AOSMD AOB434 N-channel enhancement mode field effect transistor Datasheet

AOB434
N-Channel Enhancement Mode Field Effect Transistor
General Description
Features
The AOB434 uses advanced trench technology and
design to provide excellent RDS(ON) with low gate
charge. This device is suitable for use in PWM, load
switching and general purpose applications.
Standard product AOB434 is Pb-free (meets ROHS &
Sony 259 specifications). AOB434L is a Green
Product ordering option. AOB434 and AOB434L are
electrically identical.
VDS (V) =25V
ID = 55 A (VGS = 10V)
RDS(ON) < 9.5 mΩ (VGS = 10V)
RDS(ON) < 15 mΩ (VGS = 4.5V)
TO-263
D2-PAK
D
Top View
Drain Connected to
Tab
G
S
G
D
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
VDS
Drain-Source Voltage
VGS
Gate-Source Voltage
TC=25°C
Continuous Drain
Current G
C
C
Repetitive avalanche energy L=0.1mH
C
TC=25°C
Power Dissipation B
Junction and Storage Temperature Range
Alpha & Omega Semiconductor, Ltd.
V
A
100
IAR
30
A
EAR
135
mJ
55
50
3
W
2.1
TJ, TSTG
°C
-55 to 175
Symbol
t ≤ 10s
Steady-State
Steady-State
W
25
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A
Maximum Junction-to-Case B
±20
ID
IDM
PD
TC=100°C
TA=25°C
Power Dissipation A
Units
V
55
TC=100°C
Pulsed Drain Current
Avalanche Current
Maximum
25
RθJA
RθJC
Typ
11
42
2.4
Max
17
50
3
Units
°C/W
°C/W
°C/W
AOB434
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
Conditions
Min
ID=250uA, VGS=0V
Gate-Body leakage current
VDS=0V, VGS=±20V
Gate Threshold Voltage
VDS=VGS, ID=250µA
ID(ON)
On state drain current
VGS=10V, VDS=5V
TJ=125°C
gFS
Forward Transconductance
VSD
IS=1A, VGS=0V
Diode Forward Voltage
Maximum Body-Diode Continuous Current
VDS=5V, ID=30A
DYNAMIC PARAMETERS
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
Qg(4.5V) Total Gate Charge
µA
100
nA
1.8
3
V
7.3
9.5
10
12
12
15
mΩ
1
V
55
A
1476
pF
100
VGS=4.5V, ID=20A
IS
V
5
1
VGS=10V, ID=30A
Static Drain-Source On-Resistance
Units
1
TJ=55°C
VGS(th)
Max
25
VDS=20V, VGS=0V
IGSS
RDS(ON)
Typ
A
52
0.74
1230
VGS=0V, VDS=12.5V, f=1MHz
mΩ
S
315
pF
190
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=12.5V, ID=30A
pF
1.2
2
Ω
25.6
30
nC
12.7
nC
Qgs
Gate Source Charge
5
nC
Qgd
Gate Drain Charge
7.4
nC
tD(on)
Turn-On DelayTime
6.5
ns
tr
Turn-On Rise Time
34
ns
tD(off)
Turn-Off DelayTime
18
ns
tf
Turn-Off Fall Time
21
ns
trr
Qrr
VGS=10V, VDS=12.5V,
RL=0.39Ω, RGEN=3Ω
IF=30A, dI/dt=100A/µs
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=30A, dI/dt=100A/µs
28
34
14
ns
nC
A: The value of R θJA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The
Power dissipation P DSM is based on R θJA and the maximum allowed junction temperature of 150°C. The value in any given application depends on
the user's specific board design, and the maximum temperature of 175°C may be used if the PCB allows it.
B. The power dissipation P D is based on T J(MAX)=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C: Repetitive rating, pulse width limited by junction temperature T J(MAX)=175°C.
D. The R θJA is the sum of the thermal impedence from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300 µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink, assuming a
maximum junction temperature of T J(MAX)=175°C.
G. The maximum current rating is limited by bond-wires.
H. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T A=25°C. The SOA
curve provides a single pulse rating.
Rev 0 : Aug 2005
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha & Omega Semiconductor, Ltd.
AOB434
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
60
5V
10V
4.5V
6V
80
VDS=5V
50
7V
40
ID (A)
60
ID(A)
VGS=4V
30
125°C
40
20
25°C
3.5V
20
10
3V
0
0
0
1
2
3
4
0
5
1
2
3
4
5
VGS(Volts)
Figure 2: Transfer Characteristics
VDS (Volts)
Fig 1: On-Region Characteristics
18
1.8
16
RDS(ON) (mΩ)
Normalized On-Resistance
VGS=4.5V
14
12
10
8
6
VGS=10V
4
2
1.6
VGS=10V, 30A
1.4
1.2
VGS=4.5V, 20A
1
0
0
10
0.8
20
30
40
50
60
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
0
50
75
100
125
150
175
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.0E+02
30
ID=30A
1.0E+01
25
1.0E+00
20
IS (A)
RDS(ON) (mΩ)
25
125°C
15
10
125°C
1.0E-01
1.0E-02
25°C
1.0E-03
25°C
5
1.0E-04
1.0E-05
0
4
5
6
7
8
9
10
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
Alpha & Omega Semiconductor, Ltd.
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
1.2
AOB434
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
10
2000
Ciss
1600
Capacitance (pF)
VGS (Volts)
1800
VDS=12.5V
ID=30A
8
6
4
1400
1200
1000
800
Coss
600
400
2
200
0
5
10
15
20
25
Qg (nC)
Figure 7: Gate-Charge Characteristics
0
30
10
15
20
VDS (Volts)
Figure 8: Capacitance Characteristics
25
TJ(Max)=175°C, TA=25°C
10µs
100.0
160
100µs
1ms
Power (W)
RDS(ON)
limited
ID (Amps)
5
200
1000.0
10.0
10ms
TJ(Max)=175°C
TA=25°C
120
80
DC
1.0
40
0
0.1
0.1
1
10
100
VDS (Volts)
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=3°C/W
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
ZθJC Normalized Transient
Thermal Resistance
Crss
0
0
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
0.1
1
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Alpha & Omega Semiconductor, Ltd.
10
100
AOB434
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
60
50
L ⋅ ID
BV − VDD
tA =
40
Power Dissipation (W)
ID(A), Peak Avalanche Current
60
30
20
TA=25°C
10
50
40
30
20
10
0
0
0.00001
0.0001
0
0.001
25
50
50
40
40
Power (W)
Current rating ID(A)
60
30
20
75
100
125
150
175
TA=25°C
30
20
10
10
0
0
0
25
50
75
100
125
150
175
0.001
TCASE (°C)
Figure 14: Current De-rating (Note B)
10
ZθJA Normalized Transient
Thermal Resistance
50
TCASE (°C)
Figure 13: Power De-rating (Note B)
Time in avalanche, t A (s)
Figure 12: Single Pulse Avalanche capability
1
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
RθJA=50°C/W
0.1
PD
0.01
Single Pulse
Ton
T
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Alpha & Omega Semiconductor, Ltd.
100
1000
Similar pages