CEH2331 P-Channel Enhancement Mode Field Effect Transistor PRELIMINARY FEATURES -20V, -5.2A , RDS(ON) = 48mΩ @VGS = -4.5V. RDS(ON) = 60mΩ @VGS = -2.5V. RDS(ON) = 78mΩ @VGS = -1.8V. High dense cell design for extremely low RDS(ON). D(1,2,5,6,) Rugged and reliable. Lead free product is acquired. TSOP-6 package. 6 5 4 G(3) 1 2 3 S(4) TSOP-6 ABSOLUTE MAXIMUM RATINGS TA = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS -20 Units V Gate-Source Voltage VGS ±12 V ID -5.2 A IDM -21 A PD 2.0 W TJ,Tstg -55 to 150 C Symbol Limit Units RθJA 62.5 C/W Parameter Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Ambient b This is preliminary information on a new product in development now . Details are subject to change without notice . 1 Rev 2. 2010.Sep http://www.cetsemi.com CEH2331 Electrical Characteristics Parameter TA = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = -250µA -20 Zero Gate Voltage Drain Current IDSS VDS = -20V, VGS = 0V Gate Body Leakage Current IGSS VGS = ±12V, VDS = 0V VGS(th) VGS = VDS, ID = 250µA Typ Max Units 1 µA ±100 nA Off Characteristics V On Characteristics Gate Threshold Voltage Static Drain-Source On-Resistance RDS(on) -1 V VGS = -4.5V, ID = -3.3A -0.4 36 48 mΩ VGS = -2.5V, ID = -2.8A 46 60 mΩ VGS = -1.8V, ID = -2A 60 78 mΩ Dynamic Characteristics d Forward Transconductance gFS Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = -5V, ID = -4A VDS = -10V, VGS = 0V, f = 1.0 MHz 13 S 965 pF 200 pF 155 pF Switching Characteristics d Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = -10V, ID = -4A, VGS = -4.5V, RGEN = 3Ω 15 30 ns 10 20 ns 40 80 ns Turn-Off Fall Time tf 13 26 ns Total Gate Charge Qg 13 17 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = -10V, ID = -4A, VGS = -4.5V 2.5 nC 3 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current b IS Drain-Source Diode Forward Voltage c VSD VGS = 0V, IS = -1A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Surface Mounted on FR4 Board, t < 5 sec. c.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. d.Guaranteed by design, not subject to production testing. 2 -5.2 A -1.2 V CEH2331 12 15 25 C -VGS=2.5V -ID, Drain Current (A) -ID, Drain Current (A) -VGS=4.5,-4.0,-3.5V 12 9 -VGS=2V 6 3 0 0 0.5 1 1.5 2 0 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 400 Coss Crss 0 2 4 6 8 10 1 1.5 2 2.5 3 2.2 1.9 ID=-3.3A VGS=-4.5V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 -VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS -IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 0.5 Figure 2. Transfer Characteristics Ciss ID=-250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 -55 C Figure 1. Output Characteristics 600 1.2 TJ=125 C -VGS, Gate-to-Source Voltage (V) 800 1.3 3 -VDS, Drain-to-Source Voltage (V) 1000 0 6 2.5 1200 200 9 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) -VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 5 V =-10V DS ID=-4A 4 -ID, Drain Current (A) -VGS, Gate to Source Voltage (V) CEH2331 3 2 1 0 0 4 8 12 16 10 2 10 1 10 0 10 -1 10 -2 RDS(ON)Limit 1ms 10ms 100ms DC TA=25 C TJ=150 C Single Pulse 10 -2 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) -VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms Figure 9. Switching Test Circuit r(t),Normalized Effective Transient Thermal Impedance 10 1 D=0.5 10 0 0.2 0.1 0.05 10 PDM 0.02 0.01 -1 t1 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -3 t2 10 -2 10 -1 10 4 0 10 1 10 2 10 3 2