Datasheet CMOS LDO Regulator Series for Portable Equipments Versatile Package FULL CMOS LDO Regulator BUxxTD3WG series ●General Description BUxxTD3WG series is high-performance FULL CMOS regulator with 200-mA output, which is mounted on versatile package SSOP5 (2.9 mm × 2.8 mm × 1.25 mm). It has excellent noise characteristics and load responsiveness characteristics despite its low circuit current consumption of 35μA. It is most appropriate for various applications such as power supplies for logic IC, RF, and camera modules.ROHM’s. ●Key Specifications Output voltage: Accuracy output voltage: Low current consumption: Operating temperature range: 1.0V to 3.4V ±1.0% (±25mV) 35μA -40°C to +85°C ●Applications Battery-powered portable equipment, etc. ●Package SSOP5: ●Features High accuracy detection low current consumption Compatible with small ceramic capacitor(Cin=Co=0.47uF) With built-in output discharge circuit High ripple rejection ON/OFF control of output voltage With built-in over current protection circuit and thermal shutdown circuit Package SSOP5 is similar to SOT-23-5 (JEDEC) Low dropout voltage 2.90mm x 2.80mm x 1.25mm ●Typical Application Circuit STBY VIN VOUT STBY VOUT VIN GND GND GND Fig.1 Application Circuit ○Product structure:Silicon monolithic integrated circuit ○This product is not designed protection against radioactive rays. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 1/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Connection Diagram VOUT SSOP5 N.C. Lot. No Marking VIN GND STBY TOP VIEW ●Pin Descriptions SSOP5 PIN No. Symbol Function 1 VIN Power Supply Voltage 2 GND Grouding 3 STBY 4 N.C. ON/OFF control of output voltage (High: ON, Low: OFF) Unconnected Terminal 5 VOUT Output Voltage ●Ordering Information B U x Part Number x Output Voltage 10 : 1.0V T D 3 Series Maximum Output Current 200mA W G with Package output discharge G : SSOP5 - x Halogen Free G : compatible Blank : incompatible T R Packageing and forming specification Embossed tape and reel TR : The pin number 1 is the upper right 34 : 3.4V SSOP5 +6° 4° −4° 2.9±0.2 5 1 2 0.2Min. 2.8±0.2 +0.2 1.6 −0.1 4 3 0.05±0.05 1.1±0.05 1.25Max. +0.05 0.13 −0.03 +0.05 0.42 −0.04 0.95 0.1 (Unit : mm) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Lineup Marking Output Voltage Part Number F0 1.0V BU10 L6 1.1V BU11 F1 1.2V BU12 M0 1.25V BU1C L5 1.3V BU13 F2 1.5V BU15 F3 1.8V BU18 F4 1.85V BU1J F5 1.9V BU19 F6 2.0V BU20 F7 2.1V BU21 F8 2.5V BU25 F9 2.6V BU26 G0 2.7V BU27 G1 2.8V BU28 G2 2.85V BU2J G3 2.9V BU29 G4 3.0V BU30 G5 3.1V BU31 G6 3.2V BU32 G7 3.3V BU33 G8 3.4V BU34 ●Absolute Maximum Ratings (Ta=25°C) PARAMETER Symbol Power Supply Voltage Power Dissipation Maximum junction temperature Operating Temperature Range Storage Temperature Range Limit VMAX -0.3 ~ Pd Unit +6.5 V 540(*1) mW +125 ℃ Topr -40 ~ +85 ℃ Tstg -55 ~ +125 ℃ TjMAX (*1)Pd deleted at 5.4mW/℃ at temperatures above Ta=25℃, mounted on 70×70×1.6 mm glass-epoxy PCB. ● RECOMMENDED OPERATING RANGE (not to exceed Pd) Symbol Limit Unit Power Supply Voltage PARAMETER VIN 1.7~6.0 V Maximum Output Current IMAX 200 mA ●OPERATING CONDITIONS PARAMETER Symbol MIN. TYP. MAX. Unit Input Capacitor Cin 0.22(*2) 0.47 - μF Output Capacitor Co 0.22(*2) 0.47 - μF CONDITION Ceramic capacitor recommended (*2)Make sure that the output capacitor value is not kept lower than this specified level across a variety of temperature, DC bias, changing as time progresses characteristic. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Electrical Characteristics (Ta=25℃, VIN=VOUT+1.0V (*3), STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.) PARAMETER Limit Symbol MIN. TYP. Unit MAX. Conditions Overall Device VOUT×0.99 Output Voltage VOUT VOUT-25mV Operating Current Operating Current (STBY) V VOUT+25mV IOUT=10μA, VOUT≧2.5V IOUT=10μA, VOUT<2.5V IIN - 35 60 μA IOUT=0mA ISTBY - - 1.0 μA STBY=0V RR 45 70 - dB VRR=-20dBv, fRR=1kHz, IOUT=10mA - 280 540 mV 2.5V≦VOUT≦2.6V (VIN=0.98*VOUT, IOUT=200mA) - 260 500 mV 2.7V≦VOUT≦2.85V (VIN=0.98*VOUT, IOUT=200mA) - 240 460 mV 2.9V≦VOUT≦3.1V (VIN=0.98*VOUT, IOUT=200mA) - 220 420 mV 3.2V≦VOUT≦3.4V (VIN=0.98*VOUT, IOUT=200mA) Ripple Rejection Ratio Dropout Voltage VOUT×1.01 VOUT VSAT Line Regulation VDL - 2 20 mV VIN=VOUT+1.0V to 5.5V (*4), IOUT=10μA Load Regulation VDLO - 10 80 mV IOUT=0.01mA to 100mA Over Current Protection (OCP) Limit Current ILMAX 220 400 700 mA Vo=VOUT*0.95 Short Current ISHORT 20 70 150 mA Vo=0V RDSC 20 50 80 Ω VIN=4.0V, STBY=0V, VOUT=4.0V Standby Block Discharge Resistor STBY Pin Pull-down Current STBY Control Voltage ISTB 0.1 0.6 2.0 μA ON VSTBH 1.2 - 6.0 V OFF VSTBL -0.3 - 0.3 V STBY=1.5V This product is not designed for protection against radioactive rays. (*3) VIN=2.5V for VOUT≦1.5V (*4) VIN=2.5V to 3.6V for VOUT≦1.5V ●ELECTRICAL CHARACTERISTICS of each Output Voltage (Ta=25℃, STBY=VIN, Cin=0.47μF, Co=0.47μF, unless otherwise noted.) Output Voltage PARAMETER 1.0V, 1.1V, 1.2V, 1.25V, 1.3V Maximum output current 1.5V 1.8V, 1.85V, 1.9V, 2.0V, 2.1V MIN. 80 200 60 200 200 TYP. 160 120 - MAX. - Unit mA Conditions VIN=1.7V VIN=2.1V VIN=1.8V VIN=2.2V VIN=VOUT+0.6V ●Block Diagrams VIN VIN 1 VREF VOUT Cin VOUT 5 GND 2 OCP Co TSD STBY STBY 3 STBY Discharge Cin・・・0.47μF (Ceramic) Co ・・・0.47μF (Ceramic) Fig. 2 Block Diagrams www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Reference data BU18TD3WG (Ta=25ºC unless otherwise specified.) 1.85 Temp=25°C 100 Temp=25°C 1.84 1.6 Output Voltage (V) 1.4 1.2 1.0 Io=0uA Io=100uA Io=50mA Io=200mA 0.8 0.6 0.4 VIN=STBY 0.2 VIN=STBY 1.82 1.81 1.80 1.79 Io=0uA Io=100uA Io=50mA Io=200mA 1.78 1.77 1.76 0.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1.7 20 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 0 0.5 1 1.5 Gnd Current (uA) Temp=85°C 0.8 0.6 3 3.5 4 4.5 5 5.5 1.85 VIN=2.8V STBY=1.5V 80 VIN=2.8V STBY=1.5V 1.84 Temp=85°C 60 40 Temp=-40°C Temp=25°C 20 Temp=-40°C 2.5 Fig 5. Circuit Current IGND 100 1.4 1.2 2 Input Voltage (V) Fig 4. Line Regulation 1.6 Temp=25°C Temp=25°C 40 Input Voltage (V) Fig 3. Output Voltage 0.4 Temp=85°C 60 0 Input Voltage (V) 1.0 VIN=STBY 80 Temp=-40°C 1.75 0 STBY Pin Current (uA) Io=0uA 1.83 Output Voltage (V) Output Voltage (V) 1.8 Gnd Current (uA) 2.0 0.2 1.83 Temp=25°C 1.82 Temp=85°C 1.81 1.80 1.79 1.78 1.77 Temp=-40°C 1.76 0 0.0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1.75 0 5.5 0.05 0.1 0.15 0.2 0 0.05 Fig 6. VSTBY - ISTBY 0.1 0.15 0.2 Output Current (A) Output Current (A) Input Voltage (V) Fig 8. Load Regulation Fig 7. IOUT - IGND 1.85 2.0 2.0 VIN=5.5V 1.4 VIN=2.3V 1.2 1.0 0.8 0.6 0.4 Temp=25°C 0.2 STBY=1.5V 1.5 1.0 Temp=25°C Temp=-40°C Temp=85°C 0.5 0.0 0.1 0.2 0.3 0.4 0.5 1.83 1.82 1.81 1.80 1.79 1.78 1.77 1.76 0.0 0.0 1.75 0 0.6 0.5 1 1.5 Fig 9. OCP Threshold -40 -15 10 35 60 85 Temp (°C) STBY Voltage (V) Output Current (mA) Fig 11. VOUT - Temp Fig 10. STBY Threshold 1.0 60 VIN=2.8V STBY=1.5V Io=0mA 0.9 Gnd Current (uA) 50 Gnd Current (uA) Output Voltage (V) 1.6 Output Voltage (V) Output Voltage (V) VIN=2.8V VIN=2.8V STBY=1.5V Io=0.1mA 1.84 VIN=3.8V Io=0mA 1.8 40 30 20 VIN=2.8V STBY=0V 0.8 0.7 0.6 0.5 0.4 0.3 0.2 10 0.1 0 0.0 -40 -15 10 35 60 85 -40 -15 Temp (°C) Fig 12. IGND - Temp 10 60 85 Fig 13. IGND - Temp (STBY) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 35 Temp (°C) 5/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Reference data BU18TD3WG (Ta=25ºC unless otherwise specified.) 0 100 50 IOUT=50mA→0mA 0 Output Current (mA) 50 IOUT=0mA→50mA Output Current (mA) 100 1.90 Output Voltage (V) Output Voltage (V) 1.85 1.80 1.75 1.85 1.80 1.75 1.70 Fig 14. Load Response 50 0 100 50 IOUT=100mA→0mA 1.90 Output Voltage (V) Output Voltage (V) 1.85 1.80 1.75 1.70 1.85 1.80 1.75 Fig 16. Load Response Fig 17. Load Response 0 200 100 IOUT=200mA→0mA 2.00 Output Voltage (V) Output Voltage (V) 1.90 1.80 1.70 1.60 1.90 1.80 1.70 Fig 18. Load Response Fig 19. Load Response 0 100 IOUT=100mA→50mA 50 0 Output Current (mA) 50 Output Current (mA) 100 IOUT=50mA→100mA 1.85 Output Voltage (V) 1.90 Output Voltage (V) 0 Output Current (mA) 100 Output Current (mA) 200 IOUT=0mA→200mA 1.80 1.70 1.60 1.80 1.75 1.70 Fig 21. Load Response Fig 20. Load Response www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Output Current (mA) 100 Output Current (mA) IOUT=0mA→100mA Fig 15. Load Response 6/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Reference data BU18TD3WG (Ta=25ºC unless otherwise specified.) 2.0 1.0 0.0 2.0 1.0 0.0 Fig 23. Start Up Time Fig 22. Start Up Time Iout=200mA Iout=0mA VIN=STBY=2.8→0V 2.0 1.0 0.0 2.0 1.0 0.0 Fig 25. Start Up Time (VIN=STBY) Iout=200mA Fig 24. Start Up Time (VIN=STBY) Iout=0mA Iout=0mA 1.81 2.0 1.0 0.0 1.80 1.79 1.78 Fig 27. VIN Response Fig 26. Discharge Time www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3.8 2.8 Output Voltage (V) Output Voltage (V) 0.0 4.8 VIN=2.8V→3.8V→2.8V Input Voltage (V) 1.0 STBY Voltage (V) 2.0 STBY=1.5→0V 2.0 0.0 Output Voltage (V) Output Voltage (V) 0.0 4.0 STBY Voltage (V) 2.0 STBY Voltage (V) 4.0 VIN=STBY=0→2.8V 1.0 0.0 Output Voltage (V) Output Voltage (V) 0.0 2.0 STBY=0→1.5V STBY Voltage (V) 1.0 STBY Voltage (V) 2.0 STBY=0→1.5V 7/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series z About power dissipation (Pd) As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability. Therefore, be sure to prepare sufficient margin within power dissipation for usage. Calculation of the maximum internal power consumption of IC (PMAX) PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current) { Measurement conditions Standard ROHM Board Layout of Board for Measurement Top Layer (Top View) IC Implementation Position Bottom Layer (Top View) Measurement State With board implemented (Wind speed 0 m/s) Board Material Glass epoxy resin (Double-side board) Board Size 70 mm x 70 mm x 1.6 mm Top layer Wiring Bottom Rate layer Through Hole Metal (GND) wiring rate: Approx. 0% Metal (GND) wiring rate: Approx. 50% Diameter 0.5mm x 6 holes Power Dissipation 0.54W Thermal Resistance θja=185.2°C/W 0.6 0.5 0.54W Standard ROHM Board Pd [W] 0.4 0.3 * Please design the margin so that PMAX becomes is than Pd (PMAX<Pd) within the usage temperature range 0.2 0.1 0 0 25 50 75 85 100 125 Ta [℃] Fig. 28 SSOP5 Power dissipation heat reduction characteristics (Reference) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Operation Notes 1.) Absolute maximum ratings Use of the IC in excess of absolute maximum ratings (such as the input voltage or operating temperature range) may result in damage to the IC. Assumptions should not be made regarding the state of the IC (e.g., short mode or open mode) when such damage is suffered. If operational values are expected to exceed the maximum ratings for the device, consider adding protective circuitry (such as fuses) to eliminate the risk of damaging the IC. 2.) GND potential The potential of the GND pin must be the minimum potential in the system in all operating conditions. Never connect a potential lower than GND to any pin, even if only transiently. 3.) Thermal design Use a thermal design that allows for a sufficient margin for that package power dissipation rating (Pd) under actual operating conditions. 4.) Inter-pin shorts and mounting errors Use caution when orienting and positioning the IC for mounting on printed circuit boards. Improper mounting or shorts between pins may result in damage to the IC. 5.) Operation in strong electromagnetic fields Strong electromagnetic fields may cause the IC to malfunction. Caution should be exercised in applications where strong electromagnetic fields may be present. 6.) Common impedance Wiring traces should be as short and wide as possible to minimize common impedance. Bypass capacitors should be use to keep ripple to a minimum. 7.) Voltage of STBY pin To enable standby mode for all channels, set the STBY pin to 0.3 V or less, and for normal operation, to 1.2 V or more. STBY to a voltage between 0.3 and 1.2 V may cause malfunction and should be avoided. Setting Keep transition time between high and low (or vice versa) to a minimum. Additionally, if STBY is shorted to VIN, the IC will switch to standby mode and disable the output discharge circuit, causing a temporary voltage to remain on the output pin. occur on the output. If the IC is switched on again while this voltage is present, overshoot may Therefore, in applications where these pins are shorted, the output should always be completely discharged before turning the IC on. 8.) Over-current protection circuit (OCP) This IC features an integrated over-current and short-protection circuitry on the output to prevent destruction of the IC when the output is shorted. The OCP circuitry is designed only to protect the IC from irregular conditions (such as motor output shorts) and is not designed to be used as an active security device for the application. Therefore, applications should not be designed under the assumption that this circuitry will engage. 9.) Thermal shutdown circuit (TSD) This IC also features a thermal shutdown circuit that is designed to turn the output off when the junction temperature of the IC exceeds about 150℃. This feature is intended to protect the IC only in the event of thermal overload and is not designed to guarantee operation or act as an active security device for the application. Therefore, applications should not be designed under the assumption that this circuitry will engage. 10.) Input/output capacitor Capacitors must be connected between the input/output pins and GND for stable operation, and should be physically mounted as close to the IC pins as possible. The input capacitor helps to counteract increases in power supply impedance, and increases stability in applications with long or winding power supply traces. The output capacitance value is directly related to the Unstablevalue region overall stability and transient response of the regulator, and should be set to the largest possible for the application to increase these characteristics. During design, keep in mind that in general, ceramic capacitors have a wide range of tolerances, temperature coefficients and DC bias characteristics, and that their capacitance values tend to decrease over time. Confirm these details before choosing appropriate capacitors for your application.(Please refer the technical note, regarding ceramic capacitor of recommendation) Cout=0.47μF, Cin=0.47μF, Temp=+25℃ 11.) About the equivalent series resistance (ESR) of a ceramic capacitor 100 Capacitors generally have ESR (equivalent series resistance) and it operates stably in the ESR-IOUT area shown on the right. 10 capacitors, etc. generally have different ESR, please check the ESR of the capacitor to be used and use it within the stability area range shown in the right graph for evaluation of the actual application. ESR[Ω] [Ω] ESR Since ceramic capacitors, tantalum capacitors, electrolytic 1 0.1 0.01 0 50 100 150 200 IOUT [mA] Fig. 29 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 9/10 Stable region (example) TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002 Datasheet BUxxTD3WG series ●Revision History Date Revision 7.Feb.2013 001 30.Jul.2013 002 Changes New Release Adding a Revision History. VSBYH is changed. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 10/10 TSZ02201-0RBR0A300030-1-2 30.JUL.2013.Rev.002