ROHM’s Selection Operational Amplifiers / Comparators Comparators: Ground Sense BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901S F/FV/KN,BA2901F/FV/KN ●Description General purpose BA10393/BA10339 family and high reliability BA2903S/BA2903/BA2901S/BA2901 family and automotive BA2903HFVM-C integrate two or fourindependent high gain voltage comparator. Somefeatures are the wide operating voltage that is 2 to 36[V](for BA10393, BA2903S, BA2903, BA2901S,BA2901 family, BA2903HFVM-C), 3 to 36[V](for BA10339 family) and low supply current. Therefore, this series is suitable for any application. BA10393F Dual General-purpose High-reliabillity No.10049EBT15 Quad BA10339 F/FV Dual BA2903S F/FV/FVM Operation guaranteed up to + 105 ℃ BA2903F/FV/FVM Operation guaranteed up to +125 ℃ BA2901S F/FV/KN Operation guaranteed up to + 105 ℃ Quad BA2901 F/FV/KN Operation guaranteed up to + 125 ℃ Dual Automotive ●Characteristics 1) Operable with a single power supply 2) Wide operating supply voltage +2.0[V]~+36.0[V] (single supply) BA10393 family ±1.0[V]~±18.0[V] (dual supply) +3.0[V]~+36.0[V] (single supply) BA10339 family ±1.5[V]~±18.0[V] (dual supply) BA2903S/BA2901S family +2.0[V]~+36.0[V] (single supply) BA2903 /BA2901 family BA2903H ±1.0[V]~±18.0[V] (dual supply) 3) Standard comparator pin-assignments 4) Input and output are operable GND sense BA2903 HFVM-C 5) Internal ESD protection Human body model (HBM)±5000[V](Typ.) (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C) 6) Gold PAD (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C) 7) Wide temperature range -40[℃]~+125[℃](BA2903/BA2901 family,BA2903HFVM-C) -40[℃]~+105[℃](BA2903S/BA2901S family) -40[℃]~+85[℃](BA10393/BA10339 family) ●Pin Assignment OUT1 OUT2 OUT3 OUT4 OUT1 11 -IN1 22 +IN1 33 8 VCC CH1 CH1 -- ++ 7 OUT2 CH2 CH2 + - + - VEE 44 6 -IN2 5 +IN2 SOP8 SSOP-B8 BA10393F BA10393F BA2903SF BA2903F BA2903F BA2903SFV BA2903FV BA2903FV www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. MSOP8 BA2903SFVM BA2903FVM BA2903FVM BA2903HFVM-C 1/16 OUT2 1 14 OUT3 OUT1 2 13 OUT4 VCC 3 12 VEE -IN1 -IN2 4 +IN1 +IN2 5 -IN2 -IN1 6 +IN2 +IN1 7 CH1 - + CH2 - + CH4 + +‐ CH3 - + 11 16 16 15 15 14 14 13 13 VCC 11 12 12 VEE 22 11 11 NC +IN4 NC CH1 -CH1 + - + CH2 -CH2 + - + CH3 - + CH3 - + CH4 -CH4 + - + +IN4 -IN1 33 10 10 10 -IN4 +IN1 44 99 -IN4 9 +IN3 8 -IN3 55 66 77 88 -IN2 +IN2 -IN3 +IN3 SOP14 SSOP-B14 VQFN16 BA10339F BA10339F BA2901SF BA2901F BA2901F BA10339FV BA2901SFV BA2901FV BA2901FV BA2901SKN BA2901KN BA2901KN 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Absolute Maximum Ratings (Ta=25[℃]) Rating Parameter Symbol Supply Voltage VCC-VEE Differential Input Voltage (*1) Vid Input Common-mode Voltage Range Vicm Operating Temperature Range Topr Storage Temperature Range Tstg Maximum junction Temperature Tjmax BA10393 family BA10339 family BA2903S family BA2903 family BA2903H BA2901S family BA2901 family family Unit +36 VCC-VEE VEE~VCC -40~+85 -55~+125 +125 36 (VEE-0.3)~VEE+36 -40~+105 -40~+125 -55~+150 +150 V V V ℃ ℃ ℃ Note Absolute maximum rating item indicates the condition which must not be exceeded. Application if voltage in excess of absolute maximum rating or use out of absolute maximum rated temperature environment may cause deterioration of characteristics. (*1) The voltage difference between inverting input and non-inverting input is the differential input voltage. Then input terminal voltage is set to more than VEE. ●Electric Characteristics ○BA10393 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Guaranteed limit Temperature Parameter Symbol Unit range Min. Typ. Max. 25℃ - ±1 ±5 Condition Input Offset Voltage Vio mV VOUT=1.4[V] Input Offset Current Iio 25℃ - ±5 ±50 nA VOUT=1.4[V] Input Bias Current (*2) Input Common-mode Voltage Range Large Signal Voltage Gain Ib 25℃ - 50 250 nA VOUT=1.4[V] Vicm 25℃ 0 - VCC-1.5 AV 25℃ 93 106 - dB RL=15[kΩ],VCC=15[V] Supply Current ICC 25℃ - 0.4 1 mA RL=∞All Comparators mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V] V - Output Sink Current IOL 25℃ 6 16 - Output Saturation Voltage VOL 25℃ - 250 400 mV VIN-=1[V],VIN+=0[V],IOL=4[mA] Output Leakage Current 1 Ileak1 25℃ - 0.1 - μA VIN-=0[V],VIN+=1[V],VOUT=5[V] Output Leakage Current 2 Ileak2 25℃ - 0.1 1 μA VIN-=0[V],VIN+=1[V],VOUT=36[V] Tre 25℃ - 1.3 - μs Response Time RL=5.1[kΩ],VRL=5[V] (*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC. ○BA10339 family (Unless otherwise specified VCC=+5[V], VEE=0[V], Ta=25[℃]) Guaranteed limit Temperature Parameter Symbol Unit range Min. Typ. Max. Input Offset Voltage Vio Input Offset Current Iio 25℃ - ±5 ±50 nA VOUT=1.4[V] Input Bias Current (*2) Input Common-mode Voltage Range Large Signal Voltage Gain Ib 25℃ - 50 250 nA VOUT=1.4[V] Vicm 25℃ 0 - VCC-1.5 AV 25℃ - 106 - dB RL=15[kΩ],VCC=15[V] Supply Current ICC 25℃ - 0.8 2 mA RL=∞All Comparators Output Sink Current IOL 25℃ 6 16 - mA VIN-=1[V],VIN+=0[V],VOUT=1.5[V] Output Saturation Voltage VOL 25℃ - 250 400 mV VIN-=1[V],VIN+=0[V],IOL=4[mA] Output Leakage Current 1 Ileak1 25℃ - 0.1 - μA VIN-=0[V],VIN+=1[V],VOUT=5[V] Output Leakage Current 2 Ileak2 25℃ - - - μA VIN-=0[V],VIN+=1[V],VOUT=36[V] Tre 25℃ - 1.3 - μs Response Time 25℃ - ±1 ±5 Condition mV VOUT=1.4[V] V - RL=5.1[kΩ],VRL=5[V] (*2)Current Direction : Since first input stage is composed with PNP transistor, input bias current flows out of IC. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2903S/BA2903 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 7 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 25℃ 0.6 1 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Operable Frequency (*3) (*4) (*4) Tre Fopr - 1.3 - - 0.4 - - - - VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] nA VOUT=1.4[V] nA VOUT=1.4[V] V - mA VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] mV VIN+=0[V],VIN-=1[V],IOL=4[mA] nA μA VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) dB mA kHz Absolute value BA2903S family:Full range -40[℃]~+105[℃] BA2903 family :Full range -40[℃]~+125[℃] ○BBA2901S/BA2901 family (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 7 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 25℃ 0.8 2 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Operable Frequency (*3) (*4) (*4) Condition mV μs 25℃ 25℃ Unit Tre Fopr - 1.3 - - 0.4 - - - - Condition mV VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] nA VOUT=1.4[V] nA VOUT=1.4[V] V - mA VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] mV VIN+=0[V],VIN-=1[V],IOL=4[mA] nA μA VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) dB mA μs 25℃ 25℃ Unit kHz Absolute value BA2901S family:Full range -40[℃]~+105[℃] BA2901 family :Full range -40[℃]~+125[℃] www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2903HFVM-C (Unless otherwise specified VCC=+5[V], VEE=0[V]) Guaranteed limit Temperature Parameter Symbol range Min. Typ. Max. 25℃ 2 5 (*3) Input Offset Voltage Vio Full range(*4) 15 25℃ 5 50 Input Offset Current(*3) Iio v 200 25℃ 50 250 Input Bias Current(*3) Ib Full range(*4) 500 25℃ 0 VCC-1.5 Input Common-mode Vicm Voltage Range Full range(*4) 0 VCC-2.0 25℃ 88 100 Large Signal Voltage Gain AV Full range(*4) 74 25℃ 0.6 1 Supply Current ICC Full range(*4) 2.5 Output Sink Current(*4) IOL 25℃ 6 16 Output Saturation Voltage 25℃ 150 400 VOL (Low Level Output Voltage) Full range(*4) 700 25℃ 0.1 Output Leakage Current Ileak (High Level Output Current) Full range(*4) 1 Response Time Operable Frequency (*3) (*4) Tre Fopr - - - - - - 100 - - Condition mV VOUT=1.4[V] VCC=5~36[V],VOUT=1.4[V] nA VOUT=1.4[V] nA VOUT=1.4[V] V - mA VCC=15[V],VOUT=1.4~11.4[V] RL=15[kΩ],VRL=15[V] VOUT=open VOUT=open,VCC=36[V] VIN+=0[V],VIN=1[V],VOL=1.5[V] mV VIN+=0[V],VIN-=1[V],IOL=4[mA] nA μA VIN+=1[V],VIN-=0[V],VOH=5[V] VIN+=1[V],VIN-=0[V],VOH=36[V] RL=5.1[kΩ],VRL=5[V] VIN=100[mVp-p],overdrive=5[mV] RL=5.1[kΩ],VRL=5[V],VIN=TTL Logic Swing,VREF=1.4[V] VCC=5[V],RL=2[kΩ], VIN+=1.5[V] VIN-=5[Vp-p] (Duty 50% Rectangular Pulse) dB mA μs 25℃ 25℃ Unit kHz Absolute value BA2903HFVM-C:Full range -40[℃]~+125[℃] www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Example of electrical characteristics(Refarance Data) ○BA10393 family BA10393 family BA10393 family 1 800 0.8 BA10393F 400 200 25℃ 0.6 0.4 85℃ 0.2 0 75 100 125 0 10 20 30 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] . Fig. 1 Derating Curve OUTPUT SATURATION VOLTAGE [mV] OUTPUT SATURATION VOLTAGE [mV] 25℃ 300 200 -40℃ 100 400 2V 300 36V 100 0 -50 0 0 10 20 30 SUPPLY VOLTAGE [V] 5V 200 40 (IOL=4[mA]) BA10393 family 30 36V 5V 20 2V 10 0 0 25 50 75 -25 0 25 50 1.6 1.4 25℃ 1.2 85℃ 1.0 0.8 0.6 0.4 -40℃ 0.2 100 0 75 6 8 10 12 14 16 18 20 Fig. 6 Low Level Output Voltage – Output Sink Current (IOL=4[mA]) (VCC=5[V]) BA10393 family 4 -40℃ 2 25℃ 0 -2 85℃ -4 -6 BA10393 family 8 6 4 2V 2 5V 0 -2 36V -4 -6 -8 0 AMBIENT TEMPERATURE [℃] 10 20 30 40 -50 -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] SUPPLY VOLTAGE [V] Fig. 7 Output Sink Current - Ambient Temperature 4 Fig. 5 Output Saturation Voltage – Ambient Temperature 6 100 2 OUTPUT SINK CURRENT [mA] -8 -50 1.8 0.0 -25 8 INPUT OFFSET VOLTAGE [mV] 40 100 BA10393 family 2.0 AMBIENT TEMPERATURE [℃] Fig. 4 Output Saturation Voltage – Supply Voltage -25 0 25 50 75 AMBIENT TEMPERATURE [℃] Fig. 3 Supply Current - Ambient Temperature BA10393 family 500 85℃ 400 2V 0.2 -50 Fig. 2 Supply Current - Supply Voltage BA10393 family 500 0.4 40 LOW LEVEL OUTPUT VOLTAGE [V] 50 INPUT OFFSET VOLTAGE [mV] 25 36V 5V 0.6 0 0 0 OUTPUT SINK CURRENT [mA] SUPPLY CURRENT [mA] SUPPLY CURRENT [mA] 0.8 600 BA10393 family 1 -40℃ . POWER DISSIPATION [mW] . 1000 Fig. 8 Input Offset Voltage - Supply Voltage Fig. 9 Input Offset Voltage – Ambient Temperature (VOUT=1.5[V]) BA10393 family . 160 100 -40℃ 25℃ 80 60 40 85℃ 20 INPUT OFFSET CURRENT [nA] INPUT BIAS CURRENT [nA] 120 120 36V 100 80 5V 60 40 2V 20 0 10 20 30 40 20 -40℃ 10 0 25℃ -10 85℃ -20 -30 -50 -50 SUPPLY VOLTAGE [V] Fig. 10 Input Bias Current – Supply Voltage 30 -40 0 0 BA10393 family 50 40 140 140 INPUT BIAS CURRENT [nA] BA10393 family 160 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 Fig. 11 Input Bias Current – Ambient Temperature 0 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 12 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA10393 family 20 10 5V 0 -10 2V -20 -30 -40 -50 . 25℃ 130 LARGE SIGNAL VOLTAGE GAIN [dB] 36V 30 140 LARGE SIGNAL VOLTAGE GAIN [dB] INPUT OFFSET CURRENT [nA] 40 BA10393 family . BA10393 family 50 120 110 100 85℃ -40℃ 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 BA10393 family 140 130 36V 120 110 100 5V 2V 90 80 70 60 0 40 -50 Fig. 14 Large Signal Voltage Gain – Supply Voltage -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 15 Large Signal Voltage Gain – Ambient Temperature . Fig. 13 Input Offset Current – Ambient Temperature 10 20 30 SUPPLY VOLTAGE [V] 140 120 25℃ -40℃ 100 80 85℃ 60 40 0 10 20 30 SUPPLY VOLTAGE [V] 130 120 36V 110 90 80 2V 70 60 40 -50 4 3 5mV overdrive 2 20mV overdrive 1 100mV overdrive 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 . Fig. 17 Common Mode Rejection Ratio – Ambient Temperature BA10393 family 140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 18 Power Supply Rejection Ratio – Ambient Temperature BA10393 family 5 RESPONSE TIME (HIGH to LOW) [μs] . . RESPONSE TIME (LOW to HIGH) [μs] BA10393 family 5V 100 Fig. 16 Common Mode Rejection Ratio – Supply Voltage 5 BA10393 family 140 POWER SUPPLY REJECTION RATIO [dB] COMMON MODE REJECTION RATIO[dB] . POWER SUPPLY REJECTION RATIO [dB] BA10393 family 160 4 3 5mV overdrive 2 20mV overdrive 100mV overdrive 1 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 19 Response Time (Low to High) - Ambient Temperature Fig. 20 Response Time (High to Low) - Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA10339 family BA10339 family 1000 BA10339 family 1 BA10339 family 1 BA10339FV 600 400 BA10339F 200 0 0.8 25℃ 0.6 0.4 85℃ 0.2 0.8 36V 0.6 5V 0.4 2V 0.2 0 -50 0 0 25 50 75 100 AMBIENT TEMPERATURE [℃] . 125 0 Fig. 21 Derating Curve 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 22 Supply Current - Supply Voltage BA10339 family 400 85℃ 300 25℃ 200 100 -40℃ 0 400 2V 300 200 5V 36V 100 10 20 30 SUPPLY VOLTAGE [V] 40 1.8 1.6 1.4 1.2 1.0 0.6 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 0 100 (IOL=4[mA]) 5V 10 3V -50 -25 0 25 50 75 4 2 0 -40℃ 25℃ -2 -4 85℃ -6 8 10 12 14 16 18 20 Fig. 26 Low Level Output Voltage – Output Sink Current(VCC=5[V]) BA10339 family 4 2 0 36V 5V -2 -4 3V -6 -8 0 100 10 20 30 40 -50 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 27 Output Sink Current - Ambient Temperature 6 6 6 -8 0 4 8 INPUT OFFSET VOLTAGE [mV] INPUT OFFSET V OLTA GE [mV] OUTPUT SINK CURRENT [mA] 20 BA10339 family 8 2 OUTPUT SINK CURRENT [mA] (IOL=4[mA]) 36V -40℃ 0.2 Fig. 25 Output Saturation Voltage – Ambient Temperature 30 25℃ 0.4 Fig. 24 Output Saturation Voltage – Supply Voltage 40 85℃ 0.8 0.0 -50 BA10339 family 100 BA10339 family 2.0 0 0 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] Fig. 23 Supply Current - Ambient Temperature BA10339 family 500 OUTPUT SATURATION VOLTAGE [mV] 500 OUTPUT SATURATION VOLTAGE [mV] SUPPLY CURRENT [mA] SUPPLY CURRENT [mA] 800 LOW LEVEL OUTPUT VOLTAGE [V] POWER DISSIPATION [mW] . . -40℃ -25 0 25 50 75 100 AMBIENT TEMPERATURE [℃] Fig. 28 Input Offset Voltage - Supply Voltage Fig. 29 Input Offset Voltage – Ambient Temperature (VOUT=1.5[V]) BA10339 family BA10339 family 50 BA10339 family 50 . 50 25℃ 30 -40℃ 20 10 85℃ INPUT OFFSET CURRENT [nA] INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT [nA] 40 40 40 36V 30 20 5V 10 0 0 10 20 30 40 85℃ 10 0 -10 -40℃ -20 25℃ -30 -50 -50 SUPPLY VOLTAGE [V] Fig. 30 Input Bias Current – Supply Voltage 20 -40 3V 0 30 -25 0 25 50 75 AMBIENT TEMPERAUTRE [℃] 100 Fig. 31 Input Bias Current – Ambient Temperature 0 10 20 30 SUPPLY VOLTAGE [V] 40 Fig. 32 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA10339 family BA10339 family 30 LARGE SIGNAL VOLTAGE GAIN [dB] 36V 5V 20 10 0 -10 3V -20 -30 -40 130 120 85℃ 110 100 -50 -40℃ 90 80 70 -25 0 25 50 75 AMBIENT TEMPERATURE [℃] 100 0 10 20 30 SUPPLY VOLTAGE [V] Fig. 33 Input Offset Current – Ambient Temperature 120 25℃ -40℃ 100 80 85℃ 60 125 36V 100 75 3V 50 25 0 10 20 30 SUPPLY VOLTAGE [V] -50 40 Fig. 36 Common Mode Rejection Ratio – Supply Voltage 3 5mV overdrive 2 20mV overdrive 1 100mV overdrive 5V 90 3V 80 70 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 100 BA10339 family 140 130 120 110 100 90 80 70 60 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 38 Power Supply Rejection Ratio – Ambient Temperature BA10339 family 5 RESPONSE TIME (HIGH to LOW) [μs] 4 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] Fig. 37 Large Signal Voltage Gain – Ambient Temperature BA10339 family 5 100 Fig. 35 Large Signal Voltage Gain – Ambient Temperature 5V 40 0 36V 110 40 BA10339 family 150 LARGE SIGNAL VOLTAGE GAIN [dB] COMMON MODE REJECTION RATIO [dB] 140 120 Fig. 34 Large Signal Voltage Gain – Supply Voltage . BA10339 family 160 130 60 60 -50 RESPONSE TIME (LOW to HIGH) [μs] 25℃ BA10339 family 140 POWER SUPPLY REJECTION RATIO [dB] INPUT OFFSET CURRENT [nA] BA10339 family 140 40 LARGE SIGNAL VOLTAGE GAIN [dB] 50 4 3 5mV overdrive 2 20mV overdrive 100mV overdrive 1 0 0 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 -50 -25 0 25 50 75 AMBIENT TEMPERATURE [°C] 100 Fig. 39 Response Time (Low to High) - Ambient Temperature Fig. 40 Response Time (High to Low) - Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2903S/BA2903 family,BA2903HFVM-C BA2903S/BA2903 family,BA2903H BA2903SF 400 BA2903FVM BA2903HFVM BA2903SFV 1.2 1.0 -40℃ 0.8 0.6 0.4 Fig. 41 Derating Curve 10 MAXIMUM OUTPUT OUTPUT VOLTAGE MAXIMUM VOLTAGE[mV] [mV] MAXIMUMOUTPUT OUTPUT VOLTAGE [mV] MAXIMUM VOLTAGE [mV] 125℃ 105℃ 100 25℃ -40℃ 0 0 10 20 30 -50 2V 10 100 5V 36V 50 0 25 50 75 0 25 50 75 100 125 75 100 125 150 BA2903S/BA2903 family,BA2903H 1.6 1.4 25℃ 1.2 125℃ 1 0.8 105℃ 0.6 0.4 -40℃ 0 150 -40℃ 2 0 25℃ -2 105℃ 4 6 8 10 12 14 16 18 20 Fig. 46 Output Voltage – Output Sink Current(VCC=5[V]) BA2903S/BA2903 family,BA2903H 4 2 OUTPUT SINK CURRENT [mA] 6 125℃ -4 -6 100 125 150 BA2903S/BA2903 family,BA2903H 8 6 4 2V 2 0 36V 5V -2 -4 -6 -8 0 10 20 30 -50 40 -25 0 25 50 75 100 125 150 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 48 Input Offset Voltage - Supply Voltage Fig. 49 Input Offset Voltage – Ambient Temperature AMBIENT TEMPERATURE [℃] Fig. 47 Output Sink Current - Ambient Temperature 50 0 -25 -8 -25 25 0.2 0 8 0 0 2 Fig. 45 Maximum Output Voltage – Ambient Temperature(IOL=4[mA]) 36V -25 Fig. 43 Supply Current - Ambient Temperature AMBIENT TEMPERATURE[℃] SUPPLY VOLTAGE [V] 20 -50 2V AMBIENT TEMPERATURE [℃] 2V -50 INPUT OFFSET VOLTAGE [mV] OUTPUT SINK CURRENT [mA] 40 150 40 BA2903S/BA2903 family,BA2903H 5V 0.4 1.8 Fig. 44 Maximum Output Voltage – Supply Voltage(IOL=4[mA]) 30 30 BA2903S/BA2903 family,BA2903H 200 SUPPLY VOLTAGE [V] 40 20 Fig. 42 Supply Current - Supply Voltage BA2903S/BA2903 family,BA2903H 50 5V 0.6 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] 150 36V 0.8 0.0 0 150 1.0 0.2 OUTPUT VOLTAGE [V] 105 25 50 75 100 125 AMBIENT TEMPERTURE [℃] . 1.2 125℃ 105℃ 0.0 0 200 25℃ 0.2 BA2903SFVM 0 1.4 SUPPLY CURRENT [mA] 600 SUPPLY CURRENT [mA] POWER DISSIPATION [mV] POWER POWERDISSIPATION DISSIPATION[mW] [mW] BA2903FV BA2903S/BA2903 family,BA2903H 1.6 1.4 BA2903F 800 200 BA2903S/BA2903 family,BA2903H 1.6 INPUTOFFSET OFFSET VOLTAGE VOLTAGE [mV] INPUT [mV] 1000 (VOUT=1.5[V]) INPUT BIAS CURRENT [nA] INPUT BIAS CURRENT[nA] [nA] INPUT BIAS BIAS CURRENT INPUT CURRENT [nA] 140 140 25℃ 120 120 -40℃ -40℃ 100 100 25℃ 80 80 60 60 40 40 105℃ 20 20 105℃ BA2903S/BA2903 family,BA2903H 160 140 120 100 36V 80 60 40 5V 20 125℃ 125℃ 2V 0 00 00 5 10 10 15 2020 25 30 30 35 40 SUPPLYVOLTAGE VOLTAGE[V] [V] SUPPLY Fig. 50 nput Bias Current – Supply Voltage BA2903S/BA2903 family,BA2903H 50 INPUT [nA] INPUTOFFSET OFFSET CURRENT CURRENT[nA] BA2903S/BA2903 family,BA2903H 160 160 40 30 20 -40℃ 10 25℃ 0 -10 105℃ 125℃ -20 -30 -40 -50 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 51 Input Bias Current – Ambient Temperature 0 10 20 30 40 SUPPLY VOLTAGE [V] Fig. 52 Input Offset Current – Supply Voltage (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 9/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2903S/BA2903 family,BA2903HFVM-C LARGE SINGAL VOLTAGE GAIN [dB] 30 20 2V 10 0 -10 36V 5V -20 -30 -40 -50 130 110 100 25℃ -40℃ 90 80 70 60 -25 0 25 50 75 100 125 150 0 10 140 120 105℃ 125℃ 100 80 25℃ 60 -40℃ 40 0 10 20 30 COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] BA2903S/BA2903 family,BA2903H 160 140 120 100 80 60 -25 100 75 5V 2V 50 25 0 -25 0 25 50 75 -40℃ 2 125℃ 0 -2 -4 -1 0 RESPONSE TIME (HIGH TO LOW)[μs] -40℃ 1 1 2 3 4 5 INPUT VOLTAGE [V] Fig. 58 Input Offset Voltage – Input Voltage (VCC=5V) 5 BA2903S/BA2903 family,BA2903H 4 3 2 105℃ 125℃ -40℃ 25℃ 1 0 -80 -60 -40 -20 0 5 100mV overdrive 4 20mV overdrive 3 5mV overdrive 2 1 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 61 Response Time (Low to High) – Over Drive Voltage Response Time (Low to High) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) BA2903S/BA2903 family,BA2903H BA2903S/BA2903 family,BA2903H 25℃ 105℃ Fig. 57 Power Supply Rejection Ratio – Ambient Temperature 105℃ 100 125 150 4 100 125 150 Fig. 60 2 75 Common Mode Rejection Ratio – Ambient Temperature Fig. 59 125℃ 50 -6 -50 OVER DRIVE VOLTAGE [V] 4 25 BA2903S/BA2903 family,BA2903H 6 36V -100 100 125 150 5 0 Fig. 55 Large Signal Voltage Gain – Ambient Temperature 125 AMBIENT TEMPERATURE [℃] 3 60 -50 40 BA2903S/BA2903 family,BA2903H RESPONSE TIME (LOW TO HIGH)[μs] POWER SUPPLY REJECTION RATIO [dB] 160 75 70 AMBIENT TEMPERATURE [℃] 180 50 80 Fig. 54 Large Signal Voltage Gain – Supply Voltage BA2903S/BA2903 family,BA2903H 25 5V 15V 90 25℃ 40 200 0 100 BA2903S/BA2903 family,BA2903H Fig. 56 Common Mode Rejection Ratio – Supply Voltage -25 110 AMBIENT TEMPERATURE [℃] 150 SUPPLY VOLTAGE [V] -50 30 36V 120 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 53 Input Offset Current – Ambient Temperature 20 130 INPUT OFFSET VOLTAGE [mV] -50 RESPONSE TIME (HIGH TO LOW)[μs] 105℃ 125℃ 120 BA2903S/BA2903 family,BA2903H 140 RRESPONSE TIME (LOW HIGH)[μs] RESPONSE TIME (LOW TOTO HIGH)[μs] INPUT OFFSET CURRENT [nA] 40 BA2903S/BA2903 family,BA2903H 140 LARGE SINGAL VOLTAGE GAIN [dB] BA2903S/BA2903 family,BA2903H 50 5 4 100mV overdrive 20mV overdrive 3 5mV overdrive 2 1 0 0 0 20 40 60 80 100 -50 Fig. 62 Response Time (High to Low)– Over Drive Voltage (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] OVERDRIVE DRIVEVOLTAGE VOLTAGE [V] OVER [mV] Fig. 63 Response Time (High to Low) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 10/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2901S/BA2901 family BA2901S/BA2901 family BA2901KN BA2901F 600 BA2901SFV 400 200 1.4 25℃ 1.6 -40℃ 1.4 1.2 1.0 0.8 0.6 125℃ 0.4 BA2901SKN 0 0 25 50 100 125 0 20 30 0.4 25℃ -40℃ 0 10 20 30 25 50 75 100 125 150 BA2901S/BA2901 family 2 1.8 150 2V 100 5V 36V 50 1.6 1.4 25℃ 125℃ 1.2 1 0.8 105℃ 0.6 0.4 0.2 -40℃ 0 40 -50 -25 0 25 50 75 100 125 0 150 2 4 6 8 10 12 14 16 18 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE[℃] OUTPUT SINK CURRENT [mA] Fig. 67 Maximum Output Voltage – Supply Voltage Fig. 68 Maximum Output Voltage – Ambient Temperature Fig. 69 Output Voltage – Output Sink Current (IOL=4[mA]) (IOL=4[mA]) (VCC=5[V]) SUPPLY VOLTAGE [V] 5V INPUT OFFSET VOLTAGE [mV] 30 36V 20 2V 10 BA2901S/BA2901 family 8 0 6 4 -40℃ 2 0 25℃ -2 105℃ 125℃ -4 -6 6 4 2V 2 0 0 25 50 75 100 125 150 36V -4 -6 -8 0 10 20 30 -50 40 -25 0 25 50 75 100 125 150 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 71 Input Offset Voltage - Supply Voltage Fig. 72 Input Offset Voltage – Ambient Temperature AMBIENT TEMPERATURE [℃] Fig. 70 Output Sink Current - Ambient Temperature 5V -2 -8 -25 20 BA2901S/BA2901 family 8 INPUT OFFSET VOLTAGE [mV] BA2901S/BA2901 family 40 -50 0 Fig. 66 Supply Current - Ambient Temperature 0 0 -25 AMBIENT TEMPERATURE [℃] OUTPUT VOLTAGE [V] 100 -50 BA2901S/BA2901 family 200 MAXIMUM OUTPUT VOLTAGE [mV] 125℃ 2V 40 Fig. 65 Supply Current - Supply Voltage 105℃ OUTPUT SINK CURRENT [mA] 10 Fig. 64 Derating Curve 50 5V 0.6 0.0 150 BA2901S/BA2901 family 36V 0.8 0.0 SUPPLY VOLTAGE [V] 150 1.0 0.2 AMBIENT TEMPERATURE [℃] 200 MAXIMUM OUTPUT VOLTAGE [mV] 105 75 1.2 105℃ 0.2 BA2901SF BA2901S/BA2901 family 1.6 1.8 SUPPLY CURRENT [mA] POWER DISSIPATION [mW] 800 BA2901S/BA2901 family 2.0 BA2901FV SUPPLY CURRENT [mA] 1000 (VOUT=1.5[V]) INPUTBIAS BIASCURRENT CURRENT [nA] INPUT [nA] INPUT [nA] INPUTBIAS BIASCURRENT CURRENT [nA] INPUT BIAS CURRENT [nA] 140 140 25℃ 120 120 -40℃ -40℃ -40℃ 100 100 25℃ 25℃ 80 80 60 60 40 40 105℃ 105℃ 20 20 105℃ 125℃ 125℃ 125℃ BA2901S/BA2901 family 160 140 120 100 36V 80 60 40 5V 20 2V 0 00 00 5 10 10 15 2020 2530 30 SUPPLYVOLTAGE VOLTAGE [V] [V] SUPPLY VOLTAGE [V] SUPPLY 40 35 Fig. 73 Input Bias Current – Supply Voltage www.rohm.com 40 30 20 -40℃ 10 25℃ 0 -10 105℃ 125℃ -20 -30 -40 -50 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 74 Input Bias Current – Ambient Temperature (*)The data above is ability value of sample, it is not guaranteed. © 2010 ROHM Co., Ltd. All rights reserved. BA2901S/BA2901 family 50 INPUT OFFSET CURRENT[nA] BA2901S/BA2901 family 160 160 11/19 0 10 20 30 40 SUPPLY VOLTAGE [V] Fig. 75 Input Offset Current – Supply Voltage 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ○BA2901S/BA2901 family LARGE SINGAL VOLTAGE GAIN [dB] 30 20 2V 10 0 -10 5V -20 36V -30 -40 -50 130 110 100 25℃ -40℃ 90 80 70 60 -25 0 25 50 75 100 125 150 0 10 140 120 105℃ 100 80 25℃ -40℃ 60 40 0 10 20 30 40 110 100 5V 15V 90 80 70 60 -50 40 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 77 Large Signal Voltage Gain – Supply Voltage Fig. 78 Large Signal Voltage Gain – Ambient Temperature BA2901S/BA2901 family 150 BA2901S/BA2901 family 6 25℃ 125 36V 100 75 5V 2V 50 25 0 105℃ 4 -40℃ 2 125℃ 0 -2 -4 -6 -50 -25 0 25 50 75 100 125 150 -1 0 1 2 3 4 5 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] INPUT VOLTAGE [V] Fig. 79 Common Mode Rejection Ratio – Supply Voltage Fig. 80 Common Mode Rejection Ratio – Ambient Temperature Fig. 81 Input Offset Voltage - Input Voltage BA2901S/BA2901 family RESPONSE TIME (LOW TO HIGH)[μs] 200 180 160 140 120 100 80 60 -50 -25 0 25 50 75 (VCC=5V) BA2901S/BA2901 family 5 4 3 2 105℃ 125℃ -40℃ 25℃ 1 0 -100 100 125 150 -80 -60 -40 -20 0 BA2901S/BA2901 family 5 4 100mV overdrive 20mV overdrive 3 2 5mV overdrive 1 0 -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] OVER DRIVE VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 82 Power Supply Rejection Ratio – Ambient Temperature Fig. 83 Response Time (Low to High) – Over Drive Voltage Fig. 84 Response Time (Low to High) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) BA2901S/BA2901 family 5 RESPONSE TIME (HIGH TO LOW)[μs] POWER SUPPLY REJECTION RATIO [dB] 125℃ COMMON MODE REJECTION RATIO [dB] COMMON MODE REJECTION RATIO [dB] BA2901S/BA2901 family 160 30 36V 120 SUPPLY VOLTAGE [V] AMBIENT TEMPERATURE [℃] Fig. 76 Input Offset Current – Ambient Temperature 20 130 INPUT OFFSET VOLTAGE [mV] -50 RESPONSE TIME (HIGH TO LOW)[μs] 105℃ 125℃ 120 BA2901S/BA2901 family 140 RRESPONSETIME TIME(LOW (LOWTO TO HIGH)[μs] HIGH)[μs] RESPONSE INPUT OFFSET CURRENT [nA] 40 BA2901S/BA2901 family 140 LARGE SINGAL VOLTAGE GAIN [dB] BA2901S/BA2901 family 50 4 3 125℃ 105℃ 2 25℃ -40℃ 1 BA2901S/BA2901 family 5 4 100mV overdrive 20mV overdrive 3 5mV overdrive 2 1 0 0 0 20 40 60 80 OVER [mV] OVERDRIVE DRIVEVOLTAGE VOLTAGE [V] 100 Fig. 85 Response Time (High to Low) – Over Drive Voltage -50 -25 0 25 50 75 100 125 150 AMBIENT TEMPERATURE [℃] Fig. 86 Response Time (High to Low) – Ambient Temperature (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (VCC=5[V],VRL=5[V],RL=5.1[kΩ]) (*)The data above is ability value of sample, it is not guaranteed. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Circuit Diagram VCC VOUT +IN -IN VEE Fig.87 Circuit Diagram (one channel only ) ●Test Circuit1 Null Method VCC,VEE,EK,Vicm Unit : [V], VRL=VCC Parameter BA2903S/BA2901S family BA2903/BA2901 family Calculation BA2903HFVM-C Vicm VCC GND EK Vicm BA10393/BA10339 family VF S1 S2 S3 Input Offset Voltage VF1 ON ON ON 5 0 -1.4 0 5~36 0 -1.4 Input Offset Current Input Bias Current VF2 OFF OFF ON 5 0 -1.4 0 5 0 VF3 OFF ON 5 0 -1.4 0 5 0 VF4 ON OFF 5 0 -1.4 0 5 ON ON 15 0 -1.4 0 15 0 -11.4 0 VCC GND Large Signal Voltage Gain VF5 VF6 ON ON EK 0 1 -1.4 0 2 -1.4 0 0 -1.4 0 15 0 -1.4 0 15 0 -11.4 0 3 4 -Calculation1. Input Offset Voltage (Vio) Vio VF1 [V] 1+ R f /Rs Rf 50[kΩ] 2. Input Offset Current (Iio) S1 Iio VF2 - VF1 [A] Ri (1+ R f / Rs) 3. Input Bias Current (Ib) Ib VF4 - VF3 0.1[μF] 50[Ω] Ri 10[kΩ] 50[Ω] Ri 10[kΩ] Rs 0.1[μF] Vicm [A] S2 50k 2× R i (1+ R f / Rs) 4. Large Signal Voltage Gain (AV) Av = 20×Log Rs EK RK 500[kΩ] C1 0.01[μF] VCC +15[V] RK 500[kΩ] DUT NULL S3 VEE V VF RL VRL -15[V] Fig.88 Measurement circuit1 (one channel only) ΔEK×(1+Rf /Rs) |VF5-VF6| www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. [dB] 13/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Measurement Circuit 2: Switch Condition SW No. Supply Current SW 1 OFF SW 2 OFF SW 3 OFF SW 4 OFF SW 5 OFF SW 6 OFF SW 7 OFF Output Sink Current VOL=1.5[V] OFF ON ON OFF OFF OFF ON Saturation Voltage IOL=4[mA] OFF ON ON OFF ON ON OFF Output Leakage Current VOH=36[V] OFF ON ON OFF OFF OFF ON Response Time RL=5.1[kΩ],VRL=5[V] ON OFF ON ON OFF OFF OFF VCC A - + SW1 SW2 SW3 SW4 SW6 SW7 RL VEE VIN- SW5 V A VRL VIN+ VOL/VOH Fig.89 Measurement Circuit 2 (one channel only) VIN Input wave 入力電圧波形 VIN Input wave 入力電圧波形 +100mV 0V overdrive voltage overdrive voltage 0V -100mV VOUT 出力電圧波形 Output wave VOUT VCC 出力電圧波形 Output wave VCC VCC/2 VCC/2 0V 0V Tre (LOW to HIGH) Tre (HIGH to LOW) Fig.90 Response Time www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 14/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Description of electrical characteristics Described below are descriptions of the relevant electrical terms. Please note that item names, symbols, and their meanings may differ from those on another manufacturer’s documents. 1. Absolute maximum ratings The absolute maximum ratings are values that should never be exceeded, since doing so may result in deterioration of electrical characteristics or damage to the part itself as well as peripheral components. 1.1 Power supply voltage (VCC/VEE) Expresses the maximum voltage that can be supplied between the positive and negative power supply terminals without causing deterioration of the electrical characteristics or destruction of the internal circuitry. 1.2 Differential input voltage (Vid) Indicates the maximum voltage that can be supplied between the non-inverting and inverting terminals without damaging the IC. 1.3 Input common-mode voltage range (Vicm) Signifies the maximum voltage that can be supplied to non-inverting and inverting terminals without causing deterioration of the electrical characteristics or damage to the IC itself. Normal operation is not guaranteed within the input common-mode voltage range of the maximum ratings – use within the input common-mode voltage range of the electric characteristics instead. 1.4 Power dissipation (Pd) Indicates the power that can be consumed by a particular mounted board at ambient temperature (25°C). For packaged products, Pd is determined by maximum junction temperature and the thermal resistance. 2. Electrical characteristics 2.1 Input offset voltage (Vio) Signifies the voltage difference between the non-inverting and inverting terminals. It can be thought of as the input voltage difference required for setting the output voltage to 0V. 2.2 Input offset current (Iio) Indicates the difference of the input bias current between the non-inverting and inverting terminals. 2.3 Input bias current (Ib) Denotes the current that flows into or out of the input terminal, it is defined by the average of the input bias current at the non-inverting terminal and the input bias current at the inverting terminal. 2.4 Input common-mode voltage range (Vicm) Indicates the input voltage range under which the IC operates normally. 2.5 Large signal voltage gain (AV) The amplifying rate (gain) of the output voltage against the voltage difference between the non-inverting and inverting terminals, it is (normally) the amplifying rate (gain) with respect to DC voltage. AVD = (output voltage fluctuation) / (input offset fluctuation) 2.6 Circuit current (ICC) Indicates the current of the IC itself that flows under specific conditions and during no-load steady state. 2.7 Output sink current (IOL) Denotes the maximum current that can be output under specific output conditions. 2.8 Output saturation voltage low level output voltage (VOL) Signifies the voltage range that can be output under specific output conditions. 2.9 Output leakage current (ILeak) Indicates the current that flows into the IC under specific input and output conditions. 2.10 Response time (tre) The interval between the application of input and output conditions. 2.11 Common-mode rejection ratio (CMRR) Denotes the ratio of fluctuation of the input offset voltage when the in-phase input voltage is changed (DC fluctuation). CMRR = (change of input common-mode voltage) / (input offset fluctuation) 2.12 Power supply rejection ratio (PSRR) Signifies the ratio of fluctuation of the input offset voltage when the supply voltage is changed (DC fluctuation). PSRR = (change in power supply voltage) / (input offset fluctuation) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Derating curves Power dissipation(total loss) indicates the power that can be consumed by IC at Ta=25℃(normal temperature).IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature.The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicatesthis heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θja[℃/W].The temperature of IC inside the package can be estimated by this thermal resistance. Fig.91(a) shows the model of thermal resistance of the package. Thermal resistance θja, ambient temperature Ta, junction temperature Tj, and power dissipation Pd can be calculated by the equation below: θja = (Tj-Ta) / Pd [℃/W] ・・・・・ (Ⅰ) Derating curve in Fig.91(b) indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient iis determined by thermal resistance θja. Thermal resistance θja depends on chip size, power consumption, package,ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. Fig.92(a)~(d) show a derating curve for an example of BA10393, BA10339, BA2903S, BA2903, LSIの 消 費 力 [W] Power dissipation of電 LSI BA2903HFVM-C,BA2901S, BA2901. Pd (max) θja2 < θja1 P2 θja = ( Tj ー Ta ) / Pd [℃/W] 周囲温度 Ta [℃] Ambient temperature θ' ja2 P1 θ ja2 Tj ' (max) θ' ja1 0 表面温度 Tj [℃] Chip surfaceチップ temperature 25 50 Tj (max) θ ja1 75 100 125 150 周 囲 温 度 Ta [℃ ] Ambient temperature Power dissipation 消費電力 P [W] (b) Derating curve (a) Thermal resistance Fig.91 Thermal resistance and derating curve 1000 POWER DISSIPATION Pd [mW] POWER DISSIPATION Pd [mW] 許容損失 Pd [mW] 1000 800 BA10393F 620mW(★5) 600 400 200 800 700mW(★6) 600 490mW(★7) BA10339F 400 200 0 0 0 25 50 75 100 125 0 25 (a)BA10393 family 75 100 125 (b)BA10339 family 1000 1000 POWER DISSIPATION Pd [mW] 許容損失 Pd [mW] 800 50 Ambient temperature :Ta [℃] Ambient temperature :Ta [℃] Ta [°C] 周囲温度 POWER DISSIPATION Pd [mW] 許容損失 Pd [mW] BA10339FV 780mW(★8) BA2903FV 690mW(★9) BA2903FVM 600 BA2903HFVM-C 590mW(★10) BA2903SF 400 200 BA2903SFV 870mW(★11) BA2901FV 800 660mW(★12) 600 610mW(★13) BA2901F BA2901SFV 400 200 BA2901SKN BA2901SF BA2903SFVM 0 0 105 0 25 50 75 100 125 105 0 150 Ambient temperature :Ta [℃] Ta [°C] 周囲温度 25 50 75 100 125 150 Ambient temperature :Ta [℃] Ta [°C] 周囲温度 (d)BA2901 family (c)BA2903 family (*5) (*6) (*7) (*8) (*9) (*10) (*11) (*12) (*13) Unit 6.2 7.0 4.9 6.2 5.5 4.7 7.0 5.3 4.9 [mW/℃] When using the unit above Ta=25[℃], subtract the value above per degree[℃]. Permissible dissipation is the value when glass epoxy board 70[mm]×70[mm]×1.6[mm](cooper foil area below 3[%]) is mounted. Fig.92 Derating curve www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Precautions 1) Unused circuits When there are unused circuits it is recommended that they beconnected as in Fig.93, setting the non-inverting input terminal to a potential within the in-phase input voltage range (VICR). 2) Input terminal voltage (BA2903S/BA2903/BA2901S/BA2901 family, BA2903HFVM-C)Applying VEE + 36Vto the input terminal is possible without causing deterioration of the electrical characteristics or destruction, irrespective of the supply voltage. However,this does not ensure normal circuit operation. Please note that the circuit operates normally only when the input voltage is within the common mode input voltage range of the electric characteristics. VCC + Please keep this 同相入力電圧 potencial in Vicm 範囲内の電位 OPEN - VEE Fig.93 Disable circuit example 図1 未使用回路の処理例 3) Power supply (single / dual) The op-amp operates when the specified voltage supplied is between VCC and VEE. Therefore, the single supply op-amp can be used as a dual supply op-amp as well. 4) Power dissipation Pd Using the unit in excess of the rated power dissipation may cause deterioration in electrical characteristics due to a rise in chip temperature, including reduced current capability. Therefore, please take into consideration the power dissipation (Pd) under actual operating conditions and apply a sufficient margin in thermal design. Refer to the thermal derating curves for more information. 5) Short-circuit between pins and erroneous mounting Incorrect mounting may damage the IC. In addition, the presence of foreign particles between the outputs, the output and the power supply, or the output and GND may result in IC destruction. 6) Terminal short-circuits When the output and VCC terminals are shorted, excessive output current may flow, resulting in undue heat generation and, subsequently, destruction. 7) Operation in a strong electromagnetic field Operation in a strong electromagnetic field may cause malfunctions. 8) Radiation This IC is not designed to withstand radiation. 9) IC handing Applying mechanical stress to the IC by deflecting or bending the board may cause fluctuations in the electrical characteristics due to piezoelectric (piezo) effects. 10) Board inspection Connecting a capacitor to a pin with low impedance may stress the IC. Therefore, discharging the capacitor after every process is recommended. In addition, when attaching and detaching the jig during the inspection phase, ensure that the power is turned off before inspection and removal . Furthermore, please take measures against ESD in the assembly process as well as during transportation and storage. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/19 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note ●Ordering part number B A 2 Part No. 9 0 3 F V - E 2 Part No. Package Packaging and forming specification 10393,1033 2903S,2903 2901S,2901 2903H F: SOP8 SOP14 FV: SSOP-B8 SSOP-B14 FVM: MSOP8 KN:VQFN16 E2: Embossed tape and reel (SOP8/SOP14/SSOP-B8/ SSOP-B14/VQFN16) TR: Embossed tape and reel (MSOP8) SOP8 <Tape and Reel information> 7 5 6 6.2±0.3 4.4±0.2 0.3MIN 8 +6° 4° −4° 1 2 3 0.9±0.15 5.0±0.2 (MAX 5.35 include BURR) Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 4 0.595 1.5±0.1 +0.1 0.17 -0.05 0.11 S 1.27 0.42±0.1 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SOP14 <Tape and Reel information> 8.7 ± 0.2 (MAX 9.05 include BURR) 8 Embossed carrier tape Quantity 2500pcs Direction of feed 0.3MIN 4.4±0.2 6.2±0.3 14 Tape 1 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 1.5±0.1 0.15 ± 0.1 0.11 1.27 0.4 ± 0.1 0.1 1pin Reel (Unit : mm) Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. SSOP-B8 <Tape and Reel information> 3.0 ± 0.2 (MAX 3.35 include BURR) 0.3MIN 4.4±0.2 6.4±0.3 8 76 5 Tape Embossed carrier tape Quantity 2500pcs Direction of feed E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1.15±0.1 1 23 4 0.15 ± 0.1 0.1 S 0.1 +0.06 0.22 -0.04 (0.52) 0.08 M 0.65 1pin Reel (Unit : mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/19 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2010.05 - Rev.B BA10393F,BA10339F/FV,BA2903SF/FV/FVM,BA2903F/FV/FVM, BA2903HFVM-C,BA2901SF/FV/KN,BA2901F/FV/KN Technical Note SSOP-B14 <Tape and Reel information> 5.0 ± 0.2 8 1 Tape Embossed carrier tape Quantity 2500pcs Direction of feed 0.3Min. 4.4 ± 0.2 6.4 ± 0.3 14 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 7 0.10 1.15 ± 0.1 0.15 ± 0.1 0.1 0.65 0.22 ± 0.1 Direction of feed 1pin Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. MSOP8 <Tape and Reel information> 2.8±0.1 4.0±0.2 8 7 6 5 0.6±0.2 +6° 4° −4° 0.29±0.15 2.9±0.1 (MAX 3.25 include BURR) Tape Embossed carrier tape Quantity 3000pcs Direction of feed TR The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand ) 1 2 3 4 1PIN MARK 1pin +0.05 0.145 –0.03 0.475 +0.05 0.22 –0.04 0.08±0.05 0.75±0.05 0.9MAX S 0.08 S Direction of feed 0.65 Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. VQFN16 <Tape and Reel information> 4.2±0.1 4.0±0.1 (1.35) 4.0±0.1 9 1 4 0.05 M +0.03 0.02 −0.02 0.22±0.05 2500pcs Direction of feed 5 16 E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand ) 0.05 (0 .2 2 ) 0.5 Embossed carrier tape (with dry pack) Quantity 8 13 0.22±0.05 Tape 0.95MAX 4.2±0.1 12 ) .5 (0 ) 5 .3 (0 3- +0.1 0.6 −0.3 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Notice : Do not use the dotted line area for soldering 1pin Reel (Unit : mm) 19/19 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2010.05 - Rev.B Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. R1010A