ARIZONA MICROTEK, INC. AZP81 PECL/ECL Filter-Based Multiplier & Limiting Amp with Selectable Enable FEATURES • • • • • PACKAGE AVAILABILITY High Bandwidth for 1+GHz 3.0V to 5.5V Power Supply Selectable Enable Polarity Designed for Filters to Select Odd or Even Harmonics S-Parameter (.s1p and .s2p) Files Available on Arizona Microtek Website PACKAGE MLP 16 (3x3) Green / RoHS Compliant / Lead (Pb) Free 1 2 PART NO. MARKING NOTES AZP81LG AZMG P81 <Date Code> 1,2 Add R1 at end of part number for 7 inch (1K parts), R2 for 13 inch (2.5K parts) Tape & Reel. Date code format: “Y” for year followed by “WW” for week. DESCRIPTION The AZP81 is a specialized multiplier chip designed to be used with an external filter. It supplies three different gain paths. A low gain path is used with a resonator, usually a crystal (D/D̄ to Q̄). An intermediate gain path with fast output edges supplies a filter (D/D̄ to FLTRDR/FLTRDR ¯¯¯¯¯¯¯¯). A high gain limiting amp (AMPIN to QHG/Q̄HG) with a selectable enable provides industry standard 100k PECL/ECL outputs. When QHG/Q̄HG are disabled, the AZP81’s oscillator loop continues to operate. See truth table below for enable function. It also provides a VBB and 470Ω internal bias resistors from D/D̄ to VBB and AMPIN to VBB. The VBB pin can support 1.5mA sink/source current. Bypassing VBB and D̄ to ground with 0.01 to 0.1 μF capacitors is recommended. Output Q̄ has an on-chip 4mA pull-down current source while output FLTRDR has an on-chip 8mA pull-down current source. External resistors to VEE may also be used to increase pull-down current to a maximum of 25mA each. ENABLE TRUTH TABLE EN-SEL EN (PECL/CMOS) QHG NC Low Low NC High or NC Data Low or NC Data VEE* High Low VEE* *Connections to VEE must be less than 1Ω. D Q̄HG High Data Data High D Q FLTRDR 470Ω FLTRDR VBB PIN DESCRIPTION PIN D/D̄ Q̄ AMPIN FLTRDR/FLTRDR ¯¯¯¯¯¯¯¯ QHG/Q̄HG VBB EN EN-SEL FUNCTION Inputs from Resonator Output to Resonator Inputs from Filter Outputs to Filter Outputs w/High Gain Ref. Voltage Output Enable Input Selects Enable Logic 8mA 4mA 470Ω QHG AMPIN LIMITING AMP QHG EN EN-SEL 1630 S. STAPLEY DR., SUITE 127 • MESA, ARIZONA 85204 • USA • (480) 962-5881 • FAX (623) 505-2414 www.azmicrotek.com VEE AZP81 TIMING DIAGRAMS D to Q̄/FLTRDR AMPIN EN (EN-SEL CONNECTED TO VEE) EN (EN-SEL OPEN) QHG AMPIN to QHG AZP81L PINOUT Leave Pad Open or Connect to VEE TOP VIEW June 2009 Rev - 4 www.azmicrotek.com 2 AZP81 Absolute Maximum Ratings. Beyond which device life may be impaired. Characteristic Symbol Rating Unit PECL Power Supply (VEE = 0V) PECL Input Voltage (VEE = 0V) PECL EN Input Voltage (VEE = 0V) ECL Power Supply (VCC = 0V) ECL Input Voltage (VCC = 0V) ECL EN Input Voltage (VEE = 0V) Output Current --- Continuous Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯¯ --- Surge Output Current --- Continuous --- Surge QHG/Q̄HG Operating Temperature Range VEE VI VI VEE VI VI 0 to 6.0 ±0.75 with respect to VBB 0 to 6.0 -6.0 to 0 ±0.75 with respect to VBB -6.0 to 0 25 50 50 100 -40 to +85 VDC VDC VDC VDC VDC VDC IOUT IOUT TA mA mA °C 100K ECL DC Characteristics (VEE = -3.0V to -5.5V, VCC = GND) Symbol VOH VOL VOH VOL VIH VIL VBB IIL IIH IEE 1. Characteristic -40°C Min 0°C Max Min Output HIGH Voltage -1045 -895 -1005 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯¯ Output LOW Voltage -2010 -1710 -1985 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯¯ Output HIGH Voltage1 -1085 -880 -1025 QHG/Q̄HG Output LOW Voltage1 -1830 -1555 -1810 QHG/Q̄HG Input HIGH Voltage D/D̄ -1165 -390 -1165 EN -1165 VCC -1165 Input LOW Voltage -1475 -2250 D/D̄ -2250 -1475 VEE EN VEE Reference Voltage -1390 -1250 -1390 Input LOW Current EN (ECL) -150 -150 EN (CMOS) -300 -300 Input HIGH Current EN 150 Power Supply Current 63 Specified with each output terminated through a 50Ω resistor to VCC – 2V. 25°C 85°C Unit Max Min Max Min Max -855 -980 -830 -910 -760 mV -1685 -1965 -1665 -1910 -1610 mV -880 -1025 -880 -1025 -880 mV -1620 -1810 -1620 -1810 -1620 mV -390 VCC -1165 -1165 -390 VCC -1165 -1165 -390 VCC mV -1475 -1475 -1250 -2250 VEE -1390 -1475 -1475 -1250 -2250 VEE -1390 -1475 -1475 -1250 mV -150 -300 μA -150 -300 150 63 mV 150 63 150 68 μA mA 100K LVPECL DC Characteristics (VEE = GND, VCC = +3.3V) Symbol VOH VOL VOH VOL VIH VIL VBB IIL IIH IEE 1. 2. Characteristic -40°C Min 0°C Max Min 25°C Max Output HIGH Voltage 2255 2405 2295 2445 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯¯ Output LOW Voltage 1290 1590 1315 1615 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯¯ 1 Output HIGH Voltage 2215 2420 2275 2420 QHG/Q̄HG 1 Output LOW Voltage 1470 1745 1490 1680 QHG/Q̄HG Input HIGH Voltage D/D̄ 2135 2910 2135 2910 EN 2135 VCC 2135 VCC Input LOW Voltage D/D̄ 1050 1825 1050 1050 EN VEE 1825 VEE VEE Reference Voltage 1910 2050 1910 2050 Input LOW Current EN (ECL) -150 -150 EN (CMOS) -300 -300 Input HIGH Current EN 150 150 Power Supply Current1 63 63 For supply voltages other than 3.3V, use the ECL table values and ADD supply voltage value. Specified with each output terminated through a 50Ω resistor to VCC – 2V. June 2009 Rev - 4 www.azmicrotek.com 3 85°C Unit Min Max Min Max 2320 2470 2390 2540 mV 1335 1635 1390 1690 mV 2275 2420 2275 2420 mV 1490 1680 1490 1680 mV 2135 2135 2910 VCC 2135 2135 2910 VCC mV 1825 1825 1910 1050 VEE 2050 1825 1825 1910 -1475 -1475 2050 mV -150 -300 μA -150 -300 150 63 mV 150 68 μA mA AZP81 100K PECL DC Characteristics (VEE = GND, VCC = +5.0V) Symbol Characteristic -40°C Min 0°C Max Min 25°C Max Output HIGH Voltage 3955 4105 3995 4145 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯ Output LOW Voltage VOL 2990 3290 3015 3315 Q̄, FLTRDR/FLTRDR ¯¯¯¯¯¯ Output HIGH Voltage1 VOH 3915 4120 3975 4120 QHG/Q̄HG Output LOW Voltage1 VOL 1470 1745 1490 1680 QHG/Q̄HG Input HIGH Voltage VIH D/D̄ 3835 4610 3835 4610 EN 3835 VCC 3835 VCC Input LOW Voltage VIL 3525 2750 3525 D/D̄ 2750 3525 VEE 3525 EN VEE VBB Reference Voltage 3610 3750 3610 3750 Input LOW Current IIL EN (ECL) -150 -150 EN (CMOS) -300 -300 Input HIGH Current EN 150 150 IIH IEE Power Supply Current1 63 63 1. For supply voltages other than 5.0V, use the ECL table values and ADD supply voltage value. 2. Specified with each output terminated through a 50Ω resistor to VCC – 2V. VOH 85°C Unit Min Max Min Max 4020 4170 4090 4240 mV 3035 3335 3090 3390 mV 3975 4120 3975 4120 mV 1490 1680 1490 1680 mV 3835 3835 4610 VCC 3835 3835 4610 VCC mV 2750 VEE 3610 3525 3525 3750 2750 VEE 3610 3525 3525 3750 mV -150 -300 mV μA -150 -300 150 63 150 68 μA mA AC Characteristics (VEE = -3.0V to -5.5V; VCC = GND or VCC = 3.0V to 5.5V, VEE = GND) Symbol Characteristic Min -40°C Typ Max Min 0°C Typ Max Min 25°C Typ Max Min 85°C Typ Max Propagation Delay D/D̄ to Q̄ 90 200 90 200 90 200 90 200 D/D̄ to FLTRDR/FLTRDR ¯¯¯¯¯¯¯ 2 130 260 130 260 130 260 130 260 AMPIN to QHG/Q̄HG1 (SE) 200 380 200 380 200 380 200 380 tSKEW Duty Cycle Skew3 (SE) 5 20 5 20 5 20 5 20 300 2000 300 2000 300 2000 300 2000 D/D̄ Input Swing (SE)4 VPP (AC) AMPIN 150 2000 150 2000 150 2000 150 2000 Output Rise/Fall Times (20% tr / t f 80 240 80 240 80 240 80 240 - 80%) Maximum Recommended Multiply Ratio xMAX Even Harmonics 8 8 8 8 Odd Harmonics 7 7 7 7 1. Specified with QHG/Q̄HG terminated through a 50Ω resistor to VCC – 2V. 2. Specified with FLTRDR terminated into an AC coupled 50Ω load, FLTRDR ¯¯¯¯¯¯¯ into an AC coupled 50Ω load along an external 8mA pull-down current. 3. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device. 4. Single ended input swing for which AC parameters guaranteed. tPLH / tPHL SINGLE ENDED AC PP INPUT June 2009 Rev - 4 www.azmicrotek.com 4 Unit ps ps mV ps AZP81 1000 900 800 VOUTpp (mV) 700 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 FREQUENCY (MHz) Fig 1: Typical Large Signal Outputs, QHG/Q̄HG Measured with 750mVPP on AMPIN, QHG/Q̄HG each terminated to VCC-2V via 50 Ω resistors. June 2009 Rev - 4 www.azmicrotek.com 5 4000 AZP81 APPLICATION The AZP81 is a “filter-based” oscillator gain stage and multiplier. Generating a spectrum of harmonics from a sinewave input, an external bandpass filter selects the desired harmonic. A crystal or SAW (with associated passive discrete components) is connected between D and Q̄ (pins 1 and 16, respectively) to form an high stability oscillator stage. Alternatively, an external Colpitts, Pierce or similar sinewave oscillator may be fed into D (pin 1) to drive the AZP81. In this case, input amplitude should be less than 1 VPP on D for best results. Also, tie the Q̄ pin to VCC to reduce fundamental subharmonic and other noise source coupling into the circuit board. The D input also drives another higher gain stage. This stage generates fast edges with resultant high harmonic spectral content. In one mode, the signal on FLTRDR (pin 14) is a square wave with greater spectral energy at odd harmonics (3x, 5x, 7x). Figure 4 illustrates the typical spectral output at FLTRDR. Another mode is selected by connecting FLTRDR ¯¯¯¯¯¯¯ and FLTRDR. This mode generates a pulse wave which contains greater spectral energy at even harmonics (2x, 4x, 6x, 8x). Figure 5 illustrates the typical spectral output at FLTRDR when the two pins are shorted together. An external bandpass filter inserted between FLTRDR (or FLTRDR/FLTRDR ¯¯¯¯¯¯¯ ) and AMPIN (pin 7) selects the desired harmonic and attenuates the rest. This filter is typically either an LC or SAW implementation. The bandpass filter is AC coupled since both the FLTDR and AMPIN signals are internally biased. The filter must be designed for the drive impedance found at FLTRDR and the input impedance at AMPIN. Graphs that follow in this data sheet show the S-parameters for these pins. Also included are graphs of the output impedance magnitude of FLTRDR and the input impedance magnitude of AMPIN. These impedance graphs provide a way to approximate the filter required without the use of S-parameter based design software. The filter and other elements on the circuit board must be placed carefully to minimize subharmonic feed-through. The resultant signal level at AMPIN should be 150 mV peak-peak or greater for best limiting amplifier performance. The limiting amplifier provides a high bandwidth PECL/ECL output into the standard load of 50Ω to VCC – 2V. Figure 1 shows the large signal output swing versus frequency. It may be desirable to hold off the limiting amplifier operation until the sine-wave oscillator has started. A capacitor may be used with the EN pin to create a delay. Connect the capacitor from EN to VCC (if EN-SEL is open) or VEE (if EN-SEL is connected to VEE). This modification will avoid high-frequency parasitic feedback from the circuit board during oscillator startup. A 220ρF capacitor will provide approximately 10μs delay. Arizona Microtek’s website (www.azmicrotek.com) contains S-parameters for all signal paths in industry-standard .s1p and .s2p format supporting an easier RF design process. June 2009 Rev - 4 www.azmicrotek.com 6 AZP81 ADD THIS CONNECTION TO CONVERT SQUARE WAVE INTO PULSE WAVE CRYSTAL OR SAW Q FLTRDR 16 14 FLTRDR 13 AZP81 D D 1 2 7 VBB 3 LIMITING AMP QHG 9 QHG EN Fig 2: Typical Multiplier Application (Simplified Logic Shown) Fig 3: Typical LC Band Pass Filter www.azmicrotek.com 7 AMPIN 10 12 June 2009 Rev - 4 BAND PASS FILTER AZP81 0 155 MHz INPUT FREQUENCY -10 ODD HARMONICS 7x MAXIMUM RECOMMENDED HARMONIC OUTPUT LEVEL (dB relative) -20 -30 -40 -50 -60 -70 -80 -90 -100 0 200 400 600 800 1000 1200 1400 1600 1800 2000 FREQUENCY (MHz) Fig 4: Typical Spectrum Output of FLTRDR (Square wave) Full Limiting 155 MHz Input Signal 0 155 MHz INPUT FREQUENCY -10 8x MAXIMUM RECOMMENDED HARMONIC EVEN HARMONICS OUTPUT LEVEL (dB relative) -20 -30 -40 -50 -60 -70 -80 -90 -100 0 200 400 600 800 1000 1200 1400 1600 1800 FREQUENCY (MHz) Fig 5: Typical Spectrum Output of FLTRDR (Pulse wave) Full Limiting 155 MHz Input Signal June 2009 Rev - 4 www.azmicrotek.com 8 2000 AZP81 S-PARAMETERS 0 0.85 -10 0.8 -20 Phase Magnitude 0.9 0.75 -30 0.7 -40 0.65 S11 MAG S11 PHASE -50 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) 0.04 225 0.032 200 0.024 175 Phase Magnitude Fig 6: S11, D to Q̄ 0.016 150 0.008 125 0 100 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 7: S12, D to Q̄ June 2009 Rev - 4 www.azmicrotek.com 9 S12 MAG S12 PHASE 180 7.5 160 7 140 6.5 120 6 100 5.5 Phase 8 S21 MAG Phase Magnitude AZP81 S22 MAG S21 PHASE 80 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Magnitude Fig 8: S21, D to Q̄ 0.8 180 0.7 170 0.6 160 0.5 150 0.4 140 0.3 130 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 9: S22, D to Q̄ June 2009 Rev - 4 www.azmicrotek.com 10 S22 PHASE AZP81 0 0.8 -15 0.75 -30 S11 MAG (1) Phase Magnitude 0.85 0.7 -45 0.65 -60 0.6 S11 MAG (2) S11 PHASE (1) S11 PHASE (2) -75 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) 0.03 225 0.024 200 0.018 175 S12 MAG (1) Phase Magnitude Fig 10: S11, D to FLTRDR 0.012 150 0.006 125 0 100 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 11: S12, D to FLTRDR (1): FLTRDR ¯¯¯¯¯¯¯ open, not connected to FLTRDR (2): FLTRDR ¯¯¯¯¯¯¯ connected to FLTRDR June 2009 Rev - 4 www.azmicrotek.com 11 S12 MAG (2) S21 PHASE (1) S21 PHASE (2) 30 0 24 -50 18 -100 S21 MAG (1) Phase Magnitude AZP81 12 -150 6 -200 0 S21 MAG (2) S21 PHASE (1) S21 PHASE (2) -250 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) 1 180 0.8 160 0.6 140 S22 MAG (1) Phase Magnitude Fig 12: S21, D to FLTRDR 0.4 120 0.2 100 0 80 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 13: S22, D to FLTRDR (1): FLTRDR ¯¯¯¯¯¯¯ open, not connected to FLTRDR (2): FLTRDR ¯¯¯¯¯¯¯ connected to FLTRDR June 2009 Rev - 4 www.azmicrotek.com 12 S22 MAG (2) S22 PHASE (1) S22 PHASE (2) 0.82 0 0.81 -10 0.8 -20 0.79 -30 0.78 -40 0.77 -50 0.76 -60 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 14: S11, AMPIN to QHG June 2009 Rev - 4 www.azmicrotek.com 13 Phase Magnitude AZP81 S11 MAG S11 PHASE AZP81 IMPEDANCES 50 45 40 Magnitude (ohms) 35 30 OUTPUT IMPEDANCE (1) 25 OUTPUT IMPEDANCE (2) 20 15 10 5 0 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 15: FLTDR Output Impedance (1): FLTRDR ¯¯¯¯¯¯¯ open, not connected to FLTRDR (2): FLTRDR ¯¯¯¯¯¯¯ connected to FLTRDR 500 Magnitude (ohms) 400 300 INPUT IMPEDANCE 200 100 0 50 150 250 350 450 550 650 750 850 950 1050 1150 1250 1350 Frequency (MHz) Fig 16: AMPIN Input Impedance June 2009 Rev - 4 www.azmicrotek.com 14 AZP81 PACKAGE DIAGRAM MLP 16 A D D 2 2. INDEX AREA (D/2 x E/2) D2 D2/2 B E2/2 E2 E 2 3x E e 2 e 2x 1 aaa C 2x aaa C TOP VIEW bbb M C A B 5. 16 x b L 3. 3x e BOTTOM VIEW ccc C A3 A 4. 0.08 C A1 SIDE VIEW NOTES: 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME T14-1994. 2. THE TERMINAL #1 AND PAD NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. 3. DIMENSION b APPLIES TO METALLIZED PAD AND IS MEASURED BETWEEN 0.25 AND 0.30 mm FROM PAD TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS. 5. INSIDE CORNERS OF METALLIZED PAD MAY BE SQUARE OR ROUNDED June 2009 Rev - 4 www.azmicrotek.com 15 C SEATING PLANE MILLIMETERS DIM A A1 A3 b D D2 E E2 e L aaa bbb ccc MIN MAX 0.80 1.00 0.05 0.00 0.25 REF 0.18 0.30 2.90 3.10 0.25 1.95 2.90 3.10 0.25 1.95 0.50 BSC 0.30 0.50 0.25 0.10 0.10 AZP81 Arizona Microtek, Inc. reserves the right to change circuitry and specifications at any time without prior notice. Arizona Microtek, Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Arizona Microtek, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Arizona Microtek, Inc. does not convey any license rights nor the rights of others. Arizona Microtek, Inc. products are not designed, intended or authorized for use as components in systems intended to support or sustain life, or for any other application in which the failure of the Arizona Microtek, Inc. product could create a situation where personal injury or death may occur. Should Buyer purchase or use Arizona Microtek, Inc. products for any such unintended or unauthorized application, Buyer shall indemnify and hold Arizona Microtek, Inc. and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Arizona Microtek, Inc. was negligent regarding the design or manufacture of the part. June 2009 Rev - 4 www.azmicrotek.com 16