Microsemi APT50GS60SRG Thunderbolt high speed npt igbt Datasheet

APT50GS60BR(G)
APT50GS60SR(G)
600V, 50A, VCE(ON) = 2.8V Typical
Thunderbolt® High Speed NPT IGBT
The Thunderbolt HS™ series is based on thin wafer non-punch through (NPT) technology similar to
the Thunderbolt® series, but trades higher VCE(ON) for significantly lower turn-on energy Eoff. The low
switching losses enable operation at switching frequencies over 100kHz, approaching power MOSFET
performance but lower cost.
An extremely tight parameter distribution combined with a positive VCE(ON) temperature coefficient
make it easy to parallel Thunderbolts HS™ IGBT's. Controlled slew rates result in very good noise
and oscillation immunity and low EMI. The short circuit duration rating of 10µs make these IGBT's
suitable for motor drive and inverter applications. Reliability is further enhanced by avalanche energy
ruggedness. Combi versions are packaged with a high speed, soft recovery DQ series diode.
TO
-2
47
D3PAK
APT50GS60BR(G)
Features
Typical Applications
• Fast Switching with low EMI
• ZVS Phase Shifted and other Full Bridge
• Very Low EOFF for Maximum Efficiency
• Half Bridge
• Short circuit rated
• High Power PFC Boost
• Low Gate Charge
• Welding
• Tight parameter distribution
• Induction heating
• Easy paralleling
• High Frequency SMPS
APT50GS60SR(G)
C
G
E
• RoHS Compliant
Absolute Maximum Ratings
Symbol
Parameter
Rating
I C1
Continuous Collector Current TC = @ 25°C
93
I C1
Continuous Collector Current TC = @ 100°C
50
I CM
Pulsed Collector Current 1
195
VGE
Gate-Emitter Voltage
SSOA
Unit
A
±30V
V
Switching Safe Operating Area
195
EAS
Single Pulse Avalanche Energy 2
280
mJ
tSC
Short Circut Withstand Time 3
10
µs
Thermal and Mechanical Characteristics
TJ, TSTG
Junction to Case Thermal Resistance
Operating and Storage Junction Temperature Range
TL
Soldering Temperature for 10 Seconds (1.6mm from case)
WT
Package Weight
Torque
IGBT
Case to Sink Thermal Resistance, Flat Greased Surface
Mounting Torque (TO-247), 6-32 M3 Screw
Typ
Max
Unit
-
-
415
W
-
-
0.30
-
0.11
-
-55
-
150
-
-
300
-
0.22
-
oz
-
5.9
-
g
-
-
10
in·lbf
-
-
1.1
N·m
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should be Followed.
Microsemi Website - http://www.microsemi.com
°C/W
°C
8-2007
RθCS
Total Power Dissipation TC = @ 25°C
Min
Rev A
RθJC
Parameter
052-6301
Symbol
PD
Static Characteristics
Symbol
VBR(CES)
Parameter
VBR(ECS)
TJ = 25°C unless otherwise specified
Min
Typ
Max
Collector-Emitter Breakdown Voltage
Test Conditions
VGE = 0V, IC = 250µA
600
-
-
Emitter-Collector Breakdown Voltage
VGE = 0V, IC = 1A
-
25
-
Reference to 25°C, IC = 250µA
-
0.60
-
TJ = 25°C
-
2.8
3.15
TJ = 125°C
-
3.25
-
TJ = 25°C
-
2.15
-
∆VBR(CES)/∆TJ Breakdown Voltage Temperature Coeff
VCE(ON)
VEC
VGE(th)
Collector-Emitter On Voltage 4
Diode Forward Voltage 4
Gate-Emitter Threshold Voltage
ICES
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Dynamic Characteristics
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Co(cr)
Reverse Transfer Capacitance
Charge Related 5
Co(er)
Reverse Transfer Capacitance
Current Related 6
Qg
Total Gate Charge
Gate-Emitter Charge
Ggc
Gate-Collector Charge
td(on)
Turn-On Delay Time
td(off)
tf
Turn-On Switching Energy
Turn-On Switching Energy
9
Eoff
Turn-Off Switching Energy
10
td(on)
Turn-On Delay Time
Eon1
8-2007
Fall Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Energy
8
Eon2
Turn-On Switching Energy
9
Eoff
Turn-Off Switching Energy 10
1.8
-
4
5
-
V
V/°C
V
-
6.7
-
-
50
TJ = 125°C
-
-
TBD
-
-
±100
nA
Min
Typ
Max
Unit
-
31
-
S
-
2635
-
-
240
-
-
145
-
-
115
-
VGE = ±20V
VGE = 0V, VCE = 25V
f = 1MHz
VGE = 0V
VCE = 0 to 400V
Inductive Switching IGBT and
Diode:
Turn-Off Delay Time
Eon2
tf
Rev A
Rise Time
8
td(off)
VCE = 600V,
VGE = 0V
3
Unit
TJ = 25°C
VGE = 0 to 15V
IC = 50A, VCE = 300V
Eon1
tr
VGE = VCE, IC = 1mA
Test Conditions
VCE = 50V, IC = 50A
Forward Transconductance
Qge
TJ = 125°C
TJ = 25°C unless otherwise specified
Cies
tr
052-6301
Parameter
VGE = 15V
IC = 50A
IC = 50A
∆VGE(th)/∆TJ Threshold Voltage Temp Coeff
Symbols
gfs
APT50GS60B_SR(G)
TJ = 25°C, VCC = 400V,
IC = 50A
RG = 4.7Ω 7, VGG = 15V
mV/°C
µA
pF
85
-
235
-
-
18
-
-
100
-
-
16
-
-
33
-
-
225
-
-
37
-
-
TBD
-
-
1.2
-
-
0.755
-
-
33
-
Inductive Switching IGBT and
Diode:
-
33
-
-
250
-
TJ = 125°C, VCC = 400V,
IC = 50A
RG = 4.7Ω 7, VGG = 15V
-
23
-
-
TBD
-
-
1.7
-
-
0.950
-
nC
ns
mJ
ns
mJ
TYPICAL PERFORMANCE CURVES
APT50GS60B_SR(G)
250
VGE = 15V
T = 125°C
J
125
IC, COLLECTOR CURRENT (A)
100
75
TJ = 25°C
50
TJ = 125°C
TJ = 150°C
125
100
75
0
TJ = 25°C
TJ = 125°C
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
4
IC = 50A
3
IC = 25A
2
1
0
7V
50
6V
6
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC = 100A
4
IC = 50A
3
IC = 25A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
14
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
0
0
50
100
150
200
GATE CHARGE (nC)
FIGURE 6, Gate Charge
250
100
5000
1000
Coes
Cres
0
100
200
300
400
500
600
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 7, Capacitance vs Collector-To-Emitter Voltage
IC, DC COLLECTOR CURRENT(A)
Cies
10
8V
75
16
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 5, On State Voltage vs Junction Temperature
100
9V
100
FIGURE 4, On State Voltage vs Gate-to- Emitter Voltage
VGE, GATE-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC = 100A
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
P
J
C, CAPACITANCE ( F)
I = 25A
C
T = 25°C
125
FIGURE 2, Output Characteristics
FIGURE 3, Transfer Characteristics
5
10V
150
0
5
10
15
20
25
30
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
250µs PULSE
TEST<0.5 % DUTY
CYCLE
25
11V
175
0
FIGURE 1, Output Characteristics
50
= 13 & 15V
25
0
0
1
2
3
4
5
6
VCE(ON), COLLECTER-TO-EMITTER VOLTAGE (V)
150
GE
90
80
70
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
8-2007
25
V
200
Rev A
IC, COLLECTOR CURRENT (A)
225
052-6301
150
TYPICAL PERFORMANCE CURVES
16
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
VGE = 15V
14
12
10
8
6
4 VCE = 400V
TJ = 25°C, TJ =125°C
2 RG = 4.7Ω
0
L = 100µH
250
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
VGE =15V,TJ=125°C
200
VGE =15V,TJ=25°C
150
100
50 VCE = 400V
RG = 4.7Ω
0
0
100
APT50GS60B_SR(G)
300
20
L = 100µH
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
80
RG = 4.7Ω, L = 100µH, VCE = 400V
RG = 4.7Ω, L = 100µH, VCE = 400V
70
TJ = 25 or 125°C,VGE = 15V
60
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
60
40
50
40
TJ = 125°C, VGE = 15V
30
20
20
TJ = 25°C, VGE = 15V
10
0
0
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
2500
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
6000
G
5000
TJ = 125°C,VGE =15V
4000
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
3000
2000
1000
TJ = 25°C,VGE =15V
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
J
8
Eon2,100A
4
Eon2,50A
Eoff,50A
2
0
Eoff,25A
Eon2,25A
0
1500
1000
500
TJ = 25°C, VGE = 15V
6
Eoff,100A
6
TJ = 125°C, VGE = 15V
0
20
40
60
80
100
120
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (mJ)
SWITCHING ENERGY LOSSES mJ)
8-2007
Rev A
052-6301
= 400V
V
CE
= +15V
V
GE
T = 125°C
G
2000
0
0
10
= 400V
V
CE
= +15V
V
GE
R = 4.7Ω
= 400V
V
CE
= +15V
V
GE
R = 4.7Ω
G
5
Eon2,100A
4
3
Eoff,100A
2
Eon2,50A
Eoff,50A
1
Eon2,25A
0
Eoff,25A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT50GS60B_SR(G)
200
200
100
ICM
VCE(on)
10
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
100
13µs
100µs
1ms
10ms
1
100ms
DC line
0.1
TJ = 125°C
TC = 75°C
ICM
VCE(on)
10
13µs
100µs
1ms
10ms
TJ = 150°C
TC = 25°C
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 17, Forward Safe Operating Area
100ms
DC line
Scaling for Different Case & Junction
Temperatures:
IC = IC(T = 25°C)*(TJ - TC)/125
C
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
Figure 18, Maximum Forward Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.5
0.15
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
0.3
0.10
t1
t2
0.05
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
10-5
10-1
10-2
10-3
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-4
1.0
0.00606
0.260
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Figure 20, Transient Thermal Impedance Model
75°C
100
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
80
60
40
T = 125°C
J
T = 75°C
C
D = 50 %
= 400V
V
CE
R = 4.7Ω
20
0
G
100°C
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
20 30 40 50 60 70 80 90
IC, COLLECTOR CURRENT (A)
Figure 21, Operating Frequency vs Collector Current
0
10
8-2007
0.226
120
Rev A
0.0731
Dissipated Power
(Watts)
140
052-6301
TC (°C)
ZEXT
TJ (°C)
FMAX, OPERATING FREQUENCY (kHz)
160
APT50GS60B_SR(G)
APT40DQ60
Gate Voltage
10%
TJ = 125°C
td(on)
tr
IC
V CC
Collector Current
V CE
90%
5%
10%
A
5%
Collector Voltage
Switching Energy
D.U.T.
Figure 23, Turn-on Switching Waveforms and Definitions
Figure 22, Inductive Switching Test Circuit
Gate Voltage
TJ = 125°C
90%
td(off)
Collector Voltage
90%
tf
10%
Collector Current
0
Switching Energy
Figure 24, Turn-off Switching Waveforms and Definitions
FOOT NOTE:
052-6301
Rev A
8-2007
1
2
3
4
5
6
Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
Starting at TJ = 25°C, L = 224µH, RG = 25Ω, IC = 50A
Short circuit time: VGE = 15V, VCC ≤ 600V, TJ ≤ 150°C
Pulse test: Pulse width < 380µs, duty cycle < 2%
Co(cr) is defined as a fixed capacitance with the same stored charge as Coes with VCE = 67% of V(BR)CES.
Co(er) is defined as a fixed capacitance with the same stored energy as Coes with VCE = 67% of V(BR)CES. To calculate Co(er) for any value of
VCE less than V(BR)CES, use this equation: Co(er) = 5.57E-8/VDS^2 + 7.15E-8/VDS + 2.75E-10.
7 RG is external gate resistance, not including internal gate resistance or gate driver impedance (MIC4452).
8 Eon1 is the inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the
IGBT turn-on switching loss. It is measured by clamping the inductance with a Silicon Carbide Schottky diode.
9 Eon2 is the inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on energy.
10 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
APT50GS60B_SRDQ2(G)
5.38 (.212)
6.20 (.244)
15.95 (.628)
16.05(.632)
Collector
20.80 (.819)
21.46 (.845)
13.79 (.543)
13.99(.551)
Revised
4/18/95
3.50 (.138)
3.81 (.150)
1.04 (.041)
1.15(.045)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
8-2007
6.15 (.242) BSC
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
Rev A
15.49 (.610)
16.26 (.640)
D3 Pak Package Outline
052-6301
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
e1 SAC: Tin, Silver, Copper
Collector
(Heat Sink)
TO-247 Package Outline
Similar pages