Philips Semiconductors Product specification Thyristors GENERAL DESCRIPTION Glass passivated thyristors in a full pack, plastic envelope, intended for use in applications requiring high bidirectional blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating and static switching. PINNING - SOT186A PIN BT300X series QUICK REFERENCE DATA SYMBOL VDRM, VRRM IT(AV) IT(RMS) ITSM PARAMETER MAX. MAX. MAX. UNIT BT300XRepetitive peak off-state voltages Average on-state current RMS on-state current Non-repetitive peak on-state current 500R 500 600R 600 800R 800 V 5 8 65 5 8 65 5 8 65 A A A PIN CONFIGURATION SYMBOL DESCRIPTION case 1 cathode 2 anode 3 gate a k g 1 2 3 case isolated LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134). SYMBOL PARAMETER CONDITIONS VDRM, VRRM Repetitive peak off-state voltages IT(AV) IT(RMS) ITSM I2t dIT/dt IGM VGM VRGM PGM PG(AV) Tstg Tj Average on-state current RMS on-state current Non-repetitive peak on-state current half sine wave; Ths ≤ 79 ˚C all conduction angles half sine wave; Tj = 25 ˚C prior to surge t = 10 ms t = 8.3 ms t = 10 ms ITM = 10 A; IG = 50 mA; dIG/dt = 50 mA/µs I2t for fusing Repetitive rate of rise of on-state current after triggering Peak gate current Peak gate voltage Peak reverse gate voltage Peak gate power Average gate power over any 20 ms period Storage temperature Operating junction temperature MIN. MAX. UNIT - -500R -600R -800R 5001 6001 800 V - 5 8 A A - 65 71 21 50 A A A2s A/µs -40 - 2 5 5 5 0.5 150 125 A V V W W ˚C ˚C 1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15 A/µs. September 1997 1 Rev 1.100 Philips Semiconductors Product specification Thyristors BT300X series ISOLATION LIMITING VALUE & CHARACTERISTIC Ths = 25 ˚C unless otherwise specified SYMBOL PARAMETER CONDITIONS Visol R.M.S. isolation voltage from all three terminals to external heatsink f = 50-60 Hz; sinusoidal waveform; R.H. ≤ 65% ; clean and dustfree Cisol Capacitance from T2 to external f = 1 MHz heatsink MIN. TYP. - MAX. UNIT 2500 V - 10 - pF MIN. TYP. MAX. UNIT - 55 5.7 9.3 - K/W K/W K/W THERMAL RESISTANCES SYMBOL PARAMETER CONDITIONS Rth j-hs Thermal resistance junction to heatsink Thermal resistance junction to ambient with heatsink compound without heat sink compound in free air Rth j-a STATIC CHARACTERISTICS Tj = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT IGT IL IH VT VGT Gate trigger current Latching current Holding current On-state voltage Gate trigger voltage ID, IR Off-state leakage current VD = 12 V; IT = 0.1 A VD = 12 V; IGT = 0.1 A VD = 12 V; IGT = 0.1 A IT = 12 A VD = 12 V; IT = 0.1 A VD = VDRM(max); IT = 0.1 A; Tj = 125 ˚C VD = VDRM(max); VR = VRRM(max); Tj = 125 ˚C 0.25 - 2 10 10 1.35 0.6 0.4 0.1 15 40 20 1.6 1.5 0.5 mA mA mA V V V mA MIN. TYP. MAX. UNIT 50 200 - 100 1000 2 - V/µs V/µs µs - 70 - µs DYNAMIC CHARACTERISTICS Tj = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONS dVD/dt Critical rate of rise of off-state voltage VDM = 67% VDRM(max); Tj = 125 ˚C; exponential waveform. Gate open circuit RGK = 100 Ω ITM = 10 A; VD = VDRM(max); IG = 0.1 A; dIG/dt = 5 A/µs VD = 67% VDRM(max); Tj = 125 ˚C; ITM = 12 A; VR = 25 V; dITM/dt = 30 A/µs; dVD/dt = 50 V/µs; RGK = 100 Ω tgt tq Gate controlled turn-on time Circuit commutated turn-off time September 1997 2 Rev 1.100 Philips Semiconductors Product specification Thyristors BT300X series BT300X Ptot / W conduction form angle factor degrees a 30 4 60 2.8 90 2.2 120 1.9 180 1.57 8 6 Tmb(max) / C a = 1.57 BT300 ITSM IT 60 79 1.9 ITSM / A 70 time T 50 2.2 Tj initial = 25 C max 90.5 2.8 40 4 4 102 2 113.5 30 20 10 0 0 1 2 3 IF(AV) / A 4 5 6 125 0 Fig.1. Maximum on-state dissipation, Ptot, versus average on-state current, IT(AV), where a = form factor = IT(RMS)/ IT(AV). 1000 1 1000 Fig.4. Maximum permissible non-repetitive peak on-state current ITSM, versus number of cycles, for sinusoidal currents, f = 50 Hz. BT300 ITSM / A 10 100 Number of half cycles at 50Hz 24 BT150 IT(RMS) / A 20 16 dI T /dt limit 100 12 I TSM IT 8 time T 4 Tj initial = 25 C max 10 10us 100us 0 0.01 10ms 1ms 0.1 1 surge duration / s T/s Fig.2. Maximum permissible non-repetitive peak on-state current ITSM, versus pulse width tp, for sinusoidal currents, tp ≤ 10ms. 9 IT(RMS) / A 10 Fig.5. Maximum permissible repetitive rms on-state current IT(RMS), versus surge duration, for sinusoidal currents, f = 50 Hz; Ths ≤ 79˚C. BT258 1.6 79 C VGT(Tj) VGT(25 C) BT151 8 1.4 7 6 1.2 5 4 1 3 0.8 2 0.6 1 0 -50 0 50 Tmb / C 100 0.4 -50 150 Fig.3. Maximum permissible rms current IT(RMS) , versus mounting base temperature Ths. September 1997 0 50 Tj / C 100 150 Fig.6. Normalised gate trigger voltage VGT(Tj)/ VGT(25˚C), versus junction temperature Tj. 3 Rev 1.100 Philips Semiconductors Product specification Thyristors 3 BT300X series IGT(Tj) IGT(25 C) BT150 BT300 IT / A 30 Tj = 125 C Tj = 25 C 25 2.5 Vo = 1.21 V Rs = 0.0313 ohms 2 20 1.5 15 1 10 0.5 5 typ max 0 -50 0 50 Tj / C 100 0 150 Fig.7. Normalised gate trigger current IGT(Tj)/ IGT(25˚C), versus junction temperature Tj. 3 IL(Tj) IL(25 C) 0 0.5 1 VT / V 1.5 2 Fig.10. Typical and maximum on-state characteristic. 10 BT150 BT150 Zth j-mb (K/W) without heatsink compound 2.5 with heatsink compound 1 2 1.5 0.1 1 P D tp 0.5 t 0 -50 0 50 Tj / C 100 0.01 10us 150 IH(Tj) IH(25 C) 1ms 10ms 0.1s 1s 10s tp / s Fig.11. Transient thermal impedance Zth j-hs, versus pulse width tp. Fig.8. Normalised latching current IL(Tj)/ IL(25˚C), versus junction temperature Tj. 3 0.1ms 10000 BT150 dVD/dt (V/us) 2.5 1000 2 RGK = 100 Ohms 1.5 100 1 gate open circuit 0.5 0 -50 0 50 Tj / C 100 10 150 50 100 150 Tj / C Fig.12. Typical, critical rate of rise of off-state voltage, dVD/dt versus junction temperature Tj. Fig.9. Normalised holding current IH(Tj)/ IH(25˚C), versus junction temperature Tj. September 1997 0 4 Rev 1.100 Philips Semiconductors Product specification Thyristors BT300X series MECHANICAL DATA Dimensions in mm Net Mass: 2 g 10.3 max 4.6 max 3.2 3.0 2.9 max 2.8 Recesses (2x) 2.5 0.8 max. depth 6.4 15.8 19 max. max. 15.8 max seating plane 3 max. not tinned 3 2.5 13.5 min. 1 0.4 2 3 M 1.0 (2x) 0.6 2.54 0.9 0.7 0.5 2.5 5.08 1.3 Fig.13. SOT186A; The seating plane is electrically isolated from all terminals. Notes 1. Refer to mounting instructions for F-pack envelopes. 2. Epoxy meets UL94 V0 at 1/8". September 1997 5 Rev 1.100 Philips Semiconductors Product specification Thyristors BT300X series DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. Philips Electronics N.V. 1997 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. September 1997 6 Rev 1.100