Renesas BCR08AM Mitsubishi semiconductor Datasheet

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
<TRIAC
<TRIAC
> >
MITSUBISHI
MITSUBISHI
SEMICONDUCTOR
SEMICONDUCTOR
BCR08AM
BCR08AM
LOW
LOW
POWER
POWER
USE
USE
PLANAR
PLANAR
PASSIVATION
PASSIVATION
TYPE
TYPE
BCR08AM
OUTLINE DRAWING
Dimensions
in mm
VOLTAGE
CLASS
TYPE
NAME
➁
12.5 MIN.
➂
➀ T1 TERMINAL
➁ T2 TERMINAL
➂ GATE TERMINAL
CIRCUMSCRIBE
CIRCLE
φ0.7
1.3
1.25 1.25
➀ ➂ ➁
• IT (RMS) ..................................................................... 0.8A
• VDRM ....................................................................... 600V
• IRGT I, IRGT III ............................................................ 5mA
3.9 MAX.
➀
5.0 MAX.
φ5.0 MAX.
JEDEC : TO-92
APPLICATION
Electric fan, air cleaner, other general purpose control applications
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
Unit
12
VDRM
Repetitive peak off-state voltage ✽1
600
V
VDSM
Non-repetitive peak off-state voltage ✽1
720
V
Symbol
Parameter
Conditions
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction, Tc=56°C
ITSM
Surge on-state current
60Hz sinewave 1 full cycle, peak value, non-repetitive
I2t
I2t for fusing
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
Ratings
Unit
0.8
A
8
A
0.26
A2s
1
W
0.1
W
Peak gate voltage
6
V
IGM
Peak gate current
0.5
A
Tj
Junction temperature
–40 ~ +125
°C
–40 ~ +125
°C
0.23
g
Tstg
Storage temperature
—
Weight
Typical value
✽1. Gate open.
Mar. 2002
MITSUBISHI SEMICONDUCTOR <TRIAC>
BCR08AM
LOW POWER USE
PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Limits
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, VDRM applied
—
—
1.0
mA
VTM
On-state voltage
Tc=25°C, ITM=1.2A, Instantaneous measurement
—
—
2.0
V
—
—
2.0
V
—
—
2.0
—
—
5
mA
mA
VRGT I
VRGT III
IRGT I
II
Gate trigger voltage ✽2
Gate trigger
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
III
II
current ✽2
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
V
—
—
5
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
0.1
—
—
V
Rth (j-c)
Thermal resistance
Junction to case ✽3
—
—
60
°C/ W
(dv/dt)c
Critical-rate of rise of off-state
commutating voltage
Tj=125°C
0.5
—
—
V/µs
IRGT III
III
✽4
✽2. Measurment using the gate trigger characteristics measurement circuit.
✽3. Case temperature is measured at the T2 terminal 1.5mm away from the molded case.
✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.
Commutating voltage and current waveforms
(inductive load)
Test conditions
SUPPLY
VOLTAGE
1. Junction temperature
Tj=125°C
TIME
MAIN CURRENT
2. Rate of decay of on-state commutating current
(di/dt)c=–0.4A/ms
(di/dt)c
TIME
MAIN
VOLTAGE
3. Peak off-state voltage
VD=400V
TIME
(dv/dt)c
VD
MAXIMUM ON-STATE CHARACTERISTICS
101
7
Tc = 25°C
5
3
2
100
7
5
3
2
10–1
1.0
1.5
2.0
2.5
3.0
3.5
ON-STATE VOLTAGE (V)
4.0
RATED SURGE ON-STATE CURRENT
10
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
PERFORMANCE CURVES
9
8
7
6
5
4
3
2
1
0
100
2 3
5 7 101
2 3
5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Mar. 2002
MITSUBISHI SEMICONDUCTOR <TRIAC>
BCR08AM
LOW POWER USE
PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
GATE VOLTAGE (V)
3
2
VGM = 6V
101
7
5
3
2
PGM = 1W
VGT
100
7
5
3
2
10–1
7
5
3
PG(AV) =
0.1W
IGM =
0.5A
IRGT I
IRGT III
VGD = 0.1V
3 5 7 101 2 3
5 7 102 2 3
5 7103
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
100 (%)
GATE CHARACTERISTICS
103
7
5
3
2
102
7
5
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
3
2
102
7
5
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
TYPICAL EXAMPLE
102 2 3 5 7 103 2 3 5 7 104 2 3 5 7105
3
2
JUNCTION TO AMBIENT
102
7
5
2
101
7
5
3
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
MAXIMUM ON-STATE POWER
DISSIPATION
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
2.0
160
1.8
140
1.6
1.4
1.2
1.0
0.8
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
0.6
0.4
0.2
0
0
JUNCTION TO CASE
3
JUNCTION TEMPERATURE (°C)
0.2
0.4
0.6
0.8
1.0
1.2
RMS ON-STATE CURRENT (A)
1.4
CASE TEMPERATURE (°C)
ON-STATE POWER DISSIPATION (W)
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
103
7
5
TYPICAL EXAMPLE
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
RESISTIVE, INDUCTIVE LOADS
120
100
80
60
40
20
0
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
RMS ON-STATE CURRENT (A)
Mar. 2002
MITSUBISHI SEMICONDUCTOR <TRIAC>
BCR08AM
LOW POWER USE
100
80
60
40
20
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
100 (%)
0
103
7
5
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
104
7
5
3
2
103
7
5
3
2
102
–60 –40 –20 0 20 40 60 80 100 120 140
JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
LACHING CURRENT VS.
JUNCTION TEMPERATURE
TYPICAL EXAMPLE
3
2
102
7
5
3
2
102
7
5
3
2
DISTRIBUTION
T2+, G–
TYPICAL EXAMPLE
101
7
5
3
2
100
7
5
3
2
T2– , G–
TYPICAL EXAMPLE
10–1
–40
0
40
80
120
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
160
TYPICAL EXAMPLE
100 (%)
JUNCTION TEMPERATURE (°C)
140
160
140
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
100 (%)
105
7 TYPICAL EXAMPLE
5
3
2
RMS ON-STATE CURRENT (A)
101
–60 –40 –20 0 20 40 60 80 100 120 140
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
140
NATURAL CONVECTION
NO FINS
120
LACHING CURRENT (mA)
AMBIENT TEMPERATURE (°C)
PLANAR PASSIVATION TYPE
160
TYPICAL EXAMPLE
Tj = 125°C
120
I QUADRANT
100
80
60
40
III QUADRANT
20
0
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
Mar. 2002
MITSUBISHI SEMICONDUCTOR <TRIAC>
BCR08AM
LOW POWER USE
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
101
7 TYPICAL EXAMPLE
5
3
2
100
7
5
100 (%)
COMMUTATION CHARACTERISTICS
CONDITIONS
VD = 200V
IT = 1A
τ = 500µs
Tj = 125°C
III QUADRANT
MINIMUM
CHARACTERISTICS
VALUE
3
2
10–1
10–1
2
I QUADRANT
5 7 100
3
2
3
103
7
5
TYPICAL EXAMPLE
IRGT I
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
CRITICAL RATE OF RISE OF OFF-STATE
COMMUTATING VOLTAGE (V/µs)
PLANAR PASSIVATION TYPE
3
IRGT III
2
102
7
5
3
2
101 0
10
5 7 101
2 3
5 7 101
2 3
5 7 102
GATE CURRENT PULSE WIDTH (µs)
RATE OF DECAY OF ON-STATE
COMMUTATING CURRENT (A/ms)
GATE TRIGGER CHARACTERISTICS
TEST CIRCUITS
6Ω
6Ω
A
6V
V
RG
TEST PROCEDURE II
A
6V
V
RG
TEST PROCEDURE III
Mar. 2002
Similar pages