TDK B65814N1012D001 Ferrites and accessory Datasheet

Ferrites and accessories
RM 10, RM 10 LP
Core and accessories
Series/Type:
B65813, B65814, B65679
Date:
February 2016
a~í~=pÜÉÉí
¤EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the
information contained therein without EPCOS’ prior express consent is prohibited.
EPCOS AG is a TDK Group Company.
RM 10
Core and accessories
Individual parts
Part no.
Page
Adjusting screw
B65679
8
Core
B65813
3
Clamps
B65814
7
Insulating washer 1
B65814
7
Coil former
B65814
5
Core
B65813
3
Insulating washer 2
B65814
7
Coil former for
power applications
B65814
6
RM 10 low-profile:
Core
B65813P
9
Threaded sleeve (glued-in)
Example of an assembly set
Also available:
Please read Cautions and warnings and
Important notes at the end of this document.
2
02/16
RM 10
Core
B65813
■ To IEC 62317-4
■ Cores without center hole
for transformer applications
■ Delivery mode: sets
Magnetic characteristics (per set)
6 l/A
le
Ae
Amin
Ve
with
center hole
without
center hole
0.5
42
83
—
3490
0.45
44
98
90
4310
mm–1
mm
mm2
mm2
mm3
22
g
Approx. weight (per set)
m
20.7
Gapped
Material
AL value
nH
s
Pe
Ordering code 1)
-D with center hole
-N with threaded sleeve
-J without center hole
approx.
mm
N48
400 r 3%
630 r 3%
0.21
0.13
161
254
B65813+0400A048
B65813+0630A048
N41
250 r 3%
630 r 5%
1600 r10%
0.44
0.13
0.04
89
225
572
B65813J0250A041
B65813J0630J041
B65813J1600K041
1) Replace the + by the code letter “D” or “N” for the required version.
Please read Cautions and warnings and
Important notes at the end of this document.
3
02/16
RM 10
Core
B65813
Ungapped
Material
AL value
nH
Pe
PV
Ordering code
-J without center hole
W/set
N30
7600 +30/–20% 2720
B65813J0000R030
T38
16000 +40/–30% 5720
B65813J0000Y038
N49
2900 +30/–20% 1040
< 0.75 ( 50 mT, 500 kHz,100 qC)
B65813J0000R049
N87
4200 +30/–20% 1500
< 2.30 (200 mT, 100 kHz, 100 qC)
B65813J0000R087
N97
4200 +30/–20% 1500
< 2.00 (200 mT, 100 kHz, 100 qC)
B65813J0000R097
N41
5500 +30/–20% 1960
< 0.80 (200 mT, 25 kHz, 100 qC)
B65813J0000R041
Please read Cautions and warnings and
Important notes at the end of this document.
4
02/16
RM 10
Accessories
B65814
Coil former
Material:
GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:
H max. operating temperature 155 qC), color code black
Sumikon PM 9630 ® >E41429 (M)@, SUMITOMO BAKELITE CO LTD
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 qC, 3.5 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
Squared pins.
For matching clamp and insulating washers see page 7.
Sections
AN
mm2
lN
mm
AR value
P:
Pins
Ordering code
1
41.5
52
43
8
12
B65814N1008D001
B65814N1012D001
2
39
52
46
8
12
B65814N1008D002
B65814N1012D002
12 pins
Hole arrangement
View in
mounting direction
Please read Cautions and warnings and
Important notes at the end of this document.
5
02/16
Version
Pins omitted
8 pins
2, 5, 8, 11
RM 10
Accessories
B65814
Coil former for power applications
Optimized for automatic winding
Material:
GFR polyterephthalate (UL 94 V-0, insulation class to IEC 60085:
F max. operating temperature 155 qC), color code black
Valox 420-SE0 ® >E45329 (M)@, Sabic Innovative Plastic
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 qC, 3.5 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
For matching clamp and insulating washer 1 see page 7.
Sections
AN
mm2
lN
mm
AR value
P:
Pins
Ordering code
1
41.5
52
43
12
B65814C1512T001
Hole arrangement
View in mounting direction
(Note half pitch!)
Please read Cautions and warnings and
Important notes at the end of this document.
6
02/16
RM 10
Accessories
B65814
Clamp
■ With ground terminal, made of stainless spring steel (tinned), 0.4 mm thick
■ Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
■ Also available as strip clamp on reels on request
Insulating washer 1 between core and coil former
■ For tolerance compensation and for insulation
■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E
120 qC), 0.08 mm thick
Aryphan F685, >E167358 (M)@, natural color, LOFO HIGH TECH FILM GMBH
Insulating washer 2 for double-clad PCBs
120 qC), 0.25 mm thick
@
>
Makrofol FR7-2, E118859 (M) , natural color, BAYER MATERIALSCIENCE AG
■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E
Ordering code
Clamp (ordering code per piece, 2 are required)
B65814B2203X000
Insulating washer 1 (reel packing, PU = 1 reel)
B65814B5000X000
Insulating washer 2 (bulk)
B65814B2005X000
Clamp
Insulating washer 2
Insulating washer 1
(preliminary data)
Please read Cautions and warnings and
Important notes at the end of this document.
7
02/16
RM 10
Accessories
B65679
Adjusting screw
■ Tube core with thread and core brake made of GFR polyterephthalate
Pocan B3235 ® >E245249 (M)@, LANXESS AG
Tube core
‡ u length (mm)
Ordering code
Material
Color code
4.55 u 6.3
N22
red
B65679E0003X022
4.98 u 6.3
N22
black
B65679E0002X022
Please read Cautions and warnings and
Important notes at the end of this document.
8
02/16
RM 10 »Low Profile«
Core
■
■
■
■
B65813P
To IEC 62317-4
For compact transformers
Without center hole
Delivery mode: sets
Magnetic characteristics (per set)
6l/A
le
Ae
Amin
Ve
= 0.34 mm–1
= 33.9 mm
= 99.1 mm2
= 90.0 mm2
= 3360 mm3
Approx. weight 17.2 g/set
Ungapped
AL value
nH
Pe
N49
3700 +30/–20%
1000
< 0.62 ( 50 mT, 500 kHz, 100 qC)
B65813P0000R049
N92
4000 +30/–20%
1090
< 1.90 (200 mT, 100 kHz, 100 qC)
B65813P0000R092
N87
5200 +30/–20%
1410
< 1.72 (200 mT, 100 kHz, 100 qC)
B65813P0000R087
Material
PV
Ordering code
W/set
Please read Cautions and warnings and
Important notes at the end of this document.
9
02/16
Ferrites and accessories
Cautions and warnings
Cautions and warnings
Mechanical stress and mounting
Ferrite cores have to meet mechanical requirements during assembling and for a growing number
of applications. Since ferrites are ceramic materials one has to be aware of the special behavior
under mechanical load.
As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing
or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads
can cause cracks or failure of the ferrite cores.
For detailed information see chapter “Definitions”, section 8.1.
Effects of core combination on AL value
Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent
that the initial permeability is dependent on the stress state of the core. The higher the stresses are
in the core, the lower is the value for the initial permeability. Thus the embedding medium should
have the greatest possible elasticity.
For detailed information see chapter “Definitions”, section 8.2.
Heating up
Ferrites can run hot during operation at higher flux densities and higher frequencies.
NiZn-materials
The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.
Processing notes
– The start of the winding process should be soft. Else the flanges may be destroyed.
– Too strong winding forces may blast the flanges or squeeze the tube that the cores can not be
mounted any more.
– Too long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
– Not following the processing notes for soldering of the J-leg terminals may cause solderability
problems at the transformer because of pollution with Sn oxyd of the tin bath or burned insulation
of the wire. For detailed information see chapter “Processing notes”, section 8.2.
– The dimensions of the hole arrangement have fixed values and should be understood as
a recommendation for drilling the printed circuit board. For dimensioning the pins, the group
of holes can only be seen under certain conditions, as they fit into the given hole arrangement.
To avoid problems when mounting the transformer, the manufacturing tolerances for positioning
the customers’ drilling process must be considered by increasing the hole diameter.
Display of ordering codes for EPCOS products
The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as
shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.
Please read Cautions and warnings and
Important notes at the end of this document.
10
02/16
Ferrites and accessories
Symbols and terms
Symbols and terms
Symbol
Meaning
Unit
A
Ae
AL
AL1
Amin
AN
AR
B
'B
B̂ 'B̂ BDC
BR
BS
C0
CDF
DF
d
Ea
f
fcutoff
fmax
fmin
fr
fCu
g
H
Ĥ HDC
Hc
h
h/Pi 2
I
IDC
Î Cross section of coil
Effective magnetic cross section
Inductance factor; AL = L/N2
Minimum inductance at defined high saturation ( Pa)
Minimum core cross section
Winding cross section
Resistance factor; AR = RCu /N2
RMS value of magnetic flux density
Flux density deviation
Peak value of magnetic flux density
Peak value of flux density deviation
DC magnetic flux density
Remanent flux density
Saturation magnetization
Winding capacitance
Core distortion factor
Relative disaccommodation coefficient DF = d/Pi
Disaccommodation coefficient
Activation energy
Frequency
Cut-off frequency
Upper frequency limit
Lower frequency limit
Resonance frequency
Copper filling factor
Air gap
RMS value of magnetic field strength
Peak value of magnetic field strength
DC field strength
Coercive field strength
Hysteresis coefficient of material
Relative hysteresis coefficient
RMS value of current
Direct current
Peak value of current
Polarization
Boltzmann constant
Third harmonic distortion
Circuit third harmonic distortion
Inductance
mm2
mm2
nH
nH
mm2
mm2
P: = 10–6:
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
F = As/V
mm–4.5
J
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
mm
A/m
A/m
A/m
A/m
10–6 cm/A
10–6 cm/A
A
A
A
Vs/m2
J/K
H = Vs/A
J
k
k3
k3c
L
Please read Cautions and warnings and
Important notes at the end of this document.
11
02/16
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
'L/L
L0
LH
Lp
Lrev
Ls
le
lN
N
PCu
Ptrans
PV
PF
Q
R
RCu
Rh
'Rh
Ri
Rp
Rs
Rth
RV
s
T
'T
TC
t
tv
tanG
tanGL
tanGr
tanGe
tanGh
tanG/Pi
U
Û
Ve
Z
Zn
Relative inductance change
Inductance of coil without core
Main inductance
Parallel inductance
Reversible inductance
Series inductance
Effective magnetic path length
Average length of turn
Number of turns
Copper (winding) losses
Transferrable power
Relative core losses
Performance factor
Quality factor (Q = ZL/Rs = 1/tanGL)
Resistance
Copper (winding) resistance (f = 0)
Hysteresis loss resistance of a core
Rh change
Internal resistance
Parallel loss resistance of a core
Series loss resistance of a core
Thermal resistance
Effective loss resistance of a core
Total air gap
Temperature
Temperature difference
Curie temperature
Time
Pulse duty factor
Loss factor
Loss factor of coil
(Residual) loss factor at H o 0
Relative loss factor
Hysteresis loss factor
Relative loss factor of material at H o 0
RMS value of voltage
Peak value of voltage
Effective magnetic volume
Complex impedance
Normalized impedance |Z|n = |Z| /N 2 u H (le /Ae)
H
H
H
H
H
H
mm
mm
W
W
mW/g
Please read Cautions and warnings and
Important notes at the end of this document.
12
02/16
:
:
:
:
:
:
:
K/W
:
mm
°C
K
°C
s
V
V
mm3
:
:/mm
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
D
DF
De
Hr
)
K
KB
Ki
Os
P
P0
Pa
Papp
Pe
Pi
Pp'
Pp"
Pr
Prev
Ps'
Ps"
Ptot
Temperature coefficient (TK)
Relative temperature coefficient of material
Temperature coefficient of effective permeability
Relative permittivity
Magnetic flux
Efficiency of a transformer
Hysteresis material constant
Hysteresis core constant
Magnetostriction at saturation magnetization
Relative complex permeability
Magnetic field constant
Relative amplitude permeability
Relative apparent permeability
Relative effective permeability
Relative initial permeability
Relative real (inductive) component of P (for parallel components)
Relative imaginary (loss) component of P (for parallel components)
Relative permeability
Relative reversible permeability
Relative real (inductive) component of P (for series components)
Relative imaginary (loss) component of P (for series components)
Relative total permeability
derived from the static magnetization curve
Resistivity
Magnetic form factor
DC time constant WCu = L/RCu = AL/AR
Angular frequency; Z= 2 3f
1/K
1/K
1/K
Vs
mT-1
A–1H–1/2
Vs/Am
:m–1
mm–1
s
s–1
U
6l/A
WCu
Z
All dimensions are given in mm.
Surface-mount device
Please read Cautions and warnings and
Important notes at the end of this document.
13
02/16
Important notes
The following applies to all products named in this publication:
1. Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical
requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application. As
a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them
than the customers themselves. For these reasons, it is always ultimately incumbent on the
customer to check and decide whether an EPCOS product with the properties described in the
product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in which
the malfunction or failure of an electronic component could endanger human life or health (e.g.
in accident prevention or life-saving systems), it must therefore be ensured by means of suitable
design of the customer application or other action taken by the customer (e.g. installation of
protective circuitry or redundancy) that no injury or damage is sustained by third parties in the
event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our
Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more
detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order.
We also reserve the right to discontinue production and delivery of products.
Consequently, we cannot guarantee that all products named in this publication will always be
available. The aforementioned does not apply in the case of individual agreements deviating
from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version
of the “General Terms of Delivery for Products and Services in the Electrical Industry”
published by the German Electrical and Electronics Industry Association (ZVEI).
7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP,
CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell,
MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT,
SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP,
ThermoFuse, WindCap are trademarks registered or pending in Europe and in other
countries. Further information will be found on the Internet at www.epcos.com/trademarks.
14
02/16
Similar pages