AD ADIS16488 Ten degrees of freedom inertial sensor Datasheet

Tactical Grade
Ten Degrees of Freedom Inertial Sensor
ADIS16488
Data Sheet
FEATURES
GENERAL DESCRIPTION
Triaxial, digital gyroscope, ±450°/sec dynamic range
<±0.05° orthogonal alignment
6°/hr in-run bias stability
0.3°/√hr angular random walk
0.01% nonlinearity
Triaxial, digital accelerometer, ±18 g
Triaxial, delta angle and delta velocity outputs
Triaxial, digital magnetometer, ±2.5 gauss
Digital pressure sensor, 300 mbar to 1100 mbar
Fast start-up time, ~500 ms
Factory-calibrated sensitivity, bias, and axial alignment
Calibration temperature range: −40°C to +70°C
SPI-compatible serial interface
Embedded temperature sensor
Programmable operation and control
Automatic and manual bias correction controls
4 FIR filter banks, 120 configurable taps
Digital I/O: data-ready alarm indicator, external clock
Alarms for condition monitoring
Power-down/sleep mode for power management
Optional external sample clock input: up to 2.4 kHz
Single-command self-test
Single-supply operation: 3.0 V to 3.6 V
2000 g shock survivability
Operating temperature range: −40°C to +85°C
The ADIS16488 iSensor® device is a complete inertial system
that includes a triaxis gyroscope, a triaxis accelerometer, triaxis
magnetometer, and pressure sensor. Each inertial sensor in the
ADIS16488 combines industry-leading iMEMS® technology
with signal conditioning that optimizes dynamic performance.
The factory calibration characterizes each sensor for sensitivity,
bias, alignment, and linear acceleration (gyroscope bias). As a
result, each sensor has its own dynamic compensation formulas
that provide accurate sensor measurements.
The ADIS16488 provides a simple, cost-effective method for
integrating accurate, multiaxis inertial sensing into industrial
systems, especially when compared with the complexity and
investment associated with discrete designs. All necessary motion
testing and calibration are part of the production process at
the factory, greatly reducing system integration time. Tight
orthogonal alignment simplifies inertial frame alignment in
navigation systems. The SPI and register structure provide a
simple interface for data collection and configuration control.
The ADIS16488 uses the same footprint and connector system as
the ADIS16375, which greatly simplifies the upgrade process. It
comes in a module that is approximately 47 mm × 44 mm ×
14 mm and has a standard connector interface.
APPLICATIONS
Platform stabilization and control
Navigation
Personnel tracking
Instrument
Robotics
FUNCTIONAL BLOCK DIAGRAM
DIO1 DIO2 DIO3 DIO4 RST
SELF-TEST
I/O
VDD
ALARMS
POWER
MANAGEMENT
GND
TRIAXIAL
GYRO
OUTPUT
DATA
REGISTERS
TRIAXIAL
ACCEL
CONTROLLLER
TRIAXIAL
MAGN
CALIBRATION
AND
FILTERS
PRESSURE
SCLK
SPI
USER
CONTROL
REGISTERS
DIN
DOUT
CLOCK
ADIS16488
VDD
VDDRTC
10277-001
TEMP
CS
Figure 1.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.
ADIS16488
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Product Identification................................................................ 19
Applications ....................................................................................... 1
Digital Signal Processing ............................................................... 20
General Description ......................................................................... 1
Gyroscopes/Accelerometers ..................................................... 20
Functional Block Diagram .............................................................. 1
Averaging/Decimation Filter .................................................... 20
Revision History ............................................................................... 2
Magnetometer/Barometer ......................................................... 20
Specifications..................................................................................... 3
FIR Filter Banks .......................................................................... 21
Timing Specifications .................................................................. 5
Calibration ....................................................................................... 23
Absolute Maximum Ratings............................................................ 6
Gyroscopes .................................................................................. 23
ESD Caution .................................................................................. 6
Accelerometers ........................................................................... 24
Pin Configuration and Function Descriptions ............................. 7
Magnetometers ........................................................................... 24
Typical Performance Characteristics ............................................. 8
Barometers .................................................................................. 26
Basic Operation................................................................................. 9
Restoring Factory Calibration .................................................. 26
Register Structure ......................................................................... 9
Point of Percussion Alignment ................................................. 26
SPI Communication ................................................................... 10
Alarms .............................................................................................. 27
Device Configuration ................................................................ 10
Static Alarm Use ......................................................................... 27
Reading Sensor Data .................................................................. 10
Dynamic Alarm Use .................................................................. 27
User Registers .................................................................................. 11
System Controls .............................................................................. 29
Output Data Registers .................................................................... 14
Global Commands ..................................................................... 29
Inertial Sensor Data Format...................................................... 14
Memory Management ............................................................... 29
Rotation Rate (Gyroscope) ........................................................ 14
General-Purpose I/O ................................................................. 29
Acceleration................................................................................. 15
Power Management ................................................................... 30
Delta Angles ................................................................................ 15
Applications Information .............................................................. 32
Delta Velocity .............................................................................. 16
Prototype Interface Board ......................................................... 32
Magnetometers ........................................................................... 17
Installation Tips .......................................................................... 32
Barometer .................................................................................... 17
Outline Dimensions ....................................................................... 33
Internal Temperature ................................................................. 17
Ordering Guide .......................................................................... 33
Status/Alarm Indicators ............................................................. 18
Firmware Revision ..................................................................... 19
REVISION HISTORY
2/12—Rev. A to Rev. B
Change to Features Section ............................................................. 1
Changes to Table 3 ............................................................................ 6
Changes to Figure 7 and Figure 8 ................................................... 8
Changes to Delta Angles Section .................................................. 15
Changes to Delta Velocity Section, Table 31, Table 32, Table 33,
and Table 34 ..................................................................................... 16
Change to Status/Alarm Indicators Section ................................ 18
Changes to Gyroscopes/Accelerometers Section,
Averaging/Decimation Filter Section, Magnetometer/Barometer
Section, and Figure 20 .................................................................... 20
Changes to Input Sync/Clock Control Section ........................... 30
Changes to Prototype Interface Board Section and
Figure 26 .......................................................................................... 30
12/11—Rev. 0 to Rev. A
Changes to Specifications Section ...................................................3
Changes to System/Alarm Indicators Section ............................ 18
Changes to Averaging/Decimation Filter Section ...................... 20
Changes to General-Purpose I/O Section ................................... 29
Changes to Input Sync/Clock Control Section........................... 30
10/11—Revision 0: Initial Version
Rev. B | Page 2 of 36
Data Sheet
ADIS16488
SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, angular rate = 0°/sec, dynamic range = ±450°/sec ± 1 g, 300 mbar to 1100 mbar, unless otherwise noted.
Table 1.
Parameter
GYROSCOPES
Dynamic Range
Sensitivity
Initial Sensitivity Tolerance
Sensitivity Temperature Coefficient
Misalignment
Nonlinearity
Initial Bias Error
In-Run Bias Stability
Angular Random Walk
Bias Temperature Coefficient
Linear Acceleration Effect on Bias
Output Noise
Rate Noise Density
3 dB Bandwidth
Sensor Resonant Frequency
ACCELEROMETERS
Dynamic Range
Sensitivity
Initial Sensitivity Tolerance
Sensitivity Temperature Coefficient
Misalignment
Nonlinearity
Initial Bias Error
In-Run Bias Stability
Velocity Random Walk
Bias Temperature Coefficient
Output Noise
Noise Density
3 dB Bandwidth
Sensor Resonant Frequency
MAGNETOMETER
Dynamic Range
Sensitivity
Initial Sensitivity Tolerance
Sensitivity Temperature Coefficient
Misalignment
Nonlinearity
Initial Bias Error
Bias Temperature Coefficient
Output Noise
Noise Density
3 dB Bandwidth
Test Conditions/Comments
Min
Typ
±450
x_GYRO_OUT and x_GYRO_LOW (32-bit)
3.052 × 10−7
−40°C ≤ TA ≤ +70°C, 1 σ
Axis-to-axis
Axis-to-frame (package)
Best-fit straight line, FS = 450°/sec
1σ
1σ
1σ
−40°C ≤ TA ≤ +70°C, 1 σ
Any axis, 1 σ (CONFIG[7] = 1)
No filtering
f = 25 Hz, no filtering
±35
±0.05
±1.0
0.01
±0.2
6.25
0.3
±0.0025
0.009
0.16
0.0066
330
18
Max
Unit
±480
°/sec
°/sec/LSB
%
ppm/°C
Degrees
Degrees
% of FS
°/sec
°/hr
°/√hr
°/sec/°C
°/sec/g
°/sec rms
°/sec/√Hz rms
Hz
kHz
±1
Each axis
±18
x_ACCL_OUT and x_ACCL_LOW (32-bit)
1.221 × 10−8
−40°C ≤ TA ≤ +85°C, 1 σ
Axis-to-axis
Axis-to-frame (package)
Best-fit straight line, ±10 g
Best-fit straight line, ±18 g
1σ
1σ
1σ
−40°C ≤ TA ≤ +85°C
No filtering
f = 25 Hz, no filtering
±25
±0.035
±1.0
0.1
0.5
±16
0.1
0.029
±0.1
1.5
0.067
330
5.5
±0.5
±2.5
g
g/LSB
%
ppm/°C
Degrees
Degrees
% of FS
% of FS
mg
mg
m/sec/√hr
mg/°C
mg rms
mg/√Hz rms
Hz
kHz
1σ
275
gauss
mgauss/LSB
%
ppm/°C
Axis to axis
Axis to frame (package)
Best fit straight line
0 gauss stimulus
−40°C ≤ TA ≤ +85°C, 1 σ
0.25
0.5
0.5
±15
0.3
0.45
0.054
330
Degrees
Degrees
% of FS
mgauss
mgauss/°C
mgauss
mgauss/√Hz
Hz
0.1
±2
No filtering
f = 25 Hz, no filtering
Rev. B | Page 3 of 36
ADIS16488
Parameter
BAROMETER
Pressure Range
Sensitivity
Error with Supply
Total Error
Relative Error 1
Linearity 2
Linear-g Sensitivity
Noise
TEMPERATURE SENSOR
Scale Factor
LOGIC INPUTS 3
Input High Voltage, VIH
Input Low Voltage, VIL
CS Wake-Up Pulse Width
Logic 1 Input Current, IIH
Logic 0 Input Current, IIL
All Pins Except RST
RST Pin
Input Capacitance, CIN
DIGITAL OUTPUTS
Output High Voltage, VOH
Output Low Voltage, VOL
FLASH MEMORY
Data Retention 5
FUNCTIONAL TIMES 6
Power-On Start-up Time
Reset Recovery Time
Sleep Mode Recovery Time
Flash Memory Update Time
Flash Memory Test Time
Automatic Self-Test Time
CONVERSION RATE
Initial Clock Accuracy
Temperature Coefficient
Sync Input Clock
POWER SUPPLY, VDD
Power Supply Current 8
POWER SUPPLY, VDDRTC
Real-Time Clock Supply Current
Data Sheet
Test Conditions/Comments
Extended
BAROM_OUT and BAROM_LOW (32-bit)
Min
Typ
Max
Unit
1100
1200
6.1 × 10−7
0.04
4.5
2.5
0.1
0.2
0.005
0.025
mbar
mbar
mbar/LSB
%/V
mbar
mbar
% of FS
% of FS
mbar/g
mbar rms
0.00565
°C/LSB
300
10
−40°C to +85°C
Best fit straight line, FS = 1100 mbar
−40°C to +85°C
±1 g, 1 σ
Output = 0x0000 at 25°C (±5°C)
2.0
0.8
20
VIH = 3.3 V
VIL = 0 V
10
10
0.33
10
ISOURCE = 0.5 mA
ISINK = 2.0 mA
Endurance 4
TJ = 85°C
Time until data is available
2.4
0.4
100,000
20
500
500
500
375
50
12
2.46
0.02
40
Using internal clock, 100 SPS
Operating voltage range
Normal mode, VDD = 3.3 V, µ ± σ
Sleep mode, VDD = 3.3 V
Power-down mode, VDD = 3.3 V
Operating voltage range
Normal mode, VDDRTC = 3.3 V
0.7 7
3.0
2.4
3.6
254
12.2
45
3.0
3.6
13
V
V
µs
µA
µA
mA
pF
V
V
Cycles
Years
ms
ms
µs
ms
ms
ms
kSPS
%
ppm/°C
kHz
V
mA
mA
µA
V
µA
The relative error assumes that the initial error, at 25°C, is corrected in the end application.
Linearity errors assume a full scale (FS) of 1000 mbar.
3
The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant.
4
Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at −40°C, +25°C, +85°C, and +125°C.
5
The data retention specification assumes a junction temperature (TJ) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with TJ.
6
These times do not include thermal settling and internal filter response times, which may affect overall accuracy.
7
Device functions at clock rates below 0.7 kHz, but at reduced performance levels.
8
Supply current transients can reach 450 mA for 400 µs during start-up and reset recovery.
1
2
Rev. B | Page 4 of 36
Data Sheet
ADIS16488
TIMING SPECIFICATIONS
TA = 25°C, VDD = 3.3 V, unless otherwise noted.
Table 2.
Parameter
fSCLK
tSTALL
tCLS
tCHS
tCS
Description
Serial clock
Stall period between data
Serial clock low period
Serial clock high period
Chip select to clock edge
tDAV
tDSU
tDHD
tDR, tDF
tDSOE
tHD
tDSHI
t1
t2
t3
DOUT valid after SCLK edge
DIN setup time before SCLK rising edge
DIN hold time after SCLK rising edge
DOUT rise/fall times, ≤100 pF loading
CS assertion to data out active
SCLK edge to data out invalid
CS deassertion to data out high impedance
Input sync pulse width
Input sync to data-ready output
Input sync period
1
Normal Mode
Typ
Min 1
0.01
2
31
31
32
Max1
15
Unit
MHz
µs
ns
ns
ns
10
ns
ns
ns
ns
ns
ns
ns
µs
µs
µs
2
2
3
8
11
0
0
0
5
9
490
417
Guaranteed by design and characterization, but not tested in production.
Timing Diagrams
CS
tCHS
tCS
1
2
3
tCLS
4
5
6
15
16
SCLK
DOUT
MSB
tDAV
DB14
tHD
DB13
tDSU
DIN
R/W
A6
DB12
DB11
A4
A3
tDSHI
DB10
DB2
DB1
LSB
tDHD
A5
D2
A2
D1
10277-002
tDSOE
LSB
Figure 2. SPI Timing and Sequence
tSTALL
10277-003
CS
SCLK
Figure 3. Stall Time and Data Rate
t3
t2
t1
SYNC
CLOCK (CLKIN)
OUTPUT
REGISTERS
DATA VALID
DATA VALID
Figure 4. Input Clock Timing Diagram
Rev. B | Page 5 of 36
10277-004
DATA
READY
ADIS16488
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Acceleration
Any Axis, Unpowered
Any Axis, Powered
VDD to GND
Digital Input Voltage to GND
Digital Output Voltage to GND
Operating Temperature Range
Storage Temperature Range
Barometric Pressure
1
Rating
2000 g
2000 g
−0.3 V to +3.6 V
−0.3 V to VDD + 0.2 V
−0.3 V to VDD + 0.2 V
−40°C to +85°C
−65°C to +150°C1
6 bar
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Table 4. Package Characteristics
Package Type
24-Lead Module (ML-24-6)
Extended exposure to temperatures that are lower than −40°C or higher
than +105°C can adversely affect the accuracy of the factory calibration.
ESD CAUTION
Rev. B | Page 6 of 36
θJA
22.8°C/W
θJC
10.1°C/W
Device
Weight
48 g
Data Sheet
ADIS16488
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
ADIS16488
DNC
DNC
DNC
GND
VDD
VDD
RST
CS
DOUT
DIO4
20
18
16
14
12
10
8
6
4
2
23
21
19
17
15
13
11
9
7
5
3
1
DNC
DNC
GND
GND
VDD
DIO2
DIO1
DIN
SCLK
NOTES
1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT
FOR THE MATING SOCKET CONNECTOR.
2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM
THE TOP VIEW.
3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.
4. DNC = DO NOT CONNECT TO THESE PINS.
10277-005
DIO3
DNC
22
DNC
DNC
24
VDDRTC
TOP VIEW
(Not to Scale)
10277-006
Figure 5. Mating Connector Pin Assignments
PIN 23
PIN 1
Figure 6. Axial Orientation (Top Side Facing Up)
Table 5. Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10, 11, 12
13, 14, 15
16 to 22, 24
23
Mnemonic
DIO3
DIO4
SCLK
DOUT
DIN
CS
DIO1
RST
DIO2
VDD
GND
DNC
VDDRTC
Type
Input/output
Input/output
Input
Output
Input
Input
Input/output
Input
Input/output
Supply
Supply
Not applicable
Supply
Description
Configurable Digital Input/Output.
Configurable Digital Input/Output.
SPI Serial Clock.
SPI Data Output. Clocks output on SCLK falling edge.
SPI Data Input. Clocks input on SCLK rising edge.
SPI Chip Select.
Configurable Digital Input/Output.
Reset.
Configurable Digital Input/Output.
Power Supply.
Power Ground.
Do Not Connect to These Pins.
Real-Time Clock Power Supply.
Rev. B | Page 7 of 36
ADIS16488
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
1000
0.8
AVERAGE
GYRO SCALE ERROR (% FS)
100
+1σ
10
–1σ
0.1
1
10
100
1000
10000
INTEGRATION PERIOD (Seconds)
0
–0.2
–0.4
–0.8
–40 –30 –20 –10
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
Figure 7. Gyroscope Allan Variance, 25°C
0.001
0.2
–0.6
10277-007
1
0.01
INITIAL ERROR = ±0.5%
0.4 TEMPCO = 35ppm/°C
10277-109
ROOT ALLAN VARIANCE (°/Hour)
0.6
Figure 9. Gyroscope Scale (Sensitivity) Error and Hysteresis vs. Temperature
AVERAGE
0.6
0.4
+1σ
GYRO BIAS ERROR (°/sec)
ROOT ALLAN VARIANCE (g)
INITIAL ERROR = ±0.2°/sec
0.5 TEMPCO = 0.0025°/sec/°C
0.0001
–1σ
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
1
10
100
1000
INTEGRATION PERIOD (Seconds)
10000
Figure 8. Accelerometer Allan Variance, 25°C
–0.6
–40 –30 –20 –10
0
10
20
30
40
50
60
70
80
TEMPERATURE (°C)
Figure 10. Gyroscope Bias Error and Hysteresis vs. Temperature
Rev. B | Page 8 of 36
10277-110
0.1
10277-008
–0.5
0.00001
0.01
Data Sheet
ADIS16488
BASIC OPERATION
I/O LINES ARE COMPATIBLE WITH
3.3V LOGIC LEVELS
REGISTER STRUCTURE
The register structure and SPI port provide a bridge between
the sensor processing system and an external, master processor.
It contains both output data and control registers. The output
data registers include the latest sensor data, a real-time clock, error
flags, alarm flags, and identification data. The control registers
include sample rate, filtering, input/output, alarms, calibration,
and diagnostic configuration options. All communication
between the ADIS16488 and an external processor involves
either reading or writing to one of the user registers.
TRIAXIS
GYRO
TRIAXIS
ACCEL
+3.3V
DSP
TRIAXIS
MAGN
10
SYSTEM
PROCESSOR
SPI MASTER
11
12
23
BARO
ADIS16488
SS
6
CS
SCLK
3
SCLK
MOSI
5
DIN
MISO
4
DOUT
IRQ
9
DIO2
CONTROL
REGISTERS
TEMP
SENSOR
Figure 12. Basic Operation
14
15
10277-009
13
Figure 11. Electrical Connection Diagram
Table 6. Generic Master Processor Pin Names and Functions
Mnemonic
Function
SS
IRQ
MOSI
MISO
SCLK
Slave select
Interrupt request
Master output, slave input
Master input, slave output
Serial clock
The register structure uses a paged addressing scheme that is
composed of 13 pages, with each one containing 64 register
locations. Each register is 16 bits wide, with each byte having its
own unique address within that page’s memory map. The SPI
port has access to one page at a time, using the bit sequence in
Figure 17. Select the page to activate for SPI access by writing its
code to the PAGE_ID register. Read the PAGE_ID register to
determine which page is currently active. Table 8 displays the
PAGE_ID contents for each page, along with their basic functions.
The PAGE_ID register is located at Address 0x00 on every page.
Table 8. User Register Page Assignments
Embedded processors typically use control registers to configure
their serial ports for communicating with SPI slave devices
such as the ADIS16488. Table 7 provides a list of settings, which
describe the SPI protocol of the ADIS16488. The initialization
routine of the master processor typically establishes these settings
using firmware commands to write them into its serial control
registers.
Table 7. Generic Master Processor SPI Settings
Processor Setting
Master
SCLK ≤ 15 MHz
SPI Mode 3
MSB-First Mode
16-Bit Mode
CONTROLLER
10277-010
VDD
OUTPUT
REGISTERS
SPI
The ADIS16488 is an autonomous sensor system that starts up
on its own when it has a valid power supply. After running through
its initialization process, it begins sampling, processing, and
loading calibrated sensor data into the output registers, which
are accessible using the SPI port. The SPI port typically connects to
a compatible port on an embedded processor, using the connection
diagram in Figure 11. The four SPI signals facilitate synchronous,
serial data communication. Connect RST (see Table 5) to VDD
or leave it open for normal operation. The factory default
configuration provides users with a data-ready signal on the
DIO2 pin, which pulses high when new data is available in the
output data registers.
Description
The ADIS16488 operates as a slave.
Maximum serial clock rate.
CPOL = 1 (polarity), and CPHA = 1 (phase).
Bit sequence.
Shift register/data length.
Page
0
1
2
3
4
5
6
7
8
9
10
11
12
Rev. B | Page 9 of 36
PAGE_ID
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
Function
Output data, clock, identification
Reserved
Calibration
Control: sample rate, filtering, I/O, alarms
Serial number
FIR Filter Bank A Coefficient 0 to Coefficient 59
FIR Filter Bank A, Coefficient 60 to Coefficient 119
FIR Filter Bank B, Coefficient 0 to Coefficient 59
FIR Filter Bank B, Coefficient 60 to Coefficient 119
FIR Filter Bank C, Coefficient 0 to Coefficient 59
FIR Filter Bank C, Coefficient 60 to Coefficient 119
FIR Filter Bank D, Coefficient 0 to Coefficient 59
FIR Filter Bank D, Coefficient 60 to Coefficient 119
ADIS16488
Data Sheet
SPI COMMUNICATION
MANUAL
FLASH
BACKUP
The SPI port supports full duplex communication, as shown in
Figure 17, which enables external processors to write to DIN
while reading DOUT, if the previous command was a read
request. Figure 17 provides a guideline for the bit coding on
both DIN and DOUT.
VOLATILE
SRAM
NONVOLATILE
FLASH MEMORY
SPI ACCESS
(NO SPI ACCESS)
10277-012
START-UP
RESET
DEVICE CONFIGURATION
Figure 14. SRAM and Flash Memory Diagram
The SPI provides write access to the control registers, one byte at
a time, using the bit assignments shown in Figure 17. Each register
has 16 bits, where Bits[7:0] represent the lower address (listed in
Table 9) and Bits[15:8] represent the upper address. Write to the
lower byte of a register first, followed by a write to its upper byte
second. The only register that changes with a single write to its
lower byte is the PAGE_ID register. For a write command, the
first bit in the DIN sequence is set to 1. Address Bits[A6:A0]
represent the target address, and Data Command Bits[DC7:DC0]
represent the data being written to the location. Figure 13
provides an example of writing 0x03 to Address 0x00 (PAGE_ID
[7:0]), using DIN = 0x8003. This write command activates the
control page for SPI access.
READING SENSOR DATA
CS
SCLK
DIN
10277-011
DIN = 1000 0000 0000 0011 = 0x8003, WRITES 0x03 TO ADDRESS 0x00
0x1A00
DOUT
Figure 13. SPI Sequence for Activating the Control Page (DIN = 0x8003)
0x1800
NEXT
ADDRESS
Z_GYRO_OUT
Z_GYRO_LOW
Figure 15. SPI Read Example
Dual Memory Structure
Figure 16 provides an example of the four SPI signals when reading
PROD_ID in a repeating pattern. This is a good pattern to use
for troubleshooting the SPI interface setup and communications
because the contents of PROD_ID are predefined and stable.
Writing configuration data to a control register updates its SRAM
contents, which are volatile. After optimizing each relevant control
register setting in a system, use the manual flash update command,
which is located in GLOB_CMD[3] on Page 3 of the register map.
Activate the manual flash update command by turning to Page 3
(DIN = 0x8003) and setting GLOB_CMD[3] = 1 (DIN = 0x8208,
then DIN = 0x8300). Make sure that the power supply is within
specification for the entire 375 ms processing time for a flash
memory update. Table 9 provides a memory map for all of
the user registers, which includes a column of flash backup
information. A yes in this column indicates that a register
has a mirror location in flash and, when backed up properly,
automatically restores itself during startup or after a reset.
Figure 14 provides a diagram of the dual memory structure
used to manage operation and store critical user settings.
CS
SCLK
DIN
DIN = 0111 1110 0000 0000 = 0x7E00
DOUT
DOUT = 0100 0000 0110 1000 = 0x4068 = 16,488 (PROD_ID)
Figure 16. SPI Read Example, Second 16-Bit Sequence
CS
DIN
DOUT
R/W
D15
A6
A5
A4
A3
A2
A1
A0
DC7
DC6
DC5
DC4
DC3
DC2
DC1
DC0
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
R/W
D15
A6
A5
D14
D13
NOTES
1. DOUT BITS ARE PRODUCED ONLY WHEN THE PREVIOUS 16-BIT DIN SEQUENCE STARTS WITH R/W = 0.
2. WHEN CS IS HIGH, DOUT IS IN A THREE-STATE, HIGH IMPEDANCE MODE, WHICH ALLOWS MULTIFUNCTIONAL USE OF THE LINE
FOR OTHER DEVICES.
Figure 17. SPI Communication Bit Sequence
Rev. B | Page 10 of 36
10277-015
SCLK
10277-014
DIN
10277-013
The ADIS16488 automatically starts up and activates Page 0 for
data register access. Write 0x00 to the PAGE_ID register (DIN =
0x8000) to activate Page 0 for data access after accessing any other
page. A single register read requires two 16-bit SPI cycles. The
first cycle requests the contents of a register using the bit assignments
in Figure 17, and then the register contents follow DOUT during
the second sequence. The first bit in a DIN command is zero,
followed by either the upper or lower address for the register.
The last eight bits are don’t care, but the SPI requires the full set
of 16 SCLKs to receive the request. Figure 15 includes two register
reads in succession, which starts with DIN = 0x1A00 to request
the contents of the Z_GYRO_OUT register and follows with
0x1800 to request the contents of the Z_GYRO_LOW register.
Data Sheet
ADIS16488
USER REGISTERS
Table 9. User Register Memory Map (N/A = Not Applicable)
Name
PAGE_ID
Reserved
SEQ_CNT
SYS_E_FLAG
DIAG_STS
ALM_STS
TEMP_OUT
X_GYRO_LOW
X_GYRO_OUT
Y_GYRO_LOW
Y_GYRO_OUT
Z_GYRO_LOW
Z_GYRO_OUT
X_ACCL_LOW
X_ACCL_OUT
Y_ACCL_LOW
Y_ACCL_OUT
Z_ACCL_LOW
Z_ACCL_OUT
X_MAGN_OUT
Y_MAGN_OUT
Z_MAGN_OUT
BAROM_LOW
BAROM_OUT
Reserved
X_DELTANG_LOW
X_DELTANG_OUT
Y_DELTANG_LOW
Y_DELTANG_OUT
Z_DELTANG_LOW
Z_DELTANG_OUT
X_DELTVEL_LOW
X_DELTVEL_OUT
Y_DELTVEL_LOW
Y_DELTVEL_OUT
Z_DELTVEL_LOW
Z_DELTVEL_OUT
Reserved
TIME_MS_OUT
TIME_DH_OUT
TIME_YM_OUT
PROD_ID
Reserved
PAGE_ID
Reserved
X_GYRO_SCALE
Y_GYRO_SCALE
Z_GYRO_SCALE
X_ACCL_SCALE
Y_ACCL_SCALE
Z_ACCL_SCALE
R/W
R/W
N/A
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
N/A
R
R
R
R
R
R
R
R
R
R
R
R
N/A
R
R
R
R
N/A
R/W
N/A
R/W
R/W
R/W
R/W
R/W
R/W
Flash
No
N/A
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
N/A
No
No
No
No
No
No
No
No
No
No
No
No
N/A
Yes
Yes
Yes
Yes
N/A
No
N/A
Yes
Yes
Yes
Yes
Yes
Yes
PAGE_ID
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x01
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
Address
0x00
0x02 to 0x04
0x06
0x08
0x0A
0x0C
0x0E
0x10
0x12
0x14
0x16
0x18
0x1A
0x1C
0x1E
0x20
0x22
0x24
0x26
0x28
0x2A
0x2C
0x2E
0x30
0x32 to 0x3E
0x40
0x42
0x44
0x46
0x48
0x4A
0x4C
0x4E
0x50
0x52
0x54
0x56
0x58 to 0x76
0x78
0x7A
0x7C
0x7E
0x00 to 0x7E
0x00
0x02
0x04
0x06
0x08
0x0A
0x0C
0x0E
Default
0x00
N/A
N/A
0x0000
0x0000
0x0000
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
0x4068
N/A
0x00
N/A
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
Register Description
Page identifier
Reserved
Sequence counter
Output, system error flags
Output, self-test error flags
Output, alarm error flags
Output, temperature
Output, x-axis gyroscope, low word
Output, x-axis gyroscope, high word
Output, y-axis gyroscope, low word
Output, y-axis gyroscope, high word
Output, z-axis gyroscope, low word
Output, z-axis gyroscope, high word
Output, x-axis accelerometer, low word
Output, x-axis accelerometer, high word
Output, y-axis accelerometer, low word
Output, y-axis accelerometer, high word
Output, z-axis accelerometer, low word
Output, z-axis accelerometer, high word
Output, x-axis magnetometer, high word
Output, y-axis magnetometer, high word
Output, z-axis magnetometer, high word
Output, barometer, low word
Output, barometer, high word
Reserved
Output, x-axis delta angle, low word
Output, x-axis delta angle, high word
Output, y-axis delta angle, low word
Output, y-axis delta angle, high word
Output, z-axis delta angle, low word
Output, z-axis delta angle, high word
Output, x-axis delta velocity, low word
Output, x-axis delta velocity, high word
Output, y-axis delta velocity, low word
Output, y-axis delta velocity, high word
Output, z-axis delta velocity, low word
Output, z-axis delta velocity, high word
Reserved
Factory configuration time: minutes/seconds
Factory configuration date/time: day/hour
Factory configuration date: year/month
Output, product identification (16,488)
Reserved
Page identifier
Reserved
Calibration, scale, x-axis gyroscope
Calibration, scale, y-axis gyroscope
Calibration, scale, z-axis gyroscope
Calibration, scale, x-axis accelerometer
Calibration, scale, y-axis accelerometer
Calibration, scale, z-axis accelerometer
Rev. B | Page 11 of 36
Format
N/A
N/A
Table 56
Table 47
Table 48
Table 49
Table 45
Table 14
Table 10
Table 15
Table 11
Table 16
Table 12
Table 21
Table 17
Table 22
Table 18
Table 23
Table 19
Table 38
Table 39
Table 40
Table 44
Table 42
N/A
Table 28
Table 24
Table 29
Table 25
Table 30
Table 26
Table 35
Table 31
Table 36
Table 32
Table 37
Table 33
N/A
Table 124
Table 125
Table 126
Table 53
N/A
N/A
N/A
Table 71
Table 72
Table 73
Table 81
Table 82
Table 83
ADIS16488
Name
XG_BIAS_LOW
XG_BIAS_HIGH
YG_BIAS_LOW
YG_BIAS_HIGH
ZG_BIAS_LOW
ZG_BIAS_HIGH
XA_BIAS_LOW
XA_BIAS_HIGH
YA_BIAS_LOW
YA_BIAS_HIGH
ZA_BIAS_LOW
ZA_BIAS_HIGH
HARD_IRON_X
HARD_IRON_Y
HARD_IRON_Z
SOFT_IRON_S11
SOFT_IRON_S12
SOFT_IRON_S13
SOFT_IRON_S21
SOFT_IRON_S22
SOFT_IRON_S23
SOFT_IRON_S31
SOFT_IRON_S32
SOFT_IRON_S33
BR_BIAS_LOW
BR_BIAS_HIGH
Reserved
USER_SCR_1
USER_SCR_2
USER_SCR_3
USER_SCR_4
FLSHCNT_LOW
FLSHCNT_HIGH
PAGE_ID
GLOB_CMD
Reserved
FNCTIO_CTRL
GPIO_CTRL
CONFIG
DEC_RATE
NULL_CNFG
SLP_CNT
Reserved
FILTR_BNK_0
FILTR_BNK_1
Reserved
ALM_CNFG_0
ALM_CNFG_1
ALM_CNFG_2
Reserved
XG_ALM_MAGN
YG_ALM_MAGN
ZG_ALM_MAGN
Data Sheet
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
N/A
R/W
R/W
R/W
R/W
R
R
R/W
W
N/A
R/W
R/W
R/W
R/W
R/W
R/W
N/A
R/W
R/W
N/A
R/W
R/W
R/W
N/A
R/W
R/W
R/W
Flash
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
N/A
Yes
Yes
Yes
Yes
Yes
Yes
No
No
N/A
Yes
Yes
Yes
Yes
Yes
No
N/A
Yes
Yes
N/A
Yes
Yes
Yes
N/A
Yes
Yes
Yes
PAGE_ID
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x02
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
Address
0x10
0x12
0x14
0x16
0x18
0x1A
0x1C
0x1E
0x20
0x22
0x24
0x26
0x28
0x2A
0x2C
0x2E
0x30
0x32
0x34
0x36
0x38
0x3A
0x3C
0x3E
0x40
0x42
0x44 to 0x72
0x74
0x76
0x78
0x7A
0x7C
0x7E
0x00
0x02
0x04
0x06
0x08
0x0A
0x0C
0x0E
0x10
0x12 to 0x14
0x16
0x18
0x1A to 0x1E
0x20
0x22
0x24
0x26
0x28
0x2A
0x2C
Default
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
N/A
0x0000
0x0000
0x0000
0x0000
N/A
N/A
0x0000
N/A
N/A
0x000D
0x00X0 1
0x00C0
0x0000
0x070A
N/A
N/A
0x0000
0x0000
N/A
0x0000
0x0000
0x0000
N/A
0x0000
0x0000
0x0000
Register Description
Calibration, offset, gyroscope, x-axis, low word
Calibration, offset, gyroscope, x-axis, high word
Calibration, offset, gyroscope, y-axis, low word
Calibration, offset, gyroscope, y-axis, high word
Calibration, offset, gyroscope, z-axis, low word
Calibration, offset, gyroscope, z-axis, high word
Calibration, offset, accelerometer, x-axis, low word
Calibration, offset, accelerometer, x-axis, high word
Calibration, offset, accelerometer, y-axis, low word
Calibration, offset, accelerometer, y-axis, high word
Calibration, offset, accelerometer, z-axis, low word
Calibration, offset, accelerometer, z-axis, high word
Calibration, hard iron, magnetometer, x-axis
Calibration, hard iron, magnetometer, y-axis
Calibration, hard iron, magnetometer, z-axis
Calibration, soft iron, magnetometer, S11
Calibration, soft iron, magnetometer, S12
Calibration, soft iron, magnetometer, S13
Calibration, soft iron, magnetometer, S21
Calibration, soft iron, magnetometer, S22
Calibration, soft iron, magnetometer, S23
Calibration, soft iron, magnetometer, S31
Calibration, soft iron, magnetometer, S32
Calibration, soft iron, magnetometer, S33
Calibration, offset, barometer, low word
Calibration, offset, barometer, high word
Reserved
User Scratch Register 1
User Scratch Register 2
User Scratch Register 3
User Scratch Register 4
Diagnostic, flash memory count, low word
Diagnostic, flash memory count, high word
Page identifier
Control, global commands
Reserved
Control, I/O pins, functional definitions
Control, I/O pins, general purpose
Control, clock, and miscellaneous correction
Control, output sample rate decimation
Control, automatic bias correction configuration
Control, power-down/sleep mode
Reserved
Filter selection
Filter selection
Reserved
Alarm configuration
Alarm configuration
Alarm configuration
Reserved
Alarm, x-axis gyroscope threshold setting
Alarm, y-axis gyroscope threshold setting
Alarm, z-axis gyroscope threshold setting
Rev. B | Page 12 of 36
Format
Table 67
Table 64
Table 68
Table 65
Table 69
Table 66
Table 78
Table 75
Table 79
Table 76
Table 80
Table 77
Table 84
Table 85
Table 86
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 99
Table 98
N/A
Table 120
Table 121
Table 122
Table 123
Table 115
Table 116
N/A
Table 114
N/A
Table 117
Table 118
Table 74
Table 55
Table 70
Table 119
N/A
Table 57
Table 58
N/A
Table 110
Table 111
Table 112
N/A
Table 100
Table 101
Table 102
Data Sheet
Name
XA_ALM_MAGN
YA_ALM_MAGN
ZA_ALM_MAGN
XM_ALM_MAGN
YM_ALM_MAGN
ZM_ALM_MAGN
BR_ALM_MAGN
Reserved
FIRM_REV
FIRM_DM
FIRM_Y
Reserved
Reserved
SERIAL_NUM
Reserved
FIR_COEF_Axxx
FIR_COEF_Axxx
FIR_COEF_Bxxx
FIR_COEF_Bxxx
FIR_COEF_Cxxx
FIR_COEF_Cxxx
FIR_COEF_Dxxx
FIR_COEF_Dxxx
1
ADIS16488
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
N/A
R
R
R
N/A
N/A
R
N/A
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Flash
Yes
Yes
Yes
Yes
Yes
Yes
Yes
N/A
Yes
Yes
Yes
N/A
N/A
Yes
N/A
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
PAGE_ID
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x03
0x04
0x04
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
Address
0x2E
0x30
0x32
0x34
0x36
0x38
0x3A
0x3C to 0x76
0x78
0x7A
0x7C
0x7E
0x00 to 0x18
0x20
0x22 to 0x7F
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
0x00 to 0x7E
Default
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
0x0000
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
Register Description
Alarm, x-axis accelerometer threshold
Alarm, y-axis accelerometer threshold
Alarm, z-axis accelerometer threshold
Alarm, x-axis magnetometer threshold
Alarm, y-axis magnetometer threshold
Alarm, z-axis magnetometer threshold
Alarm, barometer threshold setting
Reserved
Firmware revision
Firmware programming date: day/month
Firmware programming date: year
Reserved
Reserved
Serial number
Reserved
FIR Filter Bank A, Coefficients 0 through 59
FIR Filter Bank A, Coefficients 60 through 119
FIR Filter Bank B, Coefficients 0 through 59
FIR Filter Bank B, Coefficients 60 through 119
FIR Filter Bank C, Coefficients 0 through 59
FIR Filter Bank C, Coefficients 60 through 119
FIR Filter Bank D, Coefficients 0 through 59
FIR Filter Bank D, Coefficients 60 through 119
The GPIO_CTRL[7:4] bits reflect the logic levels on the DIOx lines and do not have a default setting.
Rev. B | Page 13 of 36
Format
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
N/A
Table 50
Table 51
Table 52
N/A
N/A
Table 54
N/A
Table 59
Table 59
Table 60
Table 60
Table 61
Table 61
Table 62
Table 62
ADIS16488
Data Sheet
OUTPUT DATA REGISTERS
After the ADIS16488 completes its start-up process, the PAGE_ID
register contains 0x0000, which sets Page 0 as the active page
for SPI access. Page 0 contains the output data, real-time clock,
status, and product identification registers.
Table 11. Y_GYRO_OUT (Page 0, Base Address = 0x16)
Bits
[15:0]
INERTIAL SENSOR DATA FORMAT
Table 12. Z_GYRO_OUT (Page 0, Base Address = 0x1A)
The gyroscope, accelerometer, delta angle, delta velocity, and
barometer output data registers use a 32-bit, twos complement
format. Each output uses two registers to support this resolution.
Figure 18 provides an example of how each register contributes
to each inertial measurement. In this case, X_GYRO_OUT is
the most significant word (upper 16 bits), and X_GYRO_LOW is
the least significant word (lower 16 bits). In many cases, using
the most significant word registers alone provide sufficient
resolution for preserving key performance metrics.
Bits
[15:0]
Rotation Rate
+450°/sec
+0.04/sec
+0.02°/sec
0°/sec
−0.02°/sec
−0.04°/sec
−450°/sec
X_GYRO_LOW
0 15
0
X-AXIS GYROSCOPE DATA
Figure 18. Gyroscope Output Format Example, DEC_RATE > 0
Decimal
+22,500
+2
+1
0
−1
−2
−22,500
Hex
0x57E4
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0xA81C
Table 14. X_GYRO_LOW (Page 0, Base Address = 0x10)
Bits
[15:0]
ROTATION RATE (GYROSCOPE)
The registers that use the x_GYRO_OUT format are the primary
registers for the gyroscope measurements (see Table 10, Table 11,
and Table 12). When processing data from these registers, use
a 16-bit, twos complement data format. Table 13 provides
x_GYRO_OUT digital coding examples.
Description
X-axis gyroscope data; additional resolution bits
Table 15. Y_GYRO_LOW (Page 0, Base Address = 0x14)
Bits
[15:0]
Description
Y-axis gyroscope data; additional resolution bits
Table 16. Z_GYRO_LOW (Page 0, Base Address = 0x18)
Table 10. X_GYRO_OUT (Page 0, Base Address = 0x12)
Bits
[15:0]
Description
X-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Description
Z-axis gyroscope data; additional resolution bits
Z-AXIS
aZ
mZ
gZ
mX
X-AXIS
mY
Y-AXIS
aX
gX
10277-017
aY
gY
Binary
0101 0111 1110 0100
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1010 1000 0001 1100
The registers that use the x_GYRO_LOW naming format provide
additional resolution for the gyroscope measurements (see
Table 14, Table 15, and Table 16). The MSB has a weight of
0.01°/sec, and each subsequent bit has ½ the weight of the
previous one.
The arrows in Figure 19 describe the direction of the motion,
which produces a positive output response in each sensor’s
output register. The accelerometers respond to both dynamic
and static forces associated with acceleration, including gravity.
When lying perfectly flat, as shown in Figure 19, the z-axis
accelerometer output is 1 g, and the x and y accelerometers are 0 g.
Bits
[15:0]
Description
Z-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 13. x_GYRO_OUT Data Format Examples
10277-016
X_GYRO_OUT
15
Description
Y-axis gyroscope data; twos complement,
±450°/sec range, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
PIN 23
PIN 1
Figure 19. Inertial Sensor Direction Reference Diagram
Rev. B | Page 14 of 36
Data Sheet
ADIS16488
ACCELERATION
DELTA ANGLES
The registers that use the x_ACCL_OUT format are the primary
registers for the accelerometer measurements (see Table 17,
Table 18, and Table 19). When processing data from these
registers, use a 16-bit, twos complement data format. Table 20
provides x_ACCL_OUT digital coding examples.
The delta angle outputs represent an integration of the gyroscope measurements and use the following formula for all
three axes (x-axis displayed):
Table 17. X_ACCL_OUT (Page 0, Base Address = 0x1E)
where:
ωx is the gyroscope, x-axis.
ΔtS is the time between samples.
Bits
[15:0]
Description
X-axis accelerometer data; twos complement,
±18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Description
Y-axis accelerometer data; twos complement,
±18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 19. Z_ACCL_OUT (Page 0, Base Address = 0x26)
Bits
[15:0]
Description
Z-axis accelerometer data; twos complement,
±18 g range, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 20. x_ACCL_OUT Data Format Examples
Acceleration
+18 g
+1.6 mg
+0.8 mg
0 mg
−0.8 mg
−1.6 mg
−18 g
Decimal
+22,500
+2
+1
0
−1
−2
−22,500
Hex
0x57E4
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0xA81C
Binary
0101 0111 1110 0100
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1010 1000 0001 1100
The registers that use the x_ACCL_LOW naming format
provide additional resolution for the accelerometer
measurements (see Table 21, Table 22, and Table 23). The
MSB has a weight of 0.4 mg, and each subsequent bit has ½
the weight of the previous one.
DEC _ RATE + 1
fS
Description
X-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Table 25. Y_DELTANG_OUT (Page 0, Base Address = 0x46)
Bits
[15:0]
Description
Y-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Description
Z-axis delta angle data; twos complement,
±720° range, 0° = 0x0000, 1 LSB = 720°/215 = ~0.022°
Table 27. x_DELTANG_OUT Data Format Examples
Description
X-axis accelerometer data; additional resolution bits
Description
Y-axis accelerometer data; additional resolution bits
Table 23. Z_ACCL_LOW (Page 0, Base Address = 0x24)
Bits
[15:0]
× (ω x ,n + 1 + ω x ,n ) ; Δt S =
Table 24. X_DELTANG_OUT (Page 0, Base Address = 0x42)
Bits
[15:0]
Bits
[15:0]
Table 22. Y_ACCL_LOW (Page 0, Base Address = 0x20)
Bits
[15:0]
2
Table 26. Z_DELTANG_OUT (Page 0, Base Address = 0x4A)
Table 21. X_ACCL_LOW (Page 0, Base Address = 0x1C)
Bits
[15:0]
∆t S
When using the internal sample clock, fS is equal to 2.46 kHz.
When using the external clock option, the time between samples
is the time between active edges on the input clock signal, as
measured by the internal clock (252 MHz). See Table 55 for
more information on the DEC_RATE register. The registers
that use the x_DELTANG_OUT format are the primary
registers for the delta angle calculations. When processing data
from these registers, use a 16-bit, twos complement data format
(see Table 24, Table 25, and Table 26). Table 27 provides
x_DELTANG_OUT digital coding examples.
Table 18. Y_ACCL_OUT (Page 0, Base Address = 0x22)
Bits
[15:0]
∆θ x =
Description
Z-axis accelerometer data; additional resolution bits
Angle (°)
+720 × (215 − 1)/215
+1440/215
+720/215
0
−720/215
−1440/215
−720
Rev. B | Page 15 of 36
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Binary
0111 1111 1110 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
ADIS16488
Data Sheet
The registers that use the x_DELTANG_LOW format provide
additional resolution for the gyroscope measurements (see
Table 28, Table 29, and Table 30). The MSB has a weight of
~0.011° (720°/216), and each subsequent bit carries a weight of
½ of the previous one.
Table 28. X_DELTANG_LOW (Page 0, Base Address = 0x40)
Bits
[15:0]
Description
X-axis delta angle data; additional resolution bits
Table 31. X_DELTVEL_OUT (Page 0, Base Address = 0x4E)
Bits
[15:0]
Table 32. Y_DELTVEL_OUT (Page 0, Base Address = 0x52)
Bits
[15:0]
Table 29. Y_DELTANG_LOW (Page 0, Base Address = 0x44)
Bits
[15:0]
Description
Y-axis delta angle data; additional resolution bits
Bits
[15:0]
Description
Z-axis delta angle data; additional resolution bits
Velocity (m/sec)
+160 × (215 − 1)/215
+400/215
+200/215
0
−200/215
−400/215
−160
The delta velocity outputs represent an integration of the
accelerometer measurements and use the following formula
for all three axes (x-axis displayed):
∆t S
2
× (a x ,n + 1 + a x ,n ) ; Δt S =
Description
Z-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 − 1) = ~6.104 mm/sec
Table 34. x_DELTVEL_OUT, Data Format Examples
DELTA VELOCITY
∆θ x =
Description
Y-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 − 1) = ~6.104 mm/sec
Table 33. Z_DELTVEL_OUT (Page 0, Base Address = 0x56)
Table 30. Z_DELTANG_LOW (Page 0, Base Address = 0x48)
Bits
[15:0]
Description
X-axis delta velocity data; twos complement,
±200 m/sec range, 0 m/sec = 0x0000
1 LSB = 200 m/sec ÷ (215 – 1) = ~6.104 mm/sec
DEC _ RATE + 1
fS
where:
ax is the accelerometer, x-axis.
ΔtS is the time between samples.
When using the internal sample clock, fS is equal to 2.46 kHz.
When using the external clock option, the time between samples
is the time between active edges on the input clock signal, as
measured by the internal clock (252 MHz). See Table 55 for
more information on the DEC_RATE register. The registers
that use the x_DELTVEL_OUT format are the primary registers
for the delta velocity calculations. When processing data from
these registers, use a 16-bit, twos complement data format (see
Table 31, Table 32, and Table 33). Table 34 provides
x_DELTVEL_OUT digital coding examples.
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Binary
0111 1111 1111 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
The registers that use the x_DELTVEL_LOW naming format
provide additional resolution for the gyroscope measurements
(see Table 35, Table 36, and Table 37). The MSB has a weight
of ~3.052 mm/sec (200 m/sec ÷ 216), and each subsequent bit
carries a weight of ½ of the previous one.
Table 35. X_DELTVEL_LOW (Page 0, Base Address = 0x4C)
Bits
[15:0]
Description
X-axis delta velocity data; additional resolution bits
Table 36. Y_DELTVEL_LOW (Page 0, Base Address = 0x50)
Bits
[15:0]
Description
Y-axis delta velocity data; additional resolution bits
Table 37. Z_DELTVEL_LOW (Page 0, Base Address = 0x54)
Bits
[15:0]
Rev. B | Page 16 of 36
Description
Z-axis delta velocity data; additional resolution bits
Data Sheet
ADIS16488
Table 42. BAROM_OUT (Page 0, Base Address = 0x30)
MAGNETOMETERS
The registers that use the x_MAGN_OUT format are the primary
registers for the magnetometer measurements. When processing
data from these registers, use a 16-bit, twos complement data
format. Table 38, Table 39, and Table 40 provide each register’s
numerical format, and Table 41 provides x_MAGN_OUT digital
coding examples.
Table 38. X_MAGN_OUT (Page 0, Base Address = 0x28)
Bits
[15:0]
Description
X-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 39. Y_MAGN_OUT (Page 0, Base Address = 0x2A)
Bits
[15:0]
Bits
[15:0]
Description
Barometric pressure; twos complement,
±1.31 bar range, 0 bar = 0x0000, 40 µbar/LSB
Table 43. BAROM_OUT Data Format Examples
Pressure (bar)
+0.00004 × (215 − 1)
+0.00008
+0.00004
0
−0.00004
−0.00008
−0.00004 × 215
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Binary
0111 1111 1110 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
The BAROM_LOW register provides additional resolution for the
barometric pressure measurement. The MSB has a weight of
20 µbar, and each subsequent bit carries a weight of ½ of the
previous one.
Description
Y-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 40. Z_MAGN_OUT (Page 0, Base Address = 0x2C)
Table 44. BAROM_LOW (Page 0, Base Address = 0x2E)
Bits
[15:0]
Bits
[15:0]
Description
Z-axis magnetometer data; twos complement,
±3.2767 gauss range, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
INTERNAL TEMPERATURE
Table 41. x_MAGN_OUT Data Format Examples
Magnetic Field
+3.2767 gauss
+0.2 mgauss
+0.1 mgauss
0 gauss
−0.1 mgauss
−0.2 mgauss
−3.2768 gauss
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Description
Barometric pressure; additional resolution bits
Binary
0111 1111 1111 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
BAROMETER
The BAROM_OUT register (see Table 42) and BAROM_LOW
register (see Table 44) provide access to the barometric pressure
data. These two registers combine to provide a 32-bit, twos
complement format. Some applications are able to use
BAROM_OUT by itself. For cases where the finer resolution
available from BAROM_LOW is valuable, combine them in
the same manner as the gyroscopes (see Figure 18). When
processing data from the BAROM_OUT register alone, use a
16-bit, twos complement data format. Table 42 provides the
numerical format in BAROM_OUT, and Table 43 provides
digital coding examples.
The TEMP_OUT register provides an internal temperature
measurement that can be useful for observing relative temperature
changes inside of the ADIS16488 (see Table 45). Table 46
provides TEMP_OUT digital coding examples. Note that this
temperature reflects a higher temperature than ambient, due to
self-heating.
Table 45. TEMP_OUT (Page 0, Base Address = 0x0E)
Bits
[15:0]
Description
Temperature data; twos complement,
0.00565°C per LSB, 25°C = 0x0000
Table 46. TEMP_OUT Data Format Examples
Temperature (°C)
+85
+25 + 0.0113
+25 + 0.00565
+25
+25 − 0.00565
+25 − 0.0113
−40
Rev. B | Page 17 of 36
Decimal
+10,619
+2
+1
0
−1
−2
−11,504
Hex
0x297B
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0xD310
Binary
0010 1001 0111 1011
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1101 0011 0001 0000
ADIS16488
Data Sheet
STATUS/ALARM INDICATORS
The SYS_E_FLAG register in Table 47 provides the system error
flags and new data bits for the magnetometer and barometer
outputs. The new data flags are useful for triggering data collection of the magnetometer and barometer (x_MAGN_OUT and
BARO_xxx registers) because they update at a fixed rate that is
not dependent on the DEC_RATE setting. Note that reading
SYS_E_FLAG also resets it to 0x0000.
Table 47. SYS_E_FLAG (Page 0, Base Address = 0x08)
Bits
[15]
[14:10]
9
8
7
6
5
4
3
[2:1]
0
1
2
Description (Default = 0x0000)
Watch dog timer flag (1 = timed out)
Not used
New data flag, barometer (1 = new, unread data)1
New data flag, magnetometer (1 = new, unread data)2
Processing overrun (1 = error)
Flash memory update, result of GLOB_CMD[3] = 1
(1 = failed update, 0 = update successful)
Inertial self-test failure (1 = DIAG_STS ≠ 0x0000)
Sensor overrange (1 = at least one sensor overranged)
SPI communication error
(1 = error condition, when the number of SCLK pulses
is not equal to a multiple of 16)
Not used
Alarm status flag (1 = ALM_STS ≠ 0x0000)
The ALM_STS register in Table 49 provides the alarm bits
for the programmable alarm levels of each sensor. Note that
reading ALM_STS also resets it to 0x0000.
Table 49. ALM_STS (Page 0, Base Address = 0x0C)
Bits
[15:12]
11
10
9
8
[7:6]
5
4
3
2
1
0
This flag restores to zero after reading the contents on BAROM_OUT.
This flag restores to zero after reading one x_MAGN_OUT register.
The DIAG_STS register in Table 48 provides the flags for the
internal self-test function, which is from GLOB_CMD[1] (see
Table 114). Note that the barometer’s flag, DIAG_STS[11], only
updates after start-up and reset operations. Note that reading
DIAG_STS also resets it to 0x0000.
Table 48. DIAG_STS (Page 0, Base Address = 0x0A)
Bits
[15:12]
11
10
9
8
[7:6]
5
4
3
2
1
0
Description (Default = 0x0000)
Not used
Self-test failure, barometer (1 = failed at start-up)
Self-test failure, Z-axis magnetometer (1 = failure)
Self-test failure, Y-axis magnetometer (1 = failure)
Self-test failure, X-axis magnetometer (1 = failure)
Not used
Self-test failure, Z-axis accelerometer (1 = failure)
Self-test failure, Y-axis accelerometer (1 = failure)
Self-test failure, X-axis accelerometer (1 = failure)
Self-test failure, Z-axis gyroscope (1 = failure)
Self-test failure, Y-axis gyroscope (1 = failure)
Self-test failure, X-axis gyroscope (1 = failure)
Rev. B | Page 18 of 36
Description (Default = 0x0000)
Not used
Barometer alarm flag (1 = alarm is active)
Z-axis magnetometer alarm flag (1 = alarm is active)
Y-axis magnetometer alarm flag (1 = alarm is active)
X-axis magnetometer alarm flag (1 = alarm is active)
Not used
Z-axis accelerometer alarm flag (1 = alarm is active)
Y-axis accelerometer alarm flag (1 = alarm is active)
X-axis accelerometer alarm flag (1 = alarm is active)
Z-axis gyroscope alarm flag (1 = alarm is active)
Y-axis gyroscope alarm flag (1 = alarm is active)
X-axis gyroscope alarm flag (1 = alarm is active)
Data Sheet
ADIS16488
FIRMWARE REVISION
The FIRM_REV register (see Table 50) provides the firmware
revision for the internal processor. Each nibble represents a
digit in this revision code. For example, if FIRM_REV =
0x0102, the firmware revision is 1.02.
Table 50. FIRM_REV (Page 3, Base Address = 0x78)
Bits
[15:12]
[11:8]
[7:4]
[3:0]
Description
Binary, revision, 10’s digit
Binary, revision, 1’s digit
Binary, revision, tenths digit
Binary, revision, hundredths digit
Bits
[15:12]
[11:8]
[7:4]
[3:0]
Description
Binary, month 10’s digit, range: 0 to 1
Binary, month 1’s digit, range: 0 to 9
Binary, day 10’s digit, range: 0 to 3
Binary, day 1’s digit, range: 0 to 9
Table 52. FIRM_Y (Page 3, Base Address = 0x7C)
Bits
[15:12]
[11:8]
[7:4]
[3:0]
Description
Binary, year 1000’s digit, range: 0 to 9
Binary, year 100’s digit, range: 0 to 9
Binary, year 10’s digit, range: 0 to 9
Binary, year 1’s digit, range: 0 to 9
PRODUCT IDENTIFICATION
The FIRM_DM register (see Table 51) contains the month and
day of the factory configuration date. FIRM_DM[15:12] and
FIRM_DM[11:8] contain digits that represent the month
of factory configuration. For example, November is the 11th
month in a year and represented by FIRM_DM[15:8] = 0x11.
FIRM_DM[7:4] and FIRM_DM[3:0] contain digits that represent
the day of factory configuration. For example, the 27th day of
the month is represented by FIRM_DM[7:0] = 0x27.
Table 51. FIRM_DM (Page 3, Base Address = 0x7A)
The FIRM_Y register (see Table 52) contains the year of the
factory configuration date. For example, the year of 2013 is
represented by FIRM_Y = 0x2013.
The PROD_ID register (see Table 53) contains the binary
equivalent of the part number (16,488 = 0x4068), and the
SERIAL_NUM register (see Table 54) contains a lot-specific
serial number.
Table 53. PROD_ID (Page 0, Base Address = 0x7E)
Bits
[15:0]
Description (Default = 0x4068)
Product identification = 0x4068
Table 54. SERIAL_NUM (Page 4, Base Address = 0x20)
Bits
[15:0]
Rev. B | Page 19 of 36
Description
Lot-specific serial number
ADIS16488
Data Sheet
DIGITAL SIGNAL PROCESSING
GYROSCOPES/ACCELEROMETERS
MAGNETOMETER/BAROMETER
Figure 20 provides a signal flow diagram for all of the components and settings that influence the frequency response for
the accelerometers and gyroscopes. The sample rate for each
accelerometer and gyroscope is 9.84 kHz. Each sensor has
its own averaging/decimation filter stage, which reduces the
update rate to 2.46 kSPS. When using the external clock option
(FNCTIO_CTRL[7:4], see Table 117), the input clock drives a
4-sample burst at a sample rate of 9.84kSPS, which feeds into
the 4x averaging/decimation filter. This results in a data rate
that is equal to the input clock frequency.
When using the internal sampling clock, the magnetometer
output registers (xMAGN_OUT) update at a rate of 102.5 SPS
and the barometer output registers (BARO_xxx) update at a rate
of 51.25 SPS. When using the external clock, the magnetometers update at a rate of 1/24th of the input clock frequency and
the barometers update at a rate that is 1/48th of the input clock
frequency. The update rates for the magnetometer and barometers do not change with the DEC_RATE register settings.
SYS_E_FLAG[9:8] (see Table 47) offers new data bits for these
registers and the SEQ_CNT register provides a counter function
to help determine when there is new data in the magnetometer
and barometer registers. When SEQ_CNT = 0x0001, there is
new data in the magnetometer and barometer output registers.
The SEQ_CNT register can be useful during initialization to
help synchronize read loops for new data in both magnetometer
and barometer outputs. When beginning a continuous read loop,
read SEQ_CNT, then subtract this value from the maximum value
shown (range) in Table 56 to calculate the number of internal
sample cycles until both magnetometer and barometer data is
new.
AVERAGING/DECIMATION FILTER
The DEC_RATE register (see Table 55) provides user control for
the final filter stage (see Figure 20), which averages and decimates
the accelerometers, gyroscopes, delta angle, and delta velocity data.
The output sample rate is equal to 2460/(DEC_RATE + 1). When
using the external clock option (FNCTIO_CTRL[7:4], see Table
117), replace the “2460” number in this relationship, with the input
clock frequency. For example, turn to Page 3 (DIN = 0x8003),
and set DEC_RATE = 0x18 (DIN = 0x8C18, then DIN = 0x8D00)
to reduce the output sample rate to 98.4 SPS (2460 ÷ 25).
Table 56. SEQ_CNT (Page 0, Base Address = 0x06)
Table 55. DEC_RATE (Page 3, Base Address = 0x0C)
Description (Default = 0x0000)
Don’t care
Decimation rate, binary format, maximum = 2047
See Figure 20 for impact on sample rate
Description
Don’t care
Binary counter: range = 1 to 48/(DEC_RATE + 1)
2.46kHz, fs
MEMS
SENSOR
1
4
330Hz
GYROSCOPE
2-POLE: 404Hz, 757Hz
ACCELEROMETER
1-POLE: 330Hz
INTERNAL
CLOCK
9.84kHz
fs
4
FIR
FILTER
BANK
÷4
4×
AVERAGE
DECIMATION
FILTER
1
D
D
÷D
SELECTABLE AVERAGE/DECIMATION FILTER
FIR FILTER BANK
D = DEC_RATE[10:0] + 1
FILTR_BNK_0
FILTR_BNK_1
DIOx
OPTIONAL INPUT CLOCK
FNCTIO_CTRL[7] = 1
fs < 2400Hz
NOTES
1. WHEN FNCTIO_CTRL[7] = 1, EACH CLOCK PULSE ON THE DESIGNATED DIOx LINE (FNCTIO_CTRL[5:4]) STARTS A 4-SAMPLE BURST,
AT A SAMPLE RATE OF 9.84kHz. THESE FOUR SAMPLES FEED INTO THE 4x AVERAGE/DECIMATION FILTER, WHICH PRODUCES A
DATA RATE THAT IS EQUAL TO THE INPUT CLOCK FREQUENCY.
Figure 20. Sampling and Frequency Response Block Diagram
Rev. B | Page 20 of 36
10277-018
Bits
[15:11]
[10:0]
Bits
[15:11]
[6:0]
Data Sheet
ADIS16488
FIR FILTER BANKS
Filter Memory Organization
The ADIS16488 provides four configurable, 120-tap FIR filter
banks. Each coefficient is 16 bits wide and occupies its own
register location with each page. When designing a FIR filter for
these banks, use a sample rate of 2.46 kHz and scale the coefficients
so that their sum equals 32,768. For filter designs that have less
than 120 taps, load the coefficients into the lower portion of
the filter and start with Coefficient 1. Make sure that all unused
taps are equal to zero, so that they do not add phase delay to the
response. The FILTR_BNK_x registers provide three bits per
sensor, which configure the filter bank (A, B, C, D) and turn
filtering on and off. For example, turn to Page 3 (DIN =
0x8003), then write 0x0057 to FILTR_BNK_0 (DIN = 0x9657,
DIN = 0x9700) to set the x-axis gyroscope to use the FIR filter
in Bank D, to set the y-axis gyroscope to use the FIR filter in
Bank B, and to enable these FIR filters in both x- and y-axis
gyroscopes. Note that the filter settings update after writing to
the upper byte; therefore, always configure the lower byte first.
In cases that require configuration to only the lower byte of
either FILTR_BNK_0 or FILTR_BNK_1, complete the process
by writing 0x00 to the upper byte.
Each filter bank uses two pages of the user register structure.
See Table 59, Table 60, Table 61, and Table 62 for the register
addresses in each filter bank.
Table 57. FILTR_BNK_0 (Page 3, Base Address = 0x16)
Bits
15
14
[13:12]
11
[10:9]
8
[7:6]
5
[4:3]
2
[1:0]
Description (Default = 0x0000)
Don’t care
Y-axis accelerometer filter enable (1 = enabled)
Y-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
X-axis accelerometer filter enable (1 = enabled)
X-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Z-axis gyroscope filter enable (1 = enabled)
Z-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Y-axis gyroscope filter enable (1 = enabled)
Y-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
X-axis gyroscope filter enable (1 = enabled)
X-axis gyroscope filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Table 58. FILTR_BNK_1 (Page 3, Base Address = 0x18)
Bits
[15:12]
11
[10:9]
8
[7:6]
5
[4:3]
2
[1:0]
Description (Default = 0x0000)
Don’t care
Z-axis magnetometer filter enable (1 = enabled)
Z-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Y-axis magnetometer filter enable (1 = enabled)
Y-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
X-axis magnetometer filter enable (1 = enabled)
X-axis magnetometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Z-axis accelerometer filter enable (1 = enabled)
Z-axis accelerometer filter bank selection:
00 = Bank A, 01 = Bank B, 10 = Bank C, 11 = Bank D
Table 59. Filter Bank A Memory Map
Page
5
5
5
5
5
PAGE_ID
0x05
0x05
0x05
0x05
0x05
Address
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
5
6
6
6
6
6
0x05
0x06
0x06
0x06
0x06
0x06
0x7E
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
6
0x06
0x7E
Register
PAGE_ID
Not used
FIR_COEF_A000
FIR_COEF_A001
FIR_COEF_A002 to
FIR_COEF_A058
FIR_COEF_A059
PAGE_ID
Not used
FIR_COEF_A060
FIR_COEF_A061
FIR_COEF_A062 to
FIR_COEF_A118
FIR_COEF_D119
Table 60. Filter Bank B Memory Map
Page
7
7
7
7
7
PAGE_ID
0x07
0x07
0x07
0x07
0x07
Address
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
7
8
8
8
8
8
0x07
0x08
0x08
0x08
0x08
0x08
0x7E
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
8
0x08
0x7E
Register
PAGE_ID
Not used
FIR_COEF_B000
FIR_COEF_B001
FIR_COEF_B002 to
FIR_COEF_B058
FIR_COEF_B059
PAGE_ID
Not used
FIR_COEF_B060
FIR_COEF_B061
FIR_COEF_B062 to
FIR_COEF_B118
FIR_COEF_B119
Table 61. Filter Bank C Memory Map
Page
9
9
9
9
9
PAGE_ID
0x09
0x09
0x09
0x09
0x09
Address
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
9
10
10
10
10
10
0x09
0x0A
0x0A
0x0A
0x0A
0x0A
0x7E
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
10
0x0A
0x7E
Rev. B | Page 21 of 36
Register
PAGE_ID
Not used
FIR_COEF_C000
FIR_COEF_C001
FIR_COEF_C002 to
FIR_COEF_C058
FIR_COEF_C059
PAGE_ID
Not used
FIR_COEF_C060
FIR_COEF_C061
FIR_COEF_C062 to
FIR_COEF_C118
FIR_COEF_C119
ADIS16488
Data Sheet
Table 62. Filter Bank D Memory Map
Table 63. FIR Filter Descriptions, Default Configuration
Page
11
11
11
11
11
PAGE_ID
0x0B
0x0B
0x0B
0x0B
0x0B
Address
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
FIR Filter Bank
A
B
C
D
11
12
12
12
12
12
0x0B
0x0C
0x0C
0x0C
0x0C
0x0C
0x7E
0x00
0x02 to 0x07
0x08
0x0A
0x0C to 0x7C
12
0x0C
0x7E
Register
PAGE_ID
Not used
FIR_COEF_D000
FIR_COEF_D001
FIR_COEF_D002 to
FIR_COEF_D058
FIR_COEF_D059
PAGE_ID
Not used
FIR_COEF_D060
FIR_COEF_D061
FIR_COEF_D062 to
FIR_COEF_D118
FIR_COEF_D119
Taps
120
120
32
32
−3 dB Frequency (Hz)
310
55
275
63
0
–10
MAGNITUDE (dB)
–20
B
D
A
NO FIR
FILTERING
C
–30
–40
–50
–60
–70
Default Filter Performance
–80
Rev. B | Page 22 of 36
–90
–100
0
200
400
600
800
1000
FREQUENCY (Hz)
Figure 21. FIR Filter Frequency Response Curves
1200
10277-019
The FIR filter banks have factory-programmed filter designs. They
are all low-pass filters that have unity dc gain. Table 63 provides
a summary of each filter design, and Figure 21 shows the frequency
response characteristics. The phase delay is equal to ½ of the total
number of taps.
Data Sheet
ADIS16488
CALIBRATION
Bias Null Command
The ADIS16488 factory calibration produces correction formulas
for the gyroscopes, accelerometers, magnetometers, and
barometers, and then programs them into the flash memory.
In addition, there are a series of user-configurable calibration
registers, for in-system tuning.
GYROSCOPES
The user-calibration for the gyroscopes includes registers for
adjusting bias and sensitivity, as shown in Figure 22.
1 + X_GYRO_SCALE
FACTORY
CALIBRATION
AND
FILTERING
XG_BIAS_HIGH
X_GYRO_OUT
X_GYRO_LOW
10277-020
X-AXIS
GYRO
XG_BIAS_LOW
Figure 22. User Calibration Signal Path, Gyroscopes
Manual Bias Correction
The xG_BIAS_HIGH registers (see Table 64, Table 65, and
Table 66) and xG_BIAS_LOW registers (see Table 67, Table 68,
and Table 69) provide a bias adjustment function for the output
of each gyroscope sensor.
Table 64. XG_BIAS_HIGH (Page 2, Base Address = 0x12)
Bits
[15:0]
Description (Default = 0x0000)
X-axis gyroscope offset correction, upper word
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 65. YG_BIAS_HIGH (Page 2, Base Address = 0x16)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 66. ZG_BIAS_HIGH (Page 2, Base Address = 0x1A)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis gyroscope offset correction, upper word;
twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 67. XG_BIAS_LOW (Page 2, Base Address = 0x10)
Bits
[15:0]
Description (Default = 0x0000)
X-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 68. YG_BIAS_LOW (Page 2, Base Address = 0x14)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis gyroscope offset correction, lower word;
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
Table 69. ZG_BIAS_LOW (Page 2, Base Address = 0x18)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis gyroscope offset correction, lower word
twos complement, 0°/sec = 0x0000,
1 LSB = 0.02°/sec ÷ 216 = ~0.000000305°/sec
The continuous bias estimator (CBE) accumulates and
averages data in a 64-sample FIFO. The average time (tA)
for the bias estimates relies on the sample time base setting in
NULL_CNFG[3:0] (see Table 70). Users can load the correction
factors of the CBE into the gyroscope offset correction registers
(see Table 64, Table 65, Table 66, Table 67, Table 68, and Table 69)
using the bias null command in GLOB_CMD[0] (see Table 114).
NULL_CNFG[13:8] provide on/off controls for the sensors that
update when issuing a bias null command. The factory default
configuration for NULL_CNFG enables the bias null command
for the gyroscopes, disables the bias null command for the accelerometers, and establishes the average time to ~26.64 seconds.
Table 70. NULL_CNFG (Page 3, Base Address = 0x0E)
Bits
[15:14]
13
12
11
10
9
8
[7:4]
[3:0]
Description (Default = 0x070A)
Not used
Z-axis acceleration bias correction enable (1 = enabled)
Y-axis acceleration bias correction enable (1 = enabled)
X-axis acceleration bias correction enable (1 = enabled)
Z-axis gyroscope bias correction enable (1 = enabled)
Y-axis gyroscope bias correction enable (1 = enabled)
X-axis gyroscope bias correction enable (1 = enabled)
Not used
Time base control (TBC), range: 0 to 13 (default = 10);
tB = 2TBC/2460, time base,
tA = 64 × tB, average time
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[0] = 1
(DIN = 0x8201, then DIN = 0x8300) to update the user offset
registers with the correction factors of the CBE. Make sure that the
inertial platform is stable during the entire average time for optimal
bias estimates.
Manual Sensitivity Correction
The x_GYRO_SCALE registers enable sensitivity adjustment
(see Table 71, Table 72, and Table 73).
Table 71. X_GYRO_SCALE (Page 2, Base Address = 0x04)
Bits
[15:0]
Description (Default = 0x0000)
X-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.0003052%
Table 72. Y_GYRO_SCALE (Page 2, Base Address = 0x06)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.0003052%
Table 73. Z_GYRO_SCALE (Page 2, Base Address = 0x08)
Bits
[15:0]
Rev. B | Page 23 of 36
Description (Default = 0x0000)
Z-axis gyroscope scale correction; twos complement,
0x0000 = unity gain, 1 LSB = 1 ÷ 215 = ~0.0003052%
ADIS16488
Data Sheet
Linear Acceleration on Effect on Gyroscope Bias
Table 78. XA_BIAS_LOW (Page 2, Base Address = 0x1C)
MEMS gyroscopes typically have a bias response to linear
acceleration that is normal to their axis of rotation. The ADIS16488
offers an optional compensation function for this effect. Turn to
Page 3 (DIN = 0x8003) and set CONFIG[7] = 1 (DIN = 0x9080,
DIN = 0x9100).
Bits
[15:0]
Table 79. YA_BIAS_LOW (Page 2, Base Address = 0x20)
Bits
[15:0]
Table 74. CONFIG (Page 3, Base Address = 0x0A)
Bits
[15:8]
7
6
[5:2]
1
0
Description (Default = 0x00C0)
Not used
Linear-g compensation for gyroscopes (1 = enabled)
Point of percussion alignment (1 = enabled)
Not used
Real-time clock, daylight savings time
(1: enabled, 0: disabled)
Real-time clock control
(1: relative/elapsed timer mode, 0: calendar mode)
Bits
[15:0]
The x_ACCL_SCALE registers enable sensitivity adjustment
(see Table 81, Table 82, Table 83).
Table 81. X_ACCL_SCALE (Page 2, Base Address = 0x0A)
Bits
[15:0]
1 + X_ACCL_SCALE
X_ACCL_LOW
10277-021
XA_BIAS_HIGH
X_ACCL_OUT
XA_BIAS_LOW
Figure 23. User Calibration Signal Path, Gyroscopes
Description (Default = 0x0000)
X-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.0003052%
Table 82. Y_ACCL_SCALE (Page 2, Base Address = 0x0C)
Bits
[15:0]
Manual Bias Correction
The xA_BIAS_HIGH (see Table 75, Table 76, and Table 77) and
xA_BIAS_LOW (see Table 78, Table 79, and Table 80) registers
provide a bias adjustment function for the output of each gyroscope
sensor. The xA_BIAS_HIGH registers use the same format as
x_ACCL_OUT registers. The xA_BIAS_LOW registers use the
same format as x_ACCL_LOW registers.
Description (Default = 0x0000)
Z-axis accelerometer offset correction, low word;,
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Manual Sensitivity Correction
The user-calibration for the accelerometers includes registers
for adjusting bias and sensitivity, as shown in Figure 23.
FACTORY
CALIBRATION
AND
FILTERING
Description (Default = 0x0000)
Y-axis accelerometer offset correction, low word,
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Table 80. ZA_BIAS_LOW (Page 2, Base Address = 0x24)
ACCELEROMETERS
X-AXIS
ACCL
Description (Default = 0x0000)
X-axis accelerometer offset correction, low word,
Twos complement, 0 g = 0x0000,
1 LSB = 0.8 mg ÷ 216 = ~0.0000122 mg
Description (Default = 0x0000)
Y-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.0003052%
Table 83. Z_ACCL_SCALE (Page 2, Base Address = 0x0E)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis accelerometer scale correction,
Twos complement, 0x0000 = unity gain,
1 LSB = 1 ÷ 215 = ~0.0003052%
Table 75. XA_BIAS_HIGH (Page 2, Base Address = 0x1E)
MAGNETOMETERS
Bits
[15:0]
The user calibration registers enable both hard-iron and softiron correction, as shown in the following relationship:
Description (Default = 0x0000)
X-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
 M XC  1 + S11
 

 M YC  =  S 21
 M ZC   S 31
 

Table 76. YA_BIAS_HIGH (Page 2, Base Address = 0x22)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 77. ZA_BIAS_HIGH (Page 2, Base Address = 0x26)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis accelerometer offset correction, high word,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
S12
S13   M X  H X 
1 + S 22 S 23  ×  M Y  +  H Y 
S32 1 + S33  M Z   H Z 
The MX, MY, and MZ variables represent the magnetometer
data, prior to application of the user correction formula. The
MXC, MYC, and MZC represent the magnetometer data, after the
application of the user correction formula.
Rev. B | Page 24 of 36
Data Sheet
ADIS16488
Hard-Iron Correction
Table 89. SOFT_IRON_S12 (Page 2, Base Address = 0x30)
Table 84, Table 85, and Table 86 describe the register format
for the hard-iron correction factors: HX, HY, and HZ. These
registers use a twos complement format. Table 87 provides
some numerical examples for converting the digital codes
for these registers into their decimal equivalent.
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S12
Twos complement format, see Table 97 for examples
Table 90. SOFT_IRON_S13 (Page 2, Base Address = 0x32)
Table 84. HARD_IRON_X (Page 2, Base Address = 0x28)
Bits
[15:0]
Bits
[15:0]
Table 91. SOFT_IRON_S21 (Page 2, Base Address = 0x34)
Description (Default = 0x0000)
X-axis magnetometer hard-iron correction factor, HX
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 87)
Bits
[15:0]
Table 85. HARD_IRON_Y (Page 2, Base Address = 0x2A)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis magnetometer hard-iron correction factor, HY
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 87)
Table 86. HARD_IRON_Z (Page 2, Base Address = 0x2C)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis magnetometer hard-iron correction factor, Hz
Twos complement, ±3.2767 gauss range,
0.1 mgauss/LSB, 0 gauss = 0x0000 (see Table 87)
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Binary
0111 1111 1111 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
Soft-Iron Correction Matrix
The soft-iron correction matrix contains correction factors for
both sensitivity (S11, S22, S33) and alignment (S12, S13, S21, S23, S31,
S32). The registers that represent each soft-iron correction factor
are in Table 88 (S11), Table 89 (S12), Table 90 (S13), Table 91 (S21),
Table 92 (S22), Table 93 (S23), Table 94 (S31), Table 95 (S32), and
Table 96 (S33). Table 97 offers some numerical examples for
converting between the digital codes and their effect on the
magnetometer output, in terms of percent-change.
Table 88. SOFT_IRON_S11 (Page 2, Base Address = 0x2E)
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S21
Twos complement format, see Table 97 for examples
Table 92. SOFT_IRON_S22 (Page 2, Base Address = 0x36)
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S22
Twos complement format, see Table 97 for examples
Table 93. SOFT_IRON_S23 (Page 2, Base Address = 0x38)
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S23
Twos complement format, see Table 97 for examples
Table 94. SOFT_IRON_S31 (Page 2, Base Address = 0x3A)
Table 87. x_MAGN_OUT Data Format Examples
Magnetic Field
+3.2767 gauss
+0.2 mgauss
+0.1 mgauss
0 gauss
−0.1 mgauss
−0.2 mgauss
−3.2768 gauss
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S13
Twos complement format, see Table 97 for examples
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S11
Twos complement format, see Table 97 for examples
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S31
Twos complement format, see Table 97 for examples
Table 95. SOFT_IRON_S32 (Page 2, Base Address = 0x3C)
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S32
Twos complement format, see Table 97 for examples
Table 96. SOFT_IRON_S33 (Page 2, Base Address = 0x3E)
Bits
[15:0]
Description (Default = 0x0000)
Magnetometer soft-iron correction factor, S33
Twos complement format, see Table 97 for examples
Table 97. Soft Iron Correction, Numerical Examples
Delta (%)
+100 – 1/216
+200/215
+100/215
0
−100/215
−200/215
−100
Rev. B | Page 25 of 36
Decimal
+32,767
+2
+1
0
−1
−2
−32,768
Hex
0x7FFF
0x0002
0x0001
0x0000
0xFFFF
0xFFFE
0x8000
Binary
0111 1111 1111 1111
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110
1000 0000 0000 0000
ADIS16488
Data Sheet
BAROMETERS
RESTORING FACTORY CALIBRATION
The BR_BIAS_HIGH register (see Table 98) and
BR_BIAS_LOW register (Table 99) provide an offset
control function and use the same format as the output
registers, BAROM_OUT and BAROM_LOW.
Turn to Page 3 (DIN = 0x8003) and set GLOB_CMD[6] = 1
(DIN = 0xA240, DIN = 0xA300) to execute the factory
calibration restore function. This function resets each user
calibration register to zero, resets all sensor data to 0, and
automatically updates the flash memory within 72 ms. See
Table 114 for more information on GLOB_CMD.
Table 98. BR_BIAS_HIGH (Page 2, Base Address = 0x42)
Description (Default = 0x0000)
Barometric pressure bias correction factor, high word
Twos complement, ±1.3 bar measurement range,
0 bar = 0x0000, 1 LSB = 40 µbar
Table 99. BR_BIAS_LOW (Page 2, Base Address = 0x40)
Bits
[15:0]
Description (Default = 0x0000)
Barometric pressure bias correction factor, low word
Twos complement, ±1.3 bar measurement range,
0 bar = 0x0000, 1 LSB = 40 µbar ÷ 216 = ~0.00061 µbar
POINT OF PERCUSSION ALIGNMENT
CONFIG[6] offers a point of percussion alignment function
that maps the accelerometer sensors to the corner of the package
identified in Figure 24. To activate this feature, turn to Page 3
(DIN = 0x8003), then set CONFIG[6] = 1 (DIN = 0x8A40,
DIN = 0x8B00). See Table 74 for more information on the
CONFIG register.
PIN 23
PIN 1
POINT OF PERCUSSION
ALIGNMENT REFERENCE POINT.
SEE CONFIG[6].
Figure 24. Point of Percussion Reference Point
Rev. B | Page 26 of 36
10277-022
Bits
[15:0]
Data Sheet
ADIS16488
ALARMS
Each sensor has an independent alarm function that provides
controls for alarm magnitude, polarity, and enabling a dynamic
rate-of-change option. The ALM_STS register (see Table 49)
contains the alarm output flags and the FNCTIO_CTRL register
(see Table 117) provides an option for configuring one of the
digital I/O lines as an alarm indicator.
STATIC ALARM USE
The static alarm setting compares each sensor’s output with the
trigger settings in the xx_ALM_MAGN registers (see Table 100,
Table 101, Table 102, Table 103, Table 104, Table 105, Table 106,
Table 107, Table 108, and Table 109) of that sensor. The polarity
controls for each alarm are in the ALM_CNFG_x registers (see
Table 110, Table 111, Table 112). The polarity establishes
whether greater than or less than produces an alarm condition.
The comparison between the xx_ALM_MAGN value and the
output data only applies to the upper word or 16 bits of the
output data.
DYNAMIC ALARM USE
The dynamic alarm setting provides the option of comparing the
change in each sensor’s output over a period of 48.7 ms with that
sensor’s xx_ALM_MAGN register.
Table 100. XG_ALM_MAGN (Page 3, Base Address = 0x28)
Bits
[15:0]
Description (Default = 0x0000)
X-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 101. YG_ALM_MAGN (Page 3, Base Address = 0x2A)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 102. ZG_ALM_MAGN (Page 3, Base Address = 0x2C)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis gyroscope alarm threshold settings,
Twos complement, 0°/sec = 0x0000, 1 LSB = 0.02°/sec
Table 103. XA_ALM_MAGN (Page 3, Base Address = 0x2E)
Bits
[15:0]
Description (Default = 0x0000)
X-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 104. YA_ALM_MAGN (Page 3, Base Address = 0x30)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 105. ZA_ALM_MAGN (Page 3, Base Address = 0x32)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis accelerometer alarm threshold settings,
Twos complement, 0 g = 0x0000, 1 LSB = 0.8 mg
Table 106. XM_ALM_MAGN (Page 3, Base Address = 0x34)
Bits
[15:0]
Description (Default = 0x0000)
X-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 107. YM_ALM_MAGN (Page 3, Base Address = 0x36)
Bits
[15:0]
Description (Default = 0x0000)
Y-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 108. ZM_ALM_MAGN (Page 3, Base Address = 0x38)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis magnetometer alarm threshold settings,
Twos complement, 0 gauss = 0x0000,
1 LSB = 0.1 mgauss
Table 109. BR_ALM_MAGN (Page 3, Base Address = 0x3A)
Bits
[15:0]
Description (Default = 0x0000)
Z-axis barometer alarm threshold settings,
Twos complement, 0 bar = 0x0000, 1 LSB = 40 µbar
Table 110. ALM_CNFG_0 (Page 3, Base Address = 0x20)
Bits
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Rev. B | Page 27 of 36
Description (Default = 0x0000)
X-axis accelerometer alarm (1 = enabled)
Not used
X-axis accelerometer alarm polarity (1 = greater than)
X-axis accelerometer dynamic enable (1 = enabled)
Z-axis gyroscope alarm (1 = enabled)
Not used
Z-axis gyroscope alarm polarity (1 = greater than)
Z-axis gyroscope dynamic enable (1 = enabled)
Y-axis gyroscope alarm (1 = enabled)
Not used
Y-axis gyroscope alarm polarity (1 = greater than)
Y-axis gyroscope dynamic enable (1 = enabled)
X-axis gyroscope alarm (1 = enabled)
Not used
X-axis gyroscope alarm polarity (1 = greater than)
X-axis gyroscope dynamic enable (1 = enabled)
ADIS16488
Data Sheet
Table 111. ALM_CNFG_1 (Page 3, Base Address = 0x22)
Alarm Example
Bits
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Table 113 offers an alarm configuration example, which sets the
Z-axis gyroscope alarm to trip when Z_GYRO_OUT > 131.1°/sec
(0x199B).
Description (Default = 0x0000)
Y-axis magnetometer alarm (1 = enabled)
Not used
Y-axis magnetometer alarm polarity (1 = greater than)
Y-axis magnetometer dynamic enable (1 = enabled)
X-axis magnetometer (1 = enabled)
Not used
X-axis magnetometer alarm polarity (1 = greater than)
X-axis magnetometer dynamic enable (1 = enabled)
Z-axis accelerometer alarm (1 = enabled)
Not used
Z-axis accelerometer alarm polarity (1 = greater than)
Z-axis accelerometer dynamic enable (1 = enabled)
Y-axis accelerometer alarm (1 = enabled)
Not used
Y-axis accelerometer alarm polarity (1 = greater than)
Y-axis accelerometer dynamic enable (1 = enabled)
Table 113. Alarm Configuration Example
DIN
0xAC9B
0xAD19
0xA000
0xA103
Table 112. ALM_CNFG_2 (Page 3, Base Address = 0x24)
Bits
[15:8]
7
6
5
4
3
2
1
0
Description (Default = 0x0000)
Not used
Barometer alarm (1 = enabled)
Not used
Barometer alarm polarity (1 = greater than)
Barometer dynamic enable (1 = enabled)
Z-axis magnetometer alarm (1 = enabled)
Not used
Z-axis magnetometer alarm polarity (1 = greater than)
Z-axis magnetometer dynamic enable (1 = enabled)
Rev. B | Page 28 of 36
Description
Set ZG_ALM_MAGN[7:0] = 0x9B
Set ZG_ALM_MAGN[15:8] = 0x19
Set ALM_CNFG_0[7:0] = 0x00
Set ALM_CNFG_0[15:8] = 0x03
Data Sheet
ADIS16488
SYSTEM CONTROLS
MEMORY MANAGEMENT
The ADIS16488 provides a number of system-level controls
for managing its operation, which include reset, self-test,
calibration, memory management, and I/O configuration.
GLOBAL COMMANDS
The GLOB_CMD register (see Table 114) provides trigger bits for
several operations. Write 1 to the appropriate bit in GLOB_CMD to
start a function. After the function completes, the bit restores to 0.
Table 114. GLOB_CMD (Page 3, Base Address = 0x02)
Description
Not used
Software reset
Factory calibration restore
Not used
Flash memory update
Flash memory test
Self-test
Bias null
Execution Time
Not applicable
120 ms
75 ms
Not applicable
375 ms
50 ms
12 ms
See Table 70
Table 115. FLSHCNT_LOW (Page 2, Base Address = 0x7C)
Bits
[15:0]
Table 116. FLSHCNT_HIGH (Page 2, Base Address = 0x7E)
Bits
[15:0]
Software Reset
Description
Binary counter; number of flash updates, upper word
Automatic Self-Test
RETENTION (Years)
600
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[7] = 1
(DIN = 0x8280, DIN = 0x8300) to reset the operation, which
removes all data, initializes all registers from their flash settings,
and starts data collection. This function provides a firmware
alternative to the RST line (see Table 5, Pin 8).
Turn to Page 3 (DIN = 0x8003) and then set GLOB_CMD[1] = 1
(DIN = 0x8202, then DIN = 0x8300) to run an automatic selftest routine, which executes the following steps:
1.
2.
3.
4.
5.
6.
7.
Description
Binary counter; number of flash updates, lower word
Measure output on each sensor.
Activate self-test on each sensor.
Measure output on each sensor.
Deactivate the self-test on each sensor.
Calculate the difference with self-test on and off.
Compare the difference with internal pass/fail criteria.
Report the pass/fail results for each sensor in DIAG_STS.
After waiting 12 ms for this test to complete, turn to Page 0
(DIN = 0x8000) and read DIAG_STS using DIN = 0x0A00.
Note that using an external clock can extend this time. When
using an external clock of 100 Hz, this time extends to 35 ms.
Note that 100 Hz is too slow for optimal sensor performance.
450
300
150
0
30
40
55
70
85
100
125
JUNCTION TEMPERATURE (°C)
135
150
10277-023
Bits
[15:8]
7
6
[5:4]
3
2
1
0
The data retention of the flash memory depends on temperature
and the number of write cycles. Figure 25 characterizes the
dependence on temperature, and the FLSHCNT_LOW and
FLSHCNT_HIGH registers (see Table 115 and Table 116)
provide a running count of flash write cycles. The flash updates
every time GLOB_CMD[6], GLOB_CMD[3], or GLOB_CMD[0]
is set to 1.
Figure 25. Flash Memory Retention
Flash Memory Test
Turn to Page 3 (DIN = 0x8003), and then set GLOB_CMD[2] = 1
(DIN = 0x8204, DIN = 0x8300) to run a checksum test of the
internal flash memory, which compares a factory-programmed
value with the current sum of the same memory locations. The
result of this test loads into SYS_E_FLAG[6]. Turn to Page 0
(DIN = 0x8000) and use DIN = 0x0800 to read SYS_E_FLAG.
GENERAL-PURPOSE I/O
There are four general-purpose I/O lines: DIO1, DIO2, DIO3, and
DIO4. The FNCTIO_CTRL register controls the basic function
of each I/O line, which provides a number of useful functions.
Each I/O line will only support one function at a time. In cases
where a single line has two different assignments, the enable bit
for the lower-priority function will automatically reset to zero
and be disabled. The priority is (1) data-ready, (2) sync clock
input, (3) alarm indicator, and (4) general-purpose, where 1
identifies the highest priority and 4 indicates the lowest priority.
Rev. B | Page 29 of 36
ADIS16488
Data Sheet
Table 117. FNCTIO_CTRL (Page 3, Base Address = 0x06)
General-Purpose I/O Control
Bits
[15:12]
11
10
[9:8]
When FNCTIO_CTRL does not configure a DIOx pin,
GPIO_CTRL provides register controls for general-purpose use
of the pin. GPIO_CTRL[3:0] provides input/output assignment
controls for each line. When the DIOx lines are inputs, monitor
their level by reading GPIO_CTRL[7:4]. When the DIOx lines
are used as outputs, set their level by writing to GPIO_CTRL[7:4].
For example, use the following sequence to set DIO1 and
DIO3 as high and low output lines, respectively, and set DIO2
and DIO4 as input lines. Turn to Page 3 (DIN = 0x8003) and set
GPIO_CTRL[7:0] = 0x15 (DIN = 0x8815, then DIN = 0x8900).
7
6
[5:4]
3
2
[1:0]
Description (Default = 0x000D)
Not used
Alarm indicator: 1 = enabled, 0 = disabled
Alarm indicator polarity: 1 = positive, 0 = negative
Alarm indicator line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
Sync clock input enable: 1 = enabled, 0 = disabled
Sync clock input polarity:
1 = rising edge, 0 = falling edge
Sync clock input line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
Data-ready enable: 1 = enabled, 0 = disabled
Data-ready polarity: 1 = positive, 0 = negative
Data-ready line selection:
00 = DIO1, 01 = DIO2, 10 = DIO3, 11 = DIO4
Table 118. GPIO_CTRL (Page 3, Base Address = 0x08)
Data-Ready Indicator
FNCTIO_CTRL[3:0] provide some configuration options for
using one of the DIOx lines as a data-ready indicator signal,
which can drive a processor’s interrupt control line. The factory
default assigns DIO2 as a positive polarity, data-ready signal.
Use the following sequence to change this assignment to DIO1
with a negative polarity: turn to Page 3 (DIN = 0x8003) and set
FNCTIO_CTRL[3:0] = 1000 (DIN = 0x8608, then DIN = 0x8700).
The timing jitter on the data-ready signal is ±1.4 µs.
Bits
[15:8]
7
6
5
4
3
2
1
0
Input Sync/Clock Control
FNCTIO_CTRL[7:4] provide some configuration options for
using one of the DIOx lines as an input synchronization signal
for sampling inertial sensor data. For example, use the following
sequence to establish DIO4 as a positive polarity, input clock pin
and keep the factory default setting for the data-ready function:
turn to Page 3 (DIN = 0x8003) and set FNCTIO_CTRL[7:0]
= 0xFD (DIN = 0x86FD, then DIN = 0x8700). Note that this
command also disables the internal sampling clock, and no
data sampling takes place without the input clock signal.
When selecting a clock input frequency, consider the 330 Hz
sensor bandwidth, because under sampling the sensors can
degrade noise and stability performance.
1
Description (Default = 0x00X0)1
Don’t care
General-Purpose I/O Line 4 (DIO4) data level
General-Purpose I/O Line 3 (DIO3) data level
General-Purpose I/O Line 2 (DIO2) data level
General-Purpose I/O Line 1 (DIO1) data level
General-Purpose I/O Line 4 (DIO4) direction control
(1 = output, 0 = input)
General-Purpose I/O Line 3 (DIO3) direction control
(1 = output, 0 = input)
General-Purpose I/O Line 2 (DIO2) direction control
(1 = output, 0 = input)
General-Purpose I/O Line 1 (DIO1) direction control
(1 = output, 0 = input)
GPIO_CTRL[7:4] reflects levels on DIOx lines.
POWER MANAGEMENT
The SLP_CNT register (see Table 119) provides controls for
both power-down mode and sleep modes. The trade-off
between power-down mode and sleep mode is between idle
power and recovery time. Power-down mode offers the best
idle power consumption but requires the most time to recover.
Also, all volatile settings are lost during power-down but are
preserved during sleep mode.
For timed sleep mode, turn to Page 3 (DIN = 0x8003), write the
amount of sleep time to SLP_CNT[7:0] and then, set SLP_CNT[8]
= 1 (DIN = 0x9101) to start the sleep period. For a timed powerdown period, change the last command to set SLP_CNT[9] = 1
(DIN = 0x9102). To power down or sleep for an indefinite
period, set SLP_CNT[7:0] = 0x00 first, then set either
SLP_CNT[8] or SLP_CNT[9] to 1. Note that the command
takes effect when the CS line goes high. To awaken the device
from sleep or power-down mode, use one of the following
options to restore normal operation:
•
•
•
Assert CS from high to low.
Pulse RST low, then high again.
Cycle the power.
For example, set SLP_CNT[7:0] = 0x64 (DIN = 0x9064), then
set SLP_CNT[8] = 1 (DIN = 0x9101) to start a sleep period of
100 seconds.
Rev. B | Page 30 of 36
Data Sheet
ADIS16488
Table 119. SLP_CNT (Page 3, Base Address = 0x10)
Bits
[15:10]
9
8
[7:0]
Description
Not used
Power-down mode
Normal sleep mode
Programmable time bits; 1 sec/LSB;
0x00 = indefinite
If the sleep mode and power-down mode bits are both set high,
the normal sleep mode (SLP_CNT[8]) bit takes precedence.
General-Purpose Registers
The USER_SCR_x registers (see Table 120, Table 121, Table 122,
and Table 123) provide four 16-bit registers for storing data.
Table 120. USER_SCR_1 (Page 2, Base Address = 0x74)
Bits
[15:0]
Description
User-defined
Table 121. USER_SCR_2 (Page 2, Base Address = 0x76)
Bits
[15:0]
Description
User-defined
Table 122. USER_SCR_3 (Page 2, Base Address = 0x78)
Bits
[15:0]
Description
User-defined
Write the current time to each time data register after setting
CONFIG[0] = 1 (DIN = 0x8003, DIN = 0x8A01). Note that
CONFIG[1] provides a bit for managing daylight savings time.
After the CONFIG and TIME_xx_OUT registers are
configured, set GLOB_CMD[3] = 1 (DIN = 0x8003, DIN =
0x8204, DIN = 0x8300) to back these settings up in flash, and
use a separate 3.3 V source to supply power to the VDDRTC
function. Note that access to time data in the TIME_xx_OUT
registers requires normal operation (VDD = 3.3 V and full
startup), but the timer function only requires that VDDRTC =
3.3 V when the rest of the ADIS16488 is turned off.
Table 124. TIME_MS_OUT (Page 0, Base Address = 0x78)
Bits
[15:14]
[13:8]
[7:6]
[5:0]
Table 123. USER_SCR_4 (Page 2, Base Address = 0x7A)
Bits
[15:0]
sequence: seconds (TIME_MS_OUT[5:0]), minutes (TIME_
MS_OUT[13:8]), hours (TIME_DH_OUT[5:0]), day
(TIME_DH_OUT[12:8]), month (TIME_YM_OUT[3:0]),
and year (TIME_YM_OUT[14:8]). The updates to the timer
do not become active until a successful write to the TIME_
YM_OUT[14:8] byte. The real-time clock registers reflect the
newly updated values only after the next seconds tick of the
clock that follows the write to TIME_YM_OUT[14:8] (year).
Writing to TIME_ YM_OUT[14:8] activates all timing values;
therefore, always write to this location last when updating the
timer, even if the year information does not require updating.
Description
User-defined
Real-Time Clock Configuration/Data
The VDDRTC power supply pin (see Table 5, Pin 23) provides
a separate supply for the real-time clock (RTC) function. This
enables the RTC to keep track of time, even when the main supply
(VDD) is off. Configure the RTC function by selecting one of
two modes in CONFIG[0] (see Table 74). The real-time clock
data is available in the TIME_MS_OUT register (see Table 124),
TIME_DH_OUT register (see Table 125), and TIME_YM_OUT
register (see Table 126). When using the elapsed timer mode,
the time data registers start at 0x0000 when the device starts
up (or resets) and begin keeping time in a manner that is
similar to a stopwatch. When using the clock/calendar mode,
write the current time to the real-time registers in the following
Description
Not used
Minutes, binary data, range = 0 to 59
Not used
Seconds, binary data, range = 0 to 59
Table 125. TIME_DH_OUT (Page 0, Base Address = 0x7A)
Bits
[15:13]
[12:8]
[7:6]
[5:0]
Description
Not used
Day, binary data, range = 1 to 31
Not used
Hours, binary data, range = 0 to 23
Table 126. TIME_YM_OUT (Page 0, Base Address = 0x7C)
Bits
[15]
[14:8]
[7:4]
[3:0]
Rev. B | Page 31 of 36
Description
Not used
Year, binary data, range = 0 to 99, relative to 2000 A.D.
Not used
Month, binary data, range = 1 to 12
ADIS16488
Data Sheet
APPLICATIONS INFORMATION
PROTOTYPE INTERFACE BOARD
INSTALLATION TIPS
The ADIS16488/PCBZ includes one ADIS16488AMLZ, one
interface printed circuit board (PCB), and four M2 × 0.4 × 18 mm
machine screws. The interface PCB provides four holes for
ADIS16488AMLZ attachment and four larger holes for
attaching the interface PCB to another surface. The
ADIS16488AMLZ attachment holes are pre-tapped for M2 ×
0.4 mm machine screws and the four larger holes, located in
each corner, support attachment with M2.5 or #4 machine
screws. J1 is a dual-row, 2 mm (pitch) connector that works
with a number of ribbon cable systems, including 3M Part
Number 152212-0100-GB (ribbon crimp connector) and 3M Part
Number 3625/12 (ribbon cable). Note that J1 has 16 pads but
currently uses a 12-pin connector. The extra pins accommodate
future evaluation system plans.
Figure 28 and Figure 29 provide the mechanical design
information used for the ADIS16488/PCBZ. Use these
figures when implementing a connector-down approach,
where the mating connector and the ADIS16488AMLZ are on
the same surface. When designing a connector-up system, use
the mounting holes shown in Figure 28 as a guide in designing
the bulkhead mounting system and use Figure 29 as a guide in
developing the mating connector interface on a flexible circuit
or other connector system. The suggested torque setting for the
attachment hardware is 40 inch-ounces, or 0.2825 N-m.
39.600 BSC
19.800 BSC
2.500 BSC 4×
0.560 BSC 2×
ALIGNMENT HOLES
FOR MATING SOCKET
5 BSC
5 BSC
10277-025
1.65mm
1.642 BSC
21.300 BSC
42.600
Figure 27 provides the pin assignments for J1. The pin
descriptions match those listed in Table 5. The C1 and C2
locations provide solder pads for extra capacitors, which
can provide additional filtering for start-up transients and
supply noise.
NOTES
1. ALL DIMENSIONS IN mm UNITS.
0.4334 [11.0]
0.019685
[0.5000]
(TYP)
6.35mm
0.0240 [0.610]
0.054 [1.37]
10277-024
6.35mm
58.42mm
64.77mm
Figure 26. Physical Diagram for the ADIS16488/PCBZ
0.022±
DIA (TYP)
0.022 DIA THRU HOLE (TYP)
NONPLATED
NONPLATED THRU HOLE
THRU HOLE 2×
Figure 29. Suggested Layout and Mechanical Design for the Mating Connector
J1
RST
1
2
SCLK
CS
3
4
DOUT
DIN
DNC
5
6
GND
7
8
GND
GND
9
10
VDD
VDD
VDD
11
12
DIO1
13
14
DIO2
DIO3
15
16
DIO4
0.0394 [1.00]
Figure 27. ADIS16488/PCBZ J1 Pin Assignments
Rev. B | Page 32 of 36
10277-026
0.0394 [1.00] 0.1800
[4.57]
11.30mm
10277-200
66.04mm
59.69mm
Figure 28. Suggested Mounting Hole Locations, Connector Down
ADIS16488
MOUNTING
HOLES
Data Sheet
ADIS16488
OUTLINE DIMENSIONS
44.254
44.000
43.746
39.854
39.600
39.346
Ø 2.40 BSC
(4 PLCS)
19.80
2.20 BSC
DETAIL A
1.142 BSC
42.854
42.600
42.346
1.00 BSC
47.254
47.000
46.746
DETAIL A
BOTTOM VIEW
14.254
14.000
13.746
DETAIL B
DETAIL B
FRONT VIEW
3.454
3.200
2.946
5.50
BSC
5.50
BSC
1.00 BSC
PITCH
0.30 SQ BSC
10-20-2010-B
2.84 BSC
Figure 30. 24-Lead Module with Connector Interface [MODULE]
(ML-24-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1, 2
ADIS16488AMLZ
ADIS16488/PCBZ
1
2
Temperature Range
−40°C to +85°C
Package Description
24-Lead Module with Connector Interface [MODULE]
Interface PCB
Z = RoHS Compliant Part.
The ADIS16488/PCBZ includes one ADIS16488AMLZ and one interface board PCB. See Figure 26 for more information on the interface PCB.
Rev. B | Page 33 of 36
Package Option
ML-24-6
ADIS16488
Data Sheet
NOTES
Rev. B | Page 34 of 36
Data Sheet
ADIS16488
NOTES
Rev. B | Page 35 of 36
ADIS16488
Data Sheet
NOTES
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D10277-0-2/12(B)
Rev. B | Page 36 of 36
Similar pages