDBY states
4 mA drive current
Pin Mnemonic
PD[0]/LEDFLSH
(Note)
I/O
O
Pin Description
LED flasher driver
Table Q. LED Flasher Pin Assignments
Table O. General Purpose Input/Output Pin Assignments
Note:
Pin Description
TCLK
Timers
•
•
I/O
Pins are multiplexed. See Table S on page 11 for more
information.
Note:
Pins are multiplexed. See Table S on page 11 for more
information.
Internal Boot ROM
The internal 128 byte Boot ROM facilitates download of saved
code to the on-board SRAM/FLASH.
Packaging
The EP7311 is available in a 208-pin LQFP package, 256-ball
PBGA package or a 204-ball TFBGA package.
10
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Pin Multiplexing
The following table shows the pin multiplexing of the MCP,
SSI2 and the CODEC. The selection between SSI2 and the
CODEC is controlled by the state of the SERSEL bit in
SYSCON2. The choice between the SSI2, CODEC, and the
MCP is controlled by the MCPSEL bit in SYSCON3 (see the
EP73xx User’s Manual for more information).
Pin
Mnemonic
I/O
MCP
SSI2
CODEC
SSICLK
I/O
SIBCLK
SSICLK
PCMCLK
SSITXDA
O
SIBDOUT
SSITXDA
PCMOUT
SSIRXDA
I
SIBDIN
SSIRXDA
PCMIN
SSITXFR
I/O
SIBSYNC
SSITXFR
PCMSYNC
SSIRXFR
I
p/u
SSIRXFR
p/u
BUZ
O
The following table shows the pins that have been multiplexed
in the EP7311.
Signal
Block
Signal
Block
nMOE
Static Memory
nSDCAS
SDRAM
nMWE
Static Memory
nSDWE
SDRAM
WRITE
Static Memory
nSDRAS
SDRAM
A[27:15]
Static Memory
DRA[0:12]
SDRAM
A[14:13]
Static Memory
DRA[13:14]
SDRAM
PD[7:6]
GPIO
SDQM[1:0]
SDRAM
RUN
System
Configuration
CLKEN
System
Configuration
nMEDCHG
Interrupt
Controller
nBROM
Boot ROM
select
PD[0]
GPIO
LEDFLSH
LED Flasher
PE[1:0]
GPIO
BOOTSEL[1:0]
System
Configuration
PE[2]
GPIO
CLKSEL
System
Configuration
Table R. MCP/SSI2/CODEC Pin Multiplexing
Table S. Pin Multiplexing
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
11
EP7311
High-Performance, Low-Power System on Chip
System Design
As shown in system block diagram, simply adding desired
memory and peripherals to the highly integrated EP7311
completes a low-power system solution. All necessary
interface logic is integrated on-chip.
CRYSTAL
MOSCIN
DD[0-3]
CRYSTAL
RTCIN
nCS[4]
PB0
EXPCLK
CL1
CL2
FRM
M
LCD
COL[0-7]
PC CARD
CONTROLLER
PC CARD
SOCKET
D[0-31]
PA[0-7]
A[0-27]
PB[0-7]
nMOE
WRITE
PD[0-7]
SDRAS/
SDCAS
×16
SDRAM
×16
SDRAM
SDCS[0]
×16
SDRAM
×16
SDRAM
SDCS[1]
SDQM[0-3]
SDQM[0-3]
EP7311
PE[0-2]
nPOR
nPWRFL
BATOK
nEXTPWR
nBATCHG
RUN
WAKEUP
DRIVE[0-1]
FB[0-1]
nCS[0]
nCS[1]
×16
FLASH
×16
FLASH
SSICLK
SSITXFR
SSITXDA
SSIRXDA
SSIRXFR
×16
FLASH
×16
FLASH
LEDDRV
PHDIN
CS[n]
WORD
EXTERNAL MEMORYMAPPED EXPANSION
BUFFERS
nCS[2]
nCS[3]
ADDITIONAL I/O
BUFFERS
AND
LATCHES
LEDFLSH
RXD1/2
TXD1/2
DSR
CTS
DCD
ADCCLK
nADCCS
ADCOUT
ADCIN
SMPCLK
KEYBOARD
POWER
SUPPLY UNIT
AND
COMPARATORS
DC
INPUT
BATTERY
DC-TO-DC
CONVERTERS
CODEC/SSI2/
MCP
IR LED AND
PHOTODIODE
2× RS-232
TRANSCEIVERS
ADC
DIGITIZER
Figure 1. A Maximum EP7311 Based System
Note:
12
A system can only use one of the following peripheral
interfaces at any given time: SSI2,CODEC or MCP.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
ELECTRICAL SPECIFICATIONS
Absolute Maximum Ratings
DC Core, PLL, and RTC Supply Voltage
2.9 V
DC I/O Supply Voltage (Pad Ring)
3.6 V
DC Pad Input Current
±10 mA/pin; ±100 mA cumulative
Storage Temperature, No Power
–40°C to +125°C
Recommended Operating Conditions
DC core, PLL, and RTC Supply Voltage
2.5 V ± 0.2 V
DC I/O Supply Voltage (Pad Ring)
2.3 V - 3.5 V
DC Input / Output Voltage
O–I/O supply voltage
Operating Temperature
Extended -20°C to +70°C; Commercial 0°C to +70°C;
Industrial -40°C to +85°C
DC Characteristics
All characteristics are specified at VDDCORE = 2.5 V, VDDIO = 3.3 V and VSS = 0 V over an operating temperature of 0°C to +70°C
for all frequencies of operation. The current consumption figures have test conditions specified per parameter.”
Symbol
Parameter
Min
Typ
Max
Unit
Conditions
VIH
CMOS input high voltage
0.65 × VDDIO
-
VDDIO + 0.3
V
VDDIO = 2.5 V
VIL
CMOS input low voltage
VSS − 0.3
-
0.25 × VDDIO
V
VDDIO = 2.5 V
VT+
Schmitt trigger positive going
threshold
-
-
2.1
V
VT-
Schmitt trigger negative going
threshold
0.8
-
-
V
Vhst
Schmitt trigger hysteresis
0.1
-
0.4
V
VIL to VIH
VDD – 0.2
2.5
2.5
-
-
V
V
V
IOH = 0.1 mA
IOH = 4 mA
IOH = 12 mA
Output drive 2a
-
-
0.3
0.5
0.5
V
V
V
IOL = –0.1 mA
IOL = –4 mA
IOL = –12 mA
Input leakage current
-
-
1.0
µA
VIN = VDD or GND
currentb c
25
-
100
µA
VOUT = VDD or GND
CIN
Input capacitance
8
-
10.0
pF
COUT
Output capacitance
8
-
10.0
pF
CMOS output high voltagea
VOH
Output drive 1a
Output drive 2a
CMOS output low voltagea
VOL
IIN
IOZ
DS506F1
Output drive 1a
Bidirectional 3-state leakage
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
13
EP7311
High-Performance, Low-Power System on Chip
Symbol
CI/O
Parameter
Transceiver capacitance
IDDSTANDBY
@ 25 C
IDDSTANDBY
@ 70 C
IDDSTANDBY
@ 85 C
IDDidle
at 74 MHz
Standby current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Standby current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Max
Unit
8
-
10.0
pF
-
77
41
-
-
-
570
111
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
Idle current consumption1
Core, Osc, RTC @2.5 V
I/O @ 3.3 V
-
-
1693
163
Conditions
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
µA
Only nPOR, nPWRFAIL,
nURESET, PE0, PE1, and RTS
are driven, while all other float,
VIH = VDD ± 0.1 V,
VIL = GND ± 0.1 V
-
6
10
-
mA
Both oscillators running, CPU
static, Cache enabled, LCD
disabled, VIH = VDD ± 0.1 V, VIL
= GND ± 0.1 V
2.0
-
-
V
Minimum standby voltage for
state retention, internal SRAM
cache, and RTC operation only
Refer to the strength column in the pin assignment tables for all package types.
b.
Assumes buffer has no pull-up or pull-down resistors.
c.
The leakage value given assumes that the pin is configured as an input pin but is not currently being driven.
Note:
14
Typ
Standby current consumption1
VDDSTANDBY Standby supply voltage
a.
Min
1) Total power consumption = IDDCORE x 2.5 V + IDDIO x 3.3 V
2) A typical design will provide 3.3 V to the I/O supply (i.e., VDDIO), and 2.5 V to the remaining logic. This is to allow the I/O to be
compatible with 3.3 V powered external logic (i.e., 3.3 V SDRAMs).
2) Pull-up current = 50 µA typical at VDD = 3.3 V.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Timings
Timing Diagram Conventions
This data sheet contains timing diagrams. The following key explains the components used in these diagrams. Any variations are
clearly labelled when they occur. Therefore, no additional meaning should be attached unless specifically stated.
C lo c k
H ig h
H ig h / L o w
to
to
L o w
H ig h
B u s C h a n g e
B u s
V a lid
U n d e f in e d / I n v a lid
V a lid
B u s to
T r is ta te
B u s / S ig n a l O m is s io n
Figure 2. Legend for Timing Diagrams
Timing Conditions
Unless specified otherwise, the following conditions are true for all timing measurements. All characteristics are specified at
VDDIO = 3.1 - 3.5 V and VSS = 0 V over an operating temperature of -40°C to +85°C. Pin loadings is 50 pF. The timing values are
referenced to 1/2 VDD.
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
15
EP7311
High-Performance, Low-Power System on Chip
SDRAM Interface
Figure 3 through Figure 6 define the timings associated with all phases of the SDRAM. The following table contains the values for
the timings of each of the SDRAM modes.
Parameter
Symbol
Min
Typ
Max
Unit
SDCLK rising edge to SDCS assert delay time
tCSa
0
2
4
ns
SDCLK rising edge to SDCS deassert delay time
tCSd
−3
2
10
ns
SDCLK rising edge to SDRAS assert delay time
tRAa
1
3
7
ns
SDCLK rising edge to SDRAS deassert delay time
tRAd
−3
1
10
ns
SDCLK rising edge to SDRAS invalid delay time
tRAnv
2
4
7
ns
SDCLK rising edge to SDCAS assert delay time
tCAa
−2
2
5
ns
SDCLK rising edge to SDCAS deassert delay time
tCAd
−5
0
3
ns
SDCLK rising edge to ADDR transition time
tADv
−3
1
5
ns
SDCLK rising edge to ADDR invalid delay time
tADx
−2
2
5
ns
SDCLK rising edge to SDMWE assert delay time
tMWa
−3
1
5
ns
SDCLK rising edge to SDMWE deassert delay time
tMWd
−4
0
4
ns
DATA transition to SDCLK rising edge time
tDAs
2
-
-
ns
SDCLK rising edge to DATA transition hold time
tDAh
1
-
-
ns
SDCLK rising edge to DATA transition delay time
tDAd
0
-
15
ns
16
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
SDRAM Load Mode Register Cycle
SDCLK
tCSa
tCSd
tRAa
tRAd
tCAa
tCAd
SDCS
SDRAS
SDCAS
tADv
tADx
ADDR
DATA
SDQM
tMWa
tMWd
SDMWE
Figure 3. SDRAM Load Mode Register Cycle Timing Measurement
Note:
DS506F1
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
17
EP7311
High-Performance, Low-Power System on Chip
SDRAM Burst Read Cycle
SDCLK
tCSa
SDCS
tCSa
tCSd
tCSd
tRAa
SDRAS
tRAnv
tRAd
tCAa
tCAd
SDCAS
tADv
ADDR
tADv
ADRAS
ADCAS
tDAs
DATA
tDAs
D1
tDAh
tDAs
D2
tDAh
tDAs
D3
tDAh
D4
tDAh
SDQM
[0:3]
SDMWE
Figure 4. SDRAM Burst Read Cycle Timing Measurement
Note:
18
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
SDRAM Burst Write Cycle
SDCLK
tCSa
tCSa
tCSd
SDCS
tCSd
tRAa
tRAd
SDRAS
tCAa
tCAd
SDCAS
tADv
tADv
tDAd
tDAd
tDAd
D1
DATA
SDQM
ADCAS
ADRAS
ADDR
D2
tDAd
D3
D4
0
tMWa
tMWd
SDMWE
Figure 5. SDRAM Burst Write Cycle Timing Measurement
Note:
DS506F1
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
19
EP7311
High-Performance, Low-Power System on Chip
SDRAM Refresh Cycle
SDCLK
tCSa
tCSd
tRAa
tRAd
SDCS
SDRAS
tCAd
SDCAS
tCAa
SDATA
ADDR
SDQM
[3:0]
SDMWE
Figure 6. SDRAM Refresh Cycle Timing Measurement
Note:
20
1. Timings are shown with CAS latency = 2
2. The SDCLK signal may be phase shifted relative to the rest of the SDRAM control and data signals due to uneven loading.
Designers should take care to ensure that delays between SDRAM control and data signals are approximately equal
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Static Memory
Figure 7 through Figure 10 define the timings associated with all phases of the Static Memory. The following table contains the
values for the timings of each of the Static Memory modes.
Parameter
Symbol
Min
Typ
Max
Unit
EXPCLK rising edge to nCS assert delay time
tCSd
2
8
20
ns
EXPCLK falling edge to nCS deassert hold time
tCSh
2
7
20
ns
EXPCLK rising edge to A assert delay time
tAd
4
9
16
ns
EXPCLK falling edge to A deassert hold time
tAh
3
10
19
ns
EXPCLK rising edge to nMWE assert delay time
tMWd
3
6
10
ns
EXPCLK rising edge to nMWE deassert hold time
tMWh
3
6
10
ns
EXPCLK falling edge to nMOE assert delay time
tMOEd
3
7
10
ns
EXPCLK falling edge to nMOE deassert hold time
tMOEh
2
7
10
ns
EXPCLK falling edge to HALFWORD deassert delay time
tHWd
2
8
20
ns
EXPCLK falling edge to WORD assert delay time
tWDd
2
8
16
ns
EXPCLK rising edge to data valid delay time
tDv
8
13
21
ns
EXPCLK falling edge to data invalid delay time
tDnv
6
15
30
ns
Data setup to EXPCLK falling edge time
tDs
-
-
1
ns
EXPCLK falling edge to data hold time
tDh
-
-
3
ns
EXPCLK rising edge to WRITE assert delay time
tWRd
5
11
23
ns
EXPREADY setup to EXPCLK falling edge time
tEXs
-
-
0
ns
EXPCLK falling edge to EXPREADY hold time
tEXh
-
-
0
ns
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
21
EP7311
High-Performance, Low-Power System on Chip
Static Memory Single Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALFWORD
tWDd
WORD
tDs
tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 7. Static Memory Single Read Cycle Timing Measurement
Note:
22
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Address, Halfword, Word, and Write hold state until next cycle.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Static Memory Single Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
A
tMWd
tMWh
nMWE
nMOE
tHWd
HALFWORD
tWDd
WORD
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 8. Static Memory Single Write Cycle Timing Measurement
Note:
DS506F1
1. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
2. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
3. Address, Data, Halfword, Word, and Write hold state until next cycle.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
23
EP7311
High-Performance, Low-Power System on Chip
Static Memory Burst Read Cycle
EXPCLK
tCSd
tCSh
nCS
tAd
tAh
tAh
tAh
A
nMWE
tMOEd
tMOEh
nMOE
tHWd
HALF
WORD
tWDd
WORD
tDs tDh
tDs tDh
tDs
tDh
tDs
tDh
D
tEXs
tEXh
EXPRDY
tWRd
WRITE
Figure 9. Static Memory Burst Read Cycle Timing Measurement
Note: 1. Four cycles are shown in the above diagram (minimum wait states, 1-0-0-0). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Consecutive reads with sequential access enabled are identical except that the sequential access wait state field is used to
determine the number of wait states, and no idle cycles are inserted between successive non-sequential ROM/expansion
cycles. This improves performance so the SQAEN bit should always be set where possible.
4. Address, Halfword, Word, and Write hold state until next cycle.
24
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Static Memory Burst Write Cycle
EXPCLK
tCSd
tCSh
nCS
tAh
tAd
tAh
tAh
A
tMWd
tMWd
tMWd
tMWh
nMWE
tMWd
tMWh
tMWh
tMWh
nMOE
tHWd
HALF
WORD
WORD
tWDd
tDv
tDnv
tDv
tDnv
tDv
tDnv
tDv
D
tEXs
tEXh
EXPRDY
WRITE
Figure 10. Static Memory Burst Write Cycle Timing Measurement
Note:
DS506F1
1. Four cycles are shown in the above diagram (minimum wait states, 1-1-1-1). This is the maximum number of consecutive
cycles that can be driven. The number of consecutive cycles can be programmed from 2 to 4, inclusively.
2. The cycle time can be extended by integer multiples of the clock period (22 ns at 45 MHz, 27 ns at 36 MHz, 54 ns at
18.432 MHz, and 77 ns at 13 MHz), by either driving EXPRDY low and/or by programming a number of wait states. EXPRDY is
sampled on the falling edge of EXPCLK before the data transfer. If low at this point, the transfer is delayed by one clock period
where EXPRDY is sampled again. EXPCLK need not be referenced when driving EXPRDY, but is shown for clarity.
3. Zero wait states for sequential writes is not permitted for memory devices which use nMWE pin, as this cannot be driven with
valid timing under zero wait state conditions.
4. Address, Data, Halfword, Word, and Write hold state until next cycle.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
25
EP7311
High-Performance, Low-Power System on Chip
SSI1 Interface
Parameter
Symbol
Min
Max
Unit
ADCCLK falling edge to nADCCSS deassert delay time
tCd
9
10
ms
ADCIN data setup to ADCCLK rising edge time
tINs
-
15
ns
ADCIN data hold from ADCCLK rising edge time
tINh
-
14
ns
ADCCLK falling edge to data valid delay time
tOvd
−7
13
ns
ADCCLK falling edge to data invalid delay time
tOd
−2
3
ns
ADC
CLK
tCd
nADC
CSS
tINs
tINh
ADCIN
tOvd
tOd
ADC
OUT
Figure 11. SSI1 Interface Timing Measurement
26
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
SSI2 Interface
Parameter
Symbol
Min
Max
Unit
SSICLK period (slave mode)
tclk_per
185
2050
ns
SSICLK high time
tclk_high
925
1025
ns
SSICLK low time
tclk_low
925
1025
ns
SSICLK rise/fall time
tclkrf
3
18
ns
SSICLK rising edge to RX and/or TX frame sync high time
tFRd
-
3
ns
SSICLK rising edge to RX and/or TX frame sync low time
tFRa
-
8
ns
tFR_per
960
990
ns
SSIRXDA setup to SSICLK falling edge time
tRXs
3
7
ns
SSIRXDA hold from SSICLK falling edge time
tRXh
3
7
ns
SSICLK rising edge to SSITXDA data valid delay time
tTXd
-
2
ns
SSITXDA valid time
tTXv
960
990
ns
SSIRXFR and/or SSITXFR period
tclk_per
tclk_high
tclk_low
SSI
CLK
tclkrf
tFRd
tFRa
tFR_per
SSIRXFR/
SSITXFR
tRXh
tRXs
SSI
RXDA
D7
D2
D1
D0
D7
D2
D1
D0
tTXd
SSI
TXDA
tTXv
Figure 12. SSI2 Interface Timing Measurement
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
27
EP7311
High-Performance, Low-Power System on Chip
LCD Interface
Parameter
Symbol
Min
Max
Unit
CL[2] falling to CL[1] rising delay time
tCL1d
− 10
25
ns
CL[1] falling to CL[2] rising delay time
tCL2d
80
3,475
ns
CL[1] falling to FRM transition time
tFRMd
300
10,425
ns
CL[1] falling to M transition time
tMd
− 10
20
ns
CL[2] rising to DD (display data) transition time
tDDd
− 10
20
ns
CL[2]
tCL2d
tCL1d
CL[1]
tFRMd
FRM
tMd
M
tDDd
DD [3:0]
Figure 13. LCD Controller Timing Measurement
28
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
JTAG Interface
Parameter
Symbol
Min
Max
Units
TCK clock period
tclk_per
2
-
ns
TCK clock high time
tclk_high
1
-
ns
TCK clock low time
tclk_low
1
-
ns
JTAG port setup time
tJPs
-
0
ns
JTAG port hold time
tJPh
-
3
ns
JTAG port clock to output
tJPco
-
10
ns
JTAG port high impedance to valid output
tJPzx
-
12
ns
JTAG port valid output to high impedance
tJPxz
-
19
ns
tclk_per
tclk_high
tclk_low
TCK
tJPs
tJPh
TMS
TDI
tJPzx
tJPco
tJPxz
TDO
Figure 14. JTAG Timing Measurement
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
29
EP7311
High-Performance, Low-Power System on Chip
Packages
208-Pin LQFP Package Characteristics
208-Pin LQFP Package Specifications
29.60 (1.165)
30.40 (1.197)
27.80 (1.094)
28.20 (1.110)
0.17 (0.007)
0.27 (0.011)
27.80 (1.094)
28.20 (1.110)
EP7311
29.60 (1.165)
30.40 (1.197)
208-Pin LQFP
0.50
(0.0197)
BSC
Pin 1 Indicator
Pin 208
Pin 1
1.35 (0.053)
1.45 (0.057)
0.45 (0.018)
0.75 (0.030)
1.00 (0.039) BSC
0.09 (0.004)
0.20 (0.008)
0° MIN
7° MAX
0.05 (0.002)
0.15 (0.006)
1.40 (0.055)
1.60 (0.063)
Figure 15. 208-Pin LQFP Package Outline Drawing
Note:
30
1) Dimensions are in millimeters (inches), and controlling dimension is millimeter.
2) Drawing above does not reflect exact package pin count.
3) Before beginning any new design with this device, please contact Cirrus Logic for the latest package information.
4) For pin locations, please see Figure 16. For pin descriptions see the EP7311 User’s Manual.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
nURESET
nMEDCHG/nBROM
nPOR
BATOK
nEXTPWR
nBATCHG
D[7]
VSSIO
A[7]
D[8]
A[8]
D[9]
A[9]
D[10]
A[10]
D[11]
VSSIO
VDDIO
A[11]
D[12]
A[12]
D[13]
A[13]\DRA[14]
D[14]
A[14]/DRA[13]
D[15]
A[15]/DRA[12]
D[16]
A[16]/DRA[11]
D[17]
A[17]/DRA[10]
nTRST
VSSIO
VDDIO
D[18]
A[18/DRA[9]
D[19]
A[19]/DRA[8]
D[20]
A[20]/DRA[7]
VSSIO
D[21]
A[21]/DRA[6]
D[22]
A[22]/DRA[5]
D[23]
A[23]/DRA[4]
D[24]
VSSIO
VDDIO
A[24]/DRA[3]
HALFWORD
208-Pin LQFP Pin Diagram
EP7311
208-Pin LQFP
(Top View)
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
D[25]
A[25]/DRA[2]
D[26]
A[26]/DRA[1]
D[27]
A[27]/DRA[0]
VSSIO
D[28]
D[29]
D[30]
D[31]
BUZ
COL[0]
COL[1]
TCLK
VDDIO
COL[2]
COL[3]
COL[4]
COL[5]
COL[6]
COL[7]
FB[0]
VSSIO
FB[1]
SMPCLK
ADCOUT
ADCCLK
DRIVE[0]
DRIVE[1]
VDDIO
VSSIO
VDDCORE
VSSCORE
nADCCS
ADCIN
SSIRXFR
SSIRXDA
SSITXDA
SSITXFR
VSSIO
SSICLK
PD[0]/LEDFLSH
PD[1]
PD[2]
PD[3]
TMS
VDDIO
PD[4]
PD[5]
PD[6]/SDQM[0]
PD[7]/SDQM[1]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
nCS[5]
VDDIO
VSSIO
EXPCLK
WORD
WRITE/nSDRAS
RUN/CLKEN
EXPRDY
TXD[2]
RXD[2]
TDI
VSSIO
PB[7]
PB[6]
PB[5]
PB[4]
PB[3]
PB[2]
PB[1]
PB[0]
VDDIO
TDO
PA[7]
PA[6]
PA[5]
PA[4]
PA[3]
PA[2]
PA[1]
PA[0]
LEDDRV
TXD[1]
VSSIO
PHDIN
CTS
RXD[1]
DCD
DSR
nTEST[1]
nTEST[0]
EINT[3]
nEINT[2]
nEINT[1]
nEXTFIQ
PE[2]/CLKSEL
PE[1]BOOTSEL[1]
PE[0]BOOTSEL[0]
VSSRTC
RTCOUT
RTCIN
VDDRTC
N/C
VDDOSC
MOSCIN
MOSCOUT
VSSOSC
WAKEUP
nPWRFL
A[6]
D[6]
A[5]
D[5]
VDDIO
VSSIO
A[4]
D[4]
A[3]
D[3]
A[2]
VSSIO
D[2]
A[1]
D[1]
A[0]
D[0]
VSSCORE
VDDCORE
VSSIO
VDDIO
CL[2]
CL[1]
FRM
M
DD[3]
DD[2]
VSSIO
DD[1]
DD[0]
nSDCS[1]
nSDCS[0]
SDQM[3]
SDQM[2]
VDDIO
VSSIO
SDCKE
SDCLK
nMWE/nSDWE
nMOE/nSDCAS
VSSIO
nCS[0]
nCS[1]
nCS[2]
nCS[3]
nCS[4]
Figure 16. 208-Pin LQFP (Low Profile Quad Flat Pack) Pin Diagram
Note:
DS506F1
1. N/C should not be grounded but left as no connects.
2. Pin differences between the EP7211 and the EP7311 are bolded.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
31
EP7311
High-Performance, Low-Power System on Chip
208-Pin LQFP Numeric Pin Listing
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Table T. 208-Pin LQFP Numeric Pin Listing
Pin
No.
Signal
Type
37
DCD
I
38
DSR
I
39
nTEST[1]
I
With p/u*
40
nTEST[0]
I
With p/u*
41
EINT[3]
I
42
nEINT[2]
I
43
nEINT[1]
I
44
nEXTFIQ
I
45
PE[2]/CLKSEL
I/O
1
Input
46
PE[1]/
BOOTSEL[1]
I/O
1
Input
47
PE[0]/
BOOTSEL[0]
I/O
1
Input
Input
48
VSSRTC
RTC Gnd
1
Input
49
RTCOUT
O
I/O
1
Input
50
RTCIN
I
PB[4]
I/O
1
Input
51
VDDRTC
RTC power
17
PB[3]
I/O
1
Input
52
N/C
18
PB[2]
I/O
1
Input
53
PD[7]/SDQM[1]
I/O
1
Low
19
PB[1]/PRDY2
I/O
1
Input
54
PD[6]/SDQM[0]
I/O
1
Low
20
PB[0]/PRDY1
I/O
1
Input
55
PD[5]
I/O
1
Low
21
VDDIO
Pad Pwr
56
PD[4]
I/O
1
Low
22
TDO
O
1
Three state
57
VDDIO
Pad Pwr
23
PA[7]
I/O
1
Input
58
TMS
I
with p/u*
24
PA[6]
I/O
1
Input
59
PD[3]
I/O
1
Low
25
PA[5]
I/O
1
Input
60
PD[2]
I/O
1
Low
26
PA[4]
I/O
1
Input
61
PD[1]
I/O
1
Low
27
PA[3]
I/O
1
Input
62
PD[0]/LEDFLSH
I/O
1
Low
28
PA[2]
I/O
1
Input
63
SSICLK
I/O
1
Input
29
PA[1]
I/O
1
Input
64
VSSIO
Pad Gnd
30
PA[0]
I/O
1
Input
65
SSITXFR
I/O
1
Low
31
LEDDRV
O
1
Low
66
SSITXDA
O
1
Low
32
TXD[1]
O
1
High
67
SSIRXDA
I
33
VSSIO
Pad Gnd
1
High
68
SSIRXFR
I/O
34
PHDIN
I
69
ADCIN
I
35
CTS
I
70
nADCCS
O
36
RXD[1]
I
71
VSSCORE
Core Gnd
72
VDDCORE
Core Pwr
Pin
No.
Signal
Type
Strength
Reset
State
1
nCS[5]
O
1
Low
2
VDDIO
Pad Pwr
3
VSSIO
Pad Gnd
4
EXPCLK
I/O
1
5
WORD
Out
1
Low
6
WRITE/nSDRAS
Out
1
Low
7
RUN/CLKEN
O
1
Low
8
EXPRDY
I
1
9
TXD[2]
O
1
10
RXD[2]
I
11
TDI
I
12
VSSIO
Pad Gnd
13
PB[7]
I/O
1
14
PB[6]
I/O
15
PB[5]
16
32
High
with p/u*
Strength
Reset
State
Input
1
High
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
73
VSSIO
74
75
Pin
No.
Signal
Type
Strength
Reset
State
Pad Gnd
110
A[23]/DRA[4]
O
1
Low
VDDIO
Pad Pwr
111
D[23]
I/O
1
Low
DRIVE[1]
I/O
112
A[22]/DRA[5]
O
1
Low
Strength
Reset
State
2
High /
Low
113
D[22]
I/O
1
Low
114
A[21]/DRA[6]
O
1
Low
115
D[21]
I/O
1
Low
116
VSSIO
Pad Gnd
117
A[20]/DRA[7]
O
1
Low
118
D[20]
I/O
1
Low
119
A[19]/DRA[8]
O
1
Low
120
D[19]
I/O
1
Low
121
A[18]/DRA[9]
O
1
Low
122
D[18]
I/O
1
Low
123
VDDIO
Pad Pwr
124
VSSIO
Pad Gnd
125
nTRST
I
126
A[17]/DRA[10]
O
1
Low
127
D[17]
I/O
1
Low
128
A[16]/DRA[11]
O
1
Low
129
D[16]
I/O
1
Low
130
A[15]/DRA[12]
O
1
Low
131
D[15]
I/O
1
Low
132
A[14]/DRA[13]
O
1
Low
133
D[14]
I/O
1
Low
134
A[13]/DRA[14]
O
1
Low
135
D[13]
I/O
1
Low
136
A[12]
O
1
Low
137
D[12]
I/O
1
Low
138
A[11]
O
1
Low
139
VDDIO
Pad Pwr
140
VSSIO
Pad Gnd
141
D[11]
I/O
1
Low
142
A[10]
O
1
Low
143
D[10]
I/O
1
Low
144
A[9]
O
1
Low
145
D[9]
I/O
1
Low
146
A[8]
O
1
Low
147
D[8]
I/O
1
Low
76
DRIVE[0]
I/O
2
High /
Low
77
ADCCLK
O
1
Low
78
ADCOUT
O
1
Low
79
SMPCLK
O
1
Low
80
FB[1]
I
81
VSSIO
Pad Gnd
82
FB[0]
I
83
COL[7]
O
1
High
84
COL[6]
O
1
High
85
COL[5]
O
1
High
86
COL[4]
O
1
High
87
COL[3]
O
1
High
88
COL[2]
O
1
High
89
VDDIO
Pad Pwr
90
TCLK
I
91
COL[1]
O
1
High
92
COL[0]
O
1
High
93
BUZ
O
1
Low
94
D[31]
I/O
1
Low
95
D[30]
I/O
1
Low
96
D[29]
I/O
1
Low
97
D[28]
I/O
1
Low
98
VSSIO
Pad Gnd
99
A[27]/DRA[0]
O
2
Low
100
D[27]
I/O
1
Low
101
A[26]/DRA[1]
O
2
Low
102
D[26]
I/O
1
Low
103
A[25]/DRA[2]
O
2
Low
104
D[25]
I/O
1
Low
105
HALFWORD
O
1
Low
106
A[24]/DRA[3]
O
1
Low
107
VDDIO
Pad Pwr
—
108
VSSIO
Pad Gnd
—
109
D[24]
I/O
DS506F1
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
1
Low
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
33
EP7311
High-Performance, Low-Power System on Chip
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Table T. 208-Pin LQFP Numeric Pin Listing (Continued)
Pin
No.
Signal
Type
Strength
Reset
State
Pin
No.
Signal
Type
Strength
Reset
State
148
A[7]
O
1
Low
186
FRM
O
1
Low
149
VSSIO
Pad Gnd
187
M
O
1
Low
150
D[7]
I/O
188
DD[3]
I/O
1
Low
151
nBATCHG
I
189
DD[2]
I/O
1
Low
152
nEXTPWR
I
190
VSSIO
Pad Gnd
153
BATOK
I
191
DD[1]
I/O
1
Low
154
nPOR
I
192
DD[0]
I/O
1
Low
155
nMEDCHG/
nBROM
I
193
nSDCS[1]
O
1
High
194
nSDCS[0]
O
1
High
156
nURESET
I
195
SDQM[3]
I/O
2
Low
157
VDDOSC
Osc Pwr
196
SDQM[2]
I/O
2
Low
158
MOSCIN
Osc
197
VDDIO
Pad Pwr
159
MOSCOUT
Osc
198
VSSIO
Pad Gnd
160
VSSOSC
Osc Gnd
199
SDCKE
I/O
2
Low
161
WAKEUP
I
200
SDCLK
I/O
2
Low
162
nPWRFL
I
201
nMWE/nSDWE
O
1
High
163
A[6]
O
1
Low
202
nMOE/nSDCAS
O
1
High
164
D[6]
I/O
1
Low
203
VSSIO
Pad Gnd
165
A[5]
Out
1
Low
204
nCS[0]
O
1
High
166
D[5]
I/O
1
Low
205
nCS[1]
O
1
High
167
VDDIO
Pad Pwr
206
nCS[2]
O
1
High
168
VSSIO
Pad Gnd
207
nCS[3]
O
1
High
169
A[4]
O
1
Low
208
nCS[4]
O
1
High
170
D[4]
I/O
1
Low
171
A[3]
O
2
Low
172
D[3]
I/O
1
Low
173
A[2]
O
2
Low
174
VSSIO
Pad Gnd
175
D[2]
I/O
1
Low
176
A[1]
O
2
Low
177
D[1]
I/O
1
Low
178
A[0]
O
2
Low
179
D[0]
I/O
1
Low
180
VSS CORE
Core Gnd
181
VDD CORE
Core Pwr
182
VSSIO
Pad Gnd
183
VDDIO
Pad Pwr
184
CL[2]
O
1
Low
185
CL[1]
O
1
Low
34
1
Low
Schmitt
Schmitt
Schmitt
*With p/u’ means with internal pull-up on the pin.
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Package Characteristics
204-Ball TFBGA Package Specifications
TOP VIEW
BOTTOM VIEW
Ø0.08 M C
Ø0.15 M C A B
A1 CORNER
A1 CORNER
Ø0.25~0.35(204X)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
0.65
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
12.35
13±0.05
H
J
K
L
M
N
P
R
T
U
V
W
Y
A
0.65
12.35
13±0.05
0.20 C
0.15(4X) C
0.10 C
0.53±0.05
B
Ball Pitch :
SEATING PLANE
Ball Diameter :
0.20~0.30
C
1.20 MAX.
0.36
0.65
Substrate Thickness :
0.36
Mold Thickness :
0.3
0.53
Figure 17. 204-Ball TFBGA Package
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
35
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Pinout (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A VDDIO EXPCLK nCS3
nCS1
nMWE/
SDQM2 nSDCS1
nSDWE
DD2
FRM
CL1
GNDCOR
E
D1
A2
D4
A5
nPWRFL MOSCOUT GNDIO
GNDIO
B WORD
nCS2
nMOE/
SDCKE nSDCS0
nSDCAS
DD1
M
CL2
D0
A1
D3
A4
D6
WAKEUP MOSCIN
GNDIO
GNDIO nURESET B
DD0
DD3
VDDCO
RE
A0
D2
A3
D5
A6
GNDOS
VDDOSC
C
GNDIO
BATOK
C
VDDIO
nCS5
RUN/
EXPRDY VDDIO
CLKEN
nCS4
nCS0
SDCLK SDQM3
GNDIO A
nPOR
C
GNDIO nBATCHG
A7
D
nMEDCHG
nEXTPWR
/nBROM
D9
E
D
PB7
RXD2
VDDIO
E
PB4
TXD2
WRITE/
nSDRAS
F
PB3
PB6
TDI
D7
A8
D10
F
G
PB1/
PRDY2
PB2
PB5
D8
A9
D11
G
H
PA7
TDO
PB0/
PRDY1
A10
D12
A12
H
J
PA4
PA5
PA6
A11
D13
A13/
DRA14
J
K
PA1
PA2
VDDIO
D14
A14/
DRA13
D15
K
PA3
VDDIO
D16
A16/
DRA11
L
PA0
A15/
DRA12
A17/
DRA10
nTEST1 PHDIN
D17
D19
A18/
DRA9
N
P EINT3
nEINT2
D18
A20/
DRA7
D20
P
R nEXTFIQ
PE2/
nTEST0
CLKSEL
A19/
DRA8
D22
A21/
DRA6
R
D21
D23
A22/
DRA5
T
HALF
WORD
D24
A23/
DRA4
U
L
TXD1 LEDDRV
M RXD1
N
T
DSR
PE1/
BOOT
SEL1
CTS
PE0/
BOOT
SEL0
DCD
nEINT1
U GNDRTCRTCOUT RTCIN
V VDDRTC GNDIO GNDIO
PD7/
SDQM1
PD4
PD2
W GNDIO GNDIO GNDIO
PD6/SD
TMS
QM0
PD1
Y GNDIO GNDIO GNDIO
36
PD5
PD3
SSICLK SSIRXDA nADCCS VDDIO ADCCLK COL7
nTRST M
COL4 TCLK
BUZ
D29
A26/
DRA1
VDDIO
VDDIO
A24/
DRA3
V
GNDCO
DRIVE1 ADCOUT
RE
FB0
COL5 COL2
COL0
D30
A27/
DRA0
D26
VDDIO
D25
W
PD0/
VDDCO
LED SSITXDA ADCIN
DRIVE0 SMPLCK
RE
FLSH
FB1
COL6 COL3
COL1
D31
D28
D27
A25/
DRA2
VDDIO
Y
SSITXFR SSIRXFR
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
204-Ball TFBGA Ball Listing
The list is ordered by ball location.
Table 21. 204-Ball TFBGA Ball Listing
Ball Location
Name
†
Strength
Reset
State
Type
Description
Pad power
Digital I/O power,
3.3 V
I
Expansion clock
input
A1
VDDIO
A2
EXPCLK
1
A3
nCS[3]
1
High
O
Chip select 3
A4
nCS[1]
1
High
O
Chip select 1
A5
nMWE/nSDWE
1
High
O
ROM, expansion
write enable/
SDRAM write enable
control signal
A6
SDQM[2]
2
Low
O
SDRAM byte lane
mask
A7
nSDCS[1]
1
High
O
SDRAM chip select
2
A8
DD[2]
1
Low
O
LCD serial display
data
A9
FRM
1
Low
O
LCD frame
synchronization
pulse
A10
CL[1]
1
Low
O
LCD line clock
A11
VSSCORE
A12
D[1]
1
Low
I/O
Data I/O
A13
A[2]
2
Low
O
System byte address
A14
D[4]
1
Low
I/O
Data I/O
A15
A[5]
1
Low
O
System byte address
A16
nPWRFL
I
Power fail sense
input
A17
MOSCOUT
O
Main oscillator out
A18
VSSIO
Pad ground
I/O ground
A19
VSSIO
Pad ground
I/O ground
A20
VSSIO
Pad ground
I/O ground
B1
WORD
B2
VDDIO
B3
nCS[5]
1
Low
O
Chip select 5
B4
nCS[2]
1
High
O
Chip select 2
B5
nMOE/nSDCAS
1
High
O
ROM, expansion OP
enable/SDRAM CAS
control signal
B6
SDCKE
2
Low
O
SDRAM clock
enable output
B7
nSDCS[0]
1
High
O
SDRAM chip select
0
DS506F1
Core ground
1
Low
Core ground
O
Word access select
output
Pad power
Digital I/O power, 3.3
V
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
37
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
Reset
State
Type
Description
B8
DD[1]
1
Low
O
LCD serial display
data
B9
M
1
Low
O
LCD AC bias drive
B10
CL[2]
1
Low
0
LCD pixel clock out
B11
D[0]
1
Low
I/O
Data I/O
B12
A[1]
2
Low
O
System byte address
B13
D[3]
2
Low
I/O
Data I/O
B14
A[4]
1
Low
O
System byte address
B15
D[6]
1
Low
I/O
Data I/O
B16
WAKEUP
B17
MOSCIN
B18
VSSIO
Pad ground
I/O ground
B19
VSSIO
Pad ground
I/O ground
B20
nURESET
C1
RUN/CLKEN
1
C2
EXPRDY
1
C3
VDDIO
C4
nCS[4]
1
High
O
Chip select 4
C5
nCS[0]
1
High
O
Chip select 0
C6
SDCLK
2
Low
O
SDRAM clock out
C7
SDQM[3]
2
Low
O
SDRAM byte lane
mask
C8
DD[0]
1
Low
O
LCD serial display
data
C9
DD[3]
1
Low
O
LCD serial display
data
C10
VDDCORE
Core power
Digital core power,
2.5 V
C11
A[0]
2
Low
O
System byte address
C12
D[2]
1
Low
I/O
Data I/O
C13
A[3]
2
Low
O
System byte address
C14
D[5]
1
Low
I/O
Data I/O
C15
A[6]
1
Low
O
System byte address
C16
VSSOSC
Oscillator ground
PLL ground
C17
VDDOSC
Oscillator power
Oscillator power in,
2.5V
C18
VSSIO
Pad ground
C19
BATOK
I
38
Schmitt
Schmitt
Low
I
System wake up
input
I
Main oscillator input
I
User reset input
0
Run output / clock
enable output
I
Expansion port
ready input
Pad power
Digital I/O power,
3.3 V
I/O ground
Battery ok input
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
Reset
State
Type
Description
I
Power-on reset input
I
GPIO port B
UART 2 receive data
input
C20
nPOR
Schmitt
D1
PB[7]
1
D2
RXD[2]
I
D3
VDDIO
Pad power
Digital I/O power,
3.3V
D18
VSSIO
Pad ground
I/O ground
D19
nBATCHG
D20
A[7]
1
Low
E1
PB[4]
1
E2
TXD[2]
E3
WRITE/nSDRAS
E18
‡
Input
I
Battery changed
sense input
O
System byte address
Input
I
GPIO port B
1
High
O
UART 2 transmit
data output
1
Low
O
Transfer direction /
SDRAM RAS signal
output
nMEDCHG/nBROM
I
Media change
interrupt input /
internal ROM boot
enable
E19
nEXTPWR
I
External power
supply sense input
E20
D[9]
1
Low
F1
PB[3]
1
Input
F2
PB[6]
1
Input
F3
TDI
with p/u*
F18
D[7]
1
Low
I/O
Data I/O
F19
A[8]
1
Low
O
System byte address
F20
D[10]
1
Low
I/O
Data I/O
G1
PB[1]
1
Input
G2
PB[2]
1
Input
G3
PB[5]
1
Input
G18
D[8]
1
Input
G19
A[9]
1
G20
D[11]
H1
‡
I/O
Data I/O
‡
I/O
GPIO port B
‡
I/O
I
GPIO port B
JTAG data input
‡
I/O
‡
I/O
GPIO port B
‡
I/O
GPIO port B
‡
I/O
Data I/O
Low
O
System byte address
1
Low
I/O
Data I/O
PA[7]
1
Input
‡
I/O
GPIO port A
H[2]
TDO
1
Input
‡
O
JTAG data out
H[3]
PB[0]
1
Input
‡
I/O
GPIO port B
H[18]
A[10]
1
Low
O
System byte address
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
39
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
Reset
State
Type
Description
H19
D[12]
1
Low
I/O
Data I/O
H20
A[12]
1
Low
O
System byte address
J1
PA[4]
1
Input
‡
I/O
GPIO port A
J2
PA[5]
1
Input
‡
I/O
GPIO port A
J3
PA[6]
1
Input
‡
I/O
GPIO port A
J18
A[11]
1
Low
O
System byte address
J19
D[13]
1
Low
I/O
Data I/O
J20
A[13]/DRA[14]
1
Low
O
System byte address
/ SDRAM address
K1
PA[1]
1
Input
K2
PA[2]
1
Input
K3
VDDIO
K18
D[14]
1
Low
I/O
Data I/O
K19
A[14]/DRA[13]
1
Low
O
System byte address
/ SDRAM address
K20
D[15]
1
Low
I/O
Data I/O
L1
TXD[1]
1
High
O
UART 1 transmit
data out
L2
LEDDRV
1
Low
O
IR LED drive
L3
PA[3]
1
Input
I/O
GPIO port A
L18
VDDIO
L19
D[16]
1
Low
I/O
Data I/O
L20
A[16]/DRA[11]
1
Low
O
System byte address
/ SDRAM address
M1
RXD[1]
I
UART 1 receive data
input
M2
CTS
I
UART 1 clear to
send input
M3
PA[0]
1
Input
I/O
M18
A[15]/DRA[12]
1
Low
O
System byte address
/ SDRAM address
M19
A[17]/DRA[10]
1
Low
O
System byte address
/ SDRAM address
M20
nTRST
I
JTAG async reset
input
N1
DSR
I
UART 1 data set
ready input
N2
nTEST[1]
I
Test mode select
input
N3
PHDIN
I
Photodiode input
40
‡
I/O
GPIO port A
‡
I/O
GPIO port A
Pad power
‡
Pad power
With p/u*
‡
Digital I/O power,
3.3V
Digital I/O power,
3.3V
GPIO port A
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
Reset
State
Type
Description
N18
D[17]
1
Low
I/O
Data I/O
N19
D[19]
1
Low
I/O
Data I/O
N20
A[18]/DRA[9]
1
Low
O
System byte address
/ SDRAM address
P1
EINT[3]
I
External interrupt
P2
nEINT[2]
I
External interrupt
input
P3
DCD
I
UART 1 data carrier
detect
P18
D[18]
1
Low
I/O
Data I/O
P19
A[20]/DRA[7]
1
Low
O
System byte address
/ SDRAM address
P20
D[20]
1
Low
I/O
Data I/O
R1
nEXTFIQ
R2
PE[2]/CLKSEL
R3
nTEST[0]
R18
A[19]/DRA[8]
1
R19
D[22]
R20
I
1
‡
Input
I/O
External fast
interrupt input
GPIO port E / clock
input mode select
I
Test mode select
input
Low
O
System byte address
/ SDRAM address
1
Low
I/O
Data I/O
A[21]/DRA[6]
1
Low
O
System byte address
/ SDRAM address
T1
PE[1]/BOOTSEL[1]
1
Input
T2
PE[0]/BOOTSEL[0]
1
Input
T3
nEINT[1]
T18
D[21]
1
Low
I/O
Data I/O
T19
D[23]
1
Low
I/O
Data I/O
T20
A[22]/DRA[5]
1
Low
O
System byte address
/ SDRAM address
U1
VSSRTC
RTC ground
Real time clock
ground
U2
RTCOUT
O
Real time clock
oscillator output
U3
RTCIN
I/O
Real time clock
oscillator input
U18
HALFWORD
1
Low
O
Halfword access
select output
U19
D[24]
1
Low
I/O
Data I/O
U20
A[23]/DRA[4]
1
Low
O
System byte address
/ SDRAM address
V1
VDDRTC
DS506F1
With p/u*
‡
I/O
GPIO port E / boot
mode select
‡
I/O
GPIO port E / boot
mode select
I
RTC power
External interrupt
input
Real time clock
power, 2.5V
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
41
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
Reset
State
Type
Description
V2
VSSIO
Pad ground
I/O ground
V3
VSSIO
Pad ground
I/O ground
V4
PD[7]/SDQM[1]
1
Low
I/O
GPIO port D /
SDRAM byte lane
mask
V5
PD[4]
1
Low
I/O
GPIO port D
V6
PD[2]
1
Low
I/O
GPIO port D
V7
SSICLK
1
Input
I/O
DAI/CODEC/SSI2
serial clock
V8
SSIRXDA
I/O
DAI/CODEC/SSI2
serial data input
V9
nADCCS
O
SSI1 ADC chip
select
V10
VDDIO
V11
ADCCLK
1
V12
COL[7]
V13
COL[4]
V14
TCLK
V15
BUZ
1
V16
D[29]
V17
A[26]/DRA[1]
V18
VDDIO
Pad power
Digital I/O power,
3.3 V
V19
VDDIO
Pad power
Digital I/O power,
3.3 V
V20
A[24]/DRA[3]
W1
VSSIO
Pad ground
I/O ground
W2
VSSIO
Pad ground
I/O ground
W3
VSSIO
Pad ground
I/O ground
W4
PD[6]/SDQM[0]
W5
TMS
with p/u*
W6
PD[1]
1
Low
I/O
GPIO port D
W7
SSITXFR
1
Low
I/O
DAI/CODEC/SSI2
frame sync
W8
SSIRXFR
1
Input
I/O
DAI/CODEC/SSI2
frame sync
W9
VSSCORE
W10
DRIVE[1]
42
1
‡
High
Pad power
Digital I/O power,
3.3V
Low
O
SSI1 ADC serial
clock
1
High
O
Keyboard scanner
column drive
1
High
O
Keyboard scanner
column drive
I
JTAG clock
Low
O
Buzzer drive output
1
Low
I/O
Data I/O
2
Low
O
System byte address
/ SDRAM address
‘
1
Low
Low
‡
O
I/O
GPIO port D /
SDRAM byte lane
mask
I
JTAG mode select
Core Ground
2
High /
Low
System byte address
/ SDRAM address
I/O
Core Ground
PWM drive output
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Name
†
Strength
1
Reset
State
Type
Low
O
SSI1 ADC serial
data output
I
PWM feedback input
Description
W11
ADCOUT
W12
FB[0]
W13
COL[5]
1
High
O
Keyboard scanner
column drive
W14
COL[2]
1
High
O
Keyboard scanner
column drive
W15
COL[0]
1
High
O
Keyboard scanner
column drive
W16
D[30]
1
Low
I/O
Data I/O
W17
A[27]/DRA[0]
2
Low
O
System byte address
/ SDRAM address
W18
D[26]
1
Low
I/O
Data I/O
W19
VDDIO
W20
D[25]
Y1
VSSIO
Pad ground
I/O ground
Y2
VSSIO
Pad ground
I/O ground
Y3
VSSIO
Pad ground
I/O ground
Y4
PD[5]
1
Low
I/O
GPIO port D
Y5
PD[3]
1
Low
I/O
GPIO port D
Y6
PD[0]/LEDFLSH
1
Low
I/O
GPIO port D / LED
blinker output
Y7
SSITXDA
1
Low
O
DAI/CODEC/SSI2
serial data output
Y8
ADCIN
I
SSI1 ADC serial
input
Y9
VDDCORE
Y10
DRIVE[0]
2
Y11
SMPCLK
1
Y12
FB[1]
Y13
COL[6]
1
Y14
COL[3]
Y15
Pad power
1
Low
I/O
Digital I/O power,
3.3V
Data I/O
Core power
Digital core power,
2.5V
Input
I/O
PWM drive output
Low
O
SSI1 ADC sample
clock
I
PWM feedback input
High
O
Keyboard scanner
column drive
1
High
O
Keyboard scanner
column drive
COL[1]
1
High
O
Keyboard scanner
column drive
Y16
D[31]
1
Low
I/O
Data I/O
Y17
D[28]
1
Low
I/O
Data I/O
Y18
D[27]
1
Low
I/O
Data I/O
Y19
A[25]/DRA[2]
2
Low
O
System byte address
/ SDRAM address
DS506F1
‡
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
43
EP7311
High-Performance, Low-Power System on Chip
Table 21. 204-Ball TFBGA Ball Listing (Continued)
Ball Location
Y20
Reset
State
†
Name
Strength
Type
VDDIO
Description
Digital I/O power,
3.3V
Pad power
*
“With p/u” means with internal pull-up of 100 KOhms on the pin.
†
Strength 1 = 4 ma
Strength 2 = 12 ma
‡Input. Port A,B,D,E GPIOs default to input at nPOR and URESET conditions.
256-Ball PBGA Package Characteristics
256-Ball PBGA Package Specifications
Figure 18. 256-Ball PBGA Package
Note:
1) For pin locations see Table V.
2) Dimensions are in millimeters (inches), and controlling dimension is millimeter
3) Before beginning any new EP7311 design, contact Cirrus Logic for the latest package information.
256-Ball PBGA Pinout (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
A
VDDIO
nCS[4]
nCS[1]
SDCLK
SDQM[3]
DD[1]
M
VDDIO
D[0]
D[2]
A[3]
VDDIO
A[6]
B
nCS[5]
VDDIO
nCS[3]
nMOE/
nSDCAS
VDDIO
nSDCS[1]
DD[2]
CL[1]
VDDCORE
D[1]
A[2]
A[4]
A[5]
WAKEUP
VDDIO
nURESET B
C
VDDIO
EXPCLK
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
nPOR
nEXTPWR C
D
WRITE/
nSDRAS
EXPRDY
VSSIO
VDDIO
nCS[2]
nMWE/
nSDWE
nSDCS[0]
CL[2]
VSSRTC
D[4]
nPWRFL
MOSCIN
VDDIO
VSSIO
D[7]
D[8]
D
E
RXD[2]
PB[7]
TDI
WORD
VSSIO
nCS[0]
SDQM[2]
FRM
A[0]
D[5]
VSSOSC
VSSIO
nMEDCHG/
nBROM
VDDIO
D[9]
D[10]
E
F
PB[5]
PB[3]
VSSIO
TXD[2]
RUN/
CLKEN
VSSIO
SDCKE
DD[3]
A[1]
D[6]
VSSRTC
BATOK
nBATCHG
VSSIO
D[11]
VDDIO
F
G
PB[1]
VDDIO
TDO
PB[4]
PB[6]
VSSRTC
VSSRTC
DD[0]
D[3]
VSSRTC
A[7]
A[8]
A[9]
VSSIO
D[12]
D[13]
G
H
PA[7]
PA[5]
VSSIO
PA[4]
PA[6]
PB[0]
PB[2]
VSSRTC
VSSRTC
A[10]
A[11]
A[12]
A[13]/
DRA[14]
VSSIO
D[14]
D[15]
H
J
PA[3]
PA[1]
VSSIO
PA[2]
PA[0]
TXD[1]
CTS
VSSRTC
VSSRTC
A[17]/
DRA[10]
A[16]/
DRA[11]
A[15]/
DRA[12]
A[14]/
DRA[13]
nTRST
D[16]
D[17]
J
PHDIN
VSSIO
DCD
nTEST[1]
EINT[3]
VSSRTC
ADCIN
COL[4]
TCLK
D[20]
D[19]
D[18]
VSSIO
VDDIO
VDDIO
K
DSR
VDDIO
nEINT[1]
PE[2]/
CLKSEL
VSSRTC
COL[6]
D[31]
VSSRTC
A[22]/
DRA[5]
A[21]/
DRA[6]
VSSIO
A[18]/
DRA[9]
A[19]/
DRA[8]
L
nEINT[2]
VDDIO
PE[0]/
BOOTSEL[0]
TMS
VDDIO
SSITXFR
DRIVE[1]
FB[0]
COL[0]
D[27]
VSSIO
A[23]/
DRA[4]
VDDIO
A[20]/
DRA[7]
D[21]
M
VDDIO
PD[5]
PD[2]
SSIRXDA
ADCCLK
SMPCLK
COL[2]
D[29]
D[26]
HALFWORD
VSSIO
D[22]
D[23]
N
K LEDDRV
L
RXD[1]
M nTEST[0]
N nEXTFIQ
P VSSRTC
R
RTCIN
T VDDRTC
44
PE[1]/
VSSIO
BOOTSEL[1]
PD[0]/
VSSRTC
LEDFLSH
14
15
MOSCOUT VDDOSC
16
VSSIO
A
RTCOUT
VSSIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
VDDIO
VSSIO
VSSIO
VDDIO
VSSIO
D[24]
VDDIO
P
VDDIO
PD[4]
PD[1]
SSITXDA
nADCCS
VDDIO
ADCOUT
COL[7]
COL[3]
COL[1]
D[30]
A[27]/
DRA[0]
A[25]/
DRA[2]
VDDIO
A[24]\
DRA[3]
R
PD[7]/
SDQM[1]
PD[6]/
SDQM[0]
PD[3]
SSICLK
FB[1]
COL[5]
VDDIO
BUZ
D[28]
A[26]/
DRA[1]
D[25]
VSSIO
T
SSIRXFR VDDCORE DRIVE[0]
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
0.85 (0.034)
±0.05 (.002)
17.00 (0.669)
±0.20 (.008)
Pin 1 Corner
D1
0.40 (0.016)
±0.05 (.002)
15.00 (0.590)
±0.20 (.008)
30° TYP
Pin 1 Indicator
17.00 (0.669)
±0.20 (.008)
E1
15.00 (0.590)
±0.20 (.008)
2 Layer
0.36 (0.014)
±0.09 (0.004)
TOP VIEW
SIDE VIEW
D
17.00 (0.669)
1.00 (0.040)
REF
E
16 15 14 13 12 11 10 9 8 7
6 5
1.00 (0.040)
REF
DS506F1
4 3 2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
1.00 (0.040)
0.50
R
3 Places
Pin 1 Corner
1.00 (0.040)
17.00 (0.669)
BOTTOM VIEW
JEDEC #: MO-151
Ball Diameter: 0.50 mm ± 0.10 mm
17 ¥ 17 ¥ 1.61 mm body
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
45
EP7311
High-Performance, Low-Power System on Chip
256-Ball PBGA Ball Listing
The list is ordered by ball location.
Table V. 256-Ball PBGA Ball Listing (Continued)
Table V. 256-Ball PBGA Ball Listing
Ball Location
Name
Type
A1
VDDIO
Pad power
nCS[4]
O
Chip select out
A3
nCS[1]
O
Chip select out
A4
SDCLK
O
SDRAM clock out
A6
DD[1]
O
Type
Description
C12
VDDIO
Pad power
C13
VSSIO
Pad ground I/O ground
C14
VSSIO
Pad ground I/O ground
Digital I/O power, 3.3V
C15
nPOR
I
C16
nEXTPWR
I
Power-on reset input
External power supply sense input
O
Transfer direction / SDRAM RAS signal
output
I
Expansion port ready input
SDRAM byte lane mask
D1
WRITE/nSDRAS
LCD AC bias drive
D2
EXPRDY
Digital I/O power, 3.3V
D3
VSSIO
Pad ground I/O ground
O
LCD serial display data
A7
M
O
A8
VDDIO
Pad power
A9
D[0]
I/O
Data I/O
D4
VDDIO
Pad power
A10
D[2]
I/O
Data I/O
D5
nCS[2]
O
Chip select out
System byte address
D6
nMWE/nSDWE
O
ROM, expansion write enable/ SDRAM
write enable control signal
D7
nSDCS[0]
O
SDRAM chip select out
D8
CL[2]
O
LCD pixel clock out
A11
A[3]
O
A12
VDDIO
Pad power
A13
A[6]
O
A14
MOSCOUT
O
A15
VDDOSC
Oscillator
power
A16
VSSIO
B1
nCS[5]
O
B2
VDDIO
Pad power
B3
nCS[3]
O
B4
nMOE/nSDCAS
O
System byte address
Main oscillator out
D9
VSSRTC
D10
D[4]
I/O
D11
nPWRFL
I
Power fail sense input
Chip select out
D12
MOSCIN
I
Main oscillator input
I/O ground
D13
VDDIO
Pad power
Chip select out
D14
VSSIO
Pad ground I/O ground
ROM, expansion OP enable/SDRAM
CAS control signal
D15
D[7]
I/O
Data I/O
D16
D[8]
I/O
Data I/O
E1
RXD[2]
I
UART 2 receive data input
E2
PB[7]
I
GPIO port B
E3
TDI
I
JTAG data input
E4
WORD
O
Word access select output
E5
VSSIO
E6
nCS[0]
O
E7
SDQM[2]
O
SDRAM byte lane mask
E8
FRM
O
LCD frame synchronization pulse
Oscillator power in, 2.5V
Pad ground I/O ground
VDDIO
Pad power
Digital I/O power, 3.3V
B6
nSDCS[1]
O
SDRAM chip select out
B8
DD[2]
CL[1]
B9
VDDCORE
B10
D[1]
B11
B12
A[2]
A[4]
O
O
I/O
O
O
System byte address
System byte address
I
System wake up input
I
C1
VDDIO
Pad power
Digital I/O power, 3.3V
C2
EXPCLK
I
Expansion clock input
User reset input
C3
VSSIO
Pad ground I/O ground
C4
VDDIO
Pad power
C5
VSSIO
Pad ground I/O ground
C7
VSSIO
C9
VSSIO
Pad ground I/O ground
VSSIO
System byte address
Data I/O
E11
VSSOSC
Oscillator
ground
E12
VSSIO
E13
nMEDCHG/nBROM
I
E14
VDDIO
Pad power
E15
D[9]
I/O
Data I/O
E16
D[10]
I/O
Data I/O
F1
PB[5]
I
GPIO port B
F2
PB[3]
I
GPIO port B
PLL ground
Pad ground I/O ground
Media change interrupt input / internal
ROM boot enable
Digital I/O power, 3.3V
Pad ground I/O ground
Pad power
C11
O
I/O
Pad ground I/O ground
VDDIO
VSSIO
A[0]
D[5]
Digital I/O power, 3.3V
C8
C10
E9
E10
Digital I/O power, 3.3V
nURESET
VSSIO
Chip select out
System byte address
O
Pad power
Pad ground I/O ground
Data I/O
A[5]
C6
Digital I/O power, 3.3V
Core power Digital core power, 2.5V
WAKEUP
B16
Data I/O
LCD line clock
B14
VDDIO
Core ground Real time clock ground
LCD serial display data
B13
B15
Digital I/O power, 3.3V
Digital I/O power, 3.3V
B5
B7
46
SDQM[3]
Name
Digital I/O power, 3.3V
A2
A5
Ball Location
Description
Digital I/O power, 3.3V
F3
VSSIO
F4
TXD[2]
Pad ground I/O ground
O
UART 2 transmit data output
F5
RUN/CLKEN
O
Run output / clock enable output
F6
VSSIO
Pad ground I/O ground
Pad ground I/O ground
Pad ground I/O ground
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table V. 256-Ball PBGA Ball Listing (Continued)
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
Description
Ball Location
Name
Type
F7
SDCKE
O
SDRAM clock enable output
J7
CTS
F8
DD[3]
O
LCD serial display data
J8
VSSRTC
RTC ground Real time clock ground
RTC ground Real time clock ground
I
Description
UART 1 clear to send input
F9
A[1]
O
System byte address
J9
VSSRTC
F10
D[6]
I/O
Data I/O
J10
A[17]/DRA[10]
O
System byte address / SDRAM address
F11
VSSRTC
RTC ground Real time clock ground
J11
A[16]/DRA[11]
O
System byte address / SDRAM address
F12
BATOK
F13
nBATCHG
F14
VSSIO
F15
D[11]
I/O
F16
VDDIO
Pad power
I
Battery ok input
J12
A[15]/DRA[12]
O
System byte address / SDRAM address
I
Battery changed sense input
J13
A[14]/DRA[13]
O
System byte address / SDRAM address
J14
nTRST
I
Data I/O
J15
D[16]
I/O
Data I/O
Digital I/O power, 3.3V
J16
D[17]
I/O
Data I/O
GPIO port B
K1
LEDDRV
O
IR LED drivet
Digital I/O power, 3.3V
K2
PHDIN
I
Photodiode input
JTAG data out
K3
VSSIO
Pad ground I/O ground
G1
PB[1]
I
G2
VDDIO
Pad power
G3
TDO
O
G4
PB[4]
I
GPIO port B
K4
DCD
I
GPIO port B
JTAG async reset input
Pad ground I/O ground
I
UART 1 data carrier detect
G5
PB[6]
K5
nTEST[1]
I
Test mode select input
G6
VSSRTC
Core ground Real time clock ground
K6
EINT[3]
I
External interrupt
G7
VSSRTC
RTC ground Real time clock ground
K7
VSSRTC
G8
DD[0]
K8
ADCIN
I
SSI1 ADC serial input
Keyboard scanner column drive
RTC ground Real time clock ground
O
LCD serial display data
I/O
Data I/O
K9
COL[4]
O
RTC ground Real time clock ground
K10
TCLK
I
G9
D[3]
G10
VSSRTC
G11
A[7]
O
System byte address
K11
D[20]
I/O
Data I/O
G12
A[8]
O
System byte address
K12
D[19]
I/O
Data I/O
O
System byte address
K13
D[18]
I/O
Data I/O
K14
VSSIO
Pad ground I/O ground
JTAG clock
G13
A[9]
G14
VSSIO
G15
D[12]
I/O
Data I/O
K15
VDDIO
Pad power
Digital I/O power, 3.3V
G16
D[13]
I/O
Data I/O
K16
VDDIO
Pad power
Digital I/O power, 3.3V
H1
PA[7]
I
GPIO port A
L1
RXD[1]
I
UART 1 receive data input
H2
PA[5]
I
GPIO port A
L2
DSR
I
UART 1 data set ready input
H3
VSSIO
L3
VDDIO
Pad power
Digital I/O power, 3.3V
H4
PA[4]
GPIO port A
L4
nEINT[1]
I
External interrupt input
I
GPIO port E / clock input mode select
Pad ground I/O ground
Pad ground I/O ground
I
H5
PA[6]
I
GPIO port A
L5
PE[2]/CLKSEL
H6
PB[0]
I
GPIO port B
L6
VSSRTC
I
GPIO port B
L7
PD[0]/LEDFLSH
L8
VSSRTC
H7
PB[2]
H8
VSSRTC
RTC ground Real time clock ground
RTC ground Real time clock ground
RTC ground Real time clock ground
I/O
GPIO port D / LED blinker output
Core ground Real time clock ground
H9
VSSRTC
L9
COL[6]
O
Keyboard scanner column drive
H10
A[10]
O
System byte address
L10
D[31]
I/O
Data I/O
H11
A[11]
O
System byte address
L11
VSSRTC
H12
A[12]
O
System byte address
L12
A[22]/DRA[5]
H13
A[13]/DRA[14]
O
System byte address / SDRAM address
L13
A[21]/DRA[6]
H14
VSSIO
L14
VSSIO
H15
D[14]
I/O
Data I/O
L15
A[18]/DRA[9]
O
System byte address / SDRAM address
H16
D[15]
I/O
Data I/O
L16
A[19]/DRA[8]
O
System byte address / SDRAM address
J1
PA[3]
I
GPIO port A
M1
nTEST[0]
I
Test mode select input
J2
PA[1]
I
GPIO port A
M2
nEINT[2]
I
External interrupt input
J3
VSSIO
M3
VDDIO
Pad power
Digital I/O power, 3.3V
J4
PA[2]
PE[0]/BOOTSEL[0]
I
Pad ground I/O ground
Pad ground I/O ground
I
GPIO port A
M4
RTC ground Real time clock ground
O
System byte address / SDRAM address
O
System byte address / SDRAM address
Pad ground I/O ground
J5
PA[0]
I
GPIO port A
M5
TMS
I
J6
TXD[1]
O
UART 1 transmit data out
M6
VDDIO
Pad power
DS506F1
GPIO port E / Boot mode select
JTAG mode select
Digital I/O power, 3.3V
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
47
EP7311
High-Performance, Low-Power System on Chip
Table V. 256-Ball PBGA Ball Listing (Continued)
Table V. 256-Ball PBGA Ball Listing (Continued)
Ball Location
Name
Type
M7
SSITXFR
I/O
MCP/CODEC/SSI2 frame sync
M8
DRIVE[1]
I/O
PWM drive output
48
Description
Ball Location
Name
Type
Description
R7
VDDIO
Pad power
R8
ADCOUT
O
SSI1 ADC serial data output
Digital I/O power, 3.3V
M9
FB[0]
I
PWM feedback input
R9
COL[7]
O
Keyboard scanner column drive
M10
COL[0]
O
Keyboard scanner column drive
R10
COL[3]
O
Keyboard scanner column drive
M11
D[27]
I/O
Data I/O
R11
COL[1]
O
Keyboard scanner column drive
M12
VSSIO
R12
D[30]
I/O
Data I/O
M13
A[23]/DRA[4]
O
System byte address / SDRAM address
R13
A[27]/DRA[0]
O
System byte address / SDRAM address
M14
VDDIO
Pad power
Digital I/O power, 3.3V
R14
A[25]/DRA[2]
O
M15
A[20]/DRA[7]
O
System byte address / SDRAM address
R15
VDDIO
Pad power
M16
D[21]
I/O
Data I/O
R16
A[24]/DRA[3]
O
Pad ground I/O ground
System byte address / SDRAM address
Digital I/O power, 3.3V
System byte address / SDRAM address
N1
nEXTFIQ
I
External fast interrupt input
T1
VDDRTC
RTC power
N2
PE[1]/BOOTSEL[1]
I
GPIO port E / boot mode select
T2
PD[7]/SDQM[1]
I/O
GPIO port D / SDRAM byte lane mask
Real time clock power, 2.5V
N3
VSSIO
Pad ground I/O ground
T3
PD[6]/SDQM[0]
I/O
GPIO port D / SDRAM byte lane mask
N4
VDDIO
Pad power
Digital I/O power, 3.3V
T4
PD[3]
I/O
GPIO port D
N5
PD[5]
I/O
GPIO port D
T5
SSICLK
I/O
MCP/CODEC/SSI2 serial clock
N6
PD[2]
I/O
GPIO port D
T6
SSIRXFR
–
MCP/CODEC/SSI2 frame sync
N7
SSIRXDA
I/O
MCP/CODEC/SSI2 serial data input
T7
VDDCORE
N8
ADCCLK
O
SSI1 ADC serial clock
T8
DRIVE[0]
Core power Core power, 2.5V
I/O
PWM drive output
N9
SMPCLK
O
SSI1 ADC sample clock
T9
FB[1]
I
N10
COL[2]
O
Keyboard scanner column drive
T10
COL[5]
O
N11
D[29]
I/O
Data I/O
T11
VDDIO
Pad power
N12
D[26]
I/O
Data I/O
T12
BUZ
O
Buzzer drive output
N13
HALFWORD
O
Halfword access select output
T13
D[28]
I/O
Data I/O
N14
VSSIO
T14
A[26]/DRA[1]
O
System byte address / SDRAM address
N15
D[22]
I/O
Data I/O
T15
D[25]
I/O
Data I/O
N16
D[23]
I/O
Data I/O
T16
VSSIO
Pad ground I/O ground
P1
VSSRTC
P2
RTCOUT
P3
VSSIO
Pad ground I/O ground
P4
VSSIO
Pad ground I/O ground
P5
VDDIO
Pad power
P6
VSSIO
Pad ground I/O ground
P7
VSSIO
Pad ground I/O ground
P8
VDDIO
Pad power
Pad ground I/O ground
PWM feedback input
Keyboard scanner column drive
Digital I/O power, 3.3V
Pad ground I/O ground
RTC ground Real time clock ground
O
Real time clock oscillator output
Digital I/O power, 3.3V
Digital I/O power, 3.3V
P9
VSSIO
P10
VDDIO
Pad power
P11
VSSIO
Pad ground I/O ground
P12
VSSIO
Pad ground I/O ground
P13
VDDIO
Pad power
P14
VSSIO
Pad ground I/O ground
P15
D[24]
I/O
P16
VDDIO
Pad power
Digital I/O power, 3.3V
Digital I/O power
Data I/O
Digital I/O power, 3.3V
R1
RTCIN
I/O
R2
VDDIO
Pad power
Real time clock oscillator input
R3
PD[4]
I/O
GPIO port D
R4
PD[1]
I/O
GPIO port D
R5
SSITXDA
O
MCP/CODEC/SSI2 serial data output
R6
nADCCS
O
SSI1 ADC chip select
Digital I/O power, 3.3V
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
JTAG Boundary Scan Signal Ordering
Table W. JTAG Boundary Scan Signal Ordering
DS506F1
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
1
B3
B1
nCS[5]
O
1
4
A2
C2
EXPCLK
I/O
3
5
B1
E4
WORD
O
6
6
E3
D1
WRITE/nSDRAS
O
8
7
C1
F5
RUN/CLKEN
O
10
8
C2
D2
EXPRDY
I
13
9
E2
F4
TXD2
O
14
10
D2
E1
RXD2
I
16
13
F3
E2
PB[7]
I/O
17
14
D1
G5
PB[6]
I/O
20
15
F2
F1
PB[5]
I/O
23
16
G3
G4
PB[4]
I/O
26
17
E1
F2
PB[3]
I/O
29
18
F1
H7
PB[2]
I/O
32
19
G2
G1
PB[1]/PRDY2
I/O
35
20
G1
H6
PB[0]/PRDY1
I/O
38
23
H3
H1
PA[7]
I/O
41
24
H1
H5
PA[6]
I/O
44
25
J3
H2
PA[5]
I/O
47
26
J2
H4
PA[4]
I/O
50
27
J1
J1
PA[3]
I/O
53
28
L3
J4
PA[2]
I/O
56
29
K2
J2
PA[1]
I/O
59
30
K1
J5
PA[0]
I/O
62
31
M3
K1
LEDDRV
O
65
32
L2
J6
TXD1
O
67
34
L1
K2
PHDIN
I
69
35
N3
J7
CTS
I
70
36
M2
L1
RXD1
I
71
37
M1
K4
DCD
I
72
38
P3
L2
DSR
I
73
39
N1
K5
nTEST1
I
74
40
N2
M1
nTEST0
I
75
41
R3
K6
EINT3
I
76
42
P1
M2
nEINT2
I
77
43
P2
L4
nEINT1
I
78
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
49
EP7311
High-Performance, Low-Power System on Chip
Table W. JTAG Boundary Scan Signal Ordering (Continued)
50
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
44
T3
N1
nEXTFIQ
I
79
45
R1
L5
PE[2]/CLKSEL
I/O
80
46
R2
N2
PE[1]/BOOTSEL1
I/O
83
47
T1
M4
PE[0]/BOOTSEL0
I/O
86
53
T2
T2
PD[7]/SDQM[1]
I/O
89
54
V4
T3
PD[6/SDQM[0]]
I/O
92
55
W4
N5
PD[5]
I/O
95
56
Y4
R3
PD[4]
I/O
98
59
V5
T4
PD[3]
I/O
101
60
W5
N6
PD[2]
I/O
104
61
Y5
R4
PD[1]
I/O
107
62
V6
L7
PD[0]/LEDFLSH
O
110
68
W6
T6
SSIRXFR
I/O
122
69
Y6
K8
ADCIN
I
125
70
W8
R6
nADCCS
O
126
75
Y8
M8
DRIVE1
I/O
128
76
V9
T8
DRIVE0
I/O
131
77
W10
N8
ADCCLK
O
134
78
Y10
R8
ADCOUT
O
136
79
V11
N9
SMPCLK
O
138
80
W11
T9
FB1
I
140
82
Y11
M9
FB0
I
141
83
Y12
R9
COL7
O
142
84
W12
L9
COL6
O
144
85
V12
T10
COL5
O
146
86
Y13
K9
COL4
O
148
87
W13
R10
COL3
O
150
88
V13
N10
COL2
O
152
91
Y14
R11
COL1
O
154
92
W14
M10
COL0
O
156
93
A1
T12
BUZ
O
158
94
V14
L10
D[31]
I/O
160
95
Y15
R12
D[30]
I/O
163
96
W15
N11
D[29]
I/O
166
97
V15
T13
D[28]
I/O
169
99
Y16
R13
A[27]/DRA[0]
Out
172
100
W16
M11
D[27]
I/O
174
101
V16
T14
A[26]/DRA[1]
O
177
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table W. JTAG Boundary Scan Signal Ordering (Continued)
DS506F1
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
102
Y17
N12
D[26]
I/O
179
103
W17
R14
A[25]/DRA[2]
O
182
104
Y18
T15
D[25]
I/O
184
105
V17
N13
HALFWORD
O
187
106
W18
R16
A[24]/DRA[3]
O
189
109
Y19
P15
D[24]
I/O
191
110
W20
M13
A[23]/DRA[4]
O
194
111
U18
N16
D[23]
I/O
196
112
V20
L12
A[22]/DRA[5]
O
199
113
U19
N15
D[22]
I/O
201
114
U20
L13
A[21]/DRA[6]
O
204
115
T19
M16
D[21]
I/O
206
117
T20
M15
A[20]/DRA[7]
O
209
118
R19
K11
D[20]
I/O
211
119
R20
L16
A[19]/DRA[8]
O
214
120
T18
K12
D[19]
I/O
216
121
P19
L15
A[18]/DRA[9]
O
219
122
P20
K13
D[18]
I/O
221
126
R18
J10
A[17]/DRA[10]
O
224
127
N19
J16
D[17]
I/O
226
128
N20
J11
A[16]/DRA[11]
O
229
129
P18
J15
D[16]
I/O
231
130
M19
J12
A[15]/DRA[12]
O
234
131
N18
H16
D[15]
I/O
236
132
L20
J13
A[14]/DRA[13]
O
239
133
L19
H15
D[14]
I/O
241
134
M18
H13
A[13]/DRA[14]
O
244
135
K20
G16
D[13]
I/O
246
136
K19
H12
A[12]
O
249
137
K18
G15
D[12]
I/O
251
138
J20
H11
A[11]
O
254
141
J19
F15
D[11]
I/O
256
142
H20
H10
A[10]
O
259
143
H19
E16
D[10]
I/O
261
144
J18
G13
A[9]
O
264
145
K3
E15
D[9]
I/O
266
146
Y3
G12
A[8]
O
269
147
G20
D16
D[8]
I/O
271
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
51
EP7311
High-Performance, Low-Power System on Chip
Table W. JTAG Boundary Scan Signal Ordering (Continued)
52
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
148
H18
G11
A[7]
O
274
150
F20
D15
D[7]
I/O
276
151
G19
F13
nBATCHG
I
279
152
E20
C16
nEXTPWR
I
280
153
F19
F12
BATOK
I
281
154
G18
C15
nPOR
I
282
155
D20
E13
nMEDCHG/nBROM
I
283
156
F18
B16
nURESET
I
284
161
D19
B14
WAKEUP
I
285
162
E19
D11
nPWRFL
I
286
163
C19
A13
A[6]
O
287
164
C20
F10
D[6]
I/O
289
165
E18
B13
A[5]
O
292
166
B20
E10
D[5]
I/O
294
169
B16
B12
A[4]
O
297
170
A16
D10
D[4]
I/O
299
171
C15
A11
A[3]
O
302
172
B15
G9
D[3]
I/O
304
173
A15
B11
A[2]
O
307
175
C14
A10
D[2]
I/O
309
176
B14
F9
A[1]
O
312
177
A14
B10
D[1]
I/O
314
178
C13
E9
A[0]
O
317
179
B13
A9
D[0]
I/O
319
184
A13
D8
CL2
O
322
185
C12
B8
CL1
O
324
186
B12
E8
FRM
O
326
187
A12
A7
M
O
328
188
C11
F8
DD[3]
I/O
330
189
B11
B7
DD[2]
I/O
333
191
B10
A6
DD[1]
I/O
336
192
A10
G8
DD[0]
I/O
339
193
A9
B6
nSDCS[1]
O
342
194
B9
D7
nSDCS[0]
O
344
195
C9
A5
SDQM[3]
I/O
346
196
A8
E7
SDQM[2]
I/O
349
199
B8
F7
SDCKE
I/O
352
200
C8
A4
SDCLK
I/O
355
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Table W. JTAG Boundary Scan Signal Ordering (Continued)
LQFP
Pin No.
TFBGA
Ball
PBGA
Ball
Signal
Type
Position
201
A7
D6
nMWE/nSDWE
O
358
202
B7
B4
nMOE/nSDCAS
O
360
204
C7
E6
nCS[0]
O
362
205
A6
A3
nCS[1]
O
364
206
B6
D5
nCS[2]
O
366
207
C6
B3
nCS[3]
O
368
208
A5
A2
nCS[4]
O
370
1) See EP7311 Users’ Manual for pin naming / functionality.
2) For each pad, the JTAG connection ordering is input,
output, then enable as applicable.
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
53
EP7311
High-Performance, Low-Power System on Chip
CONVENTIONS
Table X. Acronyms and Abbreviations (Continued)
Acronym/
Abbreviation
This section presents acronyms, abbreviations, units of
measurement, and conventions used in this data sheet.
Acronyms and Abbreviations
Table X lists abbreviations and acronyms used in this data
sheet.
Table X. Acronyms and Abbreviations
Acronym/
Abbreviation
Definition
TAP
test access port
TLB
translation lookaside buffer
UART
universal asynchronous receiver
Units of Measurement
Table Y. Unit of Measurement
Definition
Symbol
Unit of Measure
A/D
analog-to-digital
ADC
analog-to-digital converter
°C
degree Celsius
CODEC
coder / decoder
fs
sample frequency
D/A
digital-to-analog
Hz
hertz (cycle per second)
DMA
direct-memory access
kbps
kilobits per second
EPB
embedded peripheral bus
KB
kilobyte (1,024 bytes)
FCS
frame check sequence
kHz
kilohertz
FIFO
first in / first out
kΩ
kilohm
FIQ
fast interrupt request
Mbps
megabits (1,048,576 bits) per second
GPIO
general purpose I/O
MB
megabyte (1,048,576 bytes)
ICT
in circuit test
MBps
megabytes per second
IR
infrared
MHz
megahertz (1,000 kilohertz)
IRQ
standard interrupt request
µA
microampere
IrDA
Infrared Data Association
µF
microfarad
JTAG
Joint Test Action Group
µW
microwatt
LCD
liquid crystal display
µs
microsecond (1,000 nanoseconds)
LED
light-emitting diode
mA
milliampere
LQFP
low profile quad flat pack
mW
milliwatt
LSB
least significant bit
ms
millisecond (1,000 microseconds)
MIPS
millions of instructions per second
ns
nanosecond
MMU
memory management unit
V
volt
MSB
most significant bit
W
watt
PBGA
plastic ball grid array
PCB
printed circuit board
PDA
personal digital assistant
PLL
phase locked loop
p/u
pull-up resistor
RISC
reduced instruction set computer
RTC
Real-Time Clock
SIR
slow (9600–115.2 kbps) infrared
SRAM
static random access memory
SSI
synchronous serial interface
54
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
General Conventions
Pin Description Conventions
Hexadecimal numbers are presented with all letters in
uppercase and a lowercase “h” appended or with a 0x at the
beginning. For example, 0x14 and 03CAh are hexadecimal
numbers. Binary numbers are enclosed in single quotation
marks when in text (for example, ‘11’ designates a binary
number). Numbers not indicated by an “h”, 0x or quotation
marks are decimal.
Abbreviations used for signal directions are listed in Table Z.
Registers are referred to by acronym, with bits listed in
brackets separated by a colon (:) (for example, CODR[7:0]),
and are described in the EP7311 User’s Manual. The use of
“TBD” indicates values that are “to be determined,” “n/a”
designates “not available,” and “n/c” indicates a pin that is a
“no connect.”
DS506F1
Table Z. Pin Description Conventions
Abbreviation
Direction
I
Input
O
Output
I/O
Input or Output
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
55
EP7311
High-Performance, Low-Power System on Chip
Ordering Information
Model
EP7311-CB
EP7311-CB-90 (90 MHz)
EP7311-IB
EP7311-IB-90 (90 MHz)
Temperature
0 to +70 °C
256-pin PBGA, 17mm X 17mm
-40 to +85 °C.
EP7311-CV
0 to +70 °C
EP7311-IV
-40 to +85 °C.
EP7311-CR
EP7311-CR-90 (90 MHz)
Package
208-pin LQFP.
0 to +70 °C
204-pin TFBGA, 13mm X 13mm.
Environmental, Manufacturing, & Handling Information
Model Number
Peak Reflow Temp
MSL Rating*
Max Floor Life
225 °C
3
7 Days
EP7311-CB
EP7311-CB-90 (90 MHz)
EP7311-IB
EP7311-IB-90 (90 MHz)
EP7311-CV
EP7311-IV
EP7311-CR
EP7311-CR-90 (90 MHz)
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.
56
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
EP7311
High-Performance, Low-Power System on Chip
Revision History
Revision
Date
Changes
PP1
NOV 2003
First preliminary release.
F1
AUG 2005
Updated SDRAM timing. Added MSL data.
Contacting Cirrus Logic Support
For all product questions and inquiries contact a Cirrus Logic Sales Representative.
To find the one nearest to you go to www.cirrus.com
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject
to change without notice and is provided “AS IS” without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH
THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
SPI is a trademark of Motorola, Inc.
Microwire is a trademark of National Semiconductor Corporation.
LINUX is a registered trademark of Linus Torvalds.
Microsoft Windows and Microsoft are registered trademarks of Microsoft Corporation.
DS506F1
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
57
EP7311
High-Performance, Low-Power System on Chip
58
©Copyright Cirrus Logic, Inc. 2005
(All Rights Reserved)
DS506F1
Similar pages