Cypress CYD18S18V18-200BBAXC Fullflex synchronous sdr dual port sram Datasheet

CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
FullFlex™ Synchronous SDR
Dual Port SRAM
FullFlex™ Synchronous SDR Dual Port SRAM
Features
Functional Description
■
True dual port memory enables simultaneous access the
shared array from each port
■
Synchronous pipelined operation with single data rate (SDR)
operation on each port
❐ SDR interface at 200 MHz
❐ Up to 28.8 Gb/s bandwidth (200 MHz × 72-bit × 2 ports)
■
Selectable pipelined or flow-through mode
The FullFlex™ dual port SRAM families consist of 2-Mbit, 9-Mbit,
18-Mbit, and 36-Mbit synchronous, true dual port static RAMs
that are high speed, low power 1.8 V or 1.5 V CMOS. Two ports
are provided, enabling simultaneous access to the array.
Simultaneous access to a location triggers deterministic access
control. For FullFlex72 these ports operate independently with
72-bit bus widths and each port is independently configured for
two pipelined stages. Each port is also configured to operate in
pipelined or flow through mode.
■
1.5 V or 1.8 V core power supply
■
Commercial and Industrial temperature
■
IEEE 1149.1 JTAG boundary scan
■
■
The advanced features include the following:
■
Available in 484-ball PBGA (× 72) and 256-ball FBGA (× 36
and × 18) packages
Built in deterministic access control to manage address
collisions during simultaneous access to the same memory
location
■
FullFlex72 family
❐ 36-Mbit: 512 K × 72 (CYD36S72V18)
❐ 18-Mbit: 256 K × 72 (CYD18S72V18)
❐ 9-Mbit: 128 K × 72 (CYD09S72V18)
Variable impedance matching (VIM) to improve data
transmission by matching the output driver impedance to the
line impedance
■
Echo clocks to improve data transfer
■
FullFlex36 family
❐ 36-Mbit: 1 M × 36 (CYD36S36V18)
❐ 18-Mbit: 512 K × 36 (CYD18S36V18)
❐ 9-Mbit: 256 K × 36 (CYD09S36V18)
❐ 2-Mbit: 64 K × 36 (CYD02S36V18)
■
FullFlex18 family
❐ 36-Mbit: 2 M × 18 (CYD36S18V18)
❐ 18-Mbit: 1 M × 18 (CYD18S18V18)
❐ 9-Mbit: 512 K × 18 (CYD09S18V18)
To reduce the static power consumption, chip enables power
down the internal circuitry. The number of latency cycles before
a change in CE0 or CE1 enables or disables the databus
matches the number of cycles of read latency selected for the
device. For a valid write or read to occur, activate both chip
enable inputs on a port.
Each port contains an optional burst counter on the input address
register. After externally loading the counter with the initial
address, the counter increments the address internally.
■
Built in deterministic access control to manage address
collisions
❐ Deterministic flag output upon collision detection
❐ Collision detection on back-to-back clock cycles
❐ First busy address readback
■
Advanced features for improved high speed data transfer and
flexibility
❐ Variable impedance matching (VIM)
❐ Echo clocks
❐ Selectable LVTTL (3.3 V), Extended HSTL (1.4 V to 1.9 V),
1.8 V LVCMOS, or 2.5 V LVCMOS IO on each port
❐ Burst counters for sequential memory access
❐ Mailbox with interrupt flags for message passing
❐ Dual chip enables for easy depth expansion
Cypress Semiconductor Corporation
Document Number: 38-06082 Rev. *O
•
Additional device features include a mask register and a mirror
register to control counter increments and wrap around. The
counter interrupt (CNTINT) flags notify the host that the counter
reaches maximum count value on the next clock cycle. The host
reads the burst counter internal address, mask register address,
and busy address on the address lines. The host also loads the
counter with the address stored in the mirror register by using the
retransmit functionality. Mailbox interrupt flags are used for
message passing, and JTAG boundary scan and asynchronous
Master Reset (MRST) are also available. The Logic Block
Diagram on page 2 shows these features.
The FullFlex72 is offered in a 484-ball plastic BGA package. The
FullFlex36 and FullFlex18 are available in 256-ball fine pitch
BGA package except the 36-Mbit devices which are offered in
484-ball plastic BGA package.
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised February 5, 2013
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Logic Block Diagram
The Logic Block Diagram for FullFlex72, FullFlex36, and FullFlex18 family follows: [1, 2, 3]
FTSELL
FTSELR
CQENL
CONFIG Block
CONFIG Block
PORTSTD[1:0]L
CQENR
PORTSTD[1:0]R
DQ[71:0]L
BE [7:0]L
CE0L
CE1L
OEL
IO
Control
IO
Control
DQ [71:0]R
BE [7:0]R
CE0R
CE1R
OER
R/WR
R/WL
CQ1L
CQ1L
CQ0L
CQ0L
CQ1R
CQ1R
CQ0R
CQ0R
Dual Port Array
BUSYL
A [20:0]L
CNT/MSKL
ADSL
CNTENL
CNTRSTL
RETL
CNTINTL
CL
Collision Detection Logic
Address &
Counter Logic
BUSYR
Address &
Counter Logic
WRPL
A [20:0]R
CNT/MSKR
ADSR
CNTENR
CNTRSTR
RETR
CNTINTR
CR
WRPR
Mailboxes
INTL
INTR
ZQ0L
ZQ1L
READYL
LowSPDL
JTAG
RESET
LOGIC
TRST
TMS
TDI
TDO
TCK
ZQ0R
ZQ1R
MRST
READYR
LowSPDR
Notes
1. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.
The CYD02S36V18 has 16 address bits.
2. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.
3. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.
Document Number: 38-06082 Rev. *O
Page 2 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Contents
Selection Guide ................................................................ 9
Pin Definitions .................................................................. 9
Selectable IO Standard ............................................. 11
Clocking ..................................................................... 11
Selectable Pipelined or Flow through Mode .............. 11
DLL ............................................................................ 11
Echo Clocking ........................................................... 11
Deterministic Access Control .................................... 11
Variable Impedance Matching ....................................... 12
Address Counter and Mask Register Operations ..... 13
Counter Load Operation ............................................ 13
Mask Load Operation ................................................ 13
Counter Readback Operation .................................... 13
Mask Readback Operation ........................................ 13
Counter Reset Operation .......................................... 13
Mask Reset Operation ............................................... 13
Increment Operation .................................................. 15
Hold Operation .......................................................... 15
Retransmit ................................................................. 15
Counter Interrupt ....................................................... 15
Counting by Two ....................................................... 15
Counting by Four ....................................................... 15
Mailbox Interrupts ...................................................... 15
Master Reset ............................................................. 18
IEEE 1149.1 Serial Boundary Scan (JTAG) .................. 18
Maximum Ratings ........................................................... 19
Operating Range ............................................................. 19
Power Supply Requirements ......................................... 19
Electrical Characteristics ............................................... 19
Electrical Characteristics ............................................... 21
Electrical Characteristics ............................................... 24
Capacitance .................................................................... 24
Thermal Resistance ........................................................ 24
AC Test Load and Waveforms ....................................... 25
Document Number: 38-06082 Rev. *O
Switching Characteristics .............................................. 26
Switching Waveforms .................................................... 29
Ordering Information ...................................................... 43
512 K × 72 (36-Mbit) 1.8 V/1.5 V Synchronous
CYD36S72V18 Dual Port SRAM ...................................... 43
256 K × 72 (18-Mbit) 1.8 V/1.5 V Synchronous
CYD18S72V18 Dual Port SRAM ...................................... 43
128 K × 72 (9-Mbit) 1.8 V/1.5 V Synchronous
CYD09S72V18 Dual Port SRAM ...................................... 43
1024 K × 36 (36-Mbit) 1.8 V/1.5 V Synchronous
CYD36S36V18 Dual Port SRAM ...................................... 43
512 K × 36 (18-Mbit) 1.8 V/1.5 V Synchronous
CYD18S36V18 Dual Port SRAM ...................................... 43
256 K × 36 (9-Mbit) 1.8 V/1.5 V Synchronous
CYD09S36V18 Dual Port SRAM ...................................... 44
64 K × 36 (2-Mbit) 1.8 V or 1.5 V Synchronous
CYD02S36V18 Dual Port SRAM ...................................... 44
2048 K × 18 (36-Mbit) 1.8 V/1.5 V Synchronous
CYD36S18V18 Dual Port SRAM ...................................... 45
1024 K × 18 (18-Mbit) 1.8 V/1.5 V Synchronous
CYD18S18V18 Dual Port SRAM ...................................... 45
512 K × 18 (9-Mbit) 1.8 V/1.5 V Synchronous
CYD09S18V18 Dual Port SRAM ...................................... 45
Ordering Code Definitions ......................................... 45
Package Diagrams .......................................................... 46
Acronyms ........................................................................ 49
Document Conventions ................................................. 49
Units of Measure ....................................................... 49
Document History Page ................................................. 50
Sales, Solutions, and Legal Information ...................... 53
Worldwide Sales and Design Support ....................... 53
Products .................................................................... 53
PSoC Solutions ......................................................... 53
Page 3 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 1. FullFlex72 SDR 484-ball BGA Pinout (Top View)
1
A
2
3
DNU DQ61L
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
DNU
DQ59L
DQ57L DQ54L
DQ51L
DQ48L
DQ45L
DQ42L
DQ39L
DQ36L DQ36R
DQ39R
DQ42R
DQ45R DQ48R DQ51R DQ54R DQ57R
DQ59R
DQ61R
B DQ63L DQ62L DQ60L
DQ58L DQ55L
DQ52L
DQ49L
DQ46L
DQ43L
DQ40L
DQ37L DQ37R
DQ40R
DQ43R
DQ46R DQ49R DQ52R DQ55R DQ58R
DQ60R
DQ62R DQ63R
DQ38L DQ38R
DQ41R
DQ44R
DQ47R DQ50R DQ53R DQ56R
VSS
VSS
DQ64R DQ65R
VSS
VSS
VSS
DQ66R DQ67R
DNU
VSS
C DQ65L DQ64L
VSS
VSS
DQ56L
DQ53L
DQ50L
DQ47L
DQ44L
DQ41L
D DQ67L DQ66L
VSS
VSS
VSS
CQ1L
CQ1L
VSS
LOWSPDL
PORTSTD0L
ZQ0L[4]
E DQ69L DQ68L VDDIOL
VSS
VSS
VDDIOL
VTTL
F DQ71L DQ70L
CE1L
CE0L
VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL
G
A0L
A1L
RETL
BE4L
VDDIOL VDDIOL VREFL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
H
A2L
A3L
WRPL
BE5L
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
J
A4L
A5L
READYL
BE6L
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
[4, 5]
VDDIOL VDDIOL VDDIOL VDDIOL
BUSYL CNTINTL
VTTL
VTTL
VCORE VCORE VCORE VCORE
PORTSTD1L
DNU
CQ1R
CQ1R
VDDIOR VDDIOR VDDIOR VDDIOR
VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR CE0R
VREFR VDDIOR VDDIOR BE4R
VDDIOR DQ68R DQ69R
CE1R
DQ70R DQ71R
RETR
A1R
A0R
VDDIOR VDDIOR BE5R
WRPR
A3R
A2R
VDDIOR VDDIOR BE6R
READYR
A5R
A4R
[4, 5]
A7R
A6R
K
A6L
A7L
ZQ1L
BE7L
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCORE VDDIOR BE7R ZQ1R
L
A8L
A9L
CL
OEL
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
OER
CR
A9R
A8R
M
A10L
A11L
VSS
BE3L
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
BE3R
VSS
A11R
A10R
N
A12L
A13L
ADSL
BE2L
VDDIOL VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
BE2R
ADSR
A13R
A12R
P
A14L
A15L
CNT/MSKL
BE1L
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR VDDIOR BE1R
CNT/MSKR
A15R
A14R
R A16L
[8]
[7]
A17L
CNTENL
BE0L
T A18L[6] DNU CNTRSTL INTL
U DQ35L DQ34L
R/WL
VDDIOL VDDIOL
VSS
VDDIOL VDDIOL VREFL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
CQENL VDDIOL VDDIOL VDDIOL VDDIOL VDDIOL
V DQ33L DQ32L FTSELL
VDDIOL
DNU
W DQ31L DQ30L
VSS
MRST
VSS
CQ0L
CQ0L
Y DQ29L DQ28L
VSS
VSS
DQ20L
DQ17L
AA DQ27L DQ26L DQ24L
DQ22L DQ19L
AB DNU DQ25L DQ23L
DQ21L DQ18L
VDDIOL VDDIOL VDDIOL VDDIOL
VCORE
VTTL
VCORE VCORE
VTTL
VTTL
VCORE
VSS
VDDIOR VDDIOR BE0R
VREFR VDDIOR VDDIOR
INTR
VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR CQENR
VDDIOR VDDIOR VDDIOR VDDIOR VDDIOR
BUSYR ZQ0R[4] PORTSTD0R LOWSPDR
CNTENR A17R
CNTRSTR
R/WR
[7]
DNU
A16R[8]
A18R[6]
DQ34R DQ35R
TRST
VDDIOR
VSS
TDI
TDO
DQ30R DQ31R
TMS
TCK
DQ28R DQ29R
DQ10R DQ13R DQ16R DQ19R DQ22R
DQ24R
DQ26R DQ27R
DQ9R
DQ23R
DQ25R
DNU
PORTSTD1R
CNTINTR
VSS
DQ14L
DQ11L
DQ8L
DQ5L
DQ2L
DQ2R
DQ5R
DQ8R
DQ11R
DQ16L
DQ13L
DQ10L
DQ7L
DQ4L
DQ1L
DQ1R
DQ4R
DQ7R
DQ15L
DQ12L
DQ9L
DQ6L
DQ3L
DQ0L
DQ0R
DQ3R
DQ6R
CQ0R
CQ0R
DQ14R DQ17R DQ20R
DQ12R DQ15R DQ18R DQ21R
FTSELR DQ32R DQ33R
DNU
Notes
4. Leave this ball unconnected to disable VIM.
5. This ball is applicable only for 36-Mbit and DNU for 18-Mbit and lower densities.
6. Leave this Ball unconnected for CYD18S72V18 and CYD09S72V18.
7. Leave this Ball unconnected for CYD09S72V18.
8. Leave this Ball unconnected for CYD04S72V18.
Document Number: 38-06082 Rev. *O
Page 4 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 2. FullFlex36 SDR 484-ball BGA Pinout (Top View)[9]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
A DNU DNU
DNU
DNU
DNU
DQ33L
DQ30L
DQ27L
DQ24L
DQ21L
DQ18L
DQ18R
DQ21R
DQ24R
B DNU DNU
DNU
DNU
DNU
DQ34L
DQ31L
DQ28L
DQ25L
DQ22L
DQ19L
DQ19R
DQ22R
C DNU DNU
VSS
VSS
DNU
DQ35L
DQ32L
DQ29L
DQ26L
DQ23L
DQ20L
DQ20R
D DNU DNU
VSS
VSS
VSS
CQ1L
CQ1L
VSS
E DNU DNU VDDIOL
VSS
VSS
F DNU DNU
CE1L
G
A0L
A1L
H
A2L
A3L
J
A4L
K
L
LOWSPDL PORTSTD0L ZQ0L[10] BUSYL
19
20
DQ27R DQ30R DQ33R
DNU
DNU
DNU
DNU DNU
DQ25R
DQ28R DQ31R DQ34R
DNU
DNU
DNU
DNU DNU
DQ23R
DQ26R
DQ29R DQ32R DQ35R
DNU
VSS
VSS
DNU DNU
CNTINTL
PORTSTD1L
VSS
VSS
VSS
DNU DNU
DNU
VSS
CE0L
VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR
VCORE
RETL
BE2L
VDDIOL VDDIOL VREFL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
WRPL
BE3L
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A5L READYL
DNU
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A6L
A7L ZQ1L[10]
DNU
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A8L
A9L
CL
OEL
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
M A10L A11L
VSS
DNU
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
N A12L A13L
ADSL
DNU
VDDIOL VCORE
VSS
VSS
VSS
VSS
VSS
P A14L A15L
CNT/MSKL
BE1L
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
R A16L A17L CNTENL
BE0L
VDDIOL VDDIOL
VSS
VSS
VSS
T A18L A19L
CNTRSTL
INTL
VDDIOL VDDIOL VREFL
VSS
VSS
U DNU DNU
R/WL
CQ1R
VDDIOL VDDIOL VDDIOL VDDIOL
22
VDDIOR DNU DNU
DNU DNU
BE2R
RETR
A1R A0R
VDDIOR VDDIOR
BE3R
WRPR
A3R A2R
VSS
VDDIOR VDDIOR
DNU
READYR A5R A4R
VSS
VSS
VCORE VDDIOR
DNU
ZQ1R[10] A7R A6R
VSS
VSS
VSS
VCORE
VTTL
OER
CR
A9R A8R
VSS
VSS
VSS
VSS
VCORE
VTTL
DNU
VSS
A11R A10R
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
DNU
ADSR
A13R A12R
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR VDDIOR
BE1R
CNT/MSKR A15R A14R
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR VDDIOR
BE0R
CNTENR A17R A16R
VSS
VSS
VSS
VSS
VSS
VSS
VREFR VDDIOR VDDIOR
INTR
CNTRSTR A19R A18R
V DNU DNU FTSELL VDDIOL
DNU
W DNU DNU
VSS
MRST
VSS
CQ0L
CQ0L
DNU
PORTSTD1R
Y DNU DNU
VSS
VSS
DNU
DQ17L
DQ14L
DQ11L
DQ8L
DQ5L
DQ2L
AA DNU DNU
DNU
DNU
DNU
DQ16L
DQ13L
DQ10L
DQ7L
DQ4L
AB DNU DNU
DNU
DNU
DNU
DQ15L
DQ12L
DQ9L
DQ6L
DQ3L
VTTL
VTTL
VTTL
CNTINTR BUSYR ZQ0R[10]
VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR
21
CE1R
VCORE VCORE
VCORE
17
CE0R
VCORE
VCORE VCORE
VTTL
CQ1R
VDDIOR
VDDIOR VDDIOR VDDIOR VDDIOR
VTTL
18
DNU
16
VDDIOL VDDIOR VDDIOR VDDIOR
CQENL VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR
VTTL
15
VREFR VDDIOR VDDIOR
VCORE
VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CQENR
VDDIOL
VDDIOL VDDIOL VDDIOL VDDIOR
PORTSTD0R
LOWSPDR
VSS
DQ2R
DQ5R
DQ8R
DQ11R
DQ1L
DQ1R
DQ4R
DQ0L
DQ0R
DQ3R
CQ0R
TRST
R/WR
DNU DNU
VDDIOR FTSELR DNU DNU
CQ0R
VSS
TDI
TDO
DNU DNU
DQ14R DQ17R
DNU
TMS
TCK
DNU DNU
DQ7R
DQ10R DQ13R DQ16R
DNU
DNU
DNU
DNU DNU
DQ6R
DQ9R
DNU
DNU
DNU
DNU DNU
DQ12R DQ15R
Notes
9. Use this pinout only for device CYD36S36V18 of the FullFlex36 family.
10. Leave this ball unconnected to disable VIM.
Document Number: 38-06082 Rev. *O
Page 5 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 3. FullFlex18 SDR 484-ball BGA Pinout (Top View)[11]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A DNU DNU
DNU
DNU
DNU
DNU
DNU
DNU
DQ15L
DQ12L
DQ9L
DQ9R
DQ12R
DQ15R
DNU
DNU
DNU
DNU
DNU
DNU
DNU DNU
B DNU DNU
DNU
DNU
DNU
DNU
DNU
DNU
DQ16L
DQ13L
DQ10L
DQ10R
DQ13R
DQ16R
DNU
DNU
DNU
DNU
DNU
DNU
DNU DNU
C DNU DNU
VSS
VSS
DNU
DNU
DNU
DNU
DQ17L
DQ14L
DQ11L
DQ11R
DQ14R
DQ17R
DNU
DNU
DNU
DNU
VSS
VSS
DNU DNU
D DNU DNU
VSS
VSS
VSS
CQ1L
CQ1L
VSS
CNTINTL
PORTSTD1L
DNU
CQ1R
CQ1R
VSS
VSS
VSS
DNU DNU
E DNU DNU VDDIOL
VSS
VSS
DNU
VSS
F DNU DNU
CE1L
G
A0L
A1L
H
A2L
J
LOWSPDL PORTSTD0L ZQ0L[12] BUSYL
VDDIOL VDDIOR VDDIOR VDDIOR
VDDIOR
CE0L
VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR
VCORE
RETL
BE1L
VDDIOL VDDIOL VREFL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A3L
WRPL
DNU
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A4L
A5L
READYL
DNU
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
K
A6L
A7L
ZQ1L[12]
DNU
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
L
A8L
A9L
CL
OEL
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VSS
M A10L A11L
VSS
DNU
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
N A12L A13L
ADSL
DNU
VDDIOL VCORE
VSS
VSS
VSS
VSS
VSS
P A14L A15L
CNT/MSKL
DNU
VDDIOL VDDIOL
VSS
VSS
VSS
VSS
R A16L A17L CNTENL
BE0L
VDDIOL VDDIOL
VSS
VSS
VSS
T A18L A19L CNTRSTL
INTL
VDDIOL VDDIOL VREFL
VSS
VSS
U A20L DNU
R/WL
CQENL VDDIOL VDDIOL VDDIOR VDDIOR VDDIOR
VTTL
VTTL
DNU DNU
BE1R
RETR
A1R A0R
VDDIOR VDDIOR
DNU
WRPR
A3R A2R
VSS
VDDIOR VDDIOR
DNU
READYR A5R A4R
VSS
VSS
VCORE VDDIOR
DNU
ZQ1R[12] A7R A6R
VSS
VSS
VSS
VCORE
VTTL
OER
CR
A9R A8R
VSS
VSS
VSS
VSS
VCORE
VTTL
DNU
VSS
A11R A10R
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
DNU
ADSR
A13R A12R
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR VDDIOR
DNU
CNT/MSKR A15R A14R
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR VDDIOR
BE0R
CNTENR A17R A16R
VSS
VSS
VSS
VSS
VSS
VSS
VREFR VDDIOR VDDIOR
INTR
CNTRSTR A19R A18R
DNU
W DNU DNU
VSS
MRST
VSS
CQ0L
CQ0L
DNU
PORTSTD1R
Y DNU DNU
VSS
VSS
DNU
DNU
DNU
DNU
DQ8L
DQ5L
DQ2L
AA DNU DNU
DNU
DNU
DNU
DNU
DNU
DNU
DQ7L
DQ4L
AB DNU DNU
DNU
DNU
DNU
DNU
DNU
DNU
DQ6L
DQ3L
VTTL
VTTL
VTTL
CNTINTR BUSYR ZQ0R[12]
VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR
VDDIOR DNU DNU
CE1R
VCORE VCORE
VCORE
VDDIOL VDDIOL VDDIOL VDDIOL
22
CE0R
VCORE
VCORE VCORE
V DNU DNU FTSELL VDDIOL
VDDIOR VDDIOR VDDIOR VDDIOR
VTTL
21
VREFR VDDIOR VDDIOR
VCORE
VDDIOL VDDIOL VDDIOL VDDIOR VDDIOR CQENR
VDDIOL
VDDIOL VDDIOL VDDIOL VDDIOR
TRST
R/WR
DNU A20R
VDDIOR FTSELR DNU DNU
PORTSTD0R
LOWSPDR
VSS
CQ0R
CQ0R
VSS
TDI
TDO
DNU DNU
DQ2R
DQ5R
DQ8R
DNU
DNU
DNU
DNU
TMS
TCK
DNU DNU
DQ1L
DQ1R
DQ4R
DQ7R
DNU
DNU
DNU
DNU
DNU
DNU
DNU DNU
DQ0L
DQ0R
DQ3R
DQ6R
DNU
DNU
DNU
DNU
DNU
DNU
DNU DNU
Notes
11. Use this pinout only for device CYD36S18V18 of the FullFlex18 family.
12. Leave this ball unconnected to disable VIM.
Document Number: 38-06082 Rev. *O
Page 6 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 4. FullFlex36 SDR 256-ball BGA (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
DQ32L
DQ30L
DQ28L
DQ26L
DQ24L
DQ22L
DQ20L
DQ18L
DQ18R
DQ20R
DQ22R
DQ24R
DQ26R
DQ28R
DQ30R
DQ32R
B
DQ33L
DQ31L
DQ29L
DQ27L
DQ25L
DQ23L
DQ21L
DQ19L
DQ19R
DQ21R
DQ23R
DQ25R
DQ27R
DQ29R
DQ31R
DQ33R
C
DQ34L
DQ35L
RETL
INTL
CQ1L
CQ1L
DNU
TRST
MRST
ZQ0R[13]
CQ1R
CQ1R
INTR
RETR
DQ35R
DQ34R
D
A0L
A1L
WRPL
VREFL
FTSELL
LOWSPDL
VSS
VTTL
VTTL
VSS
LOWSPDR
FTSELR
VREFR
WRPR
A1R
A0R
E
A2L
A3L
CE0L
CE1L
VDDIOL
VDDIOL
VDDIOL
VCORE
VCORE
VDDIOR
VDDIOR
VDDIOR
CE1R
CE0R
A3R
A2R
F
A4L
A5L
CNTINTL
BE3L
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE3R
CNTINTR
A5R
A4R
G
A6L
A7L
BUSYL
BE2L
ZQ0L[13]
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE2R
BUSYR
A7R
A6R
H
A8L
A9L
CL
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
CR
A9R
A8R
J
A10L
A11L
VSS
PORTSTD1L
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
PORTSTD1R
VSS
A11R
A10R
K
A12L
A13L
OEL
BE1L
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE1R
OER
A13R
A12R
L
A14L
A15L
ADSL
BE0L
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE0R
ADSR
A15R
A14R
M
A16L[16]
A17L[15]
R/WL
CQENL
VDDIOL
VDDIOL
VDDIOL
VCORE
VCORE
VDDIOR
VDDIOR
VDDIOR
CQENR
R/WR
A17R[15]
A16R[16]
N
A18L[14]
DNU
CNT/MSKL
VREFL
PORTSTD0L
READYL
DNU
VTTL
VTTL
DNU
VREFR
CNT/MSKR
DNU
A18R[14]
P
DQ16L
DQ17L
CNTENL
CNTRSTL
CQ0L
CQ0L
TCK
TMS
TDO
TDI
CQ0R
CQ0R
CNTRSTR
CNTENR
DQ17R
DQ16R
R
DQ15L
DQ13L
DQ11L
DQ9L
DQ7L
DQ5L
DQ3L
DQ1L
DQ1R
DQ3R
DQ5R
DQ7R
DQ9R
DQ11R
DQ13R
DQ15R
T
DQ14L
DQ12L
DQ10L
DQ8L
DQ6L
DQ4L
DQ2L
DQ0L
DQ0R
DQ2R
DQ4R
DQ6R
DQ8R
DQ10R
DQ12R
DQ14R
READYR PORTSTD0R
Notes
13. Leave this ball unconnected to disable VIM.
14. Leave this ball unconnected for CYD09S36V18 and CYD02S36V18.
15. Leave this ball unconnected for CYD02S36V18.
16. Leave this ball unconnected for CYD02S36V18.
Document Number: 38-06082 Rev. *O
Page 7 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 5. FullFlex18 SDR 256-ball BGA (Top View)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
DNU
DNU
DNU
DQ17L
DQ16L
DQ13L
DQ12L
DQ9L
DQ9R
DQ12R
DQ13R
DQ16R
DQ17R
DNU
DNU
DNU
B
DNU
DNU
DNU
DNU
DQ15L
DQ14L
DQ11L
DQ10L
DQ10R
DQ11R
DQ14R
DQ15R
DNU
DNU
DNU
DNU
C
DNU
DNU
RETL
INTL
CQ1L
CQ1L
DNU
TRST
MRST
ZQ0R[17]
CQ1R
CQ1R
INTR
RETR
DNU
DNU
D
A0L
A1L
WRPL
VREFL
FTSELL
LOWSPDL
VSS
VTTL
VTTL
VSS
LOWSPDR
FTSELR
VREFR
WRPR
A1R
A0R
E
A2L
A3L
CE0L
CE1L
VDDIOL
VDDIOL
VDDIOL
VCORE
VCORE
VDDIOR
VDDIOR
VDDIOR
CE1R
CE0R
A3R
A2R
F
A4L
A5L
CNTINTL
DNU
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
DNU
CNTINTR
A5R
A4R
G
A6L
A7L
BUSYL
DNU
ZQ0L[17]
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
DNU
BUSYR
A7R
A6R
H
A8L
A9L
CL
VTTL
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
VTTL
CR
A9R
A8R
J
A10L
A11L
VSS
PORTSTD1L
VCORE
VSS
VSS
VSS
VSS
VSS
VSS
VCORE
PORTSTD1R
VSS
A11R
A10R
K
A12L
A13L
OEL
BE1L
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE1R
OER
A13R
A12R
L
A14L
A15L
ADSL
BE0L
VDDIOL
VSS
VSS
VSS
VSS
VSS
VSS
VDDIOR
BE0R
ADSR
A15R
A14R
M
A16L
A17L
R/WL
CQENL
VDDIOL
VDDIOL
VDDIOL
VCORE
VCORE
VDDIOR
VDDIOR
VDDIOR
CQENR
R/WR
A17R
A16R
N
A18L[19]
A19L[18]
CNT/MSKL
VREFL
PORTSTD0L
READYL
DNU
VTTL
VTTL
DNU
READYR
PORTSTD0R
VREFR
CNT/MSKR
A19R[18]
A18R[19]
P
DNU
DNU
CNTENL
CNTRSTL
CQ0L
CQ0L
TCK
TMS
TDO
TDI
CQ0R
CQ0R
CNTRSTR
CNTENR
DNU
DNU
R
DNU
DNU
DNU
DNU
DQ6L
DQ5L
DQ2L
DQ1L
DQ1R
DQ2R
DQ5R
DQ6R
DNU
DNU
DNU
DNU
T
DNU
DNU
DNU
DQ8L
DQ7L
DQ4L
DQ3L
DQ0L
DQ0R
DQ3R
DQ4R
DQ7R
DQ8R
DNU
DNU
DNU
Notes
17. Leave this ball unconnected to disable VIM.
18. Leave this ball unconnected for CYD09S18V18.
19. Leave this ball unconnected for CYD04S18V18.
Document Number: 38-06082 Rev. *O
Page 8 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Selection Guide
-200
-167
Unit
fMAX[21]
Parameter
200
167
MHz
Maximum access time (clock to data)
3.3
4.0
ns
[20]
Typical operating current ICC
800
Typical standby current for ISB3 (both ports CMOS level)
210[20]
[20]
700
mA
210[20]
mA
Pin Definitions
Left Port
Right Port
Description
inputs.[22]
A[20:0]L
A[20:0]R
Address
DQ[71:0]L
DQ[71:0]R
Data bus input and output.[23]
BE[7:0]L
BE[7:0]R
Byte select inputs.[24] Asserting these signals enables read and write operations to the
corresponding bytes of the memory array.
BUSYL
BUSYR
Port busy output. When there is an address match and both chip enables are active for both
ports, an external BUSY signal is asserted on the fifth clock cycles from when the collision occurs.
CL
CR
Clock signal. Maximum clock input rate is fMAX.
CE0L
CE0R
Active LOW chip enable input.
CE1L
CE1R
Active HIGH chip enable input.
CQENL
CQENR
Echo clock enable input. Assert HIGH to enable echo clocking on respective port.
CQ0L
CQ0R
Echo clock signal output for DQ[35:0] for FullFlex72 devices. Echo clock signal output for
DQ[17:0] for FullFlex36 devices. Echo clock signal output for DQ[8:0] for FullFlex18 devices.
CQ0L
CQ0R
Inverted echo clock signal output for DQ[35:0] for FullFlex72 devices. Inverted echo clock
signal output for DQ[17:0] for FullFlex36 devices. Inverted echo clock signal output for DQ[8:0]
for FullFlex18 devices.
CQ1L
CQ1R
Echo clock signal output for DQ[71:36] for FullFlex72 devices. Echo clock signal output for
DQ[35:18] for FullFlex36 devices. Echo clock signal output for DQ[17:9] for FullFlex18 devices.
CQ1L
CQ1R
Inverted echo clock signal output for DQ[71:36] for FullFlex72 devices. Inverted echo clock
signal output for DQ[35:18] for FullFlex36 devices. Inverted echo clock signal output for DQ[17:9]
for FullFlex18 devices.
ZQ[1:0]L
ZQ[1:0]R
VIM output impedance matching input.[25] To use, connect a calibrating resistor between ZQ
and ground. The resistor must be five times larger than the intended line impedance driven by
the dual port. Assert HIGH or leave DNU to disable VIM.
OEL
OER
Output enable input. This asynchronous signal must be asserted LOW to enable the DQ data
pins during read operations.
INTL
INTR
Mailbox interrupt flag output. The mailbox permits communications between ports. The upper
two memory locations are used for message passing. INTL is asserted LOW when the right port
writes to the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted
HIGH when it reads the contents of its mailbox.
Notes
20. For 18 Mbit x72 commercial configuration only, refer to Electrical Characteristics on page 19 for complete information.
21. SDR mode with two pipelined stages.
22. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address
bits. The CYD02S36V18 has 16 address bits.
23. The FullFlex72 family of devices has 72 data lines. The FullFlex36 family of devices has 36 data lines. The FullFlex18 family of devices has 18 data lines.
24. The FullFlex72 family of devices has eight byte enables. The FullFlex36 family of devices has four byte enables. The FullFlex18 family of devices has two byte enables.
25. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.
Document Number: 38-06082 Rev. *O
Page 9 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Pin Definitions (continued)
Left Port
LowSPDL
Right Port
LowSPDR
Description
Port low speed select input. Assert this pin LOW to disable the DLL. In flow through mode, this
pin needs to be asserted low.
PORTSTD[1:0]L[26] PORTSTD[1:0]R[26] Port clock/Address/Control/Data/Echo clock/I/O standard select input. Assert these pins
LOW/LOW for LVTTL, LOW/HIGH for HSTL, HIGH/LOW for 2.5 V LVCMOS, and HIGH/HIGH
for 1.8 V LVCMOS, respectively. These pins are driven by VTTL referenced levels.
R/WL
R/WR
Read/Write enable input. Assert this pin LOW to write to, or HIGH to read from the dual port
memory array.
READYL
READYR
Port DLL ready output. This signal is asserted LOW when the DLL and variable impedance
matching circuits complete calibration. This is a wired OR capable output.
CNT/MSKL
CNT/MSKR
Port counter/Mask select input. Counter control input.
ADSL
ADSR
Port counter address load strobe input. Counter control input.
CNTENL
CNTENR
Port counter enable input. Counter control input.
CNTRSTL
CNTRSTR
Port counter reset input. Counter control input.
CNTINTL
CNTINTR
Port counter interrupt output. This pin is asserted LOW one cycle before the unmasked portion
of the counter is incremented to all “1s”.
WRPL
WRPR
Port counter wrap input. When the burst counter reaches the maximum count, on the next
counter increment WRP is set LOW to load the unmasked counter bits to 0. It is set HIGH to load
the counter with the value stored in the mirror register.
RETL
RETR
Port counter retransmit input. Assert this pin LOW to reload the initial address for repeated
access to the same segment of memory.
VREFL
VREFR
Port external HSTL IO reference input. This pin is left DNU when HSTL is not used.
VDDIOL
VDDIOR
Port data IO power supply.
FTSELL
FTSELR
Port flow through mode select input. Assert this pin LOW to select flow through mode. Assert
this pin HIGH to select Pipelined mode.
MRST
Master reset input. MRST is an asynchronous input signal and affects both ports. Asserting
MRST LOW performs all of the reset functions as described in the text. A MRST operation is
required at power up. This pin is driven by a VDDIOL referenced signal.
TMS
JTAG test mode select input. It controls the advance of JTAG TAP state machine. State
machine transitions occur on the rising edge of TCK. Operation for LVTTL or 2.5 V LVCMOS.
TDI
JTAG test data input. Data on the TDI input is shifted serially into selected registers. Operation
for LVTTL or 2.5 V LVCMOS.
TRST
JTAG reset input. Operation for LVTTL or 2.5 V LVCMOS.
TCK
JTAG test clock input. Operation for LVTTL or 2.5 V LVCMOS.
TDO
JTAG test data output. TDO transitions occur on the falling edge of TCK. TDO is normally
tri-stated except when captured data is shifted out of the JTAG TAP. Operation for LVTTL or 2.5 V
LVCMOS.
VSS
Ground inputs.
VCORE
Device core power supply.
VTTL
LVTTL power supply.
Note
26. PORTSTD[1:0]L and PORTSTD[1:0]R have internal pull-down resistors.
Document Number: 38-06082 Rev. *O
Page 10 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Selectable IO Standard
The FullFlex device families offer the option to choose one of the
four port standards for the device. Each port independently
selects standards from single ended HSTL class I, single ended
LVTTL, 2.5 V LVCMOS, or 1.8 V LVCMOS. The selection of the
standard is determined by the PORTSTD pins for each port.
These pins must be connected to an LVTTL power suppy. This
determines the input clock, address, control, data, and Echo
clock standard for each port as shown in Table 1.
Table 1. Port Standard Selection
PORTSTD1
PORTSTD0
I/O Standard
VSS
VSS
LVTTL
VSS
VTTL
HSTL
VTTL
VSS
2.5 V LVCMOS
VTTL
VTTL
1.8 V LVCMOS
Clocking
Separate clocks synchronize the operations on each port. Each
port has one clock input C. In this mode, all the transactions on
the address, control, and data are on the C rising edge. All
transactions on the address, control, data input, output, and byte
enables occur on the C rising edge.
Table 2. Data Pin Assignment
Echo Clocking
As the speed of data increases, on-board delays caused by
parasitics make it extremely difficult to provide accurate clock
trees. To counter this problem, the FullFlex families incorporate
Echo Clocks. Echo Clocks are enabled on a per port basis. The
dual port receives input clocks that are used to clock in the
address and control signals for a read operation. The dual port
retransmits the input clocks relative to the data output. The
buffered clocks are provided on the CQ1/CQ1 and CQ0/CQ0
outputs. Each port has a pair of Echo clocks. Each clock is
associated with half the data bits. The output clock matches the
corresponding ports IO configuration.
To enable echo clock outputs, tie CQEN HIGH. To disable echo
clock outputs, tie CQEN LOW.
Figure 6. SDR Echo Clock Delay
Input Clock
Data Out
Echo Clock
BE Pin Name
Data Pin Name
BE[7]
DQ[71:63]
BE[6]
DQ[62:54]
BE[5]
DQ[53:45]
BE[4]
DQ[44:36]
BE[3]
DQ[35:27]
BE[2]
DQ[26:18]
BE[1]
DQ[17:9]
BE[0]
DQ[8:0]
Selectable Pipelined or Flow through Mode
To meet data rate and throughput requirements, the FullFlex
families offer selectable pipelined or flow through mode. Echo
clocks are not supported in flow through mode and the DLL must
be disabled.
Flow through mode is selected by the FTSEL pin. Strapping this
pin HIGH selects pipelined mode. Strapping this pin LOW selects
flow through mode.
DLL
The FullFlex familes of devices have an on-chip DLL. Enabling
the DLL reduces the clock to data valid (tCD) time enabling more
setup time for the receiving device. In flow through mode, the
DLL must be disabled. This is selectable by strapping LowSPD
low.
Whenever the operating frequency is altered beyond the Clock
Input Cycle to Cycle Jitter specification, reset the DLL, followed
by 1024 clocks before any valid operation.
Document Number: 38-06082 Rev. *O
LowSPD pins are used to reset the DLLs for a single port
independent of all other circuitry. MRST is used to reset all DLLs
on the chip. For more information on DLL lock and reset time,
see Master Reset on page 18.
Echo Clock
Deterministic Access Control
Deterministic Access Control is provided for ease of design. The
circuitry detects when both ports access the same location and
provides an external BUSY flag to the port on which data is
corrupted. The collision detection logic saves the address in
conflict (Busy Address) to a readable register. In the case of
multiple collisions, the first busy address is written to the busy
address register.
If both ports access the same location at the same time and only
one port is doing a write, if tCCS is met, then the data written to
and read from the address is valid data. For example, if the right
port is reading and the left port is writing and the left ports clock
meets tCCS, then the data read from the address by the right port
is the old data. In the same case, if the right ports clock meets
tCCS, then the data read out of the address from the right port is
the new data. In the above case, if tCCS is violated by the either
ports clock with respect to the other port and the right port gets
the external BUSY flag, the data from the right port is corrupted.
Table 3 on page 12 shows the tCCS timing that must be met to
guarantee the data.
Table 4 on page 12 shows that, in the case of the left port writing
and the right port reading, when an external BUSY flag is
asserted on the right port, the data read out of the device is not
guaranteed.
The value in the busy address register is read back to the
address lines. The required input control signals for this function
are shown in Table 7 on page 14. The value in the busy address
register is read out to the address lines tCA after the same
amount of latency as a data read operation. After an initial
address match, the BUSY flag is asserted and the address under
contention is saved in the busy address register. All the following
Page 11 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
address matches enable to generate the BUSY flag. However,
none of the addresses are saved into the busy address register.
When a busy readback is performed, the address of the first
match that happens at least two clocks cycles after the busy
readback is saved into the busy address register.
Table 3. tCCS Timing for All Operating Modes
Port A—Early Arriving Port
Port B—Late Arriving Port
Mode
Active Edge
Mode
Active Edge
SDR
C
SDR
C
tCCS
C Rise to Opposite C Rise Setup Time for Non Corrupt Data
tCYC(min) – 0.5
Unit
ns
Table 4. Deterministic Access Control Logic
Left Port
Right Port
Left Clock
Right Clock
BUSYL
BUSYR
Description
Read
Read
X
X
H
H
No collision
Write
Read
> tCCS
0
H
H
Read OLD data
0
> tCCS
H
H
Read NEW data
< tCCS
0
H
H
Read OLD data
H
L
Data not guaranteed
0
< tCCS
H
H
Read NEW data
H
L
Data Not guaranteed
H
H
Read NEW data
Read
Write
Write
Write
> tCCS
0
0
> tCCS
H
H
Read OLD data
< tCCS
0
H
H
Read NEW data
L
H
Data Not guaranteed
0
< tCCS
H
H
Read OLD data
L
H
Data not guaranteed
0
> –tCCS & < tCCS
L
L
Array data corrupted
0
> tCCS
L
H
Array stores right port data
> tCCS
0
H
L
Array stores left port data
Variable Impedance Matching
Each port contains a variable impedance matching circuit to set
the impedance of the IO driver to match the impedance of the
on-board traces. The impedance is set for all outputs except
JTAG and is done by port. To take advantage of the VIM feature,
connect a calibrating resistor (RQ) that is five times the value of
the intended line impedance from the ZQ[1:0][27] pin to VSS. The
output impedance is then adjusted to account for drifts in supply
voltage and temperature every 1024 clock cycles. If a port’s clock
is suspended, the VIM circuit retains its last setting until the clock
is restarted. On restart, it then resumes periodic adjustment. In
the case of a significant change in device temperature or supply
voltage, recalibration happens every 1024 clock cycles. A master
reset initializes the VIM circuitry. Table 5 shows the VIM
parameters and Table 6 describes the VIM operation modes.
Table 5. Variable Impedance Matching Parameters
Min
Max
Unit
Tolerance
RQ value
Parameter
100
275

±2%
Output impedance
20
55

±15%
Reset time
–
1024
Cycles
–
Update time
–
1024
Cycles
–
Table 6. Variable Impedance Matching Operation
RQ Connection
Output Configuration
100 –275  to VSS Output driver impedance = RQ/5 ± 15%
at Vout = VDDIO/2
ZQto VDDIO
To disable VIM, connect the ZQ pin to VDDIO of the relative
supply for the IOs before a Master Reset.
VIM disabled. Rout < 20 at Vout =
VDDIO/2
Note
27. The pin ZQ[1] is applicable only for 36 Mbit devices. This pin is DNU for 18 Mbit and lower density devices.
Document Number: 38-06082 Rev. *O
Page 12 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Address Counter and Mask Register Operations [28]
Counter Load Operation [28]
Each port of the FullFlex family contains a programmable burst
address counter. The burst counter contains four registers: a
counter register, a mask register, a mirror register, and a busy
address register.
For both non-burst and burst read or write accesses, the external
address is loaded through counter load operation as shown in
Table 7 on page 14. The address counter and mirror registers are
loaded with the address value presented on the address lines.
This value ranges from 0 to 1FFFFF.
The counter register contains the address used to access the
RAM array. It is changed only by the master reset (MRST),
counter reset, counter load, retransmit, and counter increment
operations.
The mask register value affects the counter increment and
counter reset operations by preventing the corresponding bits of
the counter register from changing. It also affects the counter
interrupt output (CNTINT). The mask register is only changed by
mask reset, mask load, and MRST. The mask load operation
loads the value of the address bus into the mask register. The
mask register defines the counting range of the counter register.
The mask register is divided into two or three consecutive
regions. Zero or more 0s define the masked region and one or
more 1s define the unmasked portion of the counter register. The
counter register may be divided up to three regions. The region
containing the least significant bits must be no more than two 0s.
Bits one and zero may be 10 respectively, masking the least
significant counter bit and causing the counter to increment by
two instead of one. If bits one and zero are 00, the two least
significant bits are masked and the counter increments by four
instead of one. For example, in the case of a 256 K × 72
configuration, a mask register value of 003FC divides the mask
register into three regions. With bit 0 being the least significant
bit and bit 17 being the most significant bit, the two least
significant bits are masked, the next eight bits are unmasked,
and the remaining bits are masked.
The mirror register reloads a counter register on retransmit
operations (see Retransmit on page 15) and wrap functions (see
Counter Interrupt on page 15 below). The last value loaded into
the counter register is stored in the mirror register. The mirror
register is only changed by master reset (MRST), counter reset,
and counter load.
Table 7 on page 14 summarizes the operations of these registers
and the required input control signals. All signals except MRST
are synchronized to the ports clock.
Mask Load Operation [28]
The mask register is loaded with the address value presented on
the address bus. This value ranges from 0 to 1FFFFF though not
all values permit correct increment operations. Permitted values
are in the form of 2n–1, 2n–2, or 2n–4. The counter register is only
segmented up to three regions. From the most significant bit to
the least significant bit, permitted values have zero or more 0s,
one or more 1s, and the least significant two bits are 11, 10, or
00. Thus 1FFFFE, 07FFFF, and 003FFC are permitted values
but 02FFFF, 003FFA, and 07FFE4 are not.
Counter Readback Operation
The internal value of the counter register is read out on the
address lines. The address is valid tCA after the selected number
of latency cycles configured by FTSEL. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 7 on page 16 shows a block diagram of this
logic.
Mask Readback Operation
The internal value of the mask register is read out on the address
lines. The address is valid tCA after the selected number of
latency cycles configured by FTSEL. The data bus (DQ) is
tri-stated on the cycle that the address is presented on the
address lines. Figure 7 on page 16 shows a block diagram of the
operation.
Counter Reset Operation
All unmasked bits of the counter and mirror registers are reset to
‘0’. All masked bits remain unchanged. A mask reset followed by
a counter reset resets the counter and mirror registers to 00000.
Mask Reset Operation
The mask register is reset to all 1s, that unmasks every bit of the
burst counter.
Note
28. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.
The CYD02S36V18 has 16 address bits.
Document Number: 38-06082 Rev. *O
Page 13 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Table 7. Burst Counter and Mask Register Control Operations
The burst counter and mask register control operation for any port follows. [29, 30]
C
MRST
CNTRST CNT/MSK CNTEN ADS RET
Operation
Description
X
L
X
X
X
X
X
Master reset
Reset address counter to all 0s, mask
register to all 1s, and busy address to all 0s.
H
L
H
X
X
X
Counter reset
Reset counter and mirror unmasked portion
to all 0s.
H
L
L
X
X
X
Mask reset
Reset mask register to all 1s.
H
H
H
L
L
X
Counter
load
for Load burst counter and mirror with external
burst/external address address value presented on address lines.
load for non-burst
H
H
L
L
L
X
Mask load
Load mask register with value presented on
the address lines.
H
H
H
L
H
L
Retransmit
Load counter with value in the mirror register.
H
H
H
L
H
H
Counter increment
Internally increment address counter value.
H
H
H
H
H
H
Counter hold
Constantly hold the address value for
multiple clock cycles.
H
H
H
H
L
H
Counter readback
Read out counter internal value on address
lines.
H
H
L
H
L
H
Mask readback
Read out mask register value on address
lines.
H
H
L
H
H
L
Busy address readback Read out first busy address after last busy
address readback.
H
H
L
L
H
X
Reserved
H
H
L
H
L
L
Reserved
H
H
L
H
H
H
Reserved
H
H
H
H
L
L
Reserved
H
H
H
H
H
L
Reserved
Notes
29. “X” = Don’t Care, “H” = HIGH, “L” = LOW.
30. Counter operation and mask register operation is independent of chip enables.
Document Number: 38-06082 Rev. *O
Page 14 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Increment Operation[31]
After the address counter is initially loaded with an external
address, the counter can internally increment the address value
and address the entire memory array. Only the unmasked bits of
the counter register are incremented. For a counter bit to
change, the corresponding bit in the mask register must be 1. If
the two least significant bits of the mask register are 11, the burst
counter increments by one. If the two least significant bits are 10,
the burst counter increments by two, and if they are 00, the burst
counter increments by four. If all unmasked counter bits are
incremented to 1 and WRP is deasserted, the next increment l
wraps the counter back to the initially loaded value. The cycle
before the increment that results in all unmasked counter bits to
become 1s, a counter interrupt flag (CNTINT) is asserted if the
counter is incremented again. This increment causes the counter
to reach its maximum value and the next increment returns the
counter register to its initial value that was stored in the mirror
register if WRP is deasserted. If WRP is asserted, the unmasked
portion of the counter is filled with 0 instead. The example shown
in Figure 8 on page 17 shows an example of the
CYDD36S18V18 device with the mask register loaded with a
mask value of 00007F unmasking the seven least significant bits.
Setting the mask register to this value enables the counter to
access the entire memory space. The address counter is then
loaded with an initial value of 000005 assuming WRP is
deasserted. The masked bits, the seventh address through the
twenty-first address, do not increment in an increment operation.
The counter address starts at address 000005 and increments
its internal address value until it reaches the mask register value
of 00007F. The counter wraps around the memory block to
location 000005 at the next count. CNTINT is issued when the
counter reaches the maximum –1 count.
Hold Operation
The value of all three registers is constantly maintained
unchanged for an unlimited number of clock cycles. This
operation is useful in applications where wait states are needed
or when address is available a few cycles ahead of data in a
shared bus interface.
Retransmit
mirror register stores the address counter value last loaded.
While RET is asserted low, the counter continues to wrap back
to the value in the mirror register independent of the state of
WRP.
Counter Interrupt
The counter interrupt (CNTINT) is asserted LOW one clock cycle
before an increment operation that results in the unmasked
portion of the counter register being all 1s. It is deasserted by
counter reset, counter load, counter increment, mask reset,
mask load, and MRST.
Counting by Two
When the two least significant bits of the mask register are 10,
the counter increments by two.
Counting by Four
When the two least significant bits of the mask register are 00,
the counter increments by four.
Mailbox Interrupts
Use the upper two memory locations for message passing and
permit communications between ports. Table 8 on page 17
shows the interrupt operation for both ports. The highest memory
location is the mailbox for the right port and the maximum
address – 1 is the mailbox for the left port.
When one port writes to the other port’s mailbox, the INT flag of
the port that the mailbox belongs to is asserted LOW. The INT
flag remains asserted until the mailbox location is read by the
other port. When a port reads its mailbox, the INT flag is
deasserted high after one cycle of latency with respect to the
input clock of the port to which the mailbox belongs and is
independent of OE.
As shown in Table 8 on page 17, to set the INTR flag, a write
operation by the left port to address 1FFFFF asserts INTR LOW.
A valid read of the 1FFFFF location by the right port resets INTR
HIGH after one cycle of latency with respect to the right port’s
clock. You must activate at least one byte enable to set or reset
the mailbox interrupt.
Retransmit enables repeated access to the same block of
memory without the need to reload the initial address. An internal
Note
31. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.
The CYD02S36V18 has 16 address bits.
Document Number: 38-06082 Rev. *O
Page 15 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 7. Counter, Mask, and Mirror Logic Block Diagram
Figure 7 shows the counter, mask, and mirror logic block diagram. [32]
CNT/MSK
CNTEN
Decode
Logic
A
CNTRST
RET
MRST
A
Mask
Register
Counter/
Address
Register
Address
Decode
RAM
Array
C
From
Address
Lines
Load/Increment
20
Counter
Mirror
To Readback
and Address
Decode
1
1
0
From
Mask
Register
From
Mask
From
Counter
0
20
Increment
Logic
Wrap
20
20
20
Bit 0
and 1
20
+1
Wrap
Detect
1
+2
Wrap
0
1
+4
20
To Counter
0
Note
32. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.
The CYD02S36V18 has 16 address bits.
Document Number: 38-06082 Rev. *O
Page 16 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Figure 8. Programmable Counter-Mask Register Operation with WRP deasserted
Figure 8 shows the programmable counter-mask operation with WRP deasserted. [36, 38]
CNTINT
Example:
Load
Counter-Mask
H
Register = 00007F
0
0
0s
220 219
0
1 1
H
X X
Xs
220 219
Max
Address
Value
L
H
1 1
1
X
Unmasked Address
0 0
0
0
1 0
X X
Xs
X
1 1 1
1
1
Mask
Register
LSB
1
6
5
4
3 2
1
0
27 2 2 2 2 2 2 2
220 219
Max + 1
Address
Value
1
6
5
4
3 2
1
0
27 2 2 2 2 2 2 2
Masked Address
Load
Address
Counter = 000005
1
1
Address
Counter
LSB
1
6
5
4
3 2
1
0
27 2 2 2 2 2 2 2
X X
Xs
220 219
X
0
0 0
0
1 0
1
6
5
4
3 2
1
0
27 2 2 2 2 2 2 2
Table 8. Interrupt Operation Example
Table 8 shows the interrupt operation example. [33, 34, 35, 37, 38]
Function
Left Port
Right Port
R/WL
CEL
A0L–20L
INTL
R/WR
CER
A0R–20R
INTR
Set Right INTR Flag
L
L
Max Address
X
X
X
X
L
Reset Right INTR Flag
X
X
X
X
H
L
Max Address
H
Set Left INTL Flag
X
X
X
L
L
L
Max Address–1
X
Reset Left INTL Flag
H
L
Max Address–1
H
X
X
X
X
Notes
33. CE is internal signal. CE = LOW if CE0 = LOW and CE1 = HIGH. For a single read operation, CE only needs to be asserted once at the rising edge of the C and is
deasserted after that. Data is out after the following C edge and is tri-stated after the next C edge.
34. OE is “Don’t Care” for mailbox operation.
35. At least one of BE0, BE1, BE2, BE3, BE4, BE5, BE6, or BE7 must be LOW.
36. The “X” in this diagram represents the counter’s upper bits.
37. “X” = Don’t Care, “H” = HIGH, “L” = LOW.
38. The CYD36S18V18 device has 21 address bits. The CYD36S36V18 and CYD18S18V18 devices have 20 address bits. The CYD36S72V18, CYD18S36V18, and
CYD09S18V18 devices have 19 address bits. The CYD18S72V18 and CYD09S36V18 devices have 18 address bits. The CYD09S72V18 device has 17 address bits.
The CYD02S36V18 has 16 address bits.
Document Number: 38-06082 Rev. *O
Page 17 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Master Reset
The FullFlex family of Dual Ports undergoes a complete reset
when MRST is asserted. MRST must be driven by VDDIOL
referenced levels. The MRST is asserted asynchronously to the
clocks and must remain asserted for at least tRS. When asserted
MRST deasserts READY, initializes the internal burst counters,
internal mirror registers, and internal busy addresses to zero. It
also initializes the internal mask register to all 1s. All mailbox
interrupts (INT), busy address outputs (BUSY), and burst
counter interrupts (CNTINT) are deasserted upon master reset.
Additionally, do not release MRST until all power supplies
including VREF are fully ramped and all port clocks and mode
select inputs (LOWSPD, ZQ, CQEN, FTSEL, and PORTSTD)
are valid and stable. This begins calibration of the DLL and VIM
circuits. READY is asserted within 1024 clock cycles. READY is
a wired OR capable output with a strong pull up and weak pull
down. Up to four outputs may be connected together. For faster
pull down of the signal, connect a 250 Ohm resistor to VSS. If
the DLL and VIM circuits are disabled for a port, the port is
operational within five clock cycles. However, the READY is
asserted within 160 clock cycles.
Table 9. JTAG IDCODE Register Definitions
Part Number
Configuration
512 K × 72
0C026069h (×2)
CYD36S36V18
1024 K × 36
0C023069h
CYD36S18V18
2048 K × 18
0C024069h
CYD18S72V18
256 K × 72
0C025069h
CYD18S36V18
512 K × 36
0C026069h
CYD18S18V18
1024 K × 18
0C027069h
CYD09S72V18
128 K × 72
0C028069h
CYD09S36V18
256 K × 36
0C029069h
CYD09S18V18
512 K × 18
0C02A069h
CYD02S36V18
64 K × 36
0C030069h
Table 10. Scan Registers Sizes
Register Name
IEEE 1149.1 Serial Boundary Scan (JTAG)
The FullFlex families incorporate an IEEE 1149.1 serial
boundary scan test access port (TAP). The TAP operates using
JEDEC-standard 3.3 V or 2.5 V IO logic levels depending on the
VTTL power supply. It is composed of four input connections and
one output connection required by the test logic defined by the
standard.
Value
CYD36S72V18
Instruction
Bit Size
4
Bypass
1
Identification
32
Boundary Scan
n[39]
Table 11. Instruction Identification Codes
Instruction
EXTEST
Code
Description
0000
Captures the input and output ring contents. Places the BSR between the TDI and TDO.
BYPASS
1111
Places the BYR between TDI and TDO.
IDCODE
1011
Loads the IDR with the vendor ID code and places the register between TDI and TDO.
HIGHZ
0111
Places BYR between TDI and TDO. Forces all FullFlex72 and FullFlex36 output drivers to a
High Z state.
CLAMP
0100
Controls boundary to 1 or 0. Places BYR between TDI and TDO.
SAMPLE/PRELOAD
1000
Captures the input and output ring contents. Places BSR between TDI and TDO.
RESERVED
All other
codes
Other combinations are reserved. Do not use other than the mentioned combinations.
Note
39. Details of the boundary scan length is found in the BSDL file for the device.
Document Number: 38-06082 Rev. *O
Page 18 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Maximum Ratings
Operating Range
Range
Ambient
Temperature
VCORE
Storage temperature............................... –65 °C to + 150 °C
Commercial
0 °C to +70 °C
Ambient temperature with
power applied .......................................... –55 °C to + 125 °C
1.8 V  100 mV
1.5 V 80 mV
Industrial
–40 °C to +85 °C
1.8 V  100 mV
1.5 V 80 mV
Exceeding maximum ratings may impair the useful life of the
device. User guidelines are not tested.
Supply voltage to ground potential ..............–0.5 V to + 4.1 V
DC voltage applied to
outputs in high Z State ...................... –0.5 V to VDDIO + 0.5 V
Power Supply Requirements
DC input voltage ............................... –0.5 V to VDDIO + 0.5 V
Output current into outputs (LOW) ............................. 20 mA
Static discharge voltage........................................... > 2200 V
(JEDEC JESD8-6, JESD8-B)
Latch-up current ..................................................... > 200 mA
Min
Typ
Max
LVTTL VDDIO
3.0 V
3.3 V
3.6 V
2.5 V LVCMOS VDDIO
2.3 V
2.5 V
2.7 V
HSTL VDDIO
1.4 V
1.5 V
1.9 V
1.8 V LVCMOS VDDIO
1.7 V
1.8 V
1.9 V
3.3 V VTTL
3.0 V
3.3 V
3.6 V
2.5 V VTTL
2.3 V
2.5 V
2.7 V
HSTL VREF
0.68 V
0.75 V
0.95 V
Electrical Characteristics
Over the Operating Range
Parameter
VOH
VOL
VIH
VIL
Description
Configuration
All Speed Bins
Min
Typ
Max
Unit
Output HIGH voltage
(VDDIO = Min, IOH = –8 mA)
LVTTL
2.4[40]
–
–
V
(VDDIO = Min, IOH = –4 mA)
HSTL (DC)[41]
VDDIO – 0.4[40]
–
–
V
(VDDIO = Min, IOH = –4 mA)
(AC)[41]
VDDIO – 0.5[40]
–
–
V
–
–
V
–
–
V
HSTL
(VDDIO = Min, IOH = –6 mA)
2.5 V LVCMOS
1.7[40]
(VDDIO = Min, IOH = –4 mA)
1.8 V LVCMOS
VDDIO – 0.45[40]
Output HIGH voltage
(VDDIO = Min, IOL = 8 mA)
LVTTL
(VDDIO = Min, IOL = 4 mA)
(VDDIO = Min, IOL = 4 mA)
[40]
–
–
0.4
V
HSTL(DC)[41]
–
–
0.4[40]
V
[41]
–
–
0.5[40]
V
V
HSTL (AC)
(VDDIO = Min, IOL = 6 mA)
2.5 V LVCMOS
–
–
0.7[40]
(VDDIO = Min, IOL = 4 mA)
1.8 V LVCMOS
–
–
0.45[40]
V
Input HIGH voltage
Input LOW voltage
LVTTL
2
–
VDDIO + 0.3
V
HSTL(DC)[41]
VREF + 0.1
–
VDDIO + 0.3
V
2.5 V LVCMOS
1.7
–
V
1.8 V LVCMOS
0.65 × VDDIO
–
V
LVTTL
–0.3
–
0.8
V
HSTL(DC)[41]
–0.3
–
VREF – 0.1
V
2.5 V LVCMOS
–
–
0.7
V
1.8 V LVCMOS
–
–
0.35 × VDDIO
V
Notes
40. These parameters are met with VIM disabled.
41. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC VIH/VIL in HSTL mode
are measured with 1 V/ns input edge rates.
Document Number: 38-06082 Rev. *O
Page 19 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Electrical Characteristics (continued)
Over the Operating Range
Parameter
READY
VOH
READY
VOL
Description
Configuration
All Speed Bins
Unit
Min
Typ
Max
2.7[42]
–
–
V
Output HIGH voltage
(VDDIO = Min, IOH = –24 mA)
LVTTL
(VDDIO = Min, IOH = –12 mA)
HSTL(DC)[43]
VDDIO – 0.4[42]
–
–
V
(VDDIO = Min, IOH = –12 mA)
[43]
VDDIO – 0.5[42]
–
–
V
–
–
V
–
–
V
V
HSTL (AC)
(VDDIO = Min, IOH = –15 mA)
2.5 V LVCMOS
(VDDIO = Min, IOH = –12 mA)
1.8 V LVCMOS
[42]
2.0
VDDIO – 0.45[42]
Output HIGH voltage
(VDDIO = Min, IO = 0.12 mA)
LVTTL
–
–
0.4[42]
(VDDIO = Min, IOL = 0.12 mA)
HSTL(DC)[43]
–
–
0.4[42]
V
(VDDIO = Min, IOL = 0.12 mA)
(AC)[43]
–
–
0.5[42]
V
V
V
HSTL
(VDDIO = Min, IOL = 0.15 mA)
2.5 V LVCMOS
–
–
0.7[42]
(VDDIO = Min, IOL = 0.08 mA)
1.8 V LVCMOS
–
–
0.45[42]
IOZ
Output leakage current
–10
–
10
A
IIX1
Input leakage current except
TDI, TMS, MRST, PORTSTD
–10
–
10
A
IIX2
Input leakage current TDI,
TMS, MRST
–300
–
10
A
IIX3
Input leakage current
PORTSTD
–10
–
300
A
Notes
42. These parameters are met with VIM disabled.
43. The DC specifications are measured under steady state conditions. The AC specifications are measured while switching at speed. AC VIH/VIL in HSTL mode are
measured with 1 V/ns input edge rates.
Document Number: 38-06082 Rev. *O
Page 20 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Electrical Characteristics
Over the Operating Range
Parameter
ICC
Description
Operating current
(VCORE = Max, IOUT = 0 mA)
outputs disabled
Configuration
512 K × 72
Typ
Max
Commercial
1440
1800
1280
1620
mA
Industrial
–
–
1330
1730
mA
1180
1500
1050
1350
mA
–
–
1110
1470
mA
1130
1430
1000
1290
mA
2048 K × 18 Commercial
Industrial
–
–
1060
1410
mA
Commercial
800
980
700
880
mA
Industrial
820
1030
730
930
mA
Commercial
640
800
570
720
mA
Industrial
670
860
590
780
mA
610
770
540
690
mA
1024 K × 18 Commercial
128 K × 72
256 K × 36
512 K × 18
64 K × 36
Document Number: 38-06082 Rev. *O
Unit
Max
Industrial
512 K × 36
-167
Typ
1024 K × 36 Commercial
256 K × 72
-200
Industrial
640
830
570
750
mA
Commercial
640
790
560
700
mA
Industrial
660
830
580
740
mA
Commercial
540
640
470
570
mA
Industrial
550
670
490
600
mA
Commercial
550
660
480
580
mA
Industrial
570
690
500
610
mA
Commercial
–
–
–
–
mA
Industrial
–
–
–
–
mA
Page 21 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Electrical Characteristics (continued)
Over the Operating Range
Parameter
ISB1
Description
Standby current
(both ports TTL Level)
CEL and CER  VIH, f = fMAX
Configuration
512 K × 72
Commercial
Industrial
1024 K × 36 Commercial
Industrial
2048 K × 18 Commercial
256 K × 72
512 K × 36
256 K × 36
Document Number: 38-06082 Rev. *O
-167
Max
Typ
Max
1000
1250
920
1160
Unit
mA
–
–
970
1260
mA
910
1140
820
1050
mA
–
–
880
1160
mA
890
1110
810
1030
mA
Industrial
–
–
860
1140
mA
Commercial
500
630
460
580
mA
Industrial
530
680
490
630
mA
Commercial
460
570
410
530
mA
Industrial
480
630
440
580
mA
450
560
410
520
mA
1024 K × 18 Commercial
128 K × 72
-200
Typ
Industrial
470
610
430
570
mA
Commercial
400
490
360
450
mA
Industrial
420
540
380
490
mA
Commercial
380
440
340
400
mA
Industrial
390
470
360
430
mA
512 K × 18
Commercial
390
460
350
410
mA
Industrial
410
480
370
440
mA
64 K × 36
Commercial
–
–
–
–
mA
Industrial
–
–
–
–
mA
Page 22 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Electrical Characteristics (continued)
Over the Operating Range
Parameter
ISB2
Description
Standby current
(one port TTL or CMOS level)
CEL | CER  VIH, f = fMAX
Configuration
512 K × 72
Commercial
Industrial
1024 K × 36 Commercial
Industrial
2048 K × 18 Commercial
256 K × 72
512 K × 36
256 K × 36
Document Number: 38-06082 Rev. *O
-167
Max
Typ
Max
1300
1570
1160
1410
Unit
mA
–
–
1210
1520
mA
1090
1330
980
1210
mA
–
–
1030
1330
mA
1040
1270
930
1160
mA
Industrial
–
–
980
1270
mA
Commercial
650
790
580
710
mA
Industrial
680
840
610
760
mA
Commercial
550
670
490
610
mA
Industrial
570
730
520
670
mA
520
640
470
580
mA
1024 K × 18 Commercial
128 K × 72
-200
Typ
Industrial
550
690
490
640
mA
Commercial
520
630
460
560
mA
Industrial
550
670
480
610
mA
Commercial
460
530
400
470
mA
Industrial
480
560
430
500
mA
512 K × 18
Commercial
460
530
410
480
mA
Industrial
480
560
430
510
mA
64 K × 36
Commercial
–
–
–
–
mA
Industrial
–
–
–
–
mA
Page 23 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Electrical Characteristics
Over the Operating Range
Parameter
ISB3
Description
All Speed Bins
Configuration
Standby current
(both ports CMOS level)
CEL and CER  VCORE – 0.2 V, f = 0
Typ
Max
590
Unit
512 K × 72
Commercial
410
mA
Industrial
460
700
mA
1024 K × 36
Commercial
410
590
mA
Industrial
460
700
mA
2048 K × 18
Commercial
410
590
mA
Industrial
460
700
mA
256 K × 72
Commercial
210
300
mA
Industrial
230
350
mA
512 K × 36
Commercial
210
300
mA
Industrial
230
350
mA
1024 K × 18
Commercial
210
300
mA
Industrial
230
350
mA
128 K × 72
Commercial
150
200
mA
Industrial
170
220
mA
256 K × 36
Commercial
150
200
mA
Industrial
170
220
mA
512 K × 18
Commercial
150
200
mA
Industrial
170
220
mA
Capacitance
Signals
Packages
CYD18S72V18
CYD09S72V18
CYD18S36V18
CYD09S36V18
CYD02S36V18
CYD18S18V18
CYD09S18V18
CYD36S72V18
CYD36S36V18
CYD36S18V18
OE
12 pF
12 pF
20 pF
20 pF
BE, DQ
10 pF
18 pF
16 pF
30 pF
All other signals
10 pF
10 pF
16 pF
16 pF
Thermal Resistance
Parameter
Description
JA
Thermal resistance
(junction to ambient)
JC
Thermal resistance
(junction to case)
Document Number: 38-06082 Rev. *O
256-ball BGA 256-ball BGA Unit
(18Mbit only) (9Mbit & 2Mbit)
Test Conditions
484-ball BGA
Still air, soldered on a 3 × 4.5 inch,
four layer printed circuit board
14.92
17.02
18.31
°C/W
3.6
1.25
1.68
°C/W
Page 24 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
AC Test Load and Waveforms
Figure 9. Output Test Load for LVTTL/CMOS
VTH = 1.5V for LVTTL
VTH = 50% VDDIO for 2.5V CMOS
VTH = 50% VDDIO for 1.8V CMOS
VREF = NC
VREF
50 Ohm
50 Ohm
Output
Test Point
R=250 Ohm
READY
VTH
ZQ
Device under
test
C = 10pF
RQ=250 Ohm
Figure 10. Output Test Load for HSTL
VTH = 50% VDDIO
VREF = 0.75V
VREF
50 Ohm
50 Ohm
Output
R=250 Ohm
Test Point
VTH
READY ZQ
Device under
test
C= 10pF for SDR
RQ=250 Ohm
Figure 11. HSTL Input Waveform
Document Number: 38-06082 Rev. *O
Page 25 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Characteristics
Over the Operating Range
Table 12. SDR Mode, Signals Affected by DLL
DLL ON (LOWSPD=1)[46]
Description
Parameter
-200
tCD2[49]
C rise to DQ valid for pipelined
mode
tCCQ[49]
C rise to CQ rise
tCKHZ2
[44, 49]
C rise to DQ output high Z in
pipelined mode
tCKLZ2[44, 49] C rise to DQ output low Z in
pipelined mode
DLL OFF (LOWSPD=0)[46]
-167
Unit
Min
Max
Min
Max
Min
Max
–
3.30[45, 48]
–
4.00[45, 48]
–
6.00[45, 48]
ns
1.00
3.30 [48]
1.00
4.00[48]
1.00
6.00[48]
ns
1.00
[45, 48]
1.00
–
1.00
3.30
1.00
4.00
[45, 48]
1.00
–
1.00
[45, 48]
ns
–
ns
6.00
Table 13. SDR Mode
Parameter
fMAX
(PIPELINED)
Maximum operating frequency for pipelined mode
fMAX (FLOW
THROUGH)
Maximum operating frequency for flow through mode
tCYC
(PIPELINED)
C clock cycle time for pipelined mode
tCYC (FLOW X C clock cycle time for flow through mode
THROUGH)
tCKD
tSD
tHD[47]
tSAC
-167
Unit
Min
Max
Min
Max
100
200
100
167
MHz
–
77
–
66.7
MHz
5.00[48]
10.00
6.00[48]
10.00
ns
13.00[48]
–
15.00[48]
–
ns
45
C clock duty time
55
45
55
%
Data input setup time to C HSTL
rise
1.8 V LVCMOS
1.50[45, 48]
–
1.70[45, 48]
–
ns
2.5 V LVCMOS
3.3 V LVTTL
1.75[45, 48]
–
1.95[45, 48]
0.5
–
Data input hold time after C rise
Address and control input HSTL
setup time to C rise
1.8 V L VCMOS
2.5 V LVCMOS
3.3 V LVTTL
tHAC[47]
-200
Description
Address and control input hold time after C rise
tOE
Output enable to data valid
tOLZ[44]
OE to low Z
–
ns
–
[45, 47, 48]
1.70
–
ns
–
1.95[45, 47, 48]
–
ns
0.50
–
0.60
–
ns
–
4.40[45, 48]
–
5.00[45, 48]
ns
1.00
–
1.00
–
ns
[45, 47, 48]
1.50
1.75[45, 47, 48]
0.5
ns
Notes
44. Parameters specified with the load capacitance in Figure 9 on page 25 and Figure 10 on page 25.
45. For the x18 devices, add 200 ps to this parameter in Table 13.
46. Test conditions assume a signal transition time of 2 V/ns.
47. Add 300 ps to this timing for 36M devices.
48. Add 15% to this parameter if a VCORE of 1.5 V is used.
49. This parameter assumes input clock cycle to cycle jitter of ± 0 ps.
Document Number: 38-06082 Rev. *O
Page 26 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Table 13. SDR Mode (continued)
Parameter
Description
-200
-167
Unit
Min
Max
Min
Max
1.00
4.40[51, 52]
1.00
5.00[51, 52]
ns
tOHZ[50]
OE to high Z
tCD1
C rise to DQ valid for flow through mode
(LowSPD = 0)
–
9.00[51, 52]
–
11.00[51, 52]
ns
tCA1
C rise to address readback valid for flow through mode
–
9.00[52]
–
11.00[52]
ns
–
[52]
–
6.00[52]
ns
tCA2
tDC
[53]
tJIT
tCQHQV[53]
tCQHQX[53]
C rise to address readback valid for pipelined mode
DQ output hold after C rise
1.00
–
1.00
–
ns
–
+/- 200
–
+/- 200
ps
HSTL
1.8 V LVCMOS
–
0.70[51]
–
0.80[51]
ns
2.5 V LVCMOS
3.3 V LVTTL
–
0.80[51]
–
0.90[51]
ns
HSTL
1.8 V LVCMOS
–0.70
–
–0.80
–
ns
2.5 V LVCMOS 3.3 V
LVTTL
–0.85
–
–0.95
–
ns
Clock input cycle to cycle jitter
Echo clock (CQ) high to
output valid
Echo clock (CQ) high to
output hold
5.00
tCKHZ1[50]
C rise to DQ output high Z in flow through mode
1.00
9.00[51, 52]
1.00
11.00[51, 52]
ns
tCKLZ1[50]
C rise to DQ output low Z in flow through mode
1.00
–
1.00
–
ns
tAC
Address output hold after C rise
1.00
–
1.00
–
ns
tCKHZA1[50]
C rise to address output high Z for flow through mode
1.00
9.00[52]
1.00
11.00[52]
ns
5.00[52]
1.00
6.00[52]
ns
tCKHZA2[50]
tCKLZA[50]
C rise to address output high Z for pipelined mode
1.00
C rise to address output low Z
1.00
–
1.00
–
ns
tSCINT
C rise to CNTINT low
1.00
3.30[52]
1.00
4.00[52]
ns
1.00
3.30[52]
1.00
4.00[52]
ns
0.50
8.00[52]
ns
0.50
8.00[52]
ns
1.00
4.00[52]
ns
tRCINT
C rise to CNTINT high
tSINT
C rise to INT low
0.50
7.00[52]
tRINT
C rise to INT high
0.50
7.00[52]
1.00
3.30[52]
tBSY
C rise to BUSY valid
Notes
50. Parameters specified with the load capacitance in Figure 9 on page 25 and Figure 10 on page 25.
51. For the × 18 devices, add 200 ps to this parameter in Table 13.
52. Add 15% to this parameter if a VCORE of 1.5 V is used.
53. This parameter assumes input clock cycle to cycle jitter of ±0 ps.
Document Number: 38-06082 Rev. *O
Page 27 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Table 14. Master Reset Timing
Parameter
Description
-200
Min
-167
Max
Min
Max
Unit
tPUP
Power-up time
1
–
1
–
ms
tRS
Master reset pulse width
5
–
5
–
cycles
tRSR
Master reset recovery time
5
–
5
–
cycles
tRSF
Master reset to outputs inactive/Hi Z
–
15
–
18
ns
tRDY
Master reset release to port ready
–
1024
–
1024
cycles
tCORDY[55]
C rise to port ready
–
9.5[56]
–
11[56]
ns
Min
Max
Min
Max
[54]
Table 15. JTAG Timing
Parameter
Description
-200
-167
Unit
fJTAG
JTAG TAP controller frequency
–
20
–
20
MHz
tTCYC
TCK cycle time
50
–
50
–
ns
tTH
TCK high time
20
–
20
–
ns
tTL
TCK low time
20
–
20
–
ns
tTMSS
TMS setup to TCK rise
10
–
10
–
ns
tTMSH
TMS hold to TCK rise
10
–
10
–
ns
tTDIS
TDI setup to TCK rise
10
–
10
–
ns
tTDIH
TDI hold to TCK rise
10
–
10
–
ns
tTDOV
TCK low to TDO valid
–
10
–
10
ns
tTDOX
TCK low to TDO invalid
0
–
0
–
ns
tJXZ
TCK low to TDO high Z
–
15
–
15
ns
tJZX
TCK low to TDO active
–
15
–
15
ns
tJZX
TCK low to TDO active
–
15
–
15
ns
.
Notes
54. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250- resistor to VSS.
55. Add this propagation delay after tRDY for all Master Reset Operations.
56. Add 15% to this parameter if a VCORE of 1.5 V is used.
Document Number: 38-06082 Rev. *O
Page 28 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms
Figure 12. JTAG Timing
tTH
Test Clock
TCK
tTL
tTCYC
tTMSS
tTMSH
Test Mode Select
TMS
tTDIS
tTDIH
Test Data-In
TDI
Test Data-Out
TDO
tTDOX
tTDOV
Figure 13. Master Reset [57]
~
VCORE
tPUP
tRS
MRST
~
C
~
tRDY
READY
All Address
& Data
tRSF
tCORDY
~
~
tRSR
All Other
Inputs
~
Note
57. READY is a wired OR capable output with a weak pull-down. For a decreased falling delay, connect a 250- resistor to VSS.
Document Number: 38-06082 Rev. *O
Page 29 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 14. READ Cycle for Pipelined Mode
tCYC
C
CE
OE
tSAC
tHAC
R/W
A
An
An+1
2 Pipelined stages
DQ DQx-1
An+2
DQx
DQn
An+3
DQn+1
tDC
An+4
DQn+2
An+5
DQn+3
An+6
DQn+4
tCD2
Figure 15. WRITE Cycle for Pipelined and Flow through Modes
tCYC
C
CE
R/W
A
An
An+1
An+2
An+3
An+4
An+5
An+6
DQn+1
DQn+2
DQn+3
DQn+4
DQn+5
DQn+6
2 Pipelined stages
DQ
DQn
tSD
Document Number: 38-06082 Rev. *O
tHD
Page 30 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 16. READ with Address Counter Advance for Pipelined Mode
tCYC
C
A
An
Internal
Address
An
An+2
An+1
An+3
ADS
CNTEN
DQ
DQx-1
DQx
DQn
DQn+1
DQn+2
DQn+3
Figure 17. READ with Address Counter Advance for Flow through Mode
tC Y C
C
tS A C tH A C
A
An
ADS
t S AC t H AC
C NT E N
tCD1
DQ
DQx
DQ n
DQn + 1
DQn + 2
DQ n + 3
DQn + 4
tD C
R EA D E XT E R N A L A D D R E SS
Document Number: 38-06082 Rev. *O
R E AD W IT H C O U N TE R
C O U N T ER H O L D
R EA D W IT H C O U N T E R
Page 31 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 18. Port-to-Port WRITE–READ for Pipelined Mode
tCYC
Left Port
CL
An
AL
R/WL
DQL
DQn
Right Port
tCCS
CR
tCYC
AR
An
R/WR
tSAC tHAC
DQR
DQn
tCD2
tDC
Figure 19. Chip Enable READ for Pipelined Mode
tCYC
C
CE0
CE1
R/W
tSAC tHAC
A
An
An+1
An+2
An+3
An+4
tCD2
Document Number: 38-06082 Rev. *O
An+6
DQn+3
DQn
DQ
An+5
tDC
tCKLZ2
Page 32 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 20. OE Controlled WRITE for Pipelined Mode
tCYC
C
A
Ax+1
Ax+2
Ax+3
An
An+1
An+2
An+3
DQn
DQn+1
DQn+2
DQn+3
R/W
OE
tOHZ
DQx+1
DQ
DQx-1
DQx
Figure 21. OE Controlled WRITE for Flow through Mode
tCYC
C
A
Ax+1
Ax+2
Ax+3
An
An+1
An+2
An+3
DQn
DQn+1
DQn+2
DQn+3
R/W
OE
tOHZ
DQx+2
DQ
DQx
DQx+1
Document Number: 38-06082 Rev. *O
Page 33 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 22. Byte-Enable READ for Pipelined Mode
tCYC
C
A
An
An+1
An+2
An+3
R/W
BE7
BE6
BE5
BE4
BE3
BE2
BE1
BE0
tCKLZ2
t
DQn+1(63:71) CKHZ2
DQ63:71
DQ54:62
DQn+1(54:62)
DQn+2(45:53)
DQ45:53
DQn+2(36:44)
DQ36:44
DQn+1(27:35)
DQ27:35
DQ18:26
DQn+2(18:26)
DQn+3(9:17)
DQ9:17
DQ0:8
Document Number: 38-06082 Rev. *O
DQn+3(0:8)
Page 34 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 23. Port-to-Port WRITE-to-READ for Flow through Mode
CL
R /W L
tS A C
AL
tH A C
NO MATCH
M A TC H
tS D
DQL
tH D
V A LID
tC C S
CR
tCD1
R /W R
tH A C
tS A C
AR
NO MATCH
M A TC H
tC D 1
VA LID
DQR
tD C
Document Number: 38-06082 Rev. *O
V A L ID
tDC
Page 35 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 24. Busy Address Readback for Pipelined and Flow through Modes, CNT/MSK = RET = LOW [58]
tCYC
~
C
Internal
Amatch+2
Address
Amatch+3
~
Amatch+4
BUSY
~
~
CNTEN
~
ADS
External
Address
Pipelined
~
Amatch
tCA2
External
Address
Flow through
~
tAC
Amatch
tAC
tCA1
Figure 25. Read Cycle for Flow through Mode
t CY C
C
CE 0
t SA C
t H AC
CE 1
B En
R /W
t S AC
A
t H AC
An + 1
An
tC D 1
DQ
An + 2
t C KH Z 1
tD C
DQn
t C KLZ 1
An + 3
DQn + 1
tO H Z
DQn + 2
tD C
t O LZ
OE
tO E
Note
58. Amatch is the matching address that is reported on the address bus of the losing port. The counter operation selected for reporting the address is “Busy Address
Readback.”
Document Number: 38-06082 Rev. *O
Page 36 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 26. READ-to-WRITE for Pipelined Mode (OE = VIL) [59, 60, 61]
tCYC
tCL
C
A
tCH
Ax
An
An+1
tSAC tHAC
R/W
DQ
An+2
tSAC tHAC
tCKLZ2
DQx-2
DQx-1
DQx
tDC
tCD2
DQn
DQn+1
tCKHZ2
DQn+2
tSD tHD
Figure 27. READ-to-WRITE for Pipelined Mode (OE Controlled) [62, 63]
tCYC
C
A
Ax
Ax+1
Ax+2
An
An+1
An+2
An+3
DQn+1
DQn+2
DQn+3
tSAC tHAC
R/W
OE
tOHZ
tSD
tHD
DQx
DQ
DQx-2
DQx-1
DQn
Notes
59. When OE = VIL, the last read operation is enabled to complete before the DQ bus is tri-stated and the user is enabled to drive write data.
60. Two dummy writes are issued to accomplish bus turnaround. The third instruction is the first valid write.
61. Chip enable or all byte enables are held inactive during the two dummy writes to avoid data corruption.
62. OE is deasserted and tOHZ enabled to elapse before the first write operation is issued.
63. Any write scheduled to complete after OE is deasserted is pre-empted.
Document Number: 38-06082 Rev. *O
Page 37 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 28. Read-to-Write-to-Read for Flow through Mode (OE = LOW)
t CYC
C
t SAC t HAC
CE0
CE 1
B En
t SAC t HAC
R/W
A
An
An + 1
An + 2
An + 2
t SD
DQ IN
An + 3
An + 4
tH D
DQn + 2
t CD1
t C D1
DQ n
D Q O UT
t C D1
DQn + 1
t CD1
DQ n + 3
t CKHZ1
t CKLZ1
tD C
READ
Document Number: 38-06082 Rev. *O
tD C
NO P
W RITE
R EAD
Page 38 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 29. Read-to-Write-to-Read for Flow through Mode (OE Controlled)
t C YC
C
t SA C t H AC
CE0
CE1
BEn
t SA C t H A C
R /W
A
An
An + 1
An + 2
tS D
D Q IN
D Q OUT
An + 4
An + 5
tH D
DQn + 2
tC D 1
An + 3
DQn + 3
tD C
tO E
tC D 1
tC D 1
DQn
DQn + 4
t C KLZ 1
tO H Z
tD C
OE
READ
Document Number: 38-06082 Rev. *O
W R IT E
R EA D
Page 39 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 30. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow through Modes, Clock Timing Violates tCCS.
(Flag Both Ports)
Port A
C
A
R/W
BUSY
< tCCS
tBSY
tBSY
Port B
C
A
R/W
tBSY
BUSY
tBSY
Figure 31. BUSY Timing, WRITE-WRITE Collision for Pipelined and Flow through Modes, Clock Timing Meets tCCS.
(Flag Losing Port)
Losing Port
C
A
R/W
BUSY
tccs
tBSY
tBSY
Winning Port
C
A
Match
R/W
BUSY
Document Number: 38-06082 Rev. *O
Page 40 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 32. Read with Echo Clock for Pipelined Mode (CQEN = HIGH)
C
tSAC
tHAC
R/W
A
An
An+1
An+2
An+3
An+4
An+5
An+6
CQ0
CQ0
tCCQ
CQ1
CQ1
tCQHQX
tCQHQV
DQ
DQx-1
DQx
Document Number: 38-06082 Rev. *O
DQn
DQn+1
DQn+2
DQn+3
DQn+4
Page 41 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Switching Waveforms (continued)
Figure 33. Mailbox Interrupt Output
tCYC
CL
AL
AMAX
R/WL
DQL
INTR
tSINT
tRINT
CR
AR
AMAX
R/WR
DQR
Document Number: 38-06082 Rev. *O
DQMAX
Page 42 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Ordering Information
512 K × 72 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S72V18 Dual Port SRAM
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD36S72V18-200BGXC
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free) Commercial
167
CYD36S72V18-167BGXI
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free)
Industrial
256 K × 72 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S72V18 Dual Port SRAM
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD18S72V18-200BGXI
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free)
Industrial
200
CYD18S72V18-200BGI
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch
Industrial
167
CYD18S72V18-167BGI
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch
Industrial
128 K × 72 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S72V18 Dual Port SRAM
Speed
(MHz)
167
Ordering Code
CYD09S72V18-167BBXC
Package
Diagram
Package Type
Operating
Range
51-85218 484-ball Ball Grid Array 23 mm × 23 mm with 1.0 mm pitch (Pb-free) Commercial
1024 K × 36 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S36V18 Dual Port SRAM
Speed
(MHz)
167
Ordering Code
CYD36S36V18-167BGXI
Package
Diagram
Package Type
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free)
Operating
Range
Industrial
512 K × 36 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S36V18 Dual Port SRAM
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD18S36V18-200BBAXI
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free)
Industrial
167
CYD18S36V18-167BBAI
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch
Industrial
Document Number: 38-06082 Rev. *O
Page 43 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Ordering Information (continued)
256 K × 36 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S36V18 Dual Port SRAM
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD09S36V18-200BBXI
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free)
167
CYD09S36V18-167BBXC
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial
Industrial
64 K × 36 (2-Mbit) 1.8 V or 1.5 V Synchronous CYD02S36V18 Dual Port SRAM
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD02S36V18-200BBC
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch
200
CYD02S36V18-200BBXC
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial
Document Number: 38-06082 Rev. *O
Commercial
Page 44 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Ordering Information (continued)
2048 K × 18 (36-Mbit) 1.8 V/1.5 V Synchronous CYD36S18V18 Dual Port SRAM
Speed
(MHz)
167
Ordering Code
CYD36S18V18-167BGXI
Package
Diagram
Package Type
001-07825 484-ball Ball Grid Array 27 mm × 27 mm with 1.0 mm pitch (Pb-free)
Operating
Range
Industrial
1024 K × 18 (18-Mbit) 1.8 V/1.5 V Synchronous CYD18S18V18 Dual Port SRAM
Speed
MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
200
CYD18S18V18-200BBAXI
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free)
Industrial
200
CYD18S18V18-200BBAXC
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free) Commercial
167
CYD18S18V18-167BBAXI
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free)
Industrial
512 K × 18 (9-Mbit) 1.8 V/1.5 V Synchronous CYD09S18V18 Dual Port SRAM
Speed
(MHz)
167
Ordering Code
CYD09S18V18-167BBXI
Package
Diagram
Package Type
51-85108 256-ball Ball Grid Array 17 mm × 17 mm with 1.0 mm pitch (Pb-free)
Operating
Range
Industrial
Ordering Code Definitions
CY DXX SXX V18 - XXX XXX X
X
Temperature Range: X = C or I
C = Commercial; I = Industrial
Pb-free
Package Type: (XXX = BG or BB or BBA)
BG = 484-ball BGA; BBA or BB = 256-ball BGA
Speed Grade: XXX = 167 MHz or 200 MHz
V18 = 1.8 V
Data Width: SXX = S72 or S36 or S18
Density in Mb: DXX = D36 or D 18 or D09 or D02
CY = Cypress
Document Number: 38-06082 Rev. *O
Page 45 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Package Diagrams
Figure 34. 256-ball FBGA (17 × 17 × 1.7 mm) BB256/BW0BD Package Outline, 51-85108
51-85108 *I
Document Number: 38-06082 Rev. *O
Page 46 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Package Diagrams (continued)
Figure 35. 484-ball PBGA (23 × 23 × 2.03 mm) BY484 Package Outline, 51-85218
51-85218 *A
Document Number: 38-06082 Rev. *O
Page 47 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Package Diagrams (continued)
Figure 36. 484-ball PBGA (27 × 27 × 2.33 mm) BY484S Package Outline, 001-07825
001-07825 *B
Document Number: 38-06082 Rev. *O
Page 48 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Acronyms
Acronym
Document Conventions
Description
BGA
ball grid array
CMOS
complementary metal oxide semiconductor
DLL
delay lock loop
FBGA
fine pitch ball gird array
HSTL
high speed transceiver logic
I/O
input/output
Units of Measure
Symbol
Unit of Measure
°C
degree Celsius
MHz
megahertz
µA
microampere
mA
milliampere
ms
millisecond
SDR
single data rate
SRAM
static random access memory
mV
millivolt
TCK
test clock
ns
nanosecond
TDI
test data-in
pF
picofarad
TDO
test data-out
V
volt
TMS
test mode select
W
watt
VIM
variable impedance matching
Document Number: 38-06082 Rev. *O
Page 49 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Document History Page
Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FullFlex™ Synchronous SDR Dual Port SRAM
Document Number: 38-06082
REV.
ECN NO.
Submission
Date
Orig. of
Change
**
302411
See ECN
YDT
New data sheet
*A
334036
See ECN
YDT
Corrected typo on page 1
Reproduced PDF file to fix formatting errors
*B
395800
See ECN
SPN
Added statement about no echo clocks for flow through mode
Updated electrical characteristics
Added note 16 and 17 (1.5 V timing)
Added note 33 (timing for x18 devices)
Updated input edge rate (note 34)
Updated table 5 on deterministic access control logic
Added description of busy readback in deterministic access control section
Changed dummy write descriptions
Updated ZQ pins connection details
Updated note 24, B0 to BE0
Added power supply requirements to MRST and VC_SEL
Added note 4 (VIM disable)
Updated supply voltage to ground potential to 4.1 V
Updated parameters on table 15
Updated and added parameters to table 16
Updated x72 pinout to SDR only pinout
Updated 484 PBGA pin diagram
Updated the pin definition of MRST
Updated the pin definition of VC_SEL
Updated READY description to include Wired OR note
Updated master reset to include wired OR note for READY
Updated minimum VOH value for the 1.8 V LVCMOS configuration
Updated electrical characteristics to include IOH and IOL values
Updated electrical characteristics to include READY
Added IIX3
Updated maximum input capacitance
Added Notes 33 and 34Removed Notes 15 and 17
Updated Pin Definitions for CQ0, CQ0, CQ1, and CQ1
Removed -100 Speed bin from Selection Guide
Changed voltage name from VDDQ to VDDIO
Changed voltage name from VDD to VCORE
Moved the Mailbox Interrupt Timing Diagram to be the final timing diagram
Updated the Package Type for the CYD36S18V18 parts
Updated the Package Type for the CYD36S18V18 parts
Updated the Package Type for the CYD18S18V18 parts
Updated the Package Type for the CYD18S36V18 parts
Included the Package Diagram for the 256-Ball FBGA (19 x 19 mm) BW256
Included an OE Controlled Write for Flow through Mode Switching Waveform
Included a Read with Echo Clock Switching Waveform
Updated Figure 5 and Figure 6
Updated Electrical Characteristics for READY VOH and READY V
Updated Electrical Characteristics for VOH and VOL for the -167 and -133
speeds
Included a Unit column for Table 5
Removed Switching Characteristic tCA from chart
Included tOHZ in Switching Waveform OE Controlled Write for Pipelined Mode
Included tCKLZ2 in Waveform Read-to-Write-to-Read for Flow through Mode
Document Number: 38-06082 Rev. *O
Description of Change
Page 50 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Document History Page (continued)
Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FullFlex™ Synchronous SDR Dual Port SRAM
Document Number: 38-06082
REV.
ECN NO.
Submission
Date
Orig. of
Change
*C
402238
SEE ECN
KGH
Updated AC Test Load and Waveforms
Included FullFlex36 SDR 484-Ball BGA Pinout (Top View)
Included FullFlex18 SDR 484-Ball BGA Pinout (Top View)
Included Timing Parameter tCORDY
*D
458131
SEE ECN
YDT
Changed ordering information with Pb-free part numbers
Removed VC_SEL
Added IO and core voltage adders
Removed references to bin drop for LVTTL/2.5 V LVCMOS and 1.5 V core
modes
Updated Cin and Cout
Updated ICC, ISB1, ISB2 and ISB3 tables
Updated busy address read back timing diagram
Added HTSL input waveform
Removed HSTL (AC) from DC tables
Added 484-ball 27 mm × 27 mm × 2.33 mm PBGA package
*E
470031
SEE ECN
YDT
Changed VOL of 1.8 V LVCMOS to 0.45 V
Updated tRSF
VREF is DNU when HSTL is not used
Formatted pin description table
Changed VDDIO pins for 36M × 36 and 36M × 18 pinouts
Changed 36M × 72 JTAG IDCODE
*F
500001
SEE ECN
YDT
DLL Change, added Clock Input Cycle to Cycle Jitter
Modified DLL description
Changed Input Capacitance Table
Changed tCCS number
Added note 31
*G
627539
SEE ECN
QSL
change all NC to DNU
corrected switching waveform for (CQEN = High) from both Pipeline and Flow
through mode to only pipeline mode
Modified master reset description
Modified switching characteristics tables, extracted signals effected by the DLL
into one table and combine all other signals into one table
updated package name
Added footnote for tHD, tHAC and tSAC
changed note 26 description
*H
2505003
See ECN
VKN /
AESA
Modified footnote #1
Removed 250 MHz speed bin
Added 2-Mbit part and it’s related information
Changed ball name ZQ1 to DNU for 18M and lesser density devices
Added 256-ball (17 × 17 mm) BGA package for 18M
Made PORTSTD[1:0] left and right pins driven only by LVTTL reference level
For 1.8 V LVCMOS level, Changed VIH(min) from 1.26 V to 0.65 times VDDIO
and changed VIL(max) from 0.36 V to 0.35 times VDDIO
Changed tHD, tHAC specs for 36M from 0.6 ns/0.7 ns to 0.8 ns (See footnote#
32)
Updated Ordering Information table
Document Number: 38-06082 Rev. *O
Description of Change
Page 51 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Document History Page (continued)
Document Title: CYDXXS72V18/CYDXXS36V18/CYDXXS18V18, FullFlex™ Synchronous SDR Dual Port SRAM
Document Number: 38-06082
REV.
ECN NO.
Submission
Date
Orig. of
Change
Description of Change
*I
2898491
07/01/2010
RAME
Modified “Counter Load Operation” section on page 12 and in Table7 on page
13.
Corrected typo in Table 14. by making LowSPD = 0 for tCD1 spec in the
description.
Modified figure 16. on page 30.
Removed inactive parts from Ordering Information.
Updated Packaging Information.
Corrected “Counter Interrupt operation” Section in Page 14 of the data sheet
Updated ordering information with the parts, CYD02S36V18-200BBC and
CYD36S72V18-167BGI.
*J
2995098
07/28/2010
RAME
Updated Ordering Information and added Ordering Code Definitions.
Added Acronyms and Units of Measure.
Minor edits.
*K
3267210
05/26/2011
ADMU
Updated Electrical Characteristics on page 21 (Removed 133 MHz speed bin).
Updated Switching Characteristics on page 26 (Removed 133 MHz speed bin).
Removed information for 4Mb devices.
Updated Ordering Information.
*L
3357888
08/30/2011
ADMU
Added Thermal Resistance.
Updated Pin configuration Figure 1 through 5.
*M
3349458
10/28/2011
ADMU
Minor edits in Figure 5 (removed overbars in balls C5 and C12).
Updated Package Diagrams.
*N
3845411
01/29/2013
ADMU
Updated Ordering Information (Updated part numbers).
Updated Package Diagrams:
spec 001-07825 – Changed revision from *A to *B.
*O
3895845
02/05/2013
ADMU
Updated Ordering Information (Updated part numbers).
Document Number: 38-06082 Rev. *O
Page 52 of 53
CYDXXS72V18
CYDXXS36V18
CYDXXS18V18
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
Products
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
PSoC Solutions
cypress.com/go/automotive
cypress.com/go/clocks
psoc.cypress.com/solutions
cypress.com/go/interface
PSoC 1 | PSoC 3 | PSoC 5
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
Optical & Image Sensing
cypress.com/go/memory
cypress.com/go/image
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
Wireless/RF
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2005-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 38-06082 Rev. *O
Revised February 5, 2013
All products and company names mentioned in this document may be the trademarks of their respective holders.
Page 53 of 53
Similar pages