Tiny, Low Power JFET-Input Op Amp ADA4062-2 PIN CONFIGURATIONS Low input bias current: 50 pA maximum Offset voltage 1.5 mV maximum for ADA4062-2 B grade 2.5 mV maximum for ADA4062-2 A grade Offset voltage drift: 4 μV/°C typical Slew rate: 3.3 V/μs typical CMRR: 90 dB typical Low supply current: 165 μA typical High input impedance Unity-gain stable Packaging: SOIC, MSOP OUT A 1 –IN A 2 ADA4062-2 +IN A 3 TOP VIEW (Not to Scale) V– 4 8 V+ 7 OUT B 6 –IN B 5 +IN B 07670-001 FEATURES OUT A 1 –IN A 2 +IN A 3 8 ADA4062-2 V+ 7 TOP VIEW (Not to Scale) OUT B 6 –IN B 5 +IN B V– 4 07670-002 Figure 1. 8-Lead Narrow-Body SOIC Figure 2. 8-Lead MSOP APPLICATIONS Power control and monitoring Active filters Industrial/process control Body probe electronics Data acquisition Integrators Input buffering GENERAL DESCRIPTION Table 1. Low Power Op Amps The ADA4062-2 is a dual JFET-input amplifier with industryleading performance. It offers lower power, offset voltage, drift and ultralow bias current. The ADA4062-2 B grade features typical low offset voltage of 0.5 mV, offset drift of 4 μV/°C, and bias current of 2 pA. The ADA4062-2 is ideal for various applications, including process control, industrial and instrumentation equipment, active filtering, data conversion, buffering, and power control and monitoring. With a low supply current of 165 μA per amplifier, it is also very well suited for lower power applications. The ADA4062-2 is specified for the extended industrial temperature range of −40°C to +125°C and is available in lead-free SOIC and MSOP packages. Supply Single 40 V OP97 36 V AD820 Dual OP297 Quad OP497 OP282 AD8682 AD822 OP482 AD8684 AD824 12 V to 16 V AD8641 AD8663 AD8642 AD8667 5V AD8541 AD8643 AD8669 AD8544 AD8542 Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2008 Analog Devices, Inc. All rights reserved. ADA4062-2 TABLE OF CONTENTS Features .............................................................................................. 1 ESD Caution...................................................................................4 Applications ....................................................................................... 1 Typical Performance Characteristics ..............................................5 Pin Configurations ........................................................................... 1 Applications Information .............................................................. 14 General Description ......................................................................... 1 Notch Filter ................................................................................. 14 Revision History ............................................................................... 2 High-Side Signal Conditioning ................................................ 14 Specifications..................................................................................... 3 Micropower Instrumentation Amplifier ................................. 14 Electrical Characteristics ............................................................. 3 Phase Reversal ............................................................................ 14 Absolute Maximum Ratings............................................................ 4 Schematic ......................................................................................... 16 Thermal Resistance ...................................................................... 4 Outline Dimensions ....................................................................... 17 Power Sequencing ........................................................................ 4 Ordering Guide .......................................................................... 18 REVISION HISTORY 10/08—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADA4062-2 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VSY = ±15 V, VCM = 0 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage B Grade Symbol Conditions Min Typ Max Unit 0.5 1.5 3 2.5 5 50 5 25 2.5 +15 mV mV mV mV pA nA pA nA V VOS −40°C ≤ TA ≤ +125°C A Grade 0.75 −40°C ≤ TA ≤ +125°C Input Bias Current IB 2 −40°C ≤ TA ≤ +125°C Input Offset Current Input Voltage Range Common-Mode Rejection Ratio B Grade IOS Offset Voltage Drift Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio B Grade AVO ∆VOS/∆T RIN CINDM CINCM VOH VOL ISC ZOUT DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin Channel Separation NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VCM = −11.5 V to +11.5 V −40°C ≤ TA ≤ +125°C VCM = −11.5 V to +11.5 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −10 V to +10 V −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 80 80 74 70 76 72 RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C 13 12.5 90 dB dB dB dB dB dB μV/°C TΩ pF pF 90 83 4 10 1.5 4.8 13.5 −13.8 −13 −12.5 20 4 f = 100 kHz, AV = 1 V V V V mA Ω PSRR A Grade Supply Current per Amplifier −11.5 CMRR A Grade Large-Signal Voltage Gain 0.5 −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C ISY VSY = ±4 V to ±18 V −40°C ≤ TA ≤ +125°C VSY = ±4 V to ±18 V −40°C ≤ TA ≤ +125°C IO = 0 mA −40°C ≤ TA ≤ +125°C 80 80 74 70 90 90 165 200 220 dB dB dB dB μA μA SR tS GBP ΦM CS RL = 10 kΩ, CL = 100 pF, AV = 1 To 0.01%, VIN = 2 V step, CL = 100 pF, RL = 5 kΩ, AV = 1 RL = 10 kΩ, AV = 1 RL = 10 kΩ, AV = 1 f = 10 kHz 3.3 3.5 1.4 80 130 V/μs μs MHz Degrees dB en p-p en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 1.5 36 5 μV p-p nV/√Hz fA/√Hz Rev. 0 | Page 3 of 20 ADA4062-2 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 3. Parameter Supply Voltage Input Voltage Differential Input Voltage Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. It was measured using a standard 2-layer board. Rating ±18 V ±VSY ±VSY Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Table 4. Thermal Resistance Package Type 8-Lead SOIC 8-Lead MSOP θJA 158 210 θJC 43 45 Unit °C/W °C/W POWER SEQUENCING Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The op amp supply voltages must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA. ESD CAUTION Rev. 0 | Page 4 of 20 ADA4062-2 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 280 70 VSY = ±15V VCM = 0V 60 NUMBER OF AMPLIFERS 200 160 120 80 30 20 10 –2 –1 0 1 2 3 VOS (mV) 0 –4 NUMBER OF AMPLIFERS 20 10 0 2 4 6 8 10 TCVOS (µV/°C) 10 –2 5 3 2 2 1 1 VOS (mV) 3 0 –1 –2 –3 –4 –4 –3 0 3 6 9 2 4 6 8 10 12 VCM (V) 15 VSY = ±5V 0 –3 –6 0 –1 –2 –9 4 20 4 –12 3 Figure 7. Input Offset Voltage Drift Distribution VSY = ±15V –5 –15 2 TCVOS (µV/°C) –5 –4 07670-006 VOS (mV) 4 1 VSY = ±5V –40°C ≤ TA ≤ +125°C Figure 4. Input Offset Voltage Drift Distribution 5 0 30 0 07670-005 NUMBER OF AMPLIFERS 40 VSY = ±15V –40°C ≤ TA ≤ +125°C –2 –1 Figure 6. Input Offset Voltage Distribution 30 0 –2 VOS (mV) Figure 3. Input Offset Voltage Distribution 40 –3 07670-055 –3 07670-003 0 40 07670-054 40 50 –3 –2 –1 0 1 2 3 4 VCM (V) Figure 5. Input Offset Voltage vs. Common-Mode Voltage Figure 8. Input Offset Voltage vs. Common-Mode Voltage Rev. 0 | Page 5 of 20 5 07670-056 NUMBER OF AMPLIFERS 240 VSY = ±5V VCM = 0V ADA4062-2 10000 10000 VSY = ±15V 1000 100 100 10 10 1 1 –25 0 25 50 75 100 125 TEMPERATURE (°C) 0.1 –50 07670-009 0.1 –50 25 50 75 100 125 Figure 12. Input Bias Current vs. Temperature 3 VSY = ±15V 2 3 1 VSY = ±5V 2 0 1 –1 –4 –2 0 2 4 6 8 10 12 14 16 VCM (V) –2 –3 10 OUTPUT VOLTAGE TO SUPPLY RAIL (V) VCC – VOH VOL – VEE 0.1 1 10 LOAD CURRENT (mA) 100 1 2 3 4 5 VSY = ±5V VCC – VOH 1 0.1 0.01 07670-011 0.1 0.01 0 Figure 13. Input Bias Current vs. Input Common-Mode Voltage VSY = ±15V 1 –1 VCM (V) Figure 10. Input Bias Current vs. Input Common-Mode Voltage 10 –2 VOL – VEE 0.1 1 10 LOAD CURRENT (mA) Figure 11. Output Voltage to Supply Rail vs. Load Current Figure 14. Output Voltage to Supply Rail vs. Load Current Rev. 0 | Page 6 of 20 100 07670-014 –6 07670-010 –8 07670-013 IB (pA) IB (pA) 4 0 –12 –10 OUTPUT VOLTAGE TO SUPPLY RAIL (V) 0 TEMPERATURE (°C) Figure 9. Input Bias Current vs. Temperature 5 –25 07670-012 IB (pA) IB (pA) 1000 VSY = ±5V ADA4062-2 2.0 VOL – VEE 1.0 0.5 –25 0 25 50 75 100 125 TEMPERATURE (°C) VCC – VOH 0.5 0 –50 0 25 50 75 100 125 Figure 18. Output Voltage to Supply Rail vs. Temperature 120 120 100 100 80 80 80 80 60 60 60 60 100 PHASE 40 40 GAIN 20 20 0 0 GAIN (dB) VSY = ±15V PHASE (Degrees) 120 120 VSY = ±5V PHASE 40 100 40 GAIN 20 20 0 0 –20 –20 –20 –20 –40 –40 –40 –40 10k 100k 1M –60 100M 10M –60 1k 07670-016 –60 1k FREQUENCY (Hz) 10k 1M FREQUENCY (Hz) VSY = ±15V AV = +100 –60 100M 10M 50 50 VSY = ±5V AV = +100 40 40 30 30 AV = +10 GAIN (dB) AV = +10 20 10 AV = +1 10 0 AV = +1 –10 –10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 100M –20 10 07670-017 –20 10 20 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 20. Closed-Loop Gain vs. Frequency Figure 17. Closed-Loop Gain vs. Frequency Rev. 0 | Page 7 of 20 100M 07670-020 0 100k Figure 19. Open-Loop Gain and Phase vs. Frequency Figure 16. Open-Loop Gain and Phase vs. Frequency GAIN (dB) –25 TEMPERATURE (°C) Figure 15. Output Voltage to Supply Rail vs. Temperature GAIN (dB) VOL – VEE 1.0 PHASE (Degrees) 0 –50 1.5 07670-018 1.5 VSY = ±5V RL = 10kΩ 07670-019 VCC – VOH OUTPUT VOTLAGE TO SUPPLY RAIL (V) VSY = ±15V RL = 10kΩ 07670-015 OUTPUT VOTLAGE TO SUPPLY RAIL (V) 2.0 ADA4062-2 1000 1000 VSY = ±15V VSY = ±5V 100 100 AV = +10 AV = +1 0.1 100 AV = +100 AV = +10 AV = +1 1 1k 10k 100k 1M 10M FREQUENCY (Hz) 0.1 100 80 70 70 60 60 CMRR (dB) 80 50 40 30 20 10 10 1M 10M FREQUENCY (Hz) VSY = ±5V 40 20 100k 0 100 1k 1M 120 VSY = ±15V 10M VSY = ±5V 100 100 80 60 PSRR (dB) 80 PSRR+ 40 60 PSRR+ 40 PSRR– 20 PSRR– 20 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M –20 10 100 1k 10k 100k FREQUENCY (Hz) Figure 26. PSRR vs. Frequency Figure 23. PSRR vs. Frequency Rev. 0 | Page 8 of 20 1M 10M 07670-026 0 0 07670-023 PSRR (dB) 100k Figure 25. CMRR vs. Frequency 120 –20 10k FREQUENCY (Hz) Figure 22. CMRR vs. Frequency 140 10M 50 30 07670-022 CMRR (dB) 90 10k 1M 100 VSY = ±15V 1k 100k Figure 24. Output Impedance vs. Frequency 90 0 100 10k FREQUENCY (Hz) Figure 21. Output Impedance vs. Frequency 100 1k 07670-025 1 10 07670-024 ZOUT (Ω) 10 07670-021 ZOUT (Ω) AV = +100 ADA4062-2 60 50 OVERSHOOT (%) 30 20 40 30 20 10000 CL (pF) 0 10 10000 Figure 30. Small-Signal Overshoot vs. Load Capacitance 07670-028 VOLTAGE (1V/DIV) VSY = ±15V VIN = 20V p-p AV = +1 RL = 10kΩ CL = 100pF VSY = ±5V VIN = 4V p-p AV = +1 RL = 10kΩ CL = 100pF TIME (4µs/DIV) Figure 31. Large-Signal Transient Response VOLTAGE (20mV/DIV) Figure 28. Large-Signal Transient Response 07670-029 VSY = ±15V VIN = 100mV p-p AV = +1 RL = 10kΩ CL = 100pF TIME (10µs/DIV) 1000 CL (pF) Figure 27. Small-Signal Overshoot vs. Load Capacitance TIME (10µs/DIV) 100 07670-031 1000 VSY = ±5V VIN = 100mV p-p AV = +1 RL = 10kΩ CL = 100pF TIME (10µs/DIV) Figure 32. Small-Signal Transient Response Figure 29. Small-Signal Transient Response Rev. 0 | Page 9 of 20 07670-032 100 07670-027 0 10 07670-030 10 10 VOLTAGE (5V/DIV) VSY = ±5V AV = +1 RL = 10kΩ 50 40 VOLTAGE (20mV/DIV) OVERSHOOT (%) 60 VSY = ±15V AV = +1 RL = 10kΩ ADA4062-2 4 4 VSY = ±15V VSY = ±5V 2 INPUT INPUT OUTPUT 0 –2 –10 –4 –15 07670-033 –20 TIME (2µs/DIV) Figure 36. Negative Overload Recovery 2 10 5 OUTPUT –5 –2 Figure 37. Positive Overload Recovery INPUT IDEAL STEP FUNCTION OF 10V VOLTAGE (1V/DIV) +10mV OUTPUT 0V VSY = ±5V +2mV OUTPUT 0V ERROR BAND –10mV TIME (1µs/DIV) –2mV TIME (2µs/DIV) Figure 38. Positive Settling Time to 0.01% Figure 35. Positive Settling Time to 0.01% Rev. 0 | Page 10 of 20 07670-035 VSY = ±15V 0 TIME (2µs/DIV) 07670-042 VOLTAGE (5V/DIV) 2 OUTPUT Figure 34. Positive Overload Recovery ERROR BAND 4 0 TIME (2µs/DIV) INPUT –2 OUTPUT VOLTAGE (V) 15 INPUT VOLTAGE (V) –2 OUTPUT VOLTAGE (V) 0 VSY = ±5V INPUT 07670-037 VSY = ±15V INPUT 07670-034 INPUT VOLTAGE (V) 0 –6 TIME (2µs/DIV) Figure 33. Negative Overload Recovery 2 OUTPUT VOLTAGE (V) –5 07670-036 0 INPUT VOLTAGE (V) OUTPUT OUTPUT VOLTAGE (V) 0 INPUT VOLTAGE (V) 0 2 ADA4062-2 VSY = ±5V VSY = ±15V +10mV 0V +2mV OUTPUT ERROR BAND 0V –2mV TIME (1µs/DIV) TIME (2µs/DIV) Figure 39. Negative Settling Time to 0.01% Figure 42. Negative Settling Time to 0.01% 1000 VOLTAGE NOISE DENSITY (nV/√Hz) VSY = ±15V 1 10 100 1k 10k 100k FREQUENCY (Hz) VSY = ±5V 100 10 1 10 100 1k 10k 100k FREQUENCY (Hz) Figure 40. Voltage Noise Density Figure 43. Voltage Noise Density VSY = ±15V VSY = ±5V INPUT NOISE VOLTAGE (0.5µV/DIV) 07670-041 TIME (1s/DIV) TIME (1s/DIV) Figure 41. 0.1 Hz to 10 Hz Noise Figure 44. 0.1 Hz to 10 Hz Noise Rev. 0 | Page 11 of 20 07670-044 10 07670-040 100 INPUT NOISE VOLTAGE (0.5µV/DIV) VOLTAGE NOISE DENSITY (nV/√Hz) 1000 07670-039 07670-038 –10mV 07670-043 OUTPUT ERROR BAND INPUT VOLTAGE (1V/DIV) VOLTAGE (5V/DIV) INPUT ADA4062-2 410 410 390 SUPPLY CURRENT (µA) 125°C 370 85°C 350 25°C 330 –40°C 3 4 5 6 7 8 VSY = ±15V 350 VSY = ±5V 330 310 290 9 10 11 12 13 14 15 16 17 18 19 20 SUPPLY VOLTAGE (±V) 270 –50 50 75 100 125 VSY = ±5V VIN = 5V p-p RL = 10kΩ –20 CHANNEL SEPARATION (dB) –40 –60 –80 –100 –120 –40 –60 –80 –100 –120 –140 1k 10k 100k FREQUENCY (Hz) –160 07670-046 –160 100 100 10k 100k FREQUENCY (Hz) Figure 46. Channel Separation vs. Frequency Figure 49. Channel Separation vs. Frequency 100 VSY = ±15V f = 1kHz RL = 10kΩ 10 1 1 THD + N (%) 10 0.1 VSY = ±5V f = 1kHz RL = 10kΩ 0.1 0.01 0.01 0.1 1 AMPLITUDE (V rms) 10 07670-047 0.01 0.001 0.001 1k 07670-049 CHANNEL SEPARATION (dB) 0 VSY = ±15V VIN = 10V p-p RL = 10kΩ –140 THD + N (%) 25 Figure 48. Supply Current vs. Temperature 0 100 0 TEMPERATURE (°C) Figure 45. Supply Current vs. Supply Voltage –20 –25 Figure 47. THD + N vs. Amplitude 0.001 0.001 0.01 0.1 1 AMPLITUDE (V rms) Figure 50. THD + N vs. Amplitude Rev. 0 | Page 12 of 20 10 07670-050 290 370 07670-048 310 07670-045 SUPPLY CURRENT (µA) 390 ADA4062-2 10 VSY = ±15V VIN = 0.5 V rms RL = 10kΩ 1 1 0.1 0.1 THD + N (%) 0.01 0.001 0.01 0.001 10 100 1k 10k FREQUENCY (Hz) 100k 07670-051 0.0001 VSY = ±5V VIN = 0.5 V rms RL = 10kΩ 0.0001 Figure 51. THD + N vs. Frequency 10 100 1k 10k FREQUENCY (Hz) Figure 52. THD + N vs. Frequency Rev. 0 | Page 13 of 20 100k 07670-052 THD + N (%) 10 ADA4062-2 APPLICATIONS INFORMATION NOTCH FILTER HIGH-SIDE SIGNAL CONDITIONING A notch filter rejects a specific interfering frequency and can be implemented using a single op amp. Figure 53 shows a 60 Hz notch filter that uses the twin T network with the ADA4062-2 configured as a voltage follower. The ADA4062-2 works as a buffer that provides high input resistance and low output impedance. The low bias current (2 pA typical) and high input resistance (10 TΩ typical) of the ADA4062-2 enable large resistors and small capacitors to be used. There are many applications that require the sensing of signals near the positive rail. The ADA4062-2 can be used in high-side current sensing applications. Figure 55 shows a high-side signal conditioning circuit using the ADA4062-2. The ADA4062-2 has an input common-mode range that includes the positive supply (−11.5 V ≤ VCM ≤ +15 V). In the circuit, the voltage drop across a low value resistor, such as the 0.1 Ω shown in Figure 55, is amplified by a factor of 5 using the ADA4062-2. +VSY IN R1 804kΩ R2 804kΩ C1 3.3nF 1/2 VO ADA4062-2 C3 6.6nF R3 402kΩ –VSY C2 3.3nF 1 fO = 2π R C 1 1 C1 = C2 = 07670-060 R1 = R2 = 2R3 C3 2 500kΩ 100kΩ 100kΩ VO 1/2 ADA4062-2 500kΩ –15V Figure 55. High-Side Signal Conditioning MICROPOWER INSTRUMENTATION AMPLIFIER The ADA4062-2 is a dual amplifier and is perfectly suited for applications that require lower supply currents. For supply voltages of ±15 V, the supply current per amplifier is 165 μA typical. The ADA4062-2 also offers a typical low offset voltage drift of 4 μV/°C and a very low bias current of 2 pA, which makes it well suited for instrumentation amplifiers. Figure 56 shows the classic 2-op-amp instrumentation amplifier with four resistors using the ADA4062-2. The key to high CMRR for this instrumentation amplifier are resistors that are well matched to both the resistive ratio and relative drift. For true difference amplification, matching of the resistor ratio is very important, where R3/R4 = R1/R2. Assuming perfectly matched resistors, the gain of the circuit is 1 + R2/R1, which is approximately 100. Tighter matching of two op amps in one package, as is the case with the ADA4062-2, offers a significant boost in performance over the 3-op-amp configuration. Overall, the circuit only requires about 330 μA of supply current. R3 10.1kΩ Figure 53. Notch Filter Circuit R4 1MΩ 20 R2 1MΩ +15V R1 10.1kΩ 1/2 10 +15V 1/2 ADA4062-2 0 V1 –10 –20 VO ADA4062-2 –15V V2 –15V VO = 100(V2 – V1) TYPICAL: 0.5mV < │V2 – V1│< 135mV TYPICAL: –13.8V < VO < +13.5V USE MATCHED RESISTORS –30 –40 Figure 56. Micropower Instrumentation Amplifier –50 –60 PHASE REVERSAL –70 Phase reversal occurs in some amplifiers when the input commonmode voltage range is exceeded. When the voltage driving the input to these amplifiers exceeds the maximum input commonmode voltage range, the output of the amplifiers changes polarity. –80 10 100 FREQUENCY (Hz) Figure 54. Notch Filter: Gain vs. Frequency 1k 07670-057 GAIN (dB) RL +15V 07670-059 Therefore, to achieve the desired performance, 1% or better component tolerances are usually required. In addition, a notch filter requires an op amp with a bandwidth of at least 100 to 200 times the center frequency. Hence, using the ADA4062-2 with a bandwidth of 1.4 MHz is excellent for a 60 Hz notch filter. Figure 54 shows the gain of the notch filter with respect to frequency. At 60 Hz, the notch filter has about 50 dB attenuation of signal. 0.1Ω +15V 07670-058 Alternatively, different combinations of resistors and capacitors values can be used to achieve the desired notch frequency. However, the major drawback to this circuit topology is the need to ensure that all the resistors and capacitors be closely matched. If they are not closely matched, the notch frequency offset and drift cause the circuit to attenuate at a frequency other than the ideal notch frequency. Rev. 0 | Page 14 of 20 ADA4062-2 Most JFET input amplifiers have phase reversal if either input exceeds the input common-mode range. +VSY R D1 10kΩ IN5711 1/2 VO ADA4062-2 –VSY 07670-053 IN Figure 57. Phase Reversal Solution Circuit Rev. 0 | Page 15 of 20 VSY = ±15V VOUT TIME (40µs/DIV) Figure 58. No Phase Reversal 07670-038 VOLTAGE (5V/DIV) For the ADA4062-2, the output does not phase reverse if one or both of the inputs exceeds the input voltage range but stays below the positive supply rail and 0.5 V above the negative supply rail. With a supply voltage of ±15 V, phase reversal occurs when the input voltage is a negative signal greater than −14.5 V. This is due to saturation of the input stage leading to forward biasing of the gate-drain diode. Phase reversal in ADA4062-2 can be prevented by using a Schottky diode to clamp the input terminals to each other. In the simple buffer circuit in Figure 57, D1 protects the op amp against phase reversal and R limits the input current that flows into the op amp. VIN ADA4062-2 SCHEMATIC VCC OUT A/ OUT B VEE Figure 59. Simplified Schematic Rev. 0 | Page 16 of 20 07670-062 +IN A/ +IN B –IN A/ –IN B ADA4062-2 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 5.15 4.90 4.65 5 1 4 PIN 1 0.65 BSC 0.95 0.85 0.75 1.10 MAX 0.15 0.00 0.38 0.22 COPLANARITY 0.10 0.80 0.60 0.40 8° 0° 0.23 0.08 SEATING PLANE COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 60. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2441) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 61. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. 0 | Page 17 of 20 012407-A 4.00 (0.1574) 3.80 (0.1497) ADA4062-2 ORDERING GUIDE Model ADA4062-2ARMZ 1 ADA4062-2ARMZ-RL1 ADA4062-2ARZ1 ADA4062-2ARZ-R71 ADA4062-2ARZ-RL1 ADA4062-2BRZ1 ADA4062-2BRZ-R71 ADA4062-2BRZ-RL1 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead MSOP 8-Lead MSOP 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N Z = RoHS Compliant Part. Rev. 0 | Page 18 of 20 Package Option RM-8 RM-8 R-8 R-8 R-8 R-8 R-8 R-8 Branding A25 A25 ADA4062-2 NOTES Rev. 0 | Page 19 of 20 ADA4062-2 NOTES ©2008 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07670-0-10/08(0) Rev. 0 | Page 20 of 20