ATMEL AT73C237 Power management and analog companions (pmaac) Datasheet

Features
• LDO1: 2.75V (Default) and 1.8V (Programmable by TWI), 70 mA Linear Very Low Drop
Out Regulator with High PSRR and Low Noise.
• LDO2: 1.8V (Default) and 1.5V (Programmable by TWI), 70 mA Linear Low Drop Out
Regulator with High PSRR and Low Noise.
• LDO3: 1.8V (Default) and 1.5V or 1.2V (Programmable by TWI), 70 mA Linear Low Drop
Out Regulator with high PSRR and Low noise.
• LDO4: 1.8V, 2mA Linear Low Drop Out Regulator with Very Low Quiescent Current, +/100 mV Adjustable.
Main Supply Rail from 2.8V to 5.5V
Independent Auxiliary Supply for LDO4 Backup Section, 2.8V to 5.5V
Internal State Machine for Startup and Delayed Reset Generation
Additional External Reset Input
Two Wire Interface for Independent Power Up/Power Down and Output Voltage
Programming for Each LDO.
• LDOs Voltage Customization Possible on Request
• Available in 3 x 3 x 0.9 mm 16-pin QFN Package
• Applications: GPS Modules, WLAN Devices, Wireless Modules.
•
•
•
•
•
1. Description
The AT73C237 is a four-channel Power Supply Power Management Unit (PMU) available in a small outline QFN 3 x 3mm package. It is a fully integrated, attractively
priced, combined Power Management device for wireless modules, GPS and WLAN
devices. It integrates 4X Linear Low Drop Out Regulators, three of which (LDO1, 2, 3)
provide high-accuracy RF performance and 1X (LDO4) with very low quiescent current, that can be supplied by an external backup battery (VDD4) on a separate rail. An
internal Low Power Bandgap (LPBG) requiring no external capacitor for decoupling, is
used as reference voltage for LDO4 and starts when VDD4 is present. LDO4 regulates its output voltage with extremely low quiescent current, maximizing the lifetime of
the backup battery.
Power
Management
and Analog
Companions
(PMAAC)
AT73C237
4-channel
Power
Management for
Wireless
Modules
An Internal State Machine manages the startup of the other LDOs. An economic High
Precision Bandgap (HPBG) provides highly accurate, low noise voltage reference to
LDOs 1, 2, 3 while operating in switching mode to optimize the quiescent current.
The AT73C237 features a Two-wire Interface (TWI) to increase the efficiency of the
system by disabling individually each LDO when not needed.
6362A–PMAAC–01-Jul-08
2. Block Diagram
Figure 2-1.
AT73C237 Functional Block Diagram
VDD1 (13)
LDO1
2.75V/70mA
VO1 (14)
VDD2 (9)
LDO2
1.80V/70mA
VO2 (10)
VDD3 (3)
LDO3
1.80V/70mA
VO3 (2)
2.70V Supply Monitor
VDD4 (7)
VO4 (5)
LDO4
1.80V/2mA
VZAP (8)
TRIM
Low Power
Bandgap Reference
LPBG
RCOSC
POR
LDO
Main Bandgap
Reference
HVBG
VBG (16)
GNDA (15)
XRESIN (1)
XRESO (4)
TWCK (11)
Level Shifters
TWI Interface
and Digital
State Machine
TWD (12)
GNDD (6)
2
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
3. Pin Description
Table 3-1.
Pin Name
Pin Description
I/O
Pin Number
Type
Function
Input
1
Digital
Reset in pin
Output
2
Analog
LDO3 output voltage
Input
3
Power
LDO3 input voltage
XRESO
Output
4
Digital
Reset out pin
VO4
Output
5
Analog
LDO4 output voltage
GNDD
GND
6
Power
Digital ground
VDD4
Input
7
Power
LDO4 input voltage
VZAP
Input
8
Digital
Reserved for manufacturing purposes.
VDD2
Input
9
Power
LDO2 input voltage
Output
10
Analog
LDO2 output voltage
TWCK(2)
Input
11
Digital
TWI input clock or LDO1,2,3 enable at
logic “1“, disable at “0“
TWD(3)
Input
12
Digital
TWI input/output or tied to Vdd
Input
13
Power
LDO1 input voltage
Output
14
Analog
LDO1 output voltage
GND/Input
15
Analog
Analog ground and ESD ground
Output
16
Analog
Voltage reference for analog cells
XRESIN
VO3
VDD3
(1)
VO2
VDD1
(4)
VO1
GNDA/AVSS
VBG
Note:
1. Connect to ground (via an internal pull-down)
2. Connected to VDD1, 2 or 3 on AT73C237.
3. Connected to VDD1, 2 or 3 on AT73C237.
4. VDD1, 2, 3 should have the same input voltage.
3
6362A–PMAAC–01-Jul-08
4. Application Block Diagram
Figure 4-1.
AT73C237 Application Block Diagram With GPS Module
J1 : "ON"
for 237
J2 : "OFF"
for 237
C1
C5
TX
C9
TWI
VBG (16)
GNDA (15)
VO1 (14)
VDD1 (13)
GPS Baseband
XRESIN (1)
TWD (12)
Core and IOs
VO3 (2)
C3
TWCK (11)
AT73C237
VDD3 (3)
VO2 (10)
C7
C2
XRESO (4)
VO4 (5)
RX
VDD2 (9)
GNDD (6)
VDD4 (7)
VZAP (8)
C6
C8
C4
3V
Back up
Coin-Cell
D1
D2
Eg: Panasonic
CR1025
Li-Ion Battery
3.0V to 4.2V
Typical Application Components Design
Schematic Reference
Pin
C1
VO1
C2
VO2
C3
VO3
C4
VO4
C5
VDD1
C6
VDD2
C7
VDD3
C8
VDD4
C9
VBG
D1, D2
4
Description
2.2 µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA®: GRM155R60J225ME15
TDK: C1005X5R0J225MT
1 µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J105KE19
TDK: C1005X5R0J105KT
100 nF ± 15% Ceramic Capacitor, X5R, 0402, 10V
MURATA: GRM155R61A104KA01
TDK: C1005X5R1C104KT
ON-Semiconductor®: BAS70-04LT1
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
5. Electrical Characteristics
5.1
Absolute Maximum Ratings
Table 5-1.
Absolute Maximum Ratings
Operating Temperature (Industrial)..................-40°C to + 85°C
Storage Temperature........................................-55°C to + 150°C
Power Supply Input on VDD.................................-0.3V to + 5.5V
Digital I/O Input Voltage...................................... -0.3V to + 5.5V
*NOTICE:
Stresses beyond those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at these or other conditions beyond those
indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
All Other Pins.......................................................-0.3V to + 5.5V
ESD (all pins).......................................................................2 KV
5.2
Recommended Operating Conditions
Table 5-2.
Recommended Operating Conditions
Parameter
Condition
Operating Temperature
Power Supply Input
VDD1, VDD2, VDD3, VDD4
Min
Max
Units
-40
85
°C
2.8
5.5
V
5
6362A–PMAAC–01-Jul-08
5.3
Quiescent Current In Different Operating Modes
Table 5-3.
Quiescent Current In Different Operating Modes
Quiescent [µA]
Modes
Conditions
MODE0
VDD4 not present, chip disabled, all VDDs
quiescent current
Typ
Max
0
0.1
12
18
800
1000
VDD4 present, VDD3 not present (typical mode
with back-up battery on VDD4)
• LDO4
MODE1
• LPBG
• POR
• HPBG in switching mode
VDD4 present, VDD3 present
• LDO4
• LPBG
• POR
• Supply Monitor
• Registers
MODE2
• Oscillator
• State Machine
• HPBG
• LDO1
• LDO2
• LDO3
6
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
6. Startup Procedure
6.1
At VDD4 Rising
• LPBG, LDO4, RCOSC start up
• POR connected to LDO4 output VO4 resets the state machine and enables:
– The reading of the internal fuses (TRIM cell in the application diagram) in order to
set up the programmed output voltage of LDO1, LDO2, LDO3, and the correct
reference voltage and oscillation frequency
– The Two Wire Interface
– Then under control of the state machine:
a. HPBG is turned on
b.
After 4 ms, the Supply Monitor on VDD3 is turned on.
c.
If VDD3 is present and greater than 2.7V, LDO1, 2, 3 are turned on. During LDO
regulator startup VDD3 voltage is checked.
d. Then XRESO is kept grounded for 180 ms, and set to “1” for 1ms before following
XRESIN. During that state VDD3 voltage is monitored and if lower than 2.6V, LDO
regulators 1, 2 and 3 are stopped and XRESO grounded.
Both XRESIN and the Supply Monitor on VDD3 are debounced at rising and falling edges for
two 10 kHz clock cycles. The debounce time is typically between 100 µs and 200 µs. Timings
are defined ± 40%.
6.2
At VDD3 Falling
• The Supply monitor generates a shut down control signal when VDD3 reaches 2.6V
• The State machine sets XRESO to logic “0”.
• The State machine switches off LDO1, LDO2, LDO3. HPBG is kept enabled in order to
assure a fast new startup of the LDOs.
7
6362A–PMAAC–01-Jul-08
Figure 6-1.
Startup Procedure
VDD4 is present
RCOSC Running
POR reset signal goes to low
Load fuse regs
HPBG en=0
VDD3 Monitor en=0
LDO3 en=0
LDO2 en=0
LDO1 en=0
XRESO=0
Start
Wait xms
HPBG en=1
VDD3 Monitor en=0
LDO3 en=0
LDO2 en=0
LDO1 en=0
XRESO=0
HPBG
Wait 4ms
HPBG en=1
VDD3 Monitor en=1
LDO3 en=0
LDO2 en=0
LDO1 en=0
XRESO=0
32 clock pulses
Test
VDD3
VDD3 > 2.7V
HPBG en=1
VDD3 Monitor en=1
LDO3 en=1
LDO2 en=1
LDO1 en=1
XRESO=1
100µs (1 clock pulse)
Wait 1ms
VDD3 < 2.6V
Start
LDOs
Wait 180ms
Wait 1ms
HPBG en=1
VDD3 Monitor en=1
LDO3 en=1
LDO2 en=1
LDO1 en=1
XRESO=1
Reset
Gen.
VDD3 < 2.6V
Wait 1ms
Wait 1ms
VDD3 < 2.6V
HPBG en=1
VDD3 Monitor en=1
LDO3 en=1
LDO2 en=1
LDO1 en=1
XRESO=XRESIN
8
Ext.
Reset
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
7. Timing Diagram
Figure 7-1.
AT73C237 Timings
VIN
2.7V
VBAT
LDO4
POR
1.5V
RCOSC
tbg
HPBG
tini
tensm
Supply
Monitor
tini
enabled
tstart2
LDO1,2,3
tstart1
XRESIN
tdelay
XRESO
Table 7-1.
Parameter
tresgen
Timing Parameters
Signal
Constraint
Min
Guard time
tini
Max
Units
100
µsec
tbg
HPBG
HPBG startup time
2
msec
tensm
Supply monitor
Supply monitor enable
4
msec
tstart1
VO1, VO2, VO3
3
5
µsec
tstart2
VO1, VO2, VO3
10
100
µsec
tresgen
XRESO
100
500
msec
1
msec
tdelay
LDO1,2,3 Startup time
9
6362A–PMAAC–01-Jul-08
8. Electrical Specification
8.1
LDO1
Table 8-1.
LDO1 Parametric Table
Symbol
Parameter
Comments
Min
Typ
Max
Units
VDD1
Operating supply voltage
Switching Regulated
2.8
3.3
5.5
V
Default
2.70
2.75
2.8
VO1
Output voltage
Programmed
1.75
1.80
1.85
I1
Load current
IQC
Quiescent current
ISC
Shutdown current
ISH
Short circuit current
tR
Startup time
∆VDC
Line regulation static
∆VDC
Load regulation static
PSSR
Power Supply Rejection Ratio
∆VOUT
Startup Overshoot
VNT
Total Output Noise
Table 8-2.
V
With at least 300mV drop out
100
With at least 200mV drop out
70
mA
250
300
µA
1
µA
HiZ output
350
1
10
mA
100
µsec
From VDD=3.0V to 3.6V
5
mV
From 10% to 100% I1
30
From 0 to 100% I1
40
mV
Sine Wave, 100 kHz frequency,
3.3V mean +/- 100 m vPP
65
dB
Sine Wave, 10 kHz frequency,
3.3V mean +/- 100 m vPP
60
dB
Sine Wave, 1 kHz frequency,
3.3V mean +/- 100 m vPP
45
dB
10 Hz - 100 kHz
35
100
mV
100
µVRMS
LDO1 External Components
Schematic Reference
Description
C1 (Input Capacitor)
2.2µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J225ME15
TDK: C1005X5R0J225MT
C5 (Output Capacitor)
1µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J105KE19
TDK: C1005X5R0J105KT
10
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
Figure 8-1.
LDO Load Regulation
Load Regulation: Vout1 = 2.75V
2.8
Vin=2.8V
2.79
2.78
Vout1 (V)
2.77
2.76
2.75
2.74
2.73
Vin=3.3V
2.72
Vin=5.5V
2.71
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
Load Regulation: Vout1 = 1.8V
1.791
1.79
1.789
Vout1 (V)
Vin=2.8V
1.788
1.787
Vin=3.3V
Vin=5.5V
1.786
1.785
1.784
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
Figure 8-2.
A: CH1 Pwr Spec
100
uVrms
LogMag
decades
LDO1 Output Noise
X:1.001 kHz
Y:775.467 nVrms
LogMag
3
100
nVrms
A: CH1 Pwr Spec
100
uVrms
decades
5Hz
Band:15.4997 uVrms
AVG: 30
1.605kHz
X:1
kHz
Y:10.4272 uVrms
2
1
uVrms
1kHz
Band:30.8786 uVrms
AVG: 30
103.4kHz
11
6362A–PMAAC–01-Jul-08
8.2
LDO2
Table 8-3.
LDO2 Parametric Table
Symbol
Parameter
Comments
Min
Typ
Max
Units
VDD2
Operating supply voltage
Switching Regulated
2.8
3.3
5.5
V
Default
1.75
1.80
1.85
VO2
Output voltage
Programmed
1.45
1.50
1.55
I2
Load current
IQC
Quiescent current
ISC
Shutdown current
ISH
Short circuit current
tR
Startup time
∆VDC
Line regulation static
∆VDC
Load regulation static
PSSR
Power Supply Rejection Ratio
∆VOUT
Startup Overshoot
VNT
Total Output Noise
Table 8-4.
V
With at least 300mV drop out
100
With at least 200mV drop out
70
mA
250
300
µA
1
µA
HiZ output
350
1
10
mA
100
µsec
From VDD=3.0V to 3.6V
5
mV
From 10% to 100% I2
30
From 0 to 100% I2
40
mV
Sine Wave, 100 kHz frequency,
3.3V mean +/- 100 m vPP
70
dB
Sine Wave, 10 kHz frequency,
3.3V mean +/- 100 m vPP
65
dB
Sine Wave, 1 kHz frequency,
3.3V mean +/- 100 m vPP
45
dB
10 Hz - 100 kHz
25
100
mV
50
µVRMS
LDO2 External Components
Schematic Reference
Description
C2 (Input Capacitor)
2.2µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J225ME15
TDK: C1005X5R0J225MT
C6 (Output Capacitor)
1µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J105KE19
TDK: C1005X5R0J105KT
12
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
Figure 8-3.
LDO2 Load Regulation
Load Regulation: Vout2 = 1.8V
Vout2 (V)
1.7875
1.786
Vin=2.8V
1.7845
Vin=3.3V
Vin=5.5V
1.783
1.7815
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
Load Regulation: Vout2 = 1.5V
1.499
Vout2 (V)
1.498
1.497
Vin=2.8V
1.496
Vin=5.5V
1.495
Vin=3.3V
1.494
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
Figure 8-4.
A: CH1 Pwr Spec
100
uVrms
LogMag
decades
LDO2 Output Noise
X:1.001 kHz
Y:564.828 nVrms
LogMag
3
100
nVrms
A: CH1 Pwr Spec
10
uVrms
decades
5Hz
Band:10.1724 uVrms
AVG: 30
1.605kHz
X:1
kHz
Y:5.0418 uVrms
1
1
uVrms
1kHz
Band:19.7939 uVrms
AVG: 30
103.4kHz
13
6362A–PMAAC–01-Jul-08
8.3
LDO3
Table 8-5.
LDO3 Parametric Table
Symbol
Parameter
Comments
Min
Typ
Max
Units
VDD3
Operating supply voltage
Switching Regulated
2.8
3.3
5.5
V
Default
1.75
1.80
1.85
Programmed
1.45
1.50
1.55
Programmed
1.18
1.23
1.28
VO3
Output voltage
I3
Load current
IQC
Quiescent current
ISC
Shutdown current
ISH
Short circuit current
tR
Startup time
∆VDC
Line regulation static
∆VDC
Load regulation static
PSSR
Power Supply Rejection Ratio
∆VOUT
Startup Overshoot
VNT
Total Output Noise
Table 8-6.
With at least 300mV drop out
100
With at least 200mV drop out
70
mA
250
300
µA
1
µA
HiZ output
350
1
10
mA
100
µsec
From VDD=3.0V to 3.6V
5
mV
From 10% to 100% I3
30
From 0 to 100% I3
40
mV
Sine Wave, 100 kHz frequency,
3.3V mean +/- 100 m vPP
70
dB
Sine Wave, 10 kHz frequency,
3.3V mean +/- 100 m vPP
65
dB
Sine Wave, 1 kHz frequency,
3.3V mean +/- 100 m vPP
45
dB
10 Hz - 100 kHz
20
100
mV
50
µVRMS
LDO3 External Components
Schematic Reference
Description
C3 (Input Capacitor)
2.2µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J225ME15
TDK: C1005X5R0J225MT
C7 (Output Capacitor)
1µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J105KE19
TDK: C1005X5R0J105KT
14
V
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
Figure 8-5.
LDO3 Load Regulation
Load Regulation: Vout3 = 1.5V
Load Regulation: Vout3 = 1.8V
1.793
1.502
1.5005
1.791
Vin=2.8V
Vin=3.3V
Vout3 (V)
Vout3 (V)
1.499
1.789
1.787
1.4975
1.496
Vin=5.5V
1.785
Vin=2.8V
1.4945
1.783
Vin=5.5V
1.493
Vin=3.3V
1.781
1.4915
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
I Load (mA)
Load Regulation: Vout3 = 1.23V
1.2395
1.238
Vout3 (V)
1.2365
Vin=3.3V
1.235
1.2335
1.232
Vin=2.8V
1.2305
Vin=5.5V
1.229
1.2275
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
I Load (mA)
Figure 8-6.
A: CH1 Pwr Spec
100
uVrms
LDO3 Output Noise
X:1.001 kHz
Y:604.928 nVrms
LogMag
decades
LogMag
3
100
nVrms
A: CH1 Pwr Spec
10
uVrms
decades
5Hz
Band:8.7275 uVrms
AVG: 30
1.605kHz
X:1
kHz
Y:4.27822 uVrms
1
1
uVrms
1kHz
Band:19.8695 uVrms
AVG: 30
103.4kHz
15
6362A–PMAAC–01-Jul-08
8.4
LDO4
Table 8-7.
LDO4 Parametric Table
Symbol
Parameter
Comments
Min
Typ
Max
Units
VDD4
Operating supply voltage
Switching Regulated
2.8
3.3
5.5
V
VO4
Output voltage
Default
1.7
1.8
1.9
V
I4
Load current
2
mA
TVO4
Trimming range
0
80
mV
IQC
Quiescent current
1
3
µA
ISC
Shutdown current
0.5
µA
tR
Startup time
100
µsec
∆VDC
Line regulation static
2.8V< VDD4 <5.5V
100
mV
∆VDC
Load regulation static
0< I4 <1.8mA
100
mV
Table 8-8.
-80
HiZ output
1
10
LDO4 External Components
Schematic Reference
Description
C4 (Input Capacitor)
2.2µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J225ME15
TDK: C1005X5R0J225MT
C8 (Output Capacitor)
1µF ± 15% Ceramic Capacitor, X5R, 0402, 6.3V
MURATA: GRM155R60J105KE19
TDK: C1005X5R0J105KT
16
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
8.5
High Performance Bandgap (HPBG)
Table 8-9.
HPBG Parametric Table
Symbol
Parameter
Conditions
Min
VI
Operating supply voltage
Backup Battery or Supercap
2.4
VBG
Output voltage
Factory trimmed
ISC
Shutdown current
encore = en = 0, dcrun = 0 (1)
IQC
Quiescent current
tS
Startup time
C9= 100 nF
1
VN
Output noise
BW 10 Hz to 100 kHz
7
Table 8-10.
Typ
Max
Units
3.6
V
1.231
1
V
6
Not pulsed
300
Pulsed
30
2
ms
External Components
Description
C9 (Output Capacitor)
100 nF ± 15% Ceramic Capacitor, X5R, 0402, 10V
MURATA P/N: GRM155R61A104KA01
TDK: C1005X5R1C104KT
Low Power Bandgap (LPBG)
Table 8-11.
LPBG Parametric Table
Symbol
Parameter
Conditions
Min
2.8
VI
Operating supply voltage
Backup Battery or Supercap
IQC
Quiescent current
At VBAT 3. =V
tS
Startup time
VLPBG
Bandgap Voltage
8.7
µA
µVRMS
Schematic Reference
8.6
µA
1.15
Typ
Max
Unit
5.5
V
4
7.5
µA
50
100
µs
1.2
1.25
V
Voltage Monitor
Table 8-12.
Voltage Monitor Parametric Table
Symbol
Parameter
IQC
Quiescent current
VPON
SM on threshold
VPOFF
SM on threshold
Conditions
Min
Typ
Max
Unit
5
20
µA
2.7
2.72
V
2.6
2.62
V
17
6362A–PMAAC–01-Jul-08
8.8
XRESIN
Table 8-13.
XRESIN Parametric Table
Limits
Symbol
Parameter
Conditions
Min
Driven by CPU GPIO
Typ
Max
Unit
VDD4
V
Driven by CPU open drain output
Hiz
V
Connected to VDD4 when not used
VDD4
VI
Input supply voltage range
IIH
High input current
5
µA
IIL
Low input current
50
µA
Max
Unit
8.9
V
XRESO
Table 8-14.
XRESO Parametric Table
Symbol
Parameter
Conditions
Min
Typ
VI
Input supply voltage range
VOH
High output voltage
200
mV
VOL
Low output voltage
150
mV
Max
Unit
8.10
VDD4
V
TWCK
Table 8-15.
TWCK Parametric Table
Symbol
Parameter
VI
Input supply voltage range
IIH
High input current
15
µA
IIL
Low input current
13
µA
Max
Unit
8.11
Conditions
Min
Typ
VDD4
V
TWD
Table 8-16.
TWD Parametric Table
Symbol
Parameter
Conditions
Min
Typ
VI
Input supply voltage range
VDD4
V
IIH
High input current
20
µA
IIL
Low input current
20
µA
VOH
High output voltage
200
mV
VOL
Low output voltage
150
mV
18
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
9. Functional Description
The AT73C237 is a fully integrated, attractively priced, combined Power Management. It integrates the following power supplies channels.
9.1
LDO1
LDO1 is a 2.75V/70mA LDO, compatible with RF performances. LDO1 can work with supply
from 3.0V up to 5.5V and needs at least 300 mV of minimum drop-out. This LDO is designed to
supply the RF section of wireless devices, showing high PSRR up to 100 kHz with very low
noise on wide frequency bandwidth. LDO1 requires a 2.2 µF output capacitor.
• Additionally, 1.80V output voltages programming is possible via the TWI serial interface.
Figure 9-1.
LDO1 Functional Diagram
VDD1
VIN
current
reference
VBG
VO1
vouts
sel1
overcurrent
detection
C1
GNDA
on1
AVSS
VDDESD
GNDA
19
6362A–PMAAC–01-Jul-08
9.2
LDO2
LDO2 is a 1.80V/70mA LDO, compatible with RF performances. LDO2 can work with supply
from 3.0V up to 5.5V and needs at least 300 mV of minimum drop-out. This LDO is designed to
supply RF section of wireless devices, showing high PSRR up to 100kHz, very low noise on
wide frequency bandwidth. LDO2 requires a 2.2 µF output capacitor.
• Additionally, 1.50V output voltages programming is possible via the TWI serial interface.
Figure 9-2.
LDO2 Functional Diagram
VDD2
VIN
current
reference
VBG
VO2
vouts
sel2
overcurrent
detection
C2
GNDA
on2
AVSS
VDDESD
20
GNDA
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
9.3
LDO3
LDO3 is a 1.80V/70mA LDO, compatible with RF performances (see electrical specifications for
details). LDO3 can work with supply from 3.0V up to 5.5V and needs at least 300mV of minimum
drop-out. This LDO is designed to supply RF section of wireless devices, showing high PSRR up
to 100 kHz, low noise on wide frequency bandwidth. LDO3 requires a 2.2 µF output capacitor.
• Additionally, 1.50V or 1.20V output voltages programming is possible via the TWI serial
interface on AT73C237.
Figure 9-3.
LDO3 Functional Diagram
VDD3
VINC
VIN
current
reference
VBG
VO3
vouts
sel3<1:0>
overcurrent
detection
C3
GNDA
on3
AVSS
VDDESD
GNDA
21
6362A–PMAAC–01-Jul-08
9.4
LDO4
LDO4 is a 1.80V/2mA LDO with very low quiescent current. LDO4 can work with supply from
2.8V up to 5.5V. LDO4 requires a 1 µF output capacitor. It needs at least 300 mV of minimum
drop-out. LDO4 is always active once the pin VDD4 is supplied since it is used as internal reference supply. The VDD4 rail is independent from the other input rails (VDD1, 2, 3), allowing
LDO4 to be used to supply a Real Time Clock from a separate backup battery, for example.
Figure 9-4.
LDO4 Functional Diagram
VDD4
VBATC
VIN
IBIAS
VBG
vcore
vouts
sel4 <1:0>
trcore <1:0>
VO4
C4
GNDA
en3
AVSS
VDDESD
VZAP
9.5
VZAPC
GNDDC
GNDA
High Performance Bandgap (HPBG)
HPBG is a low power, low noise Band Gap circuit providing very accurate voltage reference to
LDOs that then can supply RF sections. HPBG operates in switching mode decreasing its current consumption. Economic high performance Bandgap is particularly interesting when RF
LDOs are in idle mode (output voltage provided with very low output current e.g. <1mA). HPBG
is biased from an internal regulator supplied by VDD4, thus it is not active when only VDD3 is
present. HPBG requires at least external 100nF capacitor to achieve very low noise/high accuracy voltage reference.
HPBG is trimmed to 1.231V during product test.
9.6
Low Power Bandgap (LPBG)
LPBG is a low power Bandgap circuit used as reference voltage for LDO4. LPBG starts up as
soon as VDD4 is present and doesn't require any external capacitor for decoupling.
9.7
Reset Generator
A Reset Generator produces an output reset (rising from “0” to “1”), called XRESO, at least 100
ms after the input reset state is activated. The input reset state can be produced by:
• VDD3 rising up, XRESIN not used or at “1”.
• External signal rising up on XRESIN and VDD3 present.
22
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
9.8
State Machine
An Internal State Machine supervises the start up of the regulators connected to VDD1, VDD2
and VDD3. The startup configuration is in the following order LDO3 then LDO1 then LDO2.
A voltage must be present on VDD4 to supply LDO4.
9.9
Oscillator
An Internal Oscillator (RCOSC) is used to generate the internal master clock which synchronizes
the state machine controlling the start up of the LDOs and HPBG.
9.10
Power-On-Reset
A Power-On-Reset (POR) monitors the output of LDO4 (VO4) and generates an internal signal
to enable the trimming registers to be loaded for LDO1, LDO2, LDO3 output voltage programming, as well as for the reference voltages and internal oscillator trimming. This internal signal is
released when VO4 is higher then 1.5V ± 300 mV.
9.11
Supply Monitor
A Supply Monitor is set on VDD3 and generates an internal signal to enable state machine to
startup the LDOs and to generate the XRESO signal. The threshold has been set to 2.7V when
rising up and 2.6V when falling down.
9.12
Digital Control
On AT73C237, the pins TWCK, TWD are respectively the clock and data lines of a true two-wire
interface, allowing to activate and disable the output voltage delivered by the regulators LDO1,
LDO2, LDO3 and also to change their output voltage value.
23
6362A–PMAAC–01-Jul-08
9.13
Two-wire Interface (TWI) Protocol
The two-wire interface interconnects components on a unique two-wire bus, made up of one
clock line and one data line with speeds up to 400 Kbits per second, based one a byte oriented
transfer format. The TWI is slave only and single byte access.
The interface adds flexibility to the power supply solution, enabling LDO regulators to be controlled depending on the instantaneous application requirements.
The AT73C237 has the following 7-bit address:1001000.
Attempting to read data from register addresses not listed in this section results in 0xFF being
read out.
• TWCK is an input pin for the clock
• TWD is an open-drain pin that drives or receives the serial data
The data put on the TWD line must be 8 bits long. Data is transferred MSB first. Each byte must
be followed by an acknowledgement.
Each transfer begins with a START condition and terminates with a STOP condition.
• A high-to-low transition on TWD while TWCK is high defines a START condition.
• A low-to-high transition on TWD while TWCK is high defines a STOP condition.
Figure 9-5.
TWI Start/Stop Cycle
TWD
TWCK
Start
Figure 9-6.
Stop
TWI Data Cycle
TWD
TWCK
Start
Address
R/W
Ack
Data
Ack
Data
Ack
Stop
After the host initiates a Start condition, it sends the 7-bit slave address defined above to notify
the slave device. A Read/Write bit follows (Read = 1, Write = 0).
The device acknowledges each received byte.
The first byte sent after device address and R/W bit is the address of the device register the host
wants to read or write.
For a write operation the data follows the internal address
For a read operation a repeated Start condition needs to be generated followed by a read on the
device.
24
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
Figure 9-7.
S
TWD
Figure 9-8.
TWD
S
ADDR
W
TWD Write Operation
A
ADDR
W
A
IADDR
DATA
A
A
P
TWD Read Operation
IADDR
A
S
ADDR
R
A
DATA
N
P
• S = Start
• P = Stop
• W = Write
• R = Read
• A = Acknowledge
• N = Not Acknowledge
• ADDR = Device address
• IADDR = Internal address
25
6362A–PMAAC–01-Jul-08
10. Registers
Table 10-1.
10.1
Registers
Address
Register
Description
Access
Reset value
0×00
LDO_CTRL
LDO control
Read / Write
0x0F
0×08
LDO_TRIM1
LDO 1,2,3 trim
Read / Write
0x00
0×0A
LDO_TRIM4
LDO4 trim
Read / Write
0x00
LDO Control: LDO_CTRL (0x00)
7
6
5
4
3
2
1
0
-
-
-
-
Onldo4
Onldo3
Onldo2
Onldo1
Table 10-2.
10.2
Bit
Name
Description
Reset value
7:4
-
Not used
-
3
Onldo4
LDO4 enable (active high, HiZ when off)
1
2
Onldo3
LDO3 enable (active high, HiZ when off)
1
1
Onldo2
LDO2 enable (active high, HiZ when off)
1
0
Onldo1
LDO1 enable (active high, HiZ when off)
1
LDO 1,2,3 trim: LDO_TRIM1 (0x08)
7
6
5
4
3
2
-
-
-
Sel1
Sel2
Sel3
Table 10-3.
26
LDO_CTRL (0x00) Structure
1
0
-
LDO_TRIM1 (0x08) Structure
Bit
Name
Description
Reset value
7:5
-
Not used
-
4
Sel1
LDO1 output voltage select
0
3
Sel2
LDO2 output voltage select
0
2:1
Sel3
LDO3 output voltage select
00
0
-
Not used
-
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
Table 10-4.
10.3
LDO_TRIM1 (0x08) - Output Voltages Selection
Sel1
VO1
Sel2
VO2
Sel3
VO3
0
2.75V
0
1.8V
00
1.8V
1
1.8V
1
1.5V
01
1.5V
-
-
-
-
10
1.23V
-
-
-
-
11
1.8
LDO 4 trim: LDO_TRIM4 (0x0A)
7
6
5
4
3
-
-
-
-
Sel4
Table 10-5.
2
1
0
trcore1
trcore0
LDO_TRIM1 (0x08) Structure
Bit
Name
Description
Reset value
7:4
-
Not used
-
3:2
Sel4
LDO4 output voltage select
00
1:0
trcore
LDO4 output voltage trimming
00
Table 10-6.
LDO_TRIM1 (0x08) - Sel4
Sel4
VO4
00
1.8V
01
-
10
-
11
-
Table 10-7.
LDO_TRIM1 (0x08) - trcore
trcore
VO4
00
Typ value (1.8V)
01
+80mV
10
-80mV
11
Typ value (1.8V)
27
6362A–PMAAC–01-Jul-08
AT73C237
11. Package Information
Figure 11-1. Mechanical Package Drawing for 16-lead Quad Flat No Lead Package
29
6362A–PMAAC–01-Jul-08
12. Ordering Information
Table 12-1.
30
Ordering Information
Ordering Code
Package
Package Type
Temperature Operating Range
AT73C237
QFN 3x3 mm
Green
0°C to +70°C
AT73C237
6362A–PMAAC–01-Jul-08
AT73C237
13. Revision History
Doc. Rev
Comments
6362A
First issue
Change
Request Ref.
31
6362A–PMAAC–01-Jul-08
AT73C237
Table of Contents
Features ..................................................................................................... 1
1
Description ............................................................................................... 1
2
Block Diagram .......................................................................................... 2
3
Pin Description ......................................................................................... 3
4
Application Block Diagram ..................................................................... 4
5
Electrical Characteristics ........................................................................ 5
6
5.1
Absolute Maximum Ratings ...............................................................................5
5.2
Recommended Operating Conditions ...............................................................5
5.3
Quiescent Current In Different Operating Modes ..............................................6
Startup Procedure .................................................................................... 7
6.1
At VDD4 Rising ..................................................................................................7
6.2
At VDD3 Falling .................................................................................................7
7
Timing Diagram ........................................................................................ 9
8
Electrical Specification .......................................................................... 10
9
8.1
LDO1 ...............................................................................................................10
8.2
LDO2 ...............................................................................................................12
8.3
LDO3 ...............................................................................................................14
8.4
LDO4 ...............................................................................................................16
8.5
High Performance Bandgap (HPBG) ...............................................................17
8.6
Low Power Bandgap (LPBG) ..........................................................................17
8.7
Voltage Monitor ...............................................................................................17
8.8
XRESIN ...........................................................................................................18
8.9
XRESO ............................................................................................................18
8.10
TWCK ..............................................................................................................18
8.11
TWD ................................................................................................................18
Functional Description .......................................................................... 19
9.1
LDO1 ...............................................................................................................19
9.2
LDO2 ...............................................................................................................20
9.3
LDO3 ...............................................................................................................21
9.4
LDO4 ...............................................................................................................22
9.5
High Performance Bandgap (HPBG) ...............................................................22
i
6362A–PMAAC–01-Jul-08
9.6
Low Power Bandgap (LPBG) ..........................................................................22
9.7
Reset Generator ..............................................................................................22
9.8
State Machine ..................................................................................................23
9.9
Oscillator ..........................................................................................................23
9.10
Power-On-Reset ..............................................................................................23
9.11
Supply Monitor .................................................................................................23
9.12
Digital Control ..................................................................................................23
9.13
Two-wire Interface (TWI) Protocol ...................................................................24
10 Registers ................................................................................................. 26
10.1
LDO Control: LDO_CTRL (0x00) .....................................................................26
10.2
LDO 1,2,3 trim: LDO_TRIM1 (0x08) ................................................................26
10.3
LDO 4 trim: LDO_TRIM4 (0x0A) .....................................................................27
11 Package Information .............................................................................. 29
12 Ordering Information ............................................................................. 30
13 Revision History ..................................................................................... 31
Table of Contents....................................................................................... i
ii
AT73C237
6362A–PMAAC–01-Jul-08
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Atmel techincal support
Sales Contacts
www.atmel.com/contacts/
Product Contact
Web Site
www.atmel.com
www.atmel.com/PowerManage
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted
for use as components in applications intended to support or sustain life.
© 2008 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof and others, are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
6362A–PMAAC–01-Jul-08
Similar pages