AD AD8597ACPZ-REEL Single and dual, ultralow distortion, ultralow noise op amp Datasheet

Single and Dual, Ultralow
Distortion, Ultralow Noise Op Amps
AD8597/AD8599
PIN CONFIGURATIONS
Low noise: 1.1 nV/√Hz at 1 kHz
Low distortion: −120 dB THD @ 1 kHz
Input noise, 0.1 Hz to 10 Hz: <76 nV p-p
Slew rate: 14 V/μs
Wide bandwidth: 10 MHz
Supply current: 4.8 mA/amp typical
Low offset voltage: 10 μV typical
CMRR: 120 dB
Unity-gain stable
±15 V operation
NC 1
AD8597
–IN 2
+IN 3
TOP VIEW
V– 4 (Not to Scale)
8
NC
7
V+
6
OUT
5
NC
NC = NO CONNECT
06274-060
FEATURES
Figure 1. AD8597 8-Lead SOIC (R-8)
PIN 1
INDICATOR
–IN 2
+IN 3
APPLICATIONS
6 OUT
TOP VIEW
5 NC
V– 4
Professional audio preamplifiers
ATE/precision testers
Imaging systems
Medical/physiological measurements
Precision detectors/instruments
Precision data conversion
8 NC
7 V+
AD8597
06274-061
NC 1
NOTES
1. NC = NO CONNECT.
2. PIN 4 AND THE EXPOSED PAD MUST BE
CONNECTED TO V–.
OUT A 1
–IN A 2
+IN A 3
AD8599
TOP VIEW
–V 4 (Not to Scale)
8
+V
7
OUT B
6
–IN B
5
+IN B
06274-054
Figure 2. AD8597 8-Lead LFCSP (CP-8-2)
Figure 3. AD8599 8-Lead SOIC (R-8)
GENERAL DESCRIPTION
The AD8597 is available in 8-lead SOIC and LFCSP packages,
while the AD8599 is available in an 8-lead SOIC package. They
are both specified over a −40°C to +125°C temperature range.
The AD8597 and AD8599 are members of a growing series of
low noise op amps offered by Analog Devices, Inc., (see
Table 1).
The AD8597/AD8599 are very low noise, low distortion operational amplifiers ideal for use as preamplifiers. The low noise of
1.1 nV/√Hz and low harmonic distortion of −120 dB (or better)
at audio bandwidths give the AD8597/AD8599 the wide dynamic
range necessary for preamplifiers in audio, medical, and instrumentation applications. The excellent slew rate of 14 V/μs and
10 MHz gain bandwidth make them highly suitable for medical
applications. The low distortion and fast settling time make
them ideal for buffering of high resolution data converters.
Table 1. Low Noise Op Amps
Voltage Noise
Single
Dual
Quad
0.9 nV
AD797
1.1 nV
AD8597
AD8599
1.8 nV
2.8 nV
AD8675
AD8676
ADA4004-4
3.2 nV
OP27
3.8 nV
AD8671
AD8672
AD8674
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2007–2008 Analog Devices, Inc. All rights reserved.
AD8597/AD8599
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution...................................................................................5
Applications ....................................................................................... 1
Typical Performance Characteristics ..............................................6
Pin Configurations ........................................................................... 1
Functional Operation..................................................................... 15
General Description ......................................................................... 1
Input Voltage Range ................................................................... 15
Revision History ............................................................................... 2
Output Phase Reversal ............................................................... 15
Specifications..................................................................................... 3
Noise and Source Impedance Considerations ........................... 15
Absolute Maximum Ratings............................................................ 5
Outline Dimensions ....................................................................... 17
Thermal Resistance ...................................................................... 5
Ordering Guide .......................................................................... 17
Power Sequencing ........................................................................ 5
REVISION HISTORY
10/08—Rev.A to Rev. B
Added AD8597 ................................................................... Universal
Added LFCSP_VD ............................................................. Universal
Added Table 1.................................................................................... 1
Changes to Specifications Section .................................................. 3
Changes to Absolute Maximum Ratings Section ......................... 5
Changes to Typical Performance Characteristics Section ........... 6
Added Figure 12 and Figure 15....................................................... 7
Added Figure 18 and Figure 19....................................................... 8
Added Figure 30 and Figure 33..................................................... 10
Added Figure 34 to Figure 38........................................................ 11
Added Figure 42 and Figure 45..................................................... 12
Added Figure 52, Figure 55, Figure 57......................................... 14
Added Functional Operation Section .......................................... 15
Added Figure 58.............................................................................. 15
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 17
4/07—Rev. 0 to Rev. A
Updated Layout .................................................................................5
Changes to Figure 45 Caption ...................................................... 12
Added Figure 48 ............................................................................. 12
Changes to Figure 51 Caption ...................................................... 13
2/07—Revision 0: Initial Version
Rev. B | Page 2 of 20
AD8597/AD8599
SPECIFICATIONS
VSY = ±5 V, VCM = 0 V, VO = 0 V, TA = 25°C, unless otherwise specified.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
15
120
180
μV
μV
0.8
40
2.2
210
340
250
340
+2.0
μV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
Input Bias Current
ΔVOS/ΔT
IB
Input Offset Current
IOS
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
65
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
IVR
CMRR
Large Signal Voltage Gain
AVO
Input Capacitance
Differential Capacitance
Common-Mode Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
−2.0 V ≤ VCM ≤ +2.0 V
−40°C ≤ TA ≤ +125°C
RL ≥ 600 Ω, VO = −11 V to +11 V
−40°C ≤ TA ≤ +125°C
−2.0
120
105
105
100
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
3.5
3.3
3.7
3.5
ISY
110
15.4
5.5
pF
pF
3.7
V
V
V
V
V
V
V
V
mA
Ω
3.8
−3.6
−3.7
120
118
140
4.8
−40°C ≤ TA ≤ +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
SR
tS
GBP
ΦM
en p-p
en
Correlated Current Noise
Uncorrelated Current Noise
Total Harmonic Distortion + Noise
Channel Separation
THD + N
CS
AV = −1, RL = 2 kΩ
AV = 1, RL = 2 kΩ
To 0.01%, step = 10 V
14
14
2
10
60
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 1 V
f = 10 kHz
76
1.07
Rev. B | Page 3 of 20
−3.4
−3.3
−3.5
−3.4
±52
5
At 1 MHz, AV = 1
VSY = ±18 V to ±4.5 V
−40°C ≤ TA ≤ +125°C
135
2.0
4.2
2.4
5.2
−120
−120
5.5
6.5
dB
dB
mA
mA
V/μs
V/μs
μs
MHz
Degrees
1.15
1.5
nV p-p
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
dB
dB
AD8597/AD8599
VS = ±15 V, VCM = 0 V, VO = 0 V, TA = +25°C, unless otherwise specified.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Conditions
Min
VOS
Typ
Max
Unit
10
120
180
μV
μV
0.8
2.2
μV/°C
25
200
300
200
300
+12.5
nA
nA
nA
nA
V
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
ΔVOS/ΔT
Input Bias Current
IB
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
50
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
IVR
CMRR
Large Signal Voltage Gain
AVO
Input Capacitance
Differential Capacitance
Common-Mode Capacitance
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Output Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
−12.5 V ≤ VCM ≤ +12.5 V
−40°C ≤ TA ≤ +125°C
RL ≥ 600 Ω, VO = −11 V to +11 V
−40°C ≤ TA ≤ +125°C
−12.5
120
115
110
106
CDIFF
CCM
VOH
VOL
ISC
ZOUT
PSRR
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
RL = 600 Ω
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ
−40°C ≤ TA ≤ +125°C
13.1
12.8
13.5
13.2
ISY
116
12.1
5.1
pF
pF
13.4
V
V
V
V
V
V
V
V
mA
Ω
13.7
−13.2
−13.5
120
118
140
5.0
−40°C ≤ TA ≤ +125°C
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Peak-to-Peak Noise
Voltage Noise Density
SR
ts
GBP
ΦM
en p-p
en
Correlated Current Noise
Uncorrelated Current Noise
Total Harmonic Distortion + Noise
Channel Separation
THD + N
CS
AV = −1, RL = 2 kΩ
AV = 1, RL = 2 kΩ
To 0.01%, step = 10 V
16
15
2
10
65
0.1 Hz to 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
f = 1 kHz
f = 10 Hz
G = 1, RL ≥ 1 kΩ, f = 1 kHz, VRMS = 3 V
f = 10 kHz
76
1.07
Rev. B | Page 4 of 20
−12.9
−12.8
−13.4
−13.3
±52
5
At 1 MHz, AV = 1
VSY = ±18 V to ±4.5 V
−40°C ≤ TA ≤ +125°C
135
1.9
4.3
2.3
5.3
−120
−120
5.7
6.75
dB
dB
mA
mA
V/μs
V/μs
μs
MHz
Degrees
nV p-p
1.15
1.5
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
pA/√Hz
dB
dB
AD8597/AD8599
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage1
Output Short-Circuit to GND
Storage Temperature Range
Operating Temperature Range
Lead Temperature Range (Soldering 60 sec)
Junction Temperature
1
Rating
±18 V
−V ≤ VIN ≤ +V
±1 V
Indefinite
−65°C to +150°C
−40°C to +125°C
300°C
150°C
If the differential input voltage exceeds 1 V, the current should be limited
to 5 mA.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified with the device soldered on a circuit board with
its exposed paddle soldered to a pad (if applicable) on a 4-layer
JEDEC standard PCB with zero air flow.
Table 5.
Package Type
8-Lead LFCSP_VD (CP-8-2)
8-Lead SOIC (R-8) (AD8597)
8-Lead SOIC (R-8) (AD8599)
θJA
78
140
120
θJC
20
39
36
Unit
°C/W
°C/W
°C/W
POWER SEQUENCING
The op amp supplies should be applied simultaneously. The
op amp supplies should be stable before any input signals are
applied. In any case, the input current must be limited to 5 mA.
ESD CAUTION
Rev. B | Page 5 of 20
AD8597/AD8599
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
70
50
AD8599
MEAN = 7.91
STDEV = 21.89
MIN = –63.02
MAX = 57.5
VSY = ±15V
60
NUMBER OF AMPLIFIERS
60
40
30
20
50
40
30
20
10
10
0
–75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75
VOS (µV)
06274-001
0
–75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 75
VOS (µV)
Figure 4. Input Offset Voltage Distribution
60
45
40
AD8599
MEAN = 0.765
STDEV = 0.234
MIN = 0.338
MAX = 1.709
VSY = ±15V
40
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
Figure 7. Input Offset Voltage Distribution
AD8599
MEAN = 0.346
STDEV = 0.218
MIN = 0.010
MAX = 1.155
VSY = ±5V
50
06274-002
NUMBER OF AMPLIFIERS
70
AD8599
MEAN = 8.23
STDEV = 24.47
MIN = –72.62
MAX = 62.09
VSY = ±5V
30
20
35
30
25
20
15
10
10
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
0
06274-004
0
NUMBER OF AMPLIFIERS
40
30
20
40
30
20
10
10
0
AD8599
MEAN = 0.342
STDEV = 0.221
MIN = 0.013
MAX = 1.239
VSY = ±15V
50
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
0
06274-006
NUMBER OF AMPLIFIERS
60
AD8599
MEAN = 0.461
STDEV = 0.245
MIN = 0.026
MAX = 1.26
VSY = ±5V
50
2.2 2.4
Figure 8. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
Figure 5. TCVOS Distribution, −40°C ≤ TA ≤ +125°C
60
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
Figure 6. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
TCVOS (µV)
2.2 2.4
Figure 9. TCVOS Distribution, −40°C ≤ TA ≤ +85°C
Rev. B | Page 6 of 20
06274-005
0
06274-007
5
AD8597/AD8599
75
50
25
25
VOS (µV)
50
0
0
–25
–25
–50
–50
–75
–75
–2.5
0
2.5
5.0
VCM (V)
–100
–15
–10
Figure 10. Offset Voltage vs. VCM
200
150
100
100
IB (nA)
50
50
0
0
–50
–50
–100
–100
–150
–150
25
50
TEMPERATURE (°C)
75
100
125
–200
–50
06274-011
0
Figure 11. Input Bias Current vs. Temperature
350
AD8597
300
0
25
50
TEMPERATURE (°C)
75
100
125
AD8597
VSY = ±15V
250
30
200
20
150
TA = –40°C
100
IB (nA)
10
0
±15V
50
TA = +25°C
0
TA = +85°C
–50
–100
–20
–200
–30
–40
–25
0
TA = +125°C
–150
±5V
–250
06274-062
VOS (µV)
40
–50
–50
–25
Figure 14. Input Bias Current vs. Temperature
50
–10
15
25
50
75
100
125
06274-063
IB (nA)
250
150
–25
10
AD8599
VSY = ±15V
VCM = 0V
300
200
–200
–50
5
350
AD8599
VSY = ±5V
VCM = 0V
250
0
VCM (V)
Figure 13. Offset Voltage vs. VCM
350
300
–5
06274-012
–100
–5.0
AD8599
VSY = ±15V
75
06274-009
VOS (µV)
100
AD8599
VSY = ±5V
06274-010
100
–300
–350
–12 –10
150
TEMPERATURE (°C)
–8
–6
–4
–2
0
2
4
6
8
VCM (V)
Figure 12. Input Offset Voltage vs. Temperature
Figure 15. Input Bias Current vs. Temperature
Rev. B | Page 7 of 20
10
12
AD8597/AD8599
150
80
AD8597
AD8599
70
100
60
50
IB (nA)
IOS (nA)
50
40
IOS @ VSY = ±5V
±15V
0
±5V
30
–50
20
IOS @ VSY = ±15V
06274-065
–100
10
–25
0
25
50
TEMPERATURE (°C)
75
100
125
–150
–50
06274-013
0
–50
–25
0
25
Figure 16. Input Offset Current vs. Temperature
75
100
125
Figure 19. Input Offset Current vs. Temperature
114
120
AD8599
VSY = ±5V
112
AD8599
VSY = ±15V
118
110
RL = 2kΩ, VO = ±11V
RL = 2kΩ, VO = ±2V
108
AVO (dB)
AVO (dB)
50
TEMPERATURE (°C)
RL = 600Ω, VO = ±2V
106
116
RL = 600Ω, VO = ±11V
114
104
112
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
110
–50
06274-015
100
–50
Figure 17. Large Signal Voltage Gain vs. Temperature
8
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
06274-016
102
Figure 20. Large Signal Voltage Gain vs. Temperature
350
AD8597
300
7
TA = +125°C
6
250
TA = +85°C
AD8599
VSY = ±15V
TA = –40°C
200
150
TA = +25°C
100
4
IB (nA)
TA = –40°C
3
TA = +25°C
50
0
TA = +85°C
–50
–100
–150
2
TA = +125°C
–200
–250
0
0
2
4
6
–300
–350
–12 –10
8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
VSY (V)
Figure 18. Supply Current vs. Supply Voltage
–8
–6
–4
–2
0
2
VCM (V)
4
6
Figure 21. Input Bias Current vs. VCM
Rev. B | Page 8 of 20
8
10
12
06274-014
1
06274-064
ISY (mA)
5
AD8597/AD8599
80
60
ISINK
40
20
0
–20
–40
AD8599
VSY = ±15V
60
OUTPUT CURRENT (mA)
ISOURCE
–60
ISINK
40
20
0
–20
–40
ISOURCE
–25
0
75
25
50
TEMPERATURE (°C)
100
125
150
–80
–50
06274-017
–80
–50
–25
0
Figure 22. ISC vs. Temperature
10k
OUTPUT SATURATION VOLTAGE (mV)
AD8599
VSY = ±5V
ISINK
1k
ISOURCE
100
0.001
0.01
0.1
1
100
125
150
Figure 25. ISC vs. Temperature
10
100
IL (mA)
AD8599
VSY = ±15V
ISINK
1k
ISOURCE
100
0.001
06274-021
OUTPUT SATURATION VOLTAGE (mV)
10k
75
25
50
TEMPERATURE (°C)
06274-018
–60
0.01
0.1
1
10
100
IL (mA)
Figure 23. Output Saturation Voltage vs. Current Load
06274-022
OUTPUT CURRENT (mA)
80
AD8599
VSY = ±5V
Figure 26. Output Saturation Voltage vs. Current Load
2.5
2.5
AD8599
VSY = ±5V
AD8599
VSY = ±15V
2.0
2.0
VCC – VOH (V)
1.5
VCC – VOH @ RL = 600Ω
1.0
VCC – VOH @ RL = 2kΩ
0.5
1.5
VCC – VOH @ RL = 2kΩ
1.0
0
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
0
–50
Figure 24. Output Saturation Voltage vs. Temperature
–25
0
75
25
50
TEMPERATURE (°C)
100
125
Figure 27. Output Saturation Voltage vs. Temperature
Rev. B | Page 9 of 20
150
06274-029
0.5
06274-027
VCC – VOH (V)
VCC – VOH @ RL = 600Ω
AD8597/AD8599
0
0
AD8599
VSY = ±5V
AD8599
VSY = ±15V
–0.5
–1.0
VEE – VOL @ RL = 2kΩ
–1.5
VEE – VOL @ RL = 600Ω
–2.0
–1.0
VEE – VOL @ RL = 2kΩ
–1.5
VEE – VOL @ RL = 600Ω
–2.0
–25
75
25
50
TEMPERATURE (°C)
0
100
125
150
–2.5
–50
06274-028
–2.5
–50
Figure 28. Output Saturation Voltage vs. Temperature
–25
0
25
50
75
TEMPERATURE (°C)
100
125
150
06274-030
VEE – VOL (V)
VEE – VOL (V)
–0.5
Figure 31. Output Saturation Voltage vs. Temperature
15.0
–13.0
VOL @ RL = 600Ω
AD8599
VSY = ±15V
14.8
14.6
–13.5
14.4
VOL @ RL = 2kΩ
VOH (V)
VOL (V)
14.2
–14.0
14.0
VOH @ RL = 2kΩ
13.8
13.6
–14.5
13.4
100
150
13.0
–50
120
80
100
GAIN (dB) AND PHASE (Degrees)
100
60
40
CL = 20pF
20
0
–20
CL = 200pF
–40
–60
–80
–100
10
AD8597
VSY = ±5V
RL = 2kΩ
100
1k
10k
50
TEMPERATURE (°C)
100
150
Figure 32. Output Voltage High vs. Temperature
06274-066
GAIN (dB) AND PHASE (Degrees)
Figure 29. Output Voltage Low vs. Temperature
0
06274-031
50
TEMPERATURE (°C)
50k
80
60
40
CL = 20pF
20
0
–20
CL = 200pF
–40
AD8597
VSY = ±15V
RL = 2kΩ
–60
–80
1
FREQUENCY (kHz)
06274-067
0
06274-032
–15.0
–50
VOH @ RL = 600Ω
13.2
AD8599
VSY = ±15V
10
100
1k
FREQUENCY (kHz)
Figure 30. Gain and Phase vs. Frequency
Figure 33. Gain and Phase vs. Frequency
Rev. B | Page 10 of 20
10k
50k
AD8597/AD8599
50
50
40
40
AV = 100
30
20
20
AV = 10
GAIN (dB)
10
0
AV = 1
–10
AV = 10
10
0
AV = 1
–10
–20
–30
–40
1
10
100
1k
10k
AD8597
VSY = ±15V
RL = 2kΩ
–30
06274-068
AD8597
VSY = ±5V
RL = 2kΩ
06274-071
–20
–40
50k
1
10
FREQUENCY (kHz)
Figure 34. Closed-Loop Gain vs. Frequency
1k
50k
100
AV = –100
AV = –100
10
10
AV = –10
AV = –10
AV = +1
ZOUT (Ω)
AV = +1
1
1
AD8597
VSY = ±5V
0.01
10
100
1k
10k
06274-072
0.1
06274-069
0.1
AD8597
VSY = ±15V
0.01
10
100k
100
FREQUENCY (kHz)
1k
10k
100k
FREQUENCY (kHz)
Figure 35. Closed-Loop Output Impedance vs. Frequency
Figure 38. Closed-Loop Output Impedance vs. Frequency
110
120
AD8599
±5V ≤ VSY ≤ ±15V
100
100
PSRR+ (dB)
PSRR– (dB)
90
80
PSRR (dB)
80
70
60
AD8597
VSY = ±5V, ±15V
60
40
50
20
40
30
06274-070
CMRR (dB)
10k
Figure 37. Closed-Loop Gain vs. Frequency
100
ZOUT (Ω)
100
FREQUENCY (kHz)
20
1
10
100
1k
10k
FREQUENCY (kHz)
Figure 36. Common-Mode Rejection Ratio vs. Frequency
0
–20
100
1k
10k
100k
FREQUENCY (Hz)
1M
Figure 39. Power Supply Rejection Ratio vs. Frequency
Rev. B | Page 11 of 20
10M
06274-038
GAIN (dB)
AV = 100
30
AD8597/AD8599
90
70
60
AD8599
MEAN = 1.07
STDEV = 0.02
MIN = 1.05
MAX = 1.15
±5V ≤ VSY ≤ ±15V
500
NUMBER OF AMPLIFIERS
80
NUMBER OF AMPLIFIERS
600
AD8599
MEAN = 1.30
STDEV = 0.09
MIN = 1.1
MAX = 1.5
±5V ≤ VSY ≤ ±15V
50
40
30
20
400
300
200
100
1.0
1.1
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
VOLTAGE NOISE DENSITY (nV/ Hz)
0
06274-039
0
2.0
0.95
1.07
1.10
1.13
1.16
1.19
100
10
1
100
FREQUENCY (Hz)
1k
10
1
0.1
1
10
Figure 44. Current Noise Density vs. Frequency
Figure 41. Voltage Noise Density vs. Frequency
1
1
0.1
0.1
THD + N (%)
RL = 600Ω
0.01
AD8597
VSY = ±5V
AV = +1
0.001
0.01
AD8597
VSY = ±15V
AV = +1
RL = 600Ω
0.001
RL = 100kΩ
0.01
0.1
1
06274-073
0.0001
0.001
1k
100
FREQUENCY (Hz)
10
V rms (V)
0.0001
0.001
RL = 100kΩ
0.01
0.1
1
V rms (V)
Figure 42. THD + N vs. Amplitude
Figure 45. THD + N vs. Amplitude
Rev. B | Page 12 of 20
10
06274-074
10
06274-041
1
AD8599
±5V ≤ VSY ≤ ±15V
06274-042
CURRTENT NOISE DENSITY (pA/ Hz)
AD8599
±5V ≤ VSY ≤ ±15V
VOLTAGE NOISE DENSITY (nV/ Hz)
1.04
Figure 43. Voltage Noise Density @ 1 kHz
100
THD + N (%)
1.01
VOLTAGE NOISE DENSITY (nV/ Hz)
Figure 40. Voltage Noise Density @ 10 Hz
0.1
0.98
06274-040
10
AD8597/AD8599
0.1
0.1
AD8599
VSY = ±15V
AD8599
VSY = ±15V
VIN = 3V rms
VIN = 3V rms
VIN = 5V rms
VIN = 7V rms
THD + N (%)
0.01
THD + N (%)
0.01
0.001
0.001
RL = 600Ω
100
1k
FREQUENCY (Hz)
10k
100k
0.0001
10
100
Figure 46. THD + N vs. Frequency
100k
20
AD8599
AD8599
15
10
10
AMPLITUDE (V)
15
0
VSY = ±15V
VIN = 20V p-p
AV = 1
RF = 1kΩ
RL = 2kΩ
VERTICAL AXIS = 5V/DIV
HORIZONTAL AXIS = 4µs/DIV
–5
–10
–15
–4.6
–0.6
3.4
7.4
11.4 15.4
TIME (µs)
19.4
–5
–10
–15
23.4
27.4
31.4
–20
–8.6
Figure 47. Large Signal Response
–4.6
–0.6
3.4
7.4
11.4 15.4
TIME (µs)
19.4
23.4
27.4
31.4
Figure 50. Large Signal Response
80
45
AD8599
40
40
35
OVERSHOOT (%)
60
20
0
VSY = ±15V, ±5V
VIN = 100mV p-p
AV = 1
EXTERNAL CL = 100pF
EXTERNAL RL = 10kΩ
VERTICAL AXIS = 20mV/DIV
HORIZONTAL AXIS = 400ns/DIV
–40
–60
0
400
800
1200 1600 2000 2400 2800 3200
TIME (ns)
AD8599
±5V ≤ VSY ≤ ±15V
AV = 1
RL = 10kΩ
30
25
20
15
10
5
06274-046
–20
–80
–800 –400
VSY = ±15V
VIN = 20V p-p
AV = –1
RF = 2kΩ
RS = 2kΩ
CL = 0pF
VERTICAL AXIS = 5V/DIV
HORIZONTAL AXIS = 4µs/DIV
0
Figure 48. Small Signal Response
0
10
100
CAPACITANCE (pF)
Figure 51. Overshoot vs. Capacitance
Rev. B | Page 13 of 20
1k
06274-049
–20
–8.6
5
06274-048
5
06274-047
AMPLITUDE (V)
10k
Figure 49. THD + N vs. Frequency
20
AMPLITUDE (mV)
1k
FREQUENCY (Hz)
06274-043
0.0001
10
06274-044
RL = 2kΩ
AD8597/AD8599
45
45
AD8597
VSY = ±5V
40
AD8597
VSY = ±15V
40
35
35
30
30
OVERSHOOT (%)
OVERSHOOT (%)
OS–
25
20
OS–
15
25
20
15
OS+
5
5
0
10
100
OS+
06247-078
10
06247-077
10
0
10
1k
100
CAPACITANCE (pF)
Figure 52. Overshoot vs. Capacitive Load
0
Figure 55. Overshoot vs. Capacitive Load
15.0
AD8599
VSY = ±15V
AV = 100
RL = 1kΩ
–20
–40
AD8599
VIN = 10V p-p
VIN = 20V p-p
12.5
–60
ISY (mA)
CHANNEL SEPARATION (dB)
1k
CAPACITANCE (pF)
–80
10.0
VSY = ±15V
–100
VSY = ±5V
–120
7.5
1k
10k
FREQUENCY (Hz)
100k
1M
5.0
–50
06274-050
–160
100
–25
Figure 53. Channel Separation vs. Frequency
6.0
AD8599
±5V ≤ VSY ≤ ±15V
75
100
125
AD8597
5.5
400
VSY = ±15V
ISY (mA)
200
0
5.0
VSY = ±5V
–200
06274-075
4.5
–400
–600
–800
0
1
2
3
4
5
6
TIME (Seconds)
7
8
9
10
06274-053
AMPLITUDE (nV)
25
50
TEMPERATURE (°C)
Figure 56. Supply Current vs. Temperature
800
600
0
06274-020
–140
Figure 54. Peak-to-Peak Noise
4.0
–40
–25
–10
5
20
35
50
65
80
95
TEMPERATURE (°C)
Figure 57. Supply Current vs. Temperature
Rev. B | Page 14 of 20
110
125
AD8597/AD8599
FUNCTIONAL OPERATION
These diodes are connected between the inputs and each supply
rail to protect the input transistors against an electrostatic discharge
event and they are normally reverse-biased. However, if the
input voltage exceeds the supply voltage, these ESD diodes
can become forward-biased. Without current limiting, excessive
amounts of current may flow through these diodes, causing
permanent damage to the device. If inputs are subject to overvoltage, insert appropriate series resistors to limit the diode
current to less than 5 mA maximum.
The input stage has two diodes between the input pins to
protect the differential pair. Under high slew rate conditions,
when the op amp is connected as a voltage follower, the diodes
may become forward-biased and the source may try to drive
the output. A small resistor should be placed in the feedback
loop and in the noninverting input. The noise of a 100 Ω
resistor at room temperature is ~1.25 nV/√Hz, which is higher
than the AD8597/AD8599. Thus, there is a tradeoff between
noise performance and protection. If possible, limiting should
be placed earlier in the signal path. For further details, see the
Amplifier Input Protection…Friend or Foe article at
http://www.analog.com/amplifier_input.
Because of the large transistors used to achieve low noise, the
input capacitance may seem rather high. To take advantage of
the low noise performance, impedance around the op amp should
be low, less than 500 Ω. Under these conditions, the pole from
the input capacitance should be greater than 50 MHz, which
does not affect the signal bandwidth.
NOISE AND SOURCE IMPEDANCE CONSIDERATIONS
The AD8597/AD8599 ultralow voltage noise of 1.1 nV/√Hz is
achieved with special input transistors running at high collector
current. Therefore, it is important to consider the total inputreferred noise (eN total), which includes contributions from
voltage noise (eN), current noise (iN), and resistor noise
(√4 kTRS).
eN total = [eN2 + 4 kTRS + (iN × RS)2]1/2
(1)
where RS is the total input source resistance.
This equation is plotted for the AD8597/AD8599 in Figure 58.
Because optimum dc performance is obtained with matched
source resistances, this case is considered even though it is clear
from Equation 1 that eliminating the balancing source resistance
lowers the total noise by reducing the total RS by a factor of 2.
At a very low source resistance (RS < 50 Ω), the voltage noise of the
amplifier dominates. As source resistance increases, the Johnson
noise of RS dominates until a higher resistance of RS > 2 kΩ is
achieved; the current noise component is larger than the
resistor noise.
100
10
TOTAL NOISE
RESISTOR NOISE
ONLY
1
06274-076
The AD8597/AD8599 are not rail-to-rail input amplifiers;
therefore, care is required to ensure that both inputs do not
exceed the input voltage range. Under normal negative feedback
operating conditions, the amplifier corrects its output to ensure
that the two inputs are at the same voltage. However, if either
input exceeds the input voltage range, the loop opens and large
currents begin to flow through the ESD protection diodes in the
amplifier.
The AD8597/AD8599 amplifiers have been carefully designed
to prevent any output phase reversal if both inputs are maintained within the specified input voltage range. If one or both
inputs exceed the input voltage range but remain within the
supply rails, the op amp specifications, such as CMRR, are not
guaranteed, but the output remains close to the correct value.
TOTAL NOISE (nV/ Hz)
INPUT VOLTAGE RANGE
OUTPUT PHASE REVERSAL
Output phase reversal occurs in some amplifiers when the
input common-mode voltage range is exceeded. As the commonmode voltage is moved outside the input voltage range, the
outputs of these amplifiers can suddenly jump in the opposite
direction to the supply rail. This is the result of the differential
input pair shutting down that causes a radical shifting of
internal voltages that results in the erratic output behavior.
Rev. B | Page 15 of 20
0.1
10
100
1k
SOURCE RESISTANCE (Ω)
Figure 58. Noise vs. Source Resistance
10k
AD8597/AD8599
general noise theory with extensive calculations, see the
AN-358 Application Note, Noise and Operational Amplifier
Circuits. A good selection table for low noise op amps can
be found in AN-940 Application Note, Low Noise Amplifier
Selection Guide for Optimal Noise Performance. An interesting
note on using one section of a monolithic dual to phase compensate the other section is in the AN-107 Application Note, Active
Feedback Improves Amplifier Phase Accuracy.
The AD8597/AD8599 are the optimum choice for low noise
performance if the source resistance is kept < 1 kΩ. At higher
values of source resistance, optimum performance with respect
to only noise is obtained with other amplifiers from Analog
Devices. Both voltage noise and current noise need to be considered. For more information on avoiding noise from grounding
problems and inadequate bypassing, see the AN-345 Application
Note, Grounding for Low- and High-Frequency Circuits. For
V+
7
Q36
R18
R19
D1
D31
INVERTING –
INPUT
3
NONINVERTING
+
INPUT
R31
D2
D34
2
Q18 Q19
D39
D41
D40
D42
C1
VB
Q19
6
OUTPUT
R1
Q20
D3
R32
Q32
Q27
Q28
4
V–
Figure 59. Simplified Schematic
Rev. B | Page 16 of 20
06247-079
D2
AD8597/AD8599
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
8
4.00 (0.1574)
3.80 (0.1497)
1
5
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
012407-A
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 60. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body (R-8)
Dimensions shown in millimeters and (inches)
0.60 MAX
5
TOP
VIEW
PIN 1
INDICATOR
2.95
2.75 SQ
2.55
8
12° MAX
0.50
0.40
0.30
0.70 MAX
0.65 TYP
0.05 MAX
0.01 NOM
0.30
0.23
0.18
SEATING
PLANE
0.20 REF
1.60
1.45
1.30
EXPOSED
PAD
(BOTTOM VIEW)
4
0.90 MAX
0.85 NOM
0.50
BSC
0.60 MAX
1
1.89
1.74
1.59
PIN 1
INDICATOR
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATIONS
SECTION OF THIS DATA SHEET.
101708-B
3.25
3.00 SQ
2.75
Figure 61. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
3 mm × 3 mm Body, Very Thin, Dual Lead
(CP-8-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model
AD8597ACPZ-R2 1
AD8597ACPZ-REEL1
AD8597ACPZ-REEL71
AD8597ARZ1
AD8597ARZ-REEL1
AD8597ARZ-REEL71
AD8599ARZ1
AD8599ARZ-REEL1
AD8599ARZ-REEL71
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
8-Lead Standard Small Outline Package [SOIC_N]
Z = RoHS Complaint Part.
Rev. B | Page 17 of 20
Package Option
CP-8-2
CP-8-2
CP-8-2
R-8
R-8
R-8
R-8
R-8
R-8
Branding
A22
A22
A22
AD8597/AD8599
NOTES
Rev. B | Page 18 of 20
AD8597/AD8599
NOTES
Rev. B | Page 19 of 20
AD8597/AD8599
NOTES
©2007–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06274-0-10/08(B)
Rev. B | Page 20 of 20
Similar pages