TC74HC155AP/AF/AFN TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74HC155AP,TC74HC155AF,TC74HC155AFN Dual 2-to-4 Line Decoder 3-to-8 Line Decoder The TC74HC155A is a high speed CMOS DUAL 2-to-4 LINE DECODER fabricated with silicon gate C2MOS technology. It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation. It features dual 1-to-4 line demultiplexers with individual strobe input (1G and 2G), individual data inputs (1C and 2C) and common binary address inputs (A and B). When both decoders are enabled by the strobes, the inverted output of 1C data and non-inverted output of 2C data will be brought to the selected output pins of each section. A 1-to-8 line demultiplexer can be easily built up by providing a data signal to both the 1C and 2C inputs; the output order will be 1Y3 (MSB), 1Y2, 1Y1, 1Y0, 2Y3, 2Y2, 2Y1, 2Y0 (LSB). This device can be used as a 2-to-4 line decoder or a 3-to-8 line decoder when 1C is held high and 2C is held low. All inputs are equipped with protection circuits against static discharge or transient excess voltage. Note: xxxFN (JEDEC SOP) is not available in Japan. TC74HC155AP TC74HC155AF Features • High speed: tpd = 12 ns (typ.) at VCC = 5 V • Low power dissipation: ICC = 4 μA (max) at Ta = 25°C • High noise immunity: VNIH = VNIL = 28% VCC (min) • Output drive capability: 10 LSTTL loads • • Symmetrical output impedance: |IOH| = IOL = 4 mA (min) ∼ tpHL Balanced propagation delays: tpLH − • Wide operating voltage range: VCC (opr) = 2 to 6 V • Pin and function compatible with 74LS155 TC74HC155AFN Weight DIP16-P-300-2.54A SOP16-P-300-1.27A SOL16-P-150-1.27 Pin Assignment 1 : 1.00 g (typ.) : 0.18 g (typ.) : 0.13 g (typ.) 2007-10-01 TC74HC155AP/AF/AFN IEC Logic Symbol Truth Table Inputs Inputs Outputs Outputs B A 1G 1C 1Y 0 1Y1 1Y 2 1Y3 B A 2G 2C 2Y0 2Y1 2Y 2 2Y3 X X H X H H H H X X H X H H H H L L L H L H H H L L L L L H H H L H L H H L H H L H L L H L H H H L L H H H L H H L L L H H L H H H L H H H H L H H L L H H H L X X X L H H H H X X X H H H H H X: Don’t care X: Don’t care 2 2007-10-01 TC74HC155AP/AF/AFN System Diagram Absolute Maximum Ratings (Note 1) Characteristics Symbol Rating Unit Supply voltage range VCC −0.5 to 7 V DC input voltage VIN −0.5 to VCC + 0.5 V DC output voltage VOUT −0.5 to VCC + 0.5 V Input diode current IIK ±20 mA Output diode current IOK ±20 mA DC output current IOUT ±25 mA DC VCC/ground current ICC ±50 mA Power dissipation PD 500 (DIP) (Note 2)/180 (SOP) mW Storage temperature Tstg −65 to 150 °C Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook (“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note 2: 500 mW in the range of Ta = −40 to 65°C. From Ta = 65 to 85°C a derating factor of −10 mW/°C shall be applied until 300 mW. 3 2007-10-01 TC74HC155AP/AF/AFN Operating Ranges (Note) Characteristics Symbol Rating Unit Supply voltage VCC 2 to 6 V Input voltage VIN 0 to VCC V VOUT 0 to VCC V −40 to 85 °C Output voltage Operating temperature Topr 0 to 1000 (VCC = 2.0 V) Input rise and fall time 0 to 500 (VCC = 4.5 V) tr, tf ns 0 to 400 (VCC = 6.0 V) Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND. Electrical Characteristics DC Characteristics Characteristics High-level input voltage Low-level input voltage VCC (V) Min Typ. Max Min Max 2.0 1.50 ⎯ ⎯ 1.50 ⎯ 4.5 3.15 ⎯ ⎯ 3.15 ⎯ 6.0 4.20 ⎯ ⎯ 4.20 ⎯ 2.0 ⎯ ⎯ 0.50 ⎯ 0.50 4.5 ⎯ ⎯ 1.35 ⎯ 1.35 6.0 ⎯ ⎯ 1.80 ⎯ 1.80 2.0 1.9 2.0 ⎯ 1.9 ⎯ 4.5 4.4 4.5 ⎯ 4.4 ⎯ 6.0 5.9 6.0 ⎯ 5.9 ⎯ IOH = −4 mA 4.5 4.18 4.31 ⎯ 4.13 ⎯ IOH = −5.2 mA 6.0 5.68 5.80 ⎯ 5.63 ⎯ 2.0 ⎯ 0.0 0.1 ⎯ 0.1 4.5 ⎯ 0.0 0.1 ⎯ 0.1 6.0 ⎯ 0.0 0.1 ⎯ 0.1 IOL = 4 mA 4.5 ⎯ 0.17 0.26 ⎯ 0.33 IOL = 5.2 mA 6.0 ⎯ 0.18 0.26 ⎯ 0.33 ⎯ VIH ⎯ VIL IOH = −20 μA High-level output voltage VOH VIN = VIH or VIL IOL = 20 μA Low-level output voltage VOL Ta = −40 to 85°C Ta = 25°C Test Condition Symbol VIN = VIH or VIL Unit V V V V Input leakage current IIN VIN = VCC or GND 6.0 ⎯ ⎯ ±0.1 ⎯ ±1.0 μA Quiescent supply current ICC VIN = VCC or GND 6.0 ⎯ ⎯ 4.0 ⎯ 40.0 μA Test Condition Min Typ. Max Unit ⎯ ⎯ 4 8 ns ⎯ ⎯ 12 22 ns AC Characteristics (CL = 15 pF, VCC = 5 V, Ta = 25°C, input: tr = tf = 6 ns) Characteristics Output transition time Propagation delay time Symbol tTLH tTHL tpLH tpHL 4 2007-10-01 TC74HC155AP/AF/AFN AC Characteristics (CL = 50 pF, input: tr = tf = 6 ns) Characteristics Output transition time Propagation delay time Symbol tTLH tTHL tpLH tpHL Input capacitance CIN Power dissipation capacitance CPD Note: (Note) Ta = −40 to 85°C Ta = 25°C Test Condition Unit VCC (V) Min Typ. Max Min Max 2.0 ⎯ 30 75 ⎯ 95 4.5 ⎯ 8 15 ⎯ 19 6.0 ⎯ 7 13 ⎯ 16 2.0 ⎯ 45 130 ⎯ 165 4.5 ⎯ 15 26 ⎯ 33 6.0 ⎯ 13 22 ⎯ 28 ⎯ ⎯ 5 10 ⎯ 10 pF ⎯ ⎯ 53 ⎯ ⎯ ⎯ pF ⎯ ⎯ ns ns CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC (opr) = CPD・VCC・fIN + ICC 5 2007-10-01 TC74HC155AP/AF/AFN Package Dimensions Weight: 1.00 g (typ.) 6 2007-10-01 TC74HC155AP/AF/AFN Package Dimensions Weight: 0.18 g (typ.) 7 2007-10-01 TC74HC155AP/AF/AFN Package Dimensions (Note) Note: This package is not available in Japan. Weight: 0.13 g (typ.) 8 2007-10-01 TC74HC155AP/AF/AFN RESTRICTIONS ON PRODUCT USE 20070701-EN GENERAL • The information contained herein is subject to change without notice. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk. • The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. • Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations. 9 2007-10-01