Actel AGLE600V5-FGG896I Iglooe low-power flash fpgas with flash freeze technology Datasheet

v1.2
IGLOOe Low-Power Flash FPGAs
®
with Flash*Freeze Technology
Features and Benefits
Low Power
•
•
•
•
1.2 V to 1.5 V Core Voltage Support for Low Power
Supports Single-Voltage System Operation
Low-Power Active FPGA Operation
Flash*Freeze Technology Enables Ultra-Low Power
Consumption while Maintaining FPGA Content
• Flash*Freeze Pin Allows Easy Entry to / Exit from Ultra-LowPower Flash*Freeze Mode
High Capacity
• 600 k to 3 Million System Gates
• 108 to 504 kbits of True Dual-Port SRAM
• Up to 620 User I/Os
Reprogrammable Flash Technology
•
•
•
•
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process
Live-at-Power-Up (LAPU) Level 0 Support
Single-Chip Solution
Retains Programmed Design when Powered Off
In-System Programming (ISP) and Security
• Secure ISP Using On-Chip 128-Bit Advanced Encryption
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)
• FlashLock® to Secure FPGA Contents
High-Performance Routing Hierarchy
• Segmented, Hierarchical Routing and Clock Structure
• High-Performance, Low-Skew Global Network
• Architecture Supports Ultra-High Utilization
Pro (Professional) I/O
•
•
•
•
•
•
•
•
•
•
•
•
•
700 Mbps DDR, LVDS-Capable I/Os
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation
Bank-Selectable I/O Voltages—Up to 8 Banks per Chip
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and
LVCMOS 2.5 V / 5.0 V Input
Differential I/O Standards: LVPECL, LVDS, B-LVDS, and
M-LVDS
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3
Class I and II
I/O Registers on Input, Output, and Enable Paths
Programmable Output Slew Rate and Drive Strength
Programmable Input Delay
Schmitt Trigger Option on Single-Ended Inputs
Weak Pull-Up/-Down
IEEE 1149.1 (JTAG) Boundary Scan Test
Pin-Compatible Packages across the IGLOO®e Family
Clock Conditioning Circuit (CCC) and PLL
• Six CCC Blocks, Each with an Integrated PLL
• Configurable Phase Shift, Multiply/Divide, Delay
Capabilities, and External Feedback
• Wide Input Frequency Range (1.5 MHz up to 250 MHz)
Embedded Memory
• 1 kbit of FlashROM User Nonvolatile Memory
• SRAMs and FIFOs with Variable-Aspect-Ratio 4,608-Bit RAM
Blocks (×1, ×2, ×4, ×9, and ×18 organizations available)
• True Dual-Port SRAM (except ×18)
ARM Processor Support in IGLOOe FPGAs
• M1 IGLOOe Devices—Cortex™-M1 Soft Processor Available
with or without Debug
IGLOOe Product Family
IGLOOe Devices
AGLE600
ARM-Enabled IGLOOe Devices
AGLE3000
M1AGLE3000
System Gates
600 k
3M
VersaTiles (D-flip-flops)
13,824
75,264
Quiescent Current (typical) in Flash*Freeze Mode (µW)
49
137
RAM kbits (1,024 bits)
108
504
4,608-Bit Blocks
24
112
FlashROM Bits
1k
1k
Secure (AES) ISP
Yes
Yes
6
6
18
18
CCCs with Integrated PLLs
VersaNet
Globals1
I/O Banks
Maximum User I/Os
Package Pins
FBGA
8
8
270
620
FG256, FG484
FG484, FG896
Notes:
1. Refer to the Cortex-M1 Handbook for more information.
2. Six chip (main) and twelve quadrant global networks are available.
3. For devices supporting lower densities, refer to the IGLOO Low-Power Flash FPGAs with Flash*Freeze Technology handbook.
October 2008
© 2008 Actel Corporation
I
I/Os Per Package1
IGLOOe Devices
AGLE600
AGLE3000
ARM-Enabled IGLOOe Devices
M1AGLE3000
I/O Types
Single-Ended
I/O1
Differential
I/O Pairs
Single-Ended
I/O1
Differential
I/O Pairs
FG256
165
79
–
–
FG484
270
135
341
168
FG896
–
–
620
310
Package
Notes:
1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOOe Low-Power Flash
FPGAs with Flash*Freeze Technology handbook to ensure compliance with design and board migration requirements.
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
3. For AGLE3000 devices, the usage of certain I/O standards is limited as follows:
– SSTL3(I) and (II): up to 40 I/Os per north or south bank
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank
4. FG256 and FG484 are footprint-compatible packages.
5. When using voltage-referenced I/O standards, one I/O pin should be assigned as a voltage-referenced pin (VREF) per
minibank (group of I/Os). When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular
I/O, the number of single-ended user I/Os available is reduced by one.
6. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of singleended user I/Os available is reduced by one.
7. "G" indicates RoHS-compliant packages. Refer to "IGLOOe Ordering Information" on page III for the location of the
"G" in the part number.
IGLOOe FPGAs Package Sizes Dimensions
Package
Length × Width (mm × mm)
Nominal Area (mm
Pitch (mm)
Height (mm)
II
2)
FG256
FG484
FG896
17 × 17
23 × 23
31 × 31
289
529
961
1
1
1
1.6
2.23
2.23
v1.2
IGLOOe Low-Power Flash FPGAs
IGLOOe Ordering Information
AGLE3000
V2
_
FG
G
896
I
Application (Temperature Range)
Blank = Commercial (0°C to +70°C Ambient Temperature)
I = Industrial (–40°C to +85°C Ambient Temperature)
PP = Pre-Production
ES = Engineering Sample (Room Temperature Only)
Package Lead Count
Lead-Free Packaging
Blank = Standard Packaging
G = RoHS-Compliant Packaging
Package Type
FG = Fine Pitch Ball Grid Array (1.0 mm pitch)
Speed Grade
F = 20% Slower than Standard*
Blank = Standard
Supply Voltage
2 = 1.2 V to 1.5 V
5 = 1.5 V only
Part Number
IGLOOe Devices
AGLE600 = 600,000 System Gates
AGLE3000 = 3,000,000 System Gates
IGLOOe Devices with Cortex-M1
M1AGLE3000 = 3,000,000 System Gates
Notes:
1. Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.
2. The DC and switching characteristics for the –F speed grade targets are based only on simulation. The characteristics
provided for the –F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be
added and will be reflected in future revisions of this document. The –F speed grade is only supported in the commercial
temperature range.
v1.2
III
Temperature Grade Offerings
AGLE600
AGLE3000
M1AGLPE3000
Package
FG256
C, I
–
FG484
C, I
C, I
FG896
–
C, I
Note: C = Commercial temperature range: 0°C to 70°C ambient temperature.
I = Industrial temperature range: –40°C to 85°C ambient temperature.
Speed Grade and Temperature Grade Matrix
–F 1
Std.
C2
✓
✓
3
–
✓
Temperature Grade
I
Notes:
1. The characteristics provided for the –F speed grade are subject to change after establishing FPGA specifications. Some
restrictions might be added and will be reflected in future revisions of this document. The –F speed grade is only
supported in the commercial temperature range.
2. C = Commercial temperature range: 0°C to 70°C ambient temperature.
3. I = Industrial temperature range: –40°C to 85°C ambient temperature.
References made to IGLOOe devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with
M1 (Cortex-M1).
Contact your local Actel representative for device availability: http://www.actel.com/contact/default.aspx.
IV
v1.2
1 – IGLOOe Device Family Overview
General Description
The IGLOOe family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA,
a single-chip solution, small footprint packages, reprogrammability, and an abundance of
advanced features.
The Flash*Freeze technology used in IGLOOe devices enables entering and exiting an ultra-lowpower mode while retaining SRAM and register data. Flash*Freeze technology simplifies power
management through I/O and clock management with rapid recovery to operation mode.
The Low Power Active capability (static idle) allows for ultra-low-power consumption while the
IGLOOe device is completely functional in the system. This allows the IGLOOe device to control
system power management based on external inputs (e.g., scanning for keyboard stimulus) while
consuming minimal power.
Nonvolatile flash technology gives IGLOOe devices the advantage of being a secure, low power,
single-chip solution that is live at power-up (LAPU). IGLOOe is reprogrammable and offers time-tomarket benefits at an ASIC-level unit cost.
These features enable designers to create high-density systems using existing ASIC or FPGA design
flows and tools.
IGLOOe devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM storage as well as
clock conditioning circuitry based on 6 integrated phase-locked loops (PLLs). IGLOOe devices have
up to 3 million system gates, supported with up to 504 kbits of true dual-port SRAM and up to 620
user I/Os.
M1 IGLOOe devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM
for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA
fabric. It has a three-stage pipeline that offers a good balance between low-power consumption
and speed when implemented in an M1 IGLOOe device. The processor runs the ARMv6-M
instruction set, has a configurable nested interrupt controller, and can be implemented with or
without the debug block. Cortex-M1 is available for free from Actel for use in M1 IGLOOe FPGAs.
The ARM-enabled devices have Actel ordering numbers that begin with M1AGLE and do not
support AES decryption.
Flash*Freeze Technology
The IGLOOe device offers unique Flash*Freeze technology, allowing the device to enter and exit
ultra-low-power Flash*Freeze mode. IGLOOe devices do not need additional components to turn
off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze
technology is combined with in-system programmability, which enables users to quickly and easily
upgrade and update their designs in the final stages of manufacturing or in the field. The ability of
IGLOOe V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction
in power consumption, thus achieving the lowest total system power.
When the IGLOOe device enters Flash*Freeze mode, the device automatically shuts off the clocks
and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and
data is retained.
The availability of low-power modes, combined with reprogrammability, a single-chip and singlevoltage solution, and availability of small-footprint, high pin-count packages, make IGLOOe
devices the best fit for portable electronics.
v1.2
1-1
IGLOOe Device Family Overview
Flash Advantages
Low Power
Flash-based IGLOOe devices exhibit power characteristics similar to those of an ASIC, making them
an ideal choice for power-sensitive applications. IGLOOe devices have only a very limited power-on
current surge and no high-current transition period, both of which occur on many FPGAs.
IGLOOe devices also have low dynamic power consumption to further maximize power savings;
power is even further reduced by the use of a 1.2 V core voltage.
Low dynamic power consumption, combined with low static power consumption and Flash*Freeze
technology, gives the IGLOOe device the lowest total system power offered by any FPGA.
Security
The nonvolatile, flash-based IGLOOe devices do not require a boot PROM, so there is no vulnerable
external bitstream that can be easily copied. IGLOOe devices incorporate FlashLock, which provides
a unique combination of reprogrammability and design security without external overhead,
advantages that only an FPGA with nonvolatile flash programming can offer.
IGLOOe devices utilize a 128-bit flash-based lock and a separate AES key to secure programmed
intellectual property and configuration data. In addition, all FlashROM data in IGLOOe devices can
be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher
encryption standard. AES was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the 1977 DES standard. IGLOOe devices have a built-in AES decryption
engine and a flash-based AES key that make them the most comprehensive programmable logic
device security solution available today. IGLOOe devices with AES-based security allow for secure,
remote field updates over public networks such as the Internet, and ensure that valuable IP
remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a
programmed IGLOOe device cannot be read back, although secure design verification is possible.
Security, built into the FPGA fabric, is an inherent component of the IGLOOe family. The flash cells
are located beneath seven metal layers, and many device design and layout techniques have been
used to make invasive attacks extremely difficult. The IGLOOe family, with FlashLock and AES
security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable
IP is protected and secure, making remote ISP possible. An IGLOOe device provides the most
impenetrable security for programmable logic designs.
Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,
the configuration data is an inherent part of the FPGA structure, and no external configuration
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based
IGLOOe FPGAs do not require system configuration components such as EEPROMs or
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB
area, and increases security and system reliability.
Live at Power-Up
The Actel flash-based IGLOOe devices support Level 0 of the LAPU classification standard. This
feature helps in system component initialization, execution of critical tasks before the processor
wakes up, setup and configuration of memory blocks, clock generation, and bus activity
management. The LAPU feature of flash-based IGLOOe devices greatly simplifies total system
design and reduces total system cost, often eliminating the need for CPLDs and clock generation
PLLs. In addition, glitches and brownouts in system power will not corrupt the IGLOOe device's
flash configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when
system power is restored. This enables the reduction or complete removal of the configuration
PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB
design. Flash-based IGLOOe devices simplify total system design and reduce cost and design risk
while increasing system reliability and improving system initialization time.
1 -2
v1.2
IGLOOe Low-Power Flash FPGAs
Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike
SRAM-based FPGAs, Flash-based IGLOOe devices allow all functionality to be live at power-up; no
external boot PROM is required. On-board security mechanisms prevent access to all the
programming information and enable secure remote updates of the FPGA logic. Designers can
perform secure remote in-system reprogramming to support future design iterations and field
upgrades with confidence that valuable intellectual property cannot be compromised or copied.
Secure ISP can be performed using the industry-standard AES algorithm. The IGLOOe family device
architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOOe
family a cost-effective ASIC replacement solution, especially for applications in the consumer,
networking/communications, computing, and avionics markets.
Firm-Error Immunity
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere,
strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way.
These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be
a complete system failure. Firm errors do not exist in the configuration memory of IGLOOe flashbased FPGAs. Once it is programmed, the flash cell configuration element of IGLOOe FPGAs cannot
be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors
occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error
detection and correction (EDAC) circuitry built into the FPGA fabric.
Advanced Flash Technology
The IGLOOe family offers many benefits, including nonvolatility and reprogrammability, through
an advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS
design techniques are used to implement logic and control functions. The combination of fine
granularity, enhanced flexible routing resources, and abundant flash switches allows for very high
logic utilization without compromising device routability or performance. Logic functions within
the device are interconnected through a four-level routing hierarchy.
IGLOOe family FPGAs utilize design and process techniques to minimize power consumption in all
modes of operation.
Advanced Architecture
The proprietary IGLOOe architecture provides granularity comparable to standard-cell ASICs. The
IGLOOe device consists of five distinct and programmable architectural features (Figure 1-1 on
page 4):
•
Flash*Freeze technology
•
FPGA VersaTiles
•
Dedicated FlashROM
•
Dedicated SRAM/FIFO memory
•
Extensive CCCs and PLLs
•
Pro I/O structure
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate
flash switch interconnections. The versatility of the IGLOOe core tile as either a three-input lookup
table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric.
The VersaTile capability is unique to the Actel ProASIC® family of third-generation-architecture
flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash
switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect
programming. Maximum core utilization is possible for virtually any design.
v1.2
1-3
IGLOOe Device Family Overview
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)
programming of IGLOOe devices via an IEEE 1532 JTAG interface.
CCC
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Pro I/Os
VersaTile
ISP AES
Decryption*
User Nonvolatile
FlashRom
Flash*Freeze
Technology
Charge
Pumps
RAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block
Figure 1-1 • IGLOOe Device Architecture Overview
Flash*Freeze Technology
The IGLOOe device has an ultra-low power static mode, called Flash*Freeze mode, which retains all
SRAM and register information and can still quickly return to normal operation. Flash*Freeze
technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating
the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and
global I/Os can still be driven and can be toggling without impact on power consumption, clocks
can still be driven or can be toggling without impact on power consumption, and the device retains
all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode
or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No
power is consumed by the I/O banks, clocks, JTAG pins, or PLL in this mode.
Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the
power management of the device.
The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to
decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a
regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the
1 -4
v1.2
IGLOOe Low-Power Flash FPGAs
inherent low power static and dynamic capabilities of the IGLOOe device. Refer to Figure 1-2 for an
illustration of entering/exiting Flash*Freeze mode.
Actel IGLOOe
FPGA
Flash*Freeze
Mode Control
Flash*Freeze Pin
Figure 1-2 • IGLOOe Flash*Freeze Mode
VersaTiles
The IGLOOe core consists of VersaTiles, which have been enhanced beyond the ProASICPLUS® core
tiles. The IGLOOe VersaTile supports the following:
•
All 3-input logic functions—LUT-3 equivalent
•
Latch with clear or set
•
D-flip-flop with clear or set
•
Enable D-flip-flop with clear or set
Refer to Figure 1-3 for VersaTile configurations.
LUT-3 Equivalent
X1
X2
X3
LUT-3
D-Flip-Flop with Clear or Set
Y
Data
CLK
CLR
Y
Enable D-Flip-Flop with Clear or Set
Data
CLK
D-FF
Y
D-FF
Enable
CLR
Figure 1-3 • VersaTile Configurations
User Nonvolatile FlashROM
Actel IGLOOe devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM
can be used in diverse system applications:
•
Internet protocol addressing (wireless or fixed)
•
System calibration settings
•
Device serialization and/or inventory control
•
Subscription-based business models (for example, set-top boxes)
•
Secure key storage for secure communications algorithms
•
Asset management/tracking
•
Date stamping
•
Version management
The FlashROM is written using the standard IGLOOe IEEE 1532 JTAG programming interface. The
core can be individually programmed (erased and written), and on-chip AES decryption can be used
selectively to securely load data over public networks, as in security keys stored in the FlashROM for
a user design.
v1.2
1-5
IGLOOe Device Family Overview
The FlashROM can be programmed via the JTAG programming interface, and its contents can be
read back either through the JTAG programming interface or via direct FPGA core addressing. Note
that the FlashROM can only be programmed from the JTAG interface and cannot be programmed
from the internal logic array.
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-bybyte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8
banks and which of the 16 bytes within that bank are being read. The three most significant bits
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of
the FlashROM address define the byte.
The Actel IGLOOe development software solutions, Libero® Integrated Design Environment (IDE)
and Designer, have extensive support for the FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part.
Another feature allows the inclusion of static data for system version control. Data for the
FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software tools.
Comprehensive programming file support is also included to allow for easy programming of large
numbers of parts with differing FlashROM contents.
SRAM and FIFO
IGLOOe devices have embedded SRAM blocks along their north and south sides. Each variableaspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9,
1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be
configured with different bit widths on each port. For example, data can be sent through a 4-bit
port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device
JTAG port (ROM emulation mode) using the UJTAG macro.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the
SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The
FIFO width and depth are programmable. The FIFO also features programmable Almost Empty
(AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The
embedded FIFO control unit contains the counters necessary for generation of the read and write
address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.
PLL and CCC
IGLOOe devices provide designers with very flexible clock conditioning capabilities. Each member
of the IGLOOe family contains six CCCs, each with an integrated PLL.
The six CCC blocks are located at the four corners and the centers of the east and west sides. One
CCC (center west side) has a PLL.
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs
located near the CCC that have dedicated connections to the CCC block.
The CCC block has these key features:
•
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz
•
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz
•
2 programmable delay types for clock skew minimization
•
Clock frequency synthesis
Additional CCC specifications:
•
1 -6
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output
divider configuration.
•
Output duty cycle = 50% ± 1.5% or better
•
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single
global network used
•
Maximum acquisition time is 300 µs
•
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns
•
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /
fOUT_CCC
v1.2
IGLOOe Low-Power Flash FPGAs
Global Clocking
IGLOOe devices have extensive support for multiple clocking domains. In addition to the CCC and
PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for
rapid distribution of high-fanout nets.
Pro I/Os with Advanced I/O Standards
The IGLOOe family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V,
1.5 V, 1.8 V, 2.5 V, and 3.3 V). IGLOOe FPGAs support 19 different I/O standards, including singleended, differential, and voltage-referenced. The I/Os are organized into banks, with eight banks
per device (two per side). The configuration of these banks determines the I/O standards
supported. Each I/O bank is subdivided into VREF minibanks, which are used by voltage-referenced
I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os in a given minibank share a common VREF line.
Therefore, if any I/O in a given VREF minibank is configured as a VREF pin, the remaining I/Os in that
minibank will be able to use that reference voltage.
Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following:
•
Single-Data-Rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)
Double-Data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).
IGLOOe banks support M-LVDS with 20 multi-drop points.
v1.2
1-7
IGLOOe Device Family Overview
Part Number and Revision Date
Part Number 51700096-001-3
Revised October 2008
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previous Version
Changes in Current Version (v1.2)
Page
v1.1
(June 2008)
The Quiescent Current values in the "IGLOOe Product Family" table were
updated.
I
v1.0
(April 2008)
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of
core voltage support. The document was updated to change 1.2 V / 1.5 V to
1.2 V to 1.5 V.
N/A
51700096-001-1
(March 2008)
This document was divided into two sections and given a version number,
starting at v1.0. The first section of the document includes features, benefits,
ordering information, and temperature and speed grade offerings. The
second section is a device family overview.
N/A
51700096-001-0
(January 2008)
The "Low Power" section was updated to change "1.2 V and 1.5 V Core
Voltage" to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 25 µW)"
was removed from "Low-Power Active FPGA Operation."
I
1.2_V was added to the list of core and I/O voltages in the "Pro (Professional)
I/O" and "Pro I/Os with Advanced I/O Standards" sections.
I, 1-7
Advance v0.4
(December 2007)
This document was previously in datasheet Advance v0.4. As a result of
moving to the handbook format, Actel has restarted the version numbers.
The new version number is 51700096-001-0.
N/A
Advance v0.3
(September 2007)
Table 1 • IGLOOe Product Family was updated to change the maximum
number of user I/Os for AGLE3000.
i
Table 2 • IGLOOe FPGAs Package Sizes Dimensions is new. Package
dimensions were removed from the "I/Os Per Package1" table. The number
of I/Os was updated for FG896.
ii
A note regarding marking information was added to "IGLOOe Ordering
Information".
iii
Advance v0.2
(July 2007)
Cortex-M1 device information was added to Cortex-M1 device information i, ii, iii, iv
was added to Table 1 • IGLOOe Product Family, the "I/Os Per Package1"
table, "IGLOOe Ordering Information", and Temperature Grade Offerings.
Advance v0.1
The words "ambient temperature" were added to the temperature range in
the "IGLOOe Ordering Information", "Temperature Grade Offerings", and
"Speed Grade and Temperature Grade Matrix" sections.
1 -8
v1.2
iii, iv
IGLOOe Low-Power Flash FPGAs
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
v1.2
1-9
2 – IGLOOe DC and Switching Characteristics
General Specifications
DC and switching characteristics for –F speed grade targets are based only on simulation.
The characteristics provided for the –F speed grade are subject to change after establishing FPGA
specifications. Some restrictions might be added and will be reflected in future revisions of this
document. The –F speed grade is only supported in the commercial temperature range.
Operating Conditions
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings are stress ratings only; functional operation of the device at these or
any other conditions beyond those listed under the Recommended Operating Conditions specified
in Table 2-2 on page 2-2 is not implied.
Table 2-1 •
Symbol
Absolute Maximum Ratings
Parameter
Limits
Units
VCC
DC core supply voltage
–0.3 to 1.65
V
VJTAG
JTAG DC voltage
–0.3 to 3.75
V
VPUMP
Programming voltage
–0.3 to 3.75
V
VCCPLL
Analog power supply (PLL)
–0.3 to 1.65
V
VCCI
and
VMV 3
DC I/O buffer supply voltage
–0.3 to 3.75
V
VI
I/O input voltage
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower
(when I/O hot-insertion mode is disabled)
V
TSTG 2
Storage temperature
–65 to +150
°C
2
Junction temperature
+125
°C
TJ
Notes:
1. The device should be operated within the limits specified by the datasheet. During transitions, the input
signal may undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.
2. For flash programming and retention maximum limits, refer to Table 2-3 on page 2-2, and for
recommended operating limits, refer to Table 2-2 on page 2-2.
3. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information.
A dv a n c e v 0. 3
2-1
IGLOOe DC and Switching Characteristics
Table 2-2 •
Recommended Operating Conditions 4
Symbol
TA
Parameter
Commercial
Ambient Temperature
TJ
Junction Temperature
VCC
1.5 V DC
voltage1
0 to +70
8
–40 to +85
Units
7
°C
–40 to +100
supply
1.425 to 1.575
1.425 to 1.575
V
1.2 V–1.5 V wide range core
voltage2
1.14 to 1.575
1.14 to 1.575
V
core
JTAG DC voltage
VPUMP 5
Programming voltage
Programming Mode
1.4 to 3.6
1.4 to 3.6
V
3.15 to 3.45
3.15 to 3.45
V
0 to 3.45
0 to 3.45
V
Operation3
VCCPLL
Industrial
0 to + 85
VJTAG
9
6
Analog power supply (PLL)
1
1.5 V DC core supply voltage
1.4 to 1.6
1.4 to 1.6
V
1.14 to 1.575
1.14 to 1.575
V
1.14 to 1.26
1.14 to 1.26
V
1.425 to 1.575
1.425 to 1.575
1.8 V DC supply voltage
1.7 to 1.9
1.7 to 1.9
V
2.5 V DC supply voltage
2.3 to 2.7
2.3 to 2.7
V
3.3 V DC supply voltage
3.0 to 3.6
3.0 to 3.6
V
2.375 to 2.625
2.375 to 2.625
V
3.0 to 3.6
3.0 to 3.6
V
1.2 V–1.5 V wide range core
voltage2
VCCI and 1.2 V DC supply voltage2
VMV 10
1.5 V DC supply voltage
LVDS differential I/O
LVPECL differential I/O
Notes:
1. For IGLOOe V5 devices
2. For IGLOOe V2 devices only, operating at VCCI ≥ VCC
3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each
I/O standard are given in Table 2-20 on page 2-20. VCCI should be at the same voltage within a given I/O
bank.
4. All parameters representing voltages are measured with respect to GND unless otherwise specified.
5. VPUMP can be left floating during operation (not programming mode).
6. Maximum TJ = 85 °C.
7. Maximum TJ = 100 °C.
8. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Actel
recommends that the user follow best design practices using Actel’s timing and power simulation tools.
9. VCCPLL pins should be tied to VCC pins. See Pin Descriptions for further information.
10. VMV pins must be connected to the corresponding VCCI pins. See Pin Descriptions for further information.
Table 2-3 •
Flash Programming Limits – Retention, Storage, and Operating Temperature1
Product Grade
Programming Program Retention
Cycles
(biased/unbiased)
Maximum Storage
Temperature TSTG (°C) 2
Maximum Operating Junction
Temperature TJ (°C) 2
Commercial
500
20 years
110
100
Industrial
500
20 years
110
100
Notes:
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device
operating conditions and absolute limits.
2 -2
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-4 •
Overshoot and Undershoot Limits 1
Average VCCI–GND Overshoot or Undershoot Duration
as a Percentage of Clock Cycle2
Maximum Overshoot/
Undershoot2
2.7 V or less
10%
1.4 V
5%
1.49 V
3V
10%
1.1 V
5%
1.19 V
3.3 V
10%
0.79 V
5%
0.88 V
VCCI
3.6 V
10%
0.45 V
5%
0.54 V
Notes:
1. Based on reliability requirements at junction temperature at 85°C.
2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two
cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.
3. The device meets overshoot/undershoot specification requirements for PCI inputs with VCCI = 3.45 V at 85°C
maximum, whereas the average toggling of inputs at one-sixth of PCI frequency is considered.
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset
(Commercial and Industrial)
Sophisticated power-up management circuitry is designed into every IGLOOe device. These circuits
ensure easy transition from the powered-off state to the powered-up state of the device. The many
different supplies can power up in any sequence with minimized current spikes or surges. In
addition, the I/O will be in a known state through the power-up sequence. The basic principle is
shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.
There are five regions to consider during power-up.
IGLOOe I/Os are activated only if ALL of the following three conditions are met:
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and
Figure 2-2 on page 2-5).
2. VCCI > VCC – 0.75 V (typical)
3. Chip is in the operating mode.
VCCI Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.2 V
Ramping down: 0.5 V < trip_point_down < 1.1 V
VCC Trip Point:
Ramping up: 0.6 V < trip_point_up < 1.1 V
Ramping down: 0.5 V < trip_point_down < 1 V
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note
the following:
•
During programming, I/Os become tristated and weakly pulled up to VCCI.
•
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O
behavior.
A dv a n c e v 0. 3
2-3
IGLOOe DC and Switching Characteristics
PLL Behavior at Brownout Condition
Actel recommends using monotonic power supplies or voltage regulators to ensure proper
powerup behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed
brownout activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1
and Figure 2-2 on page 2-5 for more details).
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V ±
0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the
Power-Up/-Down Behavior of Low-Power Flash Devices chapter of the handbook for information
on clock and lock recovery.
Internal Power-Up Activation Sequence
1. Core
2. Input buffers
Output buffers, after 200 ns delay from input buffer activation.
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH/VOL , etc.
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH/VIL levels, and output
buffers do not meet VOH/VOL levels.
Region 1: I/O Buffers are OFF
VCC = 1.425 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.25 V
Deactivation trip point:
Vd = 0.75 V ± 0.25 V
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.3 V
Deactivation trip point:
Vd = 0.8 V ± 0.3 V
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V
Figure 2-1 • V5 – I/O State as a Function of VCCI and VCC Voltage Levels
2 -4
A dv a n c e v 0. 3
VCCI
IGLOOe DC and Switching Characteristics
VCC = VCCI + VT
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC
VCC = 1.575 V
Region 4: I/O
buffers are ON.
I/Os are functional
(except differential inputs)
but slower because VCCI is
below specification. For the
same reason, input buffers do not
meet VIH/VIL levels, and output
buffers do not meet VOH/VOL levels.
Region 1: I/O Buffers are OFF
Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH/VOL , etc.
VCC = 1.14 V
Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI/VCC are below
specification. For the same reason, input
buffers do not meet VIH/VIL levels, and
output buffers do not meet VOH/VOL levels.
Activation trip point:
Va = 0.85 V ± 0.2 V
Deactivation trip point:
Vd = 0.75 V ± 0.2 V
Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification.
Region 1: I/O buffers are OFF
Activation trip point:
Va = 0.9 V ± 0.15 V
Deactivation trip point:
Vd = 0.8 V ± 0.15 V
Min VCCI datasheet specification
voltage at a selected I/O
standard; i.e., 1.14 V,1.425 V, 1.7 V,
2.3 V, or 3.0 V
VCCI
Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
Thermal Characteristics
Introduction
The temperature variable in Actel Designer software refers to the junction temperature, not the
ambient temperature. This is an important distinction because dynamic and static power
consumption cause the chip junction to be higher than the ambient temperature.
EQ 2-1 can be used to calculate junction temperature.
TJ = Junction Temperature = ΔT + TA
EQ 2-1
where:
TA = Ambient Temperature
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-5.
P = Power dissipation
A dv a n c e v 0. 3
2-5
IGLOOe DC and Switching Characteristics
Package Thermal Characteristics
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The absolute
maximum junction temperature is 100°C. EQ 2-2 shows a sample calculation of the absolute
maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and
in still air.
100°C – 70°C
Max. junction temp. (°C) – Max. ambient temp. (°C)
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 2.206 W
13.6°C/W
θ ja (°C/W)
EQ 2-2
Table 2-5 •
Package Thermal Resistivities
θja
Pin Count
θjc
Still Air
200 ft./min.
500 ft./min.
Units
Plastic Quad Flat Package (PQFP)
208
8.0
26.1
22.5
20.8
C/W
Plastic Quad Flat Package (PQFP) with
embedded heat spreader
208
3.8
16.2
13.3
11.9
C/W
Fine Pitch Ball Grid Array (FBGA)
256
3.8
26.9
22.8
21.5
C/W
484
3.2
20.5
17.0
15.9
C/W
676
3.2
16.4
13.0
12.0
C/W
896
2.4
13.6
10.4
9.4
C/W
Package Type
Temperature and Voltage Derating Factors
Table 2-6 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C,VCC = 1.425 V)
For IGLOOe V2 or V5 devices, 1.5 V DC Core Supply Voltage
Array Voltage
VCC (V)
Junction Temperature (°C)
–40°C
0°C
25°C
70°C
85°C
110°C
1.425
0.95
0.96
0.98
1.00
1.01
1.02
1.5
0.88
0.89
0.91
0.93
0.93
0.94
1.575
0.82
0.84
0.85
0.87
0.88
0.89
Table 2-7 •
Temperature and Voltage Derating Factors for Timing Delays
(normalized to TJ = 70°C, VCC = 1.14 V)
For IGLOOe V2, 1.2 V DC Core Supply Voltage
Array Voltage
VCC (V)
Junction Temperature (°C)
–40°C
0°C
25°C
70°C
85°C
110°C
1.14
0.97
0.98
0.99
1.00
1.01
1.01
1.2
0.84
0.85
0.86
0.87
0.88
0.88
1.26
0.76
0.77
0.78
0.79
0.79
0.80
2 -6
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Calculating Power Dissipation
Quiescent Supply Current
Quiescent supply current (IDD) calculation depends on multiple factors, including operating
voltages (VCC , VCCI , and VJTAG), operating temperature, system clock frequency, and power
modes usage. Actel recommends using the PowerCalculator and SmartPower software
estimation tools to evaluate the projected static and active power based on the user design,
power mode usage, operating voltage, and temperature.
Table 2-8 •
Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode*
Core Voltage
AGLE600
AGLE3000
Units
1.2 V
34
95
µA
1.5 V
72
310
µA
Typical (25°C)
* IDD includes VCC, VPUMP, VCCI, VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6
and PDC7).
Table 2-9 •
Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)*
Core Voltage
AGLE600
AGLE3000
Units
VCCI /VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
µA
VCCI /VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.8
1.8
µA
VCCI /VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.9
1.9
µA
VCCI /VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.2
2.2
µA
VCCI /VJTAG= 3.3 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.5
2.5
µA
* IDD includes VCC , VPUMP , and VCCPLL currents. Values do not include I/O static contribution (PDC6 and PDC7).
Table 2-10 • Quiescent Supply Current (IDD), IGLOOe Shutdown Mode (VCC, VCCI = 0 V)*
Typical (25°C)
Core Voltage
AGLE600
AGLE3000
Units
1.2 V / 1.5 V
0
0
µA
* IDD includes VCC , VPUMP , VCCI , VJTAG , and VCCPLL currents. Values do not include I/O static contribution (PDC6
and PDC7).
A dv a n c e v 0. 3
2-7
IGLOOe DC and Switching Characteristics
Table 2-11 • Quiescent Supply Current, No IGLOOe Flash*Freeze Mode*
Core Voltage
AGLE600
AGLE3000
Units
1.2 V
28
89
µA
1.5 V
82
320
µA
VCCI /VJTAG = 1.2 V (per bank)
Typical (25°C)
1.2 V
1.7
1.7
µA
VCCI /VJTAG = 1.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.8
1.8
µA
VCCI /VJTAG = 1.8 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
1.9
1.9
µA
VCCI /VJTAG = 2.5 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.2
2.2
µA
VCCI /VJTAG= 3.3 V (per bank)
Typical (25°C)
1.2 V / 1.5 V
2.5
2.5
µA
2
ICCA Current
Typical (25°C)
3, 4
ICCI or IJTAG Current
Notes:
1. To calculate total device IDD, multiply the number of banks used in ICCI and add ICCA contribution.
2. Includes VCC , VCCPLL, and VPUMP currents.
3. Per VCCI or VJTAG bank
4. Values do not include I/O static contribution (PDC6 and PDC7).
2 -8
A dv a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power per I/O Pin
Table 2-12 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings
VCCI
(V)
Static Power
PDC6 (mW)1
Dynamic Power
PAC9 (µW/MHz)2
3.3 V LVTTL/LVCMOS
3.3
–
16.34
3.3 V LVTTL/LVCMOS – Schmitt trigger
3.3
–
24.49
2.5 V LVCMOS
2.5
–
4.71
2.5 V LVCMOS – Schmitt trigger
2.5
–
6.13
1.8 V LVCMOS
1.8
–
1.66
1.8 V LVCMOS – Schmitt trigger
1.8
–
1.78
1.5 V LVCMOS (JESD8-11)
1.5
–
1.01
1.5 V LVCMOS (JESD8-11) – Schmitt trigger
1.5
–
0.97
1.2
–
0.60
Single-Ended
1.2 V
LVCMOS 3
1.2 V LVCMOS – Schmitt trigger
3
1.2
–
0.53
3.3 V PCI
3.3
–
17.76
3.3 V PCI – Schmitt trigger
3.3
–
19.10
3.3 V PCI-X
3.3
–
17.76
3.3 V PCI-X – Schmitt trigger
3.3
–
19.10
3.3 V GTL
3.3
2.90
7.07
2.5 V GTL
2.5
2.13
3.62
3.3 V GTL+
3.3
2.81
2.97
2.5 V GTL+
2.5
2.57
2.55
HSTL (I)
1.5
0.17
0.85
HSTL (II)
1.5
0.17
0.85
SSTL2 (I)
2.5
1.38
3.30
SSTL2 (II)
2.5
1.38
3.30
SSTL3 (I)
3.3
3.21
8.08
SSTL3 (II)
3.3
3.21
8.08
LVDS
2.5
2.26
0.95
LVPECL
3.3
5.71
1.62
Voltage-Referenced
Differential
Notes:
1. PDC6 is the static power (where applicable) measured on VCCI.
2. PAC9 is the total dynamic power measured on VCCI .
3. Applicable for IGLOOe V2 devices only.
A dv a n c e v 0. 3
2-9
IGLOOe DC and Switching Characteristics
Table 2-13 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1
CLOAD
(pF)
VCCI
(V)
Static Power
PDC7 (mW)2
Dynamic Power
PAC10 (µW/MHz)3
3.3 V LVTTL/LVCMOS
5
3.3
–
148.00
2.5 V LVCMOS
5
2.5
–
83.23
1.8 V LVCMOS
5
1.8
–
54.58
5
1.5
–
37.05
5
1.2
–
17.94
3.3 V PCI
10
3.3
–
204.61
3.3 V PCI-X
10
3.3
–
204.61
3.3 V GTL
10
3.3
–
24.08
2.5 V GTL
10
2.5
–
13.52
3.3 V GTL+
10
3.3
–
24.10
2.5 V GTL+
10
2.5
–
13.54
HSTL (I)
20
1.5
7.08
26.22
HSTL (II)
20
1.5
13.88
27.22
SSTL2 (I)
30
2.5
16.69
105.56
SSTL2 (II)
30
2.5
25.91
116.60
SSTL3 (I)
30
3.3
26.02
114.87
SSTL3 (II)
30
3.3
42.21
131.76
LVDS
–
2.5
7.70
89.62
LVPECL
–
3.3
19.42
168.02
Single-Ended
1.5 V LVCMOS (JESD8-11)
1.2 V LVCMOS
4
Voltage-Referenced
Differential
Notes:
1. Dynamic power consumption is given for standard load and software default drive strength and output
slew.
2. PDC7 is the static power (where applicable) measured on VCCI.
3. PAC10 is the total dynamic power measured on VCCI.
4. Applicable for IGLOOe V2 devices only.
2 -1 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power Consumption of Various Internal Resources
Table 2-14 • Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices
For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Device-Specific Dynamic
Contributions (µW/MHz)
Parameter
Definition
AGLE600
AGLE3000
PAC1
Clock contribution of a Global Rib
19.7
12.77
PAC2
Clock contribution of a Global Spine
4.16
1.85
PAC3
Clock contribution of a VersaTile row
0.88
PAC4
Clock contribution of a VersaTile used as a sequential module
0.11
PAC5
First contribution of a VersaTile used as a sequential module
0.057
PAC6
Second contribution of a VersaTile used as a sequential module
0.207
PAC7
Contribution of a VersaTile used as a combinatorial module
0.207
PAC8
Average contribution of a routing net
PAC9
Contribution of an I/O input pin (standard-dependent)
See Table 2-12 on page 2-9.
PAC10
Contribution of an I/O output pin (standard-dependent)
See Table 2-13 on page 2-10.
PAC11
Average contribution of a RAM block during a read operation
25.00
PAC12
Average contribution of a RAM block during a write operation
30.00
PAC13
Dynamic contribution for PLL
2.70
0.7
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power calculator or
SmartPower in Actel Libero® Integrated Design Environment (IDE) software.
Table 2-15 • Different Components Contributing to the Static Power Consumption in IGLOO Devices
For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Device Specific Static Power (mW)
Parameter
Definition
AGLE600
AGLE3000
PDC1
Array static power in Active mode
See Table 2-11 on page 2-8.
PDC2
Array static power in Static (Idle) mode
See Table 2-10 on page 2-7.
PDC3
Array static power in Flash*Freeze mode
See Table 2-8 on page 2-7.
PDC4
Static PLL contribution
PDC5
Bank quiescent power (VCCI-dependent)
See Table 2-11 on page 2-8.
PDC6
I/O input pin static power (standard-dependent)
See Table 2-12 on page 2-9.
PDC7
I/O output pin static power (standard-dependent)
See Table 2-13 on page 2-10.
1.84
A dv a n c e v 0. 3
2 - 11
IGLOOe DC and Switching Characteristics
Table 2-16 • Different Components Contributing to the Dynamic Power Consumption in IGLOOe Devices
For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage
Device-Specific Dynamic
Contributions (µW/MHz)
Parameter
Definition
AGLE600
AGLE3000
PAC1
Clock contribution of a Global Rib
12.61
8.17
PAC2
Clock contribution of a Global Spine
2.66
1.18
PAC3
Clock contribution of a VersaTile row
0.56
PAC4
Clock contribution of a VersaTile used as a sequential module
0.071
PAC5
First contribution of a VersaTile used as a sequential module
0.045
PAC6
Second contribution of a VersaTile used as a sequential module
0.186
PAC7
Contribution of a VersaTile used as a combinatorial module
0.109
PAC8
Average contribution of a routing net
0.449
PAC9
Contribution of an I/O input pin (standard-dependent)
PAC10
Contribution of an I/O output pin (standard-dependent)
PAC11
Average contribution of a RAM block during a read operation
25.00
PAC12
Average contribution of a RAM block during a write operation
30.00
PAC13
Dynamic PLL contribution
2.10
See Table 2-8 on page 2-7.
See Table 2-9 on page 2-7
and Table 2-10 on page 2-7.
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power calculator or
SmartPower in Actel Libero IDE software.
Table 2-17 • Different Components Contributing to the Static Power Consumption in IGLOO Devices
For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage
Device Specific Static Power (mW)
Parameter
Definition
AGLE600
AGLE3000
PDC1
Array static power in Active mode
See Table 2-11 on page 2-8.
PDC2
Array static power in Static (Idle) mode
See Table 2-10 on page 2-7.
PDC3
Array static power in Flash*Freeze mode
See Table 2-8 on page 2-7.
PDC4
Static PLL contribution
PDC5
Bank quiescent power (VCCI-dependent)
See Table 2-11 on page 2-8.
PDC6
I/O input pin static power (standard-dependent)
See Table 2-12 on page 2-9.
PDC7
I/O output pin static power (standard-dependent)
See Table 2-13 on page 2-10.
2 -1 2
0.90
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For
more accurate and detailed power estimations, use the SmartPower tool in the Libero IDE
software.
The power calculation methodology described below uses the following variables:
•
The number of PLLs as well as the number and the frequency of each output clock
generated
•
The number of combinatorial and sequential cells used in the design
•
The internal clock frequencies
•
The number and the standard of I/O pins used in the design
•
The number of RAM blocks used in the design
•
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-18 on
page 2-15.
•
Enable rates of output buffers—guidelines are provided for typical applications in
Table 2-19 on page 2-15.
•
Read rate and write rate to the memory—guidelines are provided for typical applications in
Table 2-19 on page 2-15. The calculation should be repeated for each clock domain defined
in the design.
Methodology
Total Power Consumption—PTOTAL
PTOTAL = PSTAT + PDYN
PSTAT is the total static power consumption.
PDYN is the total dynamic power consumption.
Total Static Power Consumption—PSTAT
PSTAT = (PDC1 or PDC2 or PDC3) + NBANKS * PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7
NINPUTS is the number of I/O input buffers used in the design.
NOUTPUTS is the number of I/O output buffers used in the design.
NBANKS is the number of I/O banks powered in the design.
Total Dynamic Power Consumption—PDYN
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL
Global Clock Contribution—PCLOCK
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK
NSPINE is the number of global spines used in the user design—guidelines are provided
in Table 2-18 on page 2-15.
NROW is the number of VersaTile rows used in the design—guidelines are provided in
Table 2-18 on page 2-15.
FCLK is the global clock signal frequency.
NS-CELL is the number of VersaTiles used as sequential modules in the design.
PAC1, PAC2, PAC3, and PAC4 are device-dependent.
Sequential Cells Contribution—PS-CELL
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a
multi-tile sequential cell is used, it should be accounted for as 1.
α1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
A dv a n c e v 0. 3
2 - 13
IGLOOe DC and Switching Characteristics
Combinatorial Cells Contribution—PC-CELL
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
Routing Net Contribution—PNET
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK
NS-CELL is the number of VersaTiles used as sequential modules in the design.
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.
α1
is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-18 on
page 2-15.
FCLK is the global clock signal frequency.
I/O Input Buffer Contribution—PINPUTS
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK
NINPUTS is the number of I/O input buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-18 on page 2-15.
FCLK is the global clock signal frequency.
I/O Output Buffer Contribution—POUTPUTS
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK
NOUTPUTS is the number of I/O output buffers used in the design.
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-18 on page 2-15.
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-19 on page 2-15.
FCLK is the global clock signal frequency.
RAM Contribution—PMEMORY
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3
NBLOCKS is the number of RAM blocks used in the design.
FREAD-CLOCK is the memory read clock frequency.
β2 is the RAM enable rate for read operations—guidelines are provided in Table 2-19
on page 2-15.
FWRITE-CLOCK is the memory write clock frequency.
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-19
on page 2-15.
PLL Contribution—PPLL
PPLL = PDC4 + PAC13 * FCLKOUT
FCLKOUT is the output clock frequency.1
1.
2 -1 4
If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its
corresponding contribution (PAC13* FCLKOUT product) to the total PLL contribution.
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Guidelines
Toggle Rate Definition
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.
Below are some examples:
•
The average toggle rate of a shift register is 100% as all flip-flop outputs toggle at half of
the clock frequency.
•
The average toggle rate of an 8-bit counter is 25%:
–
Bit 0 (LSB) = 100%
–
Bit 1
= 50%
–
Bit 2
= 25%
–
…
–
Bit 7 (MSB) = 0.78125%
–
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8
Enable Rate Definition
Output enable rate is the average percentage of time during which tristate outputs are enabled.
When nontristate output buffers are used, the enable rate should be 100%.
Table 2-18 • Toggle Rate Guidelines Recommended for Power Calculation
Component
α1
α2
Definition
Guideline
Toggle rate of VersaTile outputs
10%
I/O buffer toggle rate
10%
Table 2-19 • Enable Rate Guidelines Recommended for Power Calculation
Component
β1
β2
β3
Definition
Guideline
I/O output buffer enable rate
100%
RAM enable rate for read operations
12.5%
RAM enable rate for write operations
12.5%
A dv a n c e v 0. 3
2 - 15
IGLOOe DC and Switching Characteristics
User I/O Characteristics
Timing Model
I/O Module
(Non-Registered)
Combinational Cell
Combinational Cell
Y
Y
tPD = 1.19 ns
LVPECL
tPD = 1.04 ns
tDP = 1.75 ns
I/O Module
(Non-Registered)
Combinational Cell
Y
LVTTL/LVCMOS 3.3 V
Output drive strength = 12 mA
High slew rate
tDP = 3.13 ns
tPD = 1.77 ns
Combinational Cell
I/O Module
(Non-Registered)
Y
I/O Module
(Registered)
tPY = 1.45 ns
tDP = 2.76 ns
LVTTL/LVCMOS 3.3 V
Output drive strength = 24 mA
High slew rate
tPD = 1.33 ns
LVPECL
D
Q
Combinational Cell
I/O Module
(Non-Registered)
Y
tICLKQ = 0.43 ns
tISUD = 0.47 ns
tDP = 3.30 ns
tPD = 0.85 ns
LVCMOS 1.5V
Output drive strength = 12 mA
High slew
Input LVTTL/LVCMOS 3.3 V
Clock
Register Cell
Combinational Cell
tPY = 1.10 ns
D
Y
Q
I/O Module
(Non-Registered)
tPY = 1.62 ns
D
Q
D
Q
GTL+ 3.3V
tDP = 1.85 ns
tPD = 0.90 ns
tCLKQ = 0.90 ns
tSUD = 0.82 ns
LVDS,
BLVDS,
M-LVDS
I/O Module
(Registered)
Register Cell
tCLKQ = 0.90 ns
tSUD = 0.82 ns
tOCLKQ = 1.02 ns
tOSUD = 0.52 ns
Input LVTTL/LVCMOS 3.3 V
Input LVTTL/LVCMOS 3.3 V
Clock
Clock
tPY = 1.10 ns
tPY = 1.10 ns
Figure 2-3 • Timing Model
Operating Conditions: Std. Speed, Commercial Temperature Range (TJ = 70°C), Worst-Case
VCC = 1.425 V, Applicable to 1.5 V DC Core Voltage, V2 and V5 devices
2 -1 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
tPY
tDIN
D
PAD
Q
DIN
Y
CLK
To Array
I/O Interface
tPY = MAX(tPY(R), tPY(F))
tDIN = MAX(tDIN(R), tDIN(F))
VIH
Vtrip
Vtrip
PAD
VIL
VCC
50%
50%
Y
GND
tPY
tPY
(R)
(F)
tPYS
tPYS
(R)
(F)
VCC
50%
DIN
GND
50%
tDOUT
tDOUT
(R)
(F)
Figure 2-4 • Input Buffer Timing Model and Delays (example)
A dv a n c e v 0. 3
2 - 17
IGLOOe DC and Switching Characteristics
tDOUT
tDP
D Q
D
PAD
DOUT
Std
Load
CLK
From Array
tDP = MAX(tDP(R), tDP(F))
tDOUT = MAX(tDOUT(R), tDOUT(F))
I/O Interface
tDOUT
tDOUT
(R)
D
50%
VCC
(F)
50%
0V
VCC
DOUT
50%
50%
0V
VOH
Vtrip
Vtrip
VOL
PAD
tDP
(R)
Figure 2-5 • Output Buffer Model and Delays (example)
2 -1 8
A d v a n c e v 0. 3
tDP
(F)
IGLOOe DC and Switching Characteristics
tEOUT
D
Q
CLK
E
tZL, tZH, tHZ, tLZ, tZLS, tZHS
EOUT
D
Q
PAD
DOUT
CLK
D
tEOUT = MAX(tEOUT(r), tEOUT(f))
I/O Interface
VCC
D
VCC
50%
E
50%
tEOUT (F)
tEOUT (R)
VCC
50%
50%
EOUT
tZL
50%
tZH
tHZ
Vtrip
VCCI
90% VCCI
PAD
50%
tLZ
Vtrip
VOL
10% VCCI
VCC
D
VCC
E
50%
50%
tEOUT (R)
tEOUT (F)
VCC
EOUT
50%
50%
tZLS
VOH
PAD
Vtrip
50%
tZHS
Vtrip
VOL
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)
A dv a n c e v 0. 3
2 - 19
IGLOOe DC and Switching Characteristics
Overview of I/O Performance
Summary of I/O DC Input and Output Levels – Default I/O Software
Settings
Table 2-20 • Summary of Maximum and Minimum DC Input and Output Levels
Applicable to Commercial and Industrial Conditions
I/O Standard
Drive
Strength Slew Rate Min., V
VIH
VIL
VOL
VOH
IOL1 IOH1
mA mA
Max., V
Min., V
Max., V
Max., V
Min., V
3.3 V LVTTL /
3.3 V LVCMOS
12 mA
High
–0.3
0.8
2
3.6
0.4
2.4
12
12
2.5 V LVCMOS
12 mA
High
–0.3
0.7
1.7
2.7
0.7
1.7
12
12
1.8 V LVCMOS
12 mA
High
–0.3
0.35 * VCCI 0.65*VCCI
1.9
0.45
VCCI – 0.45 12
12
1.5 V LVCMOS
12 mA
High
–0.3
0.35 * VCCI 0.65*VCCI
1.575
0.25 * VCCI 0.75 * VCCI 12
12
2 mA
High
–0.3
0.35 * VCCI 0.65 * VCCI
1.26
0.25 * VCCI 0.75 * VCCI
2
2
1.2 V
LVCMOS4
3.3 V PCI
Per PCI Specification
3.3 V PCI-X
Per PCI-X Specification
25
mA2
High
–0.3
VREF – 0.05 VREF + 0.05
3.6
0.4
–
25
25
2.5 V GTL
25
mA2
High
–0.3
VREF – 0.05 VREF + 0.05
2.7
0.4
–
25
25
3.3 V GTL+
35 mA
High
–0.3
VREF – 0.1
VREF + 0.1
3.6
0.6
–
35
35
2.5 V GTL+
33 mA
High
–0.3
VREF – 0.1
VREF + 0.1
2.7
0.6
–
33
33
HSTL (I)
8 mA
3.3 V GTL
High
–0.3
VREF – 0.1
VREF + 0.1
1.575
0.4
VCCI – 0.4
8
8
HSTL (II)
15
mA2
High
–0.3
VREF – 0.1
VREF + 0.1
1.575
0.4
VCCI – 0.4
15
15
SSTL2 (I)
15 mA
High
–0.3
VREF – 0.2
VREF + 0.2
2.7
0.54
VCCI – 0.62 15
15
SSTL2 (II)
18 mA
High
–0.3
VREF – 0.2
VREF + 0.2
2.7
0.35
VCCI – 0.43 18
18
SSTL3 (I)
14 mA
High
–0.3
VREF – 0.2
VREF + 0.2
3.6
0.7
VCCI – 1.1
14
14
SSTL3 (II)
21 mA
High
–0.3
VREF – 0.2
VREF + 0.2
3.6
0.5
VCCI – 0.9
21
21
Notes:
1. Currents are measured at 85°C junction temperature.
2. Output drive strength is below JEDEC specification.
3. Output Slew Rates can be extracted from IBIS Models, located at
http://www.actel.com/download/ibis/default.aspx.
4. Applicable to V2 Devices ONLY, operating in the 1.2 V core range.
2 -2 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-21 • Summary of Maximum and Minimum DC Input Levels
Applicable to Commercial and Industrial Conditions
Commercial1
Industrial2
IIL
IIH
IIL
IIH
DC I/O Standards
µA
µA
µA
µA
3.3 V LVTTL / 3.3 V LVCMOS
10
10
15
15
2.5 V LVCMOS
10
10
15
15
1.8 V LVCMOS
10
10
15
15
1.5 V LVCMOS
10
10
15
15
1.2 V LVCMOS3
10
10
15
15
3.3 V PCI
10
10
15
15
3.3 V PCI-X
10
10
15
15
3.3 V GTL
10
10
15
15
2.5 V GTL
10
10
15
15
3.3 V GTL+
10
10
15
15
2.5 V GTL+
10
10
15
15
HSTL (I)
10
10
15
15
HSTL (II)
10
10
15
15
SSTL2 (I)
10
10
15
15
SSTL2 (II)
10
10
15
15
SSTL3 (I)
10
10
15
15
SSTL3 (II)
10
10
15
15
Notes:
1. Commercial range (0°C < TA < 70°C)
2. Industrial range (–40°C < TA < 85°C)
3. Applicable to V2 Devices ONLY, operating in the 1.2 V core range.
A dv a n c e v 0. 3
2 - 21
IGLOOe DC and Switching Characteristics
Summary of I/O Timing Characteristics – Default I/O Software
Settings
Table 2-22 • Summary of AC Measuring Points
Input Reference
Voltage (VREF_TYP)
Board Termination
Voltage (VTT_REF)
3.3 V LVTTL / 3.3 V LVCMOS
–
–
1.4 V
2.5 V LVCMOS
–
–
1.2 V
1.8 V LVCMOS
–
–
0.90 V
1.5 V LVCMOS
–
–
0.75 V
Standard
Measuring Trip
Point (Vtrip)
1.2 V LVCMOS
–
–
0.6 V
3.3 V PCI
–
–
0.285*VCCI (RR)
–
–
0.615*VCCI (FF))
–
–
0.285*VCCI (RR)
3.3 V PCI-X
–
–
0.615*VCCI (FF)
3.3 V GTL
0.8 V
1.2 V
VREF
2.5 V GTL
0.8 V
1.2 V
VREF
3.3 V GTL+
1.0 V
1.5 V
VREF
2.5 V GTL+
1.0 V
1.5 V
VREF
HSTL (I)
0.75 V
0.75 V
VREF
HSTL (II)
0.75 V
0.75 V
VREF
SSTL2 (I)
1.25 V
1.25 V
VREF
SSTL2 (II)
1.25 V
1.25 V
VREF
SSTL3 (I)
1.5 V
1.485 V
VREF
SSTL3 (II)
1.5 V
1.485 V
VREF
LVDS
–
–
Cross point
LVPECL
–
–
Cross point
Table 2-23 • I/O AC Parameter Definitions
Parameter
Definition
tDP
Data to Pad delay through the Output Buffer
tPY
Pad to Data delay through the Input Buffer with Schmitt trigger disabled
tDOUT
Data to Output Buffer delay through the I/O interface
tEOUT
Enable to Output Buffer Tristate Control delay through the I/O interface
tDIN
Input Buffer to Data delay through the I/O interface
tPYS
Pad to Data delay through the Input Buffer with Schmitt trigger enabled
tHZ
Enable to Pad delay through the Output Buffer—HIGH to Z
tZH
Enable to Pad delay through the Output Buffer—Z to HIGH
tLZ
Enable to Pad delay through the Output Buffer—LOW to Z
tZL
Enable to Pad delay through the Output Buffer—Z to LOW
tZHS
Enable to Pad delay through the Output Buffer with delayed enable—Z to HIGH
tZLS
Enable to Pad delay through the Output Buffer with delayed enable—Z to LOW
2 -2 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.8 V LVCMOS
12 mA
High
5
–
0.98 2.44 0.19 1.30 1.63 0.67 2.48 2.07 3.15 3.67 6.11 5.70 ns
1.5 V LVCMOS
12 mA
High
5
–
0.98 2.77 0.19 1.50 1.82 0.67 2.82 2.35 3.33 3.78 6.45 5.98 ns
3.3 V PCI
Per PCI
spec
High
10
25 2 0.98 2.44 0.19 0.98 1.45 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns
Per PCI-X High
spec
10
25 2 0.98 2.44 0.19 0.94 1.37 0.67 2.49 1.84 2.79 3.17 6.12 5.47 ns
3.3 V PCI-X
Units
0.98 2.21 0.19 1.34 1.45 0.67 2.25 1.89 2.86 3.06 5.88 5.52 ns
tZHS (ns)
–
tZLS (ns)
5
tHZ (ns)
High
tLZ (ns)
12 mA
tZ H (ns)
2.5 V LVCMOS
tZL (ns)
0.98 2.18 0.19 1.10 1.37 0.67 2.22 1.72 2.78 3.17 5.85 5.35 ns
tE OUT (ns)
–
tPYS (ns)
5
tPY (ns)
External Resistor (Ω)
High
tDIN (ns)
Capacitive Load (pF)
12 mA
tDP (ns)
Slew Rate
3.3 V LVTTL /
3.3 V LVCMOS
I/O Standard
tDOUT (ns)
Drive Strength (mA)
Table 2-24 • Summary of I/O Timing Characteristics—Software Default Settings
Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V
3.3 V GTL
25 mA
High
10
25
0.98 1.83 0.19 2.41
–
0.67 1.84 1.83 0.00 0.00 5.47 5.46 ns
2.5 V GTL
25 mA
High
10
25
0.98 1.90 0.19 2.04
–
0.67 1.94 1.87 0.00 0.00 5.57 5.50 ns
3.3 V GTL+
35 mA
High
10
25
0.98 1.85 0.19 1.35
–
0.67 1.88 1.81 0.00 0.00 5.51 5.44 ns
2.5 V GTL+
33 mA
High
10
25
0.98 1.97 0.19 1.29
–
0.67 2.00 1.84 0.00 0.00 5.63 5.47 ns
HSTL (I)
8 mA
High
20
50
0.98 2.74 0.19 1.77
–
0.67 2.79 2.73 0.00 0.00 6.42 6.36 ns
HSTL (II)
15 mA
High
20
25
0.98 2.62 0.19 1.77
–
0.67 2.66 2.40 0.00 0.00 6.29 6.03 ns
SSTL2 (I)
15 mA
High
30
50
0.98 1.91 0.19 1.15
–
0.67 1.94 1.72 0.00 0.00 5.57 5.35 ns
SSTL2 (II)
18 mA
High
30
25
0.98 1.94 0.19 1.15
–
0.67 1.97 1.66 0.00 0.00 5.60 5.29 ns
SSTL3 (I)
14 mA
High
30
50
0.98 2.05 0.19 1.09
–
0.67 2.09 1.71 0.00 0.00 5.72 5.34 ns
SSTL3 (II)
21 mA
High
30
25
0.98 1.86 0.19 1.09
–
0.67 1.89 1.58 0.00 0.00 5.52 5.21 ns
LVDS/B-LVDS/
M-LVDS
24 mA
High
–
–
0.98 1.77 0.19 1.62
–
–
–
–
–
–
–
–
ns
LVPECL
24 mA
High
–
–
0.98 1.75 0.19 1.45
–
–
–
–
–
–
–
–
ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on
page 2-42 for connectivity. This resistor is not required during normal operation.
A dv a n c e v 0. 3
2 - 23
IGLOOe DC and Switching Characteristics
1.55 2.50 0.26 1.55 1.76 1.10 2.54 2.22 3.34 3.83 8.35 8.03
ns
1.8 V LVCMOS
12 mA
High
5
–
1.55 2.74 0.26 1.53 1.95 1.10 2.79 2.41 3.66 4.54 8.60 8.21
ns
1.5 V LVCMOS
12 mA
High
5
–
1.55 3.09 0.26 1.72 2.15 1.10 3.15 2.70 3.85 4.66 8.96 8.51
ns
1.2 V LVCMOS
2mA
High
5
–
1.55 4.07 0.26 2.06 2.96 1.10 3.90 3.43 3.80 4.02 9.49 9.03
ns
Per PCI
spec
High
10
25 2 1.55 2.74 0.26 1.19 1.63 1.10 2.80 2.16 3.28 3.96 8.60 7.97
ns
Per PCI-X High
spec
10
25 2 1.55 2.74 0.26 1.21 1.57 1.10 2.80 2.16 3.28 3.96 8.60 7.97
ns
3.3 V PCI
3.3 V PCI-X
Units
–
tZHS (ns)
5
tZLS (ns)
High
tHZ (ns)
12 mA
tLZ (ns)
2.5 V LVCMOS
tZ H (ns)
ns
tZL (ns)
1.55 2.46 0.26 1.31 1.57 1.10 2.51 2.04 3.27 3.96 8.32 7.85
tE OUT (ns)
–
tPYS (ns)
5
tPY (ns)
External Resistor (Ω)
High
tDIN (ns)
Capacitive Load (pF)
12 mA
tDP (ns)
Slew Rate
3.3 V LVTTL /
3.3 V LVCMOS
I/O Standard
tDOUT (ns)
Drive Strength (mA)
Table 2-25 • Summary of I/O Timing Characteristics—Software Default Settings
Std. Speed Grade, Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V
3.3 V GTL
25 mA
High
10
25
1.55 2.09 0.26 2.75
–
1.10 2.10 2.09
–
–
7.91 7.89
ns
2.5 V GTL
25 mA
High
10
25
1.55 2.16 0.26 2.35
–
1.10 2.20 2.13
–
–
8.01 7.94
ns
3.3 V GTL+
35 mA
High
10
25
1.55 2.11 0.26 1.61
–
1.10 2.15 2.07
–
–
7.95 7.88
ns
2.5 V GTL+
33 mA
High
10
25
1.55 2.23 0.26 1.55
–
1.10 2.28 2.11
–
–
8.08 7.91
ns
HSTL (I)
8 mA
High
20
50
1.55 3.10 0.26 1.94
–
1.10 3.12 3.10
–
–
8.93 8.91
ns
HSTL (II)
15 mA
High
20
25
1.55 2.93 0.26 1.94
–
1.10 2.98 2.75
–
–
8.79 8.55
ns
SSTL2 (I)
15 mA
High
30
50
1.55 2.17 0.26 1.39
–
1.10 2.21 2.04
–
–
8.02 7.84
ns
SSTL2 (II)
18 mA
High
30
25
1.55 2.20 0.26 1.39
–
1.10 2.24 1.97
–
–
8.05 7.78
ns
SSTL3 (I)
14 mA
High
30
50
1.55 2.32 0.26 1.32
–
1.10 2.37 2.02
–
–
8.17 7.83
ns
SSTL3 (II)
21 mA
High
30
25
1.55 2.12 0.26 1.32
–
1.10 2.16 1.89
–
–
7.97 7.70
ns
LVDS/B-LVDS/
M-LVDS
24 mA
High
–
–
1.55 2.19 0.26 1.88
–
–
–
–
–
–
–
–
ns
LVPECL
24 mA
High
–
–
1.55 2.16 0.26 1.70
–
–
–
–
–
–
–
–
ns
Notes:
1. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on
page 2-42 for connectivity. This resistor is not required during normal operation.
2 -2 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Detailed I/O DC Characteristics
Table 2-26 • Input Capacitance
Symbol
Definition
Conditions
Min.
Max.
Units
CIN
Input capacitance
VIN = 0, f = 1.0 MHz
8
pF
CINCLK
Input capacitance on the clock pin
VIN = 0, f = 1.0 MHz
8
pF
Drive Strength
RPULL-DOWN (Ω)2
RPULL-UP (Ω)3
4 mA
100
300
Table 2-27 • I/O Output Buffer Maximum Resistances1
Standard
3.3 V LVTTL / 3.3 V LVCMOS
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
8 mA
50
150
12 mA
25
75
16 mA
17
50
24 mA
11
33
4 mA
100
200
8 mA
50
100
12 mA
25
50
16 mA
20
40
24 mA
11
22
2 mA
200
225
4 mA
100
112
6 mA
50
56
8 mA
50
56
12 mA
20
22
16 mA
20
22
2 mA
200
224
4 mA
100
112
6 mA
67
75
8 mA
33
37
12 mA
33
37
1.2 V LVCMOS
2 mA
TBD
TBD
3.3 V PCI/PCI-X
Per PCI/PCI-X
specification
25
75
3.3 V GTL
25 mA
11
–
2.5 V GTL
25 mA
14
–
3.3 V GTL+
35 mA
12
–
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at
http://www.actel.com/techdocs/models/ibis.html.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c
A dv a n c e v 0. 3
2 - 25
IGLOOe DC and Switching Characteristics
Table 2-27 • I/O Output Buffer Maximum Resistances1 (continued)
Drive Strength
RPULL-DOWN (Ω)2
RPULL-UP (Ω)3
2.5 V GTL+
33 mA
15
–
HSTL (I)
8 mA
50
50
HSTL (II)
15 mA
25
25
SSTL2 (I)
15 mA
27
31
SSTL2 (II)
18 mA
13
15
SSTL3 (I)
14 mA
44
69
SSTL3 (II)
21 mA
18
32
Standard
Notes:
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance
values depend on VCCI, drive strength selection, temperature, and process. For board design considerations
and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at
http://www.actel.com/techdocs/models/ibis.html.
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHs pe c
Table 2-28 • I/O Weak Pull-Up/Pull-Down Resistances
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
R((WEAK PULL-UP)1
(Ω)
R(WEAK PULL-DOWN)2
(Ω)
VCCI
Min.
Max.
Min.
Max.
3.3 V
10 k
45 k
10 k
45 k
2.5 V
11 k
55 k
12 k
74 k
1.8 V
18 k
70 k
17 k
110 k
1.5 V
19 k
90 k
19 k
140 k
1.2 V
TBD
TBD
TBD
TBD
Notes:
1. R(WEAK PULL-DOWN-MAX) = (VOLspec) / IWEAK PULL-DOWN-MIN
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / IWEAK PULL-UP-MIN
2 -2 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-29 • I/O Short Currents IOSH/IOSL
Drive Strength
IOSH (mA)*
IOSL (mA)*
4 mA
25
27
8 mA
51
54
12 mA
103
109
16 mA
132
127
24 mA
268
181
4 mA
16
18
8 mA
32
37
12 mA
65
74
16 mA
83
87
24 mA
169
124
2 mA
9
11
4 mA
17
22
6 mA
35
44
8 mA
45
51
12 mA
91
74
16 mA
91
74
2 mA
13
16
4 mA
25
33
6 mA
32
39
8 mA
66
55
12 mA
66
55
1.2 V LVCMOS
2 mA
TBD
TBD
3.3 V PCI/PCIX
Per PCI/PCI-X Specification
3.3 V LVTTL / 3.3 V LVCMOS
2.5 V LVCMOS
1.8 V LVCMOS
1.5 V LVCMOS
Per PCI Curves
3.3 V GTL
25 mA
268
181
2.5 V GTL
25 mA
169
124
3.3 V GTL+
35 mA
268
181
2.5 V GTL+
33 mA
169
124
HSTL (I)
8 mA
32
39
HSTL (II)
15 mA
66
55
SSTL2 (I)
15 mA
83
87
SSTL2 (II)
18 mA
169
124
SSTL3 (I)
14 mA
51
54
SSTL3 (II)
21 mA
103
109
* TJ = 100°C
A dv a n c e v 0. 3
2 - 27
IGLOOe DC and Switching Characteristics
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The
reliability data below is based on a 3.3 V, 36 mA I/O setting, which is the worst case for this type of
analysis.
For example, at 110°C, the short current condition would have to be sustained for more than three
months to cause a reliability concern. The I/O design does not contain any short circuit protection,
but such protection would only be needed in extremely prolonged stress conditions.
Table 2-30 • Duration of Short Circuit Event before Failure
Temperature
Time before Failure
–40°C
> 20 years
0°C
> 20 years
25°C
> 20 years
70°C
5 years
85°C
2 years
100°C
6 months
110°C
3 months
Table 2-31 • Schmitt Trigger Input Hysteresis
Hysteresis Voltage Value (Typ.) for Schmitt Mode Input Buffers
Input Buffer Configuration
Hysteresis Value (typ.)
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)
240 mV
2.5 V LVCMOS (Schmitt trigger mode)
140 mV
1.8 V LVCMOS (Schmitt trigger mode)
80 mV
1.5 V LVCMOS (Schmitt trigger mode)
60 mV
1.2 V LVCMOS (Schmitt trigger mode)
40 mV
Table 2-32 • I/O Input Rise Time, Fall Time, and Related I/O Reliability*
Input Buffer
Input Rise/Fall Time (min.)
Input Rise/Fall Time (max.)
Reliability
LVTTL/LVCMOS (Schmitt trigger
disabled)
No requirement
10 ns*
20 years (110°C)
LVTTL/LVCMOS (Schmitt trigger
enabled)
No requirement
HSTL/SSTL/GTL
No requirement
10 ns*
10 years (100°C)
LVDS/B-LVDS/M-LVDS/LVPECL
No requirement
10 ns*
10 years (100°C)
No requirement, but input noise 20 years (110°C)
voltage cannot exceed Schmitt
hysteresis.
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,
then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the
rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity
evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.
2 -2 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic is a general purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS
standard is supported as part of the 3.3 V LVTTL support.
Table 2-33 • Minimum and Maximum DC Input and Output Levels
3.3 V LVTTL /
3.3 V LVCMOS
VIH
VIL
VOL
VOH
IOL IOH
IOSH
IOSL
1
Drive Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA
IIL
1
Max., mA
IIH
2
µA µA2
4 mA
–0.3
0.8
2
3.6
0.4
2.4
4
4
25
27
10
10
8 mA
–0.3
0.8
2
3.6
0.4
2.4
8
8
51
54
10
10
12 mA
–0.3
0.8
2
3.6
0.4
2.4
12 12
103
109
10
10
16 mA
–0.3
0.8
2
3.6
0.4
2.4
16 16
132
127
10
10
24 mA
–0.3
0.8
2
3.6
0.4
2.4
24 24
268
181
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-7 • AC Loading
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
CLOAD (pF)
3.3
1.4
–
5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 29
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive Strength Speed Grade tDOUT
tDP
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.98
5.04 0.19 1.10 1.37
tDIN
tPY
tPYS tEOUT
0.67
5.13 4.10 2.33 2.22
tZL
tZH
tLZ
8.76
7.73
ns
8 mA
Std.
0.98
4.16 0.19 1.10 1.37
0.67
4.23 3.54 2.60 2.72
7.86
7.17
ns
12 mA
Std.
0.98
3.53 0.19 1.10 1.37
0.67
3.60 3.12 2.78 3.03
7.23
6.75
ns
16 mA
Std.
0.98
3.36 0.19 1.10 1.37
0.67
3.42 3.03 2.82 3.12
7.05
6.66
ns
24 mA
Std.
0.98
3.26 0.19 1.10 1.37
0.67
3.32 3.04 2.87 3.45
6.95
6.67
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Drive Strength Speed Grade tDOUT
tDP
4 mA
Std.
0.98
2.93 0.19 1.10 1.37
8 mA
Std.
0.98
12 mA
Std.
16 mA
24 mA
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS Units
0.67
2.99 2.33 0.00 2.34
6.62
5.96
ns
2.45 0.19 1.10 1.37
0.67
2.50 1.92 2.60 2.84
6.13
5.55
ns
0.98
2.18 0.19 1.10 1.37
0.67
2.22 1.72 2.78 3.17
5.85
5.35
ns
Std.
0.98
2.13 0.19 1.10 1.37
0.67
2.17 1.69 2.83 3.26
5.80
5.32
ns
Std.
0.98
2.15 0.19 1.10 1.37
0.67
2.19 1.64 2.88 3.58
5.82
5.27
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2 -3 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Drive Strength Speed Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units
4 mA
Std.
1.55 5.53 0.26 1.31 1.57 1.10 5.63 4.53 2.78 2.85 11.44 10.34 ns
8 mA
Std.
1.55
4.58 0.26 1.31 1.57
1.10
4.67 3.95 3.07 3.44 10.48
9.76
ns
12 mA
Std.
1.55
3.92 0.26 1.31 1.57
1.10
3.99 3.51 3.27 3.80
9.80
9.32
ns
16 mA
Std.
1.55
3.73 0.26 1.31 1.57
1.10
3.79 3.41 3.31 3.90
9.60
9.22
ns
24 mA
Std.
1.55
3.62 0.26 1.31 1.57
1.10
3.69 3.42 3.36 4.28
9.50
9.23
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Drive Strength Speed Grade tDOUT
tDP
4 mA
Std.
1.55
3.27 0.26 1.31 1.57
8 mA
Std.
1.55
12 mA
Std.
16 mA
24 mA
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.10
3.33 2.67 2.78 2.99
9.14
8.48
ns
2.75 0.26 1.31 1.57
1.10
2.81 2.24 3.07 3.58
8.61
8.05
ns
1.55
2.46 0.26 1.31 1.57
1.10
2.51 2.04 3.27 3.96
8.32
7.85
ns
Std.
1.55
2.41 0.26 1.31 1.57
1.10
2.46 2.00 3.32 4.06
8.27
7.81
ns
Std.
1.55
2.43 0.26 1.31 1.57
1.10
2.48 1.95 3.37 4.44
8.29
7.76
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 31
IGLOOe DC and Switching Characteristics
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.
Table 2-39 • Minimum and Maximum DC Input and Output Levels
2.5 V LVCMOS
Drive
Strength
VIL
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
IIL
IIH
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2
4 mA
–0.3
0.7
1.7
2.7
0.7
1.7
4
4
16
18
10
10
8 mA
–0.3
0.7
1.7
2.7
0.7
1.7
8
8
32
37
10
10
12 mA
–0.3
0.7
1.7
2.7
0.7
1.7
12 12
65
74
10
10
16 mA
–0.3
0.7
1.7
2.7
0.7
1.7
16 16
83
87
10
10
24 mA
–0.3
0.7
1.7
2.7
0.7
1.7
24 24
169
124
10
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-8 • AC Loading
Table 2-40 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
CLOAD (pF)
2.5
1.2
–
5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -3 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-41 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive Strength Speed Grade tDOUT
tDP
tHZ
tZLS
tZHS
Units
4 mA
Std.
0.98
5.70 0.19 1.34 1.45
tDIN
tPY
tPYS tEOUT
0.67
5.81 4.87 2.34 2.01
tZL
tZH
tLZ
9.44
8.50
ns
8 mA
Std.
0.98
4.71 0.19 1.34 1.45
0.67
4.79 4.17 2.65 2.60
8.42
7.80
ns
12 mA
Std.
0.98
4.00 0.19 1.34 1.45
0.67
4.07 3.67 2.86 2.99
7.70
7.30
ns
16 mA
Std.
0.98
3.78 0.19 1.34 1.45
0.67
3.85 3.56 2.90 3.09
7.48
7.19
ns
24 mA
Std.
0.98
3.69 0.19 1.34 1.45
0.67
3.75 3.57 2.96 3.46
7.38
7.20
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
Table 2-42 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Drive Strength Speed Grade tDOUT
tDP
4 mA
Std.
0.98
3.02 0.19 1.34 1.45
8 mA
Std.
0.98
12 mA
Std.
16 mA
24 mA
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.67
3.08 2.74 2.34 2.08
6.71
6.37
ns
2.51 0.19 1.34 1.45
0.67
2.56 2.17 2.65 2.69
6.19
5.80
ns
0.98
2.21 0.19 1.34 1.45
0.67
2.25 1.89 2.86 3.06
5.88
5.52
ns
Std.
0.98
2.16 0.19 1.34 1.45
0.67
2.20 1.84 2.90 3.17
5.83
5.47
ns
Std.
0.98
2.17 0.19 1.34 1.45
0.67
2.21 1.77 2.96 3.57
5.84
5.40
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 33
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-43 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
1.55
6.24
0.26 1.55 1.76
1.10
6.36
5.34
2.80 2.61 12.17 11.15
ns
8 mA
Std.
1.55
5.17
0.26 1.55 1.76
1.10
5.27
4.61
3.12 3.30 11.08 10.42
ns
12 mA
Std.
1.55
4.41
0.26 1.55 1.76
1.10
4.49
4.08
3.34 3.75 10.30
9.89
ns
16 mA
Std.
1.55
4.18
0.26 1.55 1.76
1.10
4.26
3.96
3.39 3.87 10.06
9.77
ns
24 mA
Std.
1.55
4.08
0.26 1.55 1.76
1.10
4.15
3.98
3.45 4.30
9.79
ns
9.96
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
Table 2-44 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
4 mA
Std.
1.55
3.36 0.26 1.55 1.76
1.10
3.43 3.11 2.80 2.70
9.23
8.92
ns
8 mA
Std.
1.55
2.82 0.26 1.55 1.76
1.10
2.87 2.51 3.12 3.40
8.68
8.32
ns
12 mA
Std.
1.55
2.50 0.26 1.55 1.76
1.10
2.54 2.22 3.34 3.83
8.35
8.03
ns
16 mA
Std.
1.55
2.44 0.26 1.55 1.76
1.10
2.49 2.16 3.39 3.95
8.29
7.97
ns
24 mA
Std.
1.55
2.45 0.26 1.55 1.76
1.10
2.50 2.09 3.45 4.42
8.31
7.90
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -3 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.
Table 2-45 • Minimum and Maximum DC Input and Output Levels
1.8 V
LVCMOS
VIL
Drive
Strength Min., V
2 mA
–0.3
VIH
Max., V
Min., V
VOL
VOH
Max., V Max., V
Min., V
IOL IOH
IOSH
IOSL
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
2
2
9
11
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
4
4
17
22
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
6
6
35
44
10 10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45
8
8
45
51
10 10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45 12 12
91
74
10 10
16 mA
–0.3
0.35 * VCCI 0.65 * VCCI
1.9
0.45
VCCI – 0.45 16 16
91
74
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-9 • AC Loading
Table 2-46 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
CLOAD (pF)
1.8
0.9
–
5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 35
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-47 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
0.98
7.53
0.19 1.30 1.63
0.67
7.67
6.34
2.40 1.21 11.30
9.97
ns
4 mA
Std.
0.98
6.24
0.19 1.30 1.63
0.67
6.36
5.38
2.77 2.48
9.99
9.01
ns
6 mA
Std.
0.98
5.33
0.19 1.30 1.63
0.67
5.43
4.73
3.01 2.96
9.06
8.36
ns
8 mA
Std.
0.98
5.02
0.19 1.30 1.63
0.67
5.11
4.60
3.07 3.09
8.74
8.23
ns
12 mA
Std.
0.98
4.93
0.19 1.30 1.63
0.67
5.02
4.61
3.15 3.57
8.65
8.24
ns
16 mA
Std.
0.98
4.93
0.19 1.30 1.63
0.67
5.02
4.61
3.15 3.57
8.65
8.24
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
Table 2-48 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
0.98
3.53 0.19 1.30 1.63
0.67
3.59 3.47 2.39 1.23
7.22
7.10
ns
4 mA
Std.
0.98
2.90 0.19 1.30 1.63
0.67
2.96 2.65 2.76 2.56
6.59
6.28
ns
6 mA
Std.
0.98
2.52 0.19 1.30 1.63
0.67
2.57 2.24 3.01 3.03
6.20
5.87
ns
8 mA
Std.
0.98
2.45 0.19 1.30 1.63
0.67
2.49 2.17 3.07 3.17
6.12
5.80
ns
12 mA
Std.
0.98
2.44 0.19 1.30 1.63
0.67
2.48 2.07 3.15 3.67
6.11
5.70
ns
16 mA
Std.
0.98
2.44 0.19 1.30 1.63
0.67
2.48 2.07 3.15 3.67
6.11
5.70
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2 -3 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-49 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
1.55
8.20
0.26 1.53 1.95
1.10
8.35
6.89
2.86 1.68 14.16 12.69
ns
4 mA
Std.
1.55
6.82
0.26 1.53 1.95
1.10
6.95
5.88
3.25 3.16 12.75 11.69
ns
6 mA
Std.
1.55
5.84
0.26 1.53 1.95
1.10
5.95
5.20
3.51 3.71 11.75 11.00
ns
8 mA
Std.
1.55
5.51
0.26 1.53 1.95
1.10
5.61
5.06
3.58 3.87 11.42 10.87
ns
12 mA
Std.
1.55
5.41
0.26 1.53 1.95
1.10
5.51
5.07
3.66 4.42 11.32 10.88
ns
16 mA
Std.
1.55
5.41
0.26 1.53 1.95
1.10
5.51
5.07
3.66 4.42 11.32 10.88
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
Table 2-50 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
1.55
3.91
0.26 1.53 1.95
1.10
3.98
3.88
2.85 1.70
9.79
9.68
ns
4 mA
Std.
1.55
3.24
0.26 1.53 1.95
1.10
3.30
3.01
3.24 3.25
9.11
8.82
ns
6 mA
Std.
1.55
2.83
0.26 1.53 1.95
1.10
2.88
2.58
3.51 3.80
8.69
8.39
ns
8 mA
Std.
1.55
2.75
0.26 1.53 1.95
1.10
2.80
2.51
3.57 3.95
8.61
8.31
ns
12 mA
Std.
1.55
2.74
0.26 1.53 1.95
1.10
2.79
2.41
3.66 4.54
8.60
8.21
ns
16 mA
Std.
1.55
2.74
0.26 1.53 1.95
1.10
2.79
2.41
3.66 4.54
8.60
8.21
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 37
IGLOOe DC and Switching Characteristics
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for generalpurpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.
Table 2-51 • Minimum and Maximum DC Input and Output Levels
1.5 V
LVCMOS
VIL
Drive
Strength Min., V
VIH
Max., V
Min., V
Max., V
VOL
VOH
Max., V
Min., V
IOL IOH
IOSH
IOSL
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
2 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
2
2
13
16
10 10
4 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
4
4
25
33
10 10
6 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
6
6
32
39
10 10
8 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI
8
8
66
55
10 10
12 mA
–0.3
0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12
66
55
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
Test Point
Datapath
35 pF
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-10 • AC Loading
Table 2-52 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
CLOAD (pF)
1.5
0.75
–
5
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -3 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-53 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
0.98
7.82
0.19 1.50 1.82
0.67
7.97
6.49
2.89 2.41 11.60 10.12
ns
4 mA
Std.
0.98
6.72
0.19 1.50 1.82
0.67
6.84
5.71
3.17 2.96 10.47
ns
6 mA
Std.
0.98
6.32
0.19 1.50 1.82
0.67
6.44
5.56
3.24 3.11 10.07
9.19
ns
8 mA
Std.
0.98
6.24
0.19 1.50 1.82
0.67
6.36
5.56
3.33 3.66
9.99
9.19
ns
12 mA
Std.
0.98
6.24
0.19 1.50 1.82
0.67
6.36
5.56
3.33 3.66
9.99
9.19
ns
9.34
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
Table 2-54 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
0.98
3.34 0.19 1.50 1.82
0.67
3.41 3.07 2.88 2.50 7.04
6.70
ns
4 mA
Std.
0.98
2.88 0.19 1.50 1.82
0.67
2.94 2.57 3.17 3.05 6.57
6.20
ns
6 mA
Std.
0.98
3.90 0.19 1.50 1.82
0.67
3.97 3.79 3.17 3.20 7.60
7.42
ns
8 mA
Std.
0.98
2.77 0.19 1.50 1.82
0.67
2.82 2.35 3.33 3.78 6.45
5.98
ns
12 mA
Std.
0.98
2.77 0.19 1.50 1.82
0.67
2.82 2.35 3.33 3.78 6.45
5.98
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 39
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-55 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
1.55
8.51
0.26 1.72 2.15
1.10
8.67
7.05
3.38 3.07 14.48 12.86
ns
4 mA
Std.
1.55
7.33
0.26 1.72 2.15
1.10
7.47
6.22
3.69 3.71 13.27 12.03
ns
6 mA
Std.
1.55
6.90
0.26 1.72 2.15
1.10
7.03
6.07
3.75 3.88 12.84 11.88
ns
8 mA
Std.
1.55
6.82
0.26 1.72 2.15
1.10
6.95
6.07
3.86 4.52 12.75 11.88
ns
12 mA
Std.
1.55
6.82
0.26 1.72 2.15
1.10
6.95
6.07
3.86 4.52 12.75 11.88
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
Table 2-56 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V
Drive Strength
Speed
Grade tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
2 mA
Std.
1.55
3.71 0.26 1.72 2.15
1.10
3.78 3.46 3.37 3.18
9.59
9.26
ns
4 mA
Std.
1.55
3.22 0.26 1.72 2.15
1.10
3.28 2.92 3.68 3.81
9.09
8.73
ns
6 mA
Std.
1.55
4.30 0.26 1.72 2.15
1.10
4.38 4.21 3.69 4.00 10.19 10.02
ns
8 mA
Std.
1.55
3.09 0.26 1.72 2.15
1.10
3.15 2.70 3.85 4.66
8.96
8.51
ns
12 mA
Std.
1.55
3.09 0.26 1.72 2.15
1.10
3.15 2.70 3.85 4.66
8.96
8.51
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -4 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V LVCMOS (JESD8-12A)
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose
1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer.
Table 2-57 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks
1.2 V
LVCMOS
VIL
Drive
Strength Min., V
2 mA
–0.3
VIH
Max., V
Min., V
Max., V
0.35 * VCCI 0.65 * VCCI
1.26
VOL
VOH
Max., V
Min., V
IOL IOH
IOSH
IOSL
IIL
IIH
mA mA Max., mA1 Max., mA1 µA2 µA2
0.25 * VCCI 0.75 * VCCI 2
2
TBD
TBD
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Software default selection highlighted in gray.
R=1k
Test Point
Enable Path
Test Point
Datapath
5 pF
R to VCCI for tLZ/tZL/tZLS
R to GND for tHZ/tZH/tZHS
35 pF for tZH/tZHS/tZL/tZLS
5 pF for tHZ/tLZ
Figure 2-11 • AC Loading
Table 2-58 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
Input HIGH (V)
Measuring Point* (V)
CLOAD (pF)
1.2
0.6
5
0
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.2 V DC Core Voltage
Table 2-59 • 1.2 LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Drive Strength
2 mA
Speed
Grade tDOUT
Std.
1.55
tDP
tDIN
tPY
tPYS
tEOUT
9.93 0.26 2.06 2.96
1.10
tZL
tZH
tLZ
9.50 7.45 3.68
tHZ
4.03
tZLS
tZHS
15.10 13.05
Units
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
Table 2-60 • 1.2 LVCMOS High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Drive Strength
2 mA
Speed
Grade tDOUT
Std.
1.55
tDP
tDIN
tPY
tPYS
tEOUT
4.07 0.26 2.06 2.96
1.10
tZL
tZH
tLZ
3.90 3.43 3.80
tHZ
tZLS
tZHS
Units
4.02
9.49
9.03
ns
Notes:
1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 41
IGLOOe DC and Switching Characteristics
3.3 V PCI, 3.3 V PCI-X
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.
Table 2-61 • Minimum and Maximum DC Input and Output Levels
IO
3.3 V PCI/PCI-X
Drive Strength
VIH
VIL
Min.,
V
Max.,
V
Min.,
V
Max.,
V
Per PCI
specification
VOL
VOH
IOL
H
IOSH
IOSL
IIL
Max.,
V
Min.,
V
m
A
m
µA µA
2
A Max., mA1 Max., mA1 2
Per PCI curves
10
IIH
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable
path characterization are described in Figure 2-12.
R = 25
Test Point
Datapath
R to VCCI for tDP (F)
R to GND for tDP (R)
R=1k
Test Point
Enable Path
R to VCCI for tLZ/tZL/t ZLS
R to GND for tHZ /tZH /t ZHS
10 pF for tZH /tZHS /tZL /t ZLS
5 pF for tHZ /tLZ
Figure 2-12 • AC Loading
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is
described in Table 2-62.
Table 2-62 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
0
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
CLOAD (pF)
3.3
0.285 * VCCI for tDP(R)
–
10
0.615 * VCCI for tDP(F)
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-63 • 3.3 V PCI/PCI-X – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
0.98
2.44
0.19
0.98
1.45
0.67
2.49
1.84
2.79
3.17
6.12
5.47
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-64 • 3.3 V PCI/PCI-X – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tPYS
tEOUT
tZL
tZH
tLZ
tHZ
tZLS
tZHS
Units
1.55
2.74
0.26
1.19
1.63
1.10
2.80
2.16
3.28
3.96
8.60
7.97
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 43
IGLOOe DC and Switching Characteristics
Voltage-Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
3.3 V.
Table 2-65 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL
Drive
Strength
25 mA3
VIL
Min., V
–0.3
VIH
Max., V
VOL
VOH
IOL IOH
IOSL
IOSH
IIL
Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2
Min., V
VREF – 0.05 VREF + 0.05
3.6
0.4
–
25 25
268
181
10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-13 • AC Loading
Table 2-66 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.05
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 4
IIH
A d v a n c e v 0. 3
10
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-67 • 3.3 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.83
0.19
2.41
0.67
1.84
1.83
tLZ
tHZ
tZLS
tZHS
Units
5.47
5.46
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-68 • 3.3 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.09
0.26
2.75
1.10
2.10
2.09
tLZ
tHZ
tZLS
tZHS
Units
7.91
7.89
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 45
IGLOOe DC and Switching Characteristics
2.5 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
2.5 V.
Table 2-69 • Minimum and Maximum DC Input and Output Levels
2.5 GTL
VIL
Drive Strength Min., V
25 mA3
–0.3
Max., V
VIH
Min., V
VREF – 0.05 VREF + 0.05
VOL
VOH
IOL IOH
IOSH
IOSL
IIL
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA μA μA2
1
3.6
0.4
–
25 25
169
1
124
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
VTT
GTL
25
Test Point
10 pF
Figure 2-14 • AC Loading
Table 2-70 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.05
Input HIGH (V)
Measuring Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.05
0.8
0.8
1.2
10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-71 • 2.5 V GTL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.90
0.19
2.04
0.67
1.94
1.87
tLZ
tHZ
tZLS
tZHS
Units
5.57
5.50
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-72 • 2.5 V GTL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 0.8 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.16
0.26
2.35
1.10
2.20
2.13
tLZ
tHZ
tZLS
tZHS
Units
8.01
7.94
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 47
IGLOOe DC and Switching Characteristics
3.3 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
3.3 V
Table 2-73 • Minimum and Maximum DC Input and Output Levels
3.3 V GTL+
VIL
Drive Strength Min., V Max., V
35 mA
–0.3
VIH
Min., V
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
3.6
0.6
–
35 35
268
181
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-15 • AC Loading
Table 2-74 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.1
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -4 8
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
VREF – 0.1 VREF + 0.1
1
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-75 • 3.3 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.85
0.19
1.35
0.67
1.88
1.81
tLZ
tHZ
tZLS
tZHS
Units
5.51
5.44
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-76 • 3.3 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.11
0.26
1.61
1.10
2.15
2.07
tLZ
tHZ
tZLS
tZHS
Units
7.95
7.88
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 49
IGLOOe DC and Switching Characteristics
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to
2.5 V.
Table 2-77 • Minimum and Maximum DC Input and Output Levels
2.5 V GTL+
VIL
Drive Strength Min., V Max., V
33 mA
–0.3
VIH
Min., V
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
3.6
0.6
–
33 33
169
124
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
VTT
GTL+
25
Test Point
10 pF
Figure 2-16 • AC Loading
Table 2-78 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.1
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
1.0
1.0
1.5
10
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 0
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
VREF – 0.1 VREF + 0.1
1
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-79 • 2.5 V GTL+ – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.97
0.19
1.29
0.67
2.00
1.84
tLZ
tHZ
tZLS
tZHS
Units
5.63
5.47
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-80 • 2.5 V GTL+ – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.23
0.26
1.55
1.10
2.28
2.11
tLZ
tHZ
tZLS
tZHS
Units
8.08
7.91
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 51
IGLOOe DC and Switching Characteristics
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
IGLOOe devices support Class I. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-81 • Minimum and Maximum DC Input and Output Levels
HSTL Class I
VIL
Drive Strength Min., V Max., V
8 mA
–0.3
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
VREF – 0.1 VREF + 0.1
3.6
0.4
VCCI – 0.4
8
8
32
39
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
HSTL
Class I
VTT
50
Test Point
20 pF
Figure 2-17 • AC Loading
Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.1
Input HIGH (V)
Measuring Point*
(V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 2
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
Min., V
1
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-83 • HSTL Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
2.74
0.19
1.77
0.67
2.79
2.73
tLZ
tHZ
tZLS
tZHS
Units
6.42
6.36
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-84 • HSTL Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
3.10
0.26
1.94
1.10
3.12
3.10
tLZ
tHZ
tZLS
tZHS
Units
8.93
8.91
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 53
IGLOOe DC and Switching Characteristics
HSTL Class II
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
IGLOOe devices support Class II. This provides a differential amplifier input buffer and a push-pull
output buffer.
Table 2-85 • Minimum and Maximum DC Input and Output Levels
HSTL Class II
VIL
Drive Strength Min., V Max., V
15 mA3
–0.3
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
VREF – 0.1 VREF + 0.1
3.6
0.4
VCCI – 0.4 15 15
66
55
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
3. Output drive strength is below JEDEC specification.
HSTL
Class II
VTT
25
Test Point
20 pF
Figure 2-18 • AC Loading
Table 2-86 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.1
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.1
0.75
0.75
0.75
20
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 4
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
Min., V
1
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-87 • HSTL Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
2.62
0.19
1.77
0.67
2.66
2.40
tLZ
tHZ
tZLS
tZHS
Units
6.29
6.03
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-88 • HSTL Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 1.4 V VREF = 0.75 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.93
0.26
1.94
1.10
2.98
2.75
tLZ
tHZ
tZLS
tZHS
Units
8.79
8.55
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 55
IGLOOe DC and Switching Characteristics
SSTL2 Class I
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-89 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class I
VIL
Drive Strength Min., V Max., V
15 mA
–0.3
VIH
VOL
VOH
Min., V Max., V Max., V
VREF – 0.2 VREF + 0.2
3.6
0.54
Min., V
IOL IOH
IOSH
IOSL
1
IIL
83
87
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL2
Class I
VTT
50
Test Point
25
30 pF
Figure 2-19 • AC Loading
Table 2-90 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.2
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
2 -5 6
A d v a n c e v 0. 3
IIH
mA mA Max., mA Max., mA µA µA2
VCCI – 0.62 15 15
1
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-91 • SSTL 2 Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.91
0.19
1.15
0.67
1.94
1.72
tLZ
tHZ
tZLS
tZHS
Units
5.57
5.35
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-92 • SSTL 2 Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.17
0.26
1.39
1.10
2.21
2.04
tLZ
tHZ
tZLS
tZHS
Units
8.02
7.84
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 57
IGLOOe DC and Switching Characteristics
SSTL2 Class II
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). IGLOOe devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-93 • Minimum and Maximum DC Input and Output Levels
SSTL2 Class II
VIL
VIH
Drive Strength Min., V Max., V
18 mA
–0.3
Min., V
VREF – 0.2 VREF + 0.2
VOL
VOH
Max., V Max., V
3.6
0.35
IOL IOH
IOSH
IOSL
1
IIL
IIH
mA mA Max., mA Max., mA µA µA2
Min., V
VCCI – 0.43 18 18
169
1
124
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL2
Class II
VTT
25
Test Point
25
30 pF
Figure 2-20 • AC Loading
Table 2-94 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.2
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.25
1.25
1.25
30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-95 • SSTL 2 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.94
0.19
1.15
0.67
1.97
1.66
tLZ
tHZ
tZLS
tZHS
Units
5.60
5.29
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-96 • SSTL 2 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 2.3 V VREF = 1.25 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.20
0.26
1.39
1.10
2.24
1.97
tLZ
tHZ
tZLS
tZHS
Units
8.05
7.78
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -5 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
SSTL3 Class I
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support
Class I. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-97 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class I
VIL
Drive Strength Min., V Max., V
14 mA
–0.3
VIH
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
IIH
Min., V Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
VREF – 0.2 VREF + 0.2
3.6
0.7
VCCI – 1.1 14 14
54
1
51
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL3
Class I
VTT
50
Test Point
25
30 pF
Figure 2-21 • AC Loading
Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.2
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 59
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-99 • SSTL 3 Class I – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
2.05
0.19
1.09
0.67
2.09
1.71
tLZ
tHZ
tZLS
tZHS
Units
5.72
5.34
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-100 • SSTL 3 Class I – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.32
0.26
1.32
1.10
2.37
2.02
tLZ
tHZ
tZLS
tZHS
Units
8.17
7.83
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -6 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
SSTL3 Class II
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). IGLOOe devices support
Class II. This provides a differential amplifier input buffer and a push-pull output buffer.
Table 2-101 • Minimum and Maximum DC Input and Output Levels
SSTL3 Class II
VIL
Drive Strength Min., V Max., V
21 mA
–0.3
VIH
Min., V
VREF – 0.2 VREF + 0.2
VOL
VOH
IOL IOH
IOSH
IOSL
1
IIL
IIH
Max., V Max., V Min., V mA mA Max., mA Max., mA µA µA2
3.6
0.5
VCCI - 0.9 21 21
103
1
109
2
10 10
Notes:
1. Currents are measured at 100°C junction temperature and maximum voltage.
2. Currents are measured at 85°C junction temperature.
SSTL3
Class II
VTT
25
Test Point
25
30 pF
Figure 2-22 • AC Loading
Table 2-102 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
VREF – 0.2
Input HIGH (V)
Measuring
Point* (V)
VREF (typ.) (V)
VTT (typ.) (V)
CLOAD (pF)
VREF + 0.2
1.5
1.5
1.485
30
Note: Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
A dv a n c e v 0. 3
2 - 61
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-103 • SSTL 3 Class II – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
0.98
1.86
0.19
1.09
0.67
1.89
1.58
tLZ
tHZ
tZLS
tZHS
Units
5.52
5.21
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-104 • SSTL 3 Class II – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V,
Worst-Case VCCI = 3.0 V VREF = 1.5 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
tEOUT
tZL
tZH
1.55
2.12
0.26
1.32
1.10
2.16
1.89
tLZ
tHZ
tZLS
tZHS
Units
7.97
7.70
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -6 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Differential I/O Characteristics
Physical Implementation
Configuration of the I/O modules as a differential pair is handled by the Actel Designer software
when the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and DDR. However, there is no support for
bidirectional I/Os or tristates with the LVPECL standards.
LVDS
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It
requires that one data bit be carried through two signal lines, so two pins are needed. It also
requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in
Figure 2-23. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.
The values for the three driver resistors are different from those used in the LVPECL
implementation because the output standard specifications are different.
Along with LVDS I/O, IGLOOe also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)
configuration (up to 40 nodes).
Bourns Part Number: CAT16-LV4F12
OUTBUF_LVDS
FPGA
P
165 Ω
140 Ω
N
165 Ω
P
Z0 = 50 Ω
Z0 = 50 Ω
FPGA
+
–
100 Ω
INBUF_LVDS
N
Figure 2-23 • LVDS Circuit Diagram and Board-Level Implementation
A dv a n c e v 0. 3
2 - 63
IGLOOe DC and Switching Characteristics
Table 2-105 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Typ.
Max.
Units
2.375
2.5
2.625
V
0.9
1.075
1.25
V
Output HIGH Voltage
1.25
1.425
1.6
V
Output Lower Current
0.65
0.91
1.16
mA
IOH 4
Output HIGH Current
0.65
0.91
1.16
mA
VI
Input Voltage
IIH 3
Input HIGH Leakage Current
IIL 3
Input LOW Leakage Current
VODIFF
Differential Output Voltage
VOCM
VCCI
Supply Voltage
VOL
Output LOW Voltage
VOH
IOL 4
0
2.925
V
10
µA
10
µA
250
350
450
mV
Output Common-Mode Voltage
1.125
1.25
1.375
V
VICM
Input Common-Mode Voltage
0.05
1.25
2.35
VIDIFF
Input Differential Voltage
100
350
V
mV
Notes:
1. ± 5%
2. Differential input voltage = ±350 mV
3. Currents are measured at 85°C junction temperature.
4. IOL /IOH is defined by VODIFF /(resistor network).
Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
Input HIGH (V)
Measuring Point* (V)
VREF (typ.) (V)
1.325
Cross point
–
1.075
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-107 • LVDS – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
0.98
1.77
0.19
1.62
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-108 • LVDS – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
1.55
2.19
0.26
1.88
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -6 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard
to high-performance multipoint bus applications. Multidrop and multipoint bus configurations
may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the
higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers
require series terminations for better signal quality and to control voltage swing. Termination is
also required at both ends of the bus since the driver can be located anywhere on the bus. These
configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with
appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz
with a maximum of 20 loads. A sample application is given in Figure 2-24. The input and output
buffer delays are available in the LVDS section in Table 2-107 on page 2-64 and Table 2-108 on
page 2-64.
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the
required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver:
RS = 60 Ω and RT = 70 Ω, given Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5").
Receiver
Transceiver
EN
R
+
RS
Zstub
Driver
D
EN
T
-
+
RS
RS
Zstub
Zstub
-
RS
Zstub
Zstub
EN
Transceiver
EN
R
-
+
RS
Receiver
+
RS
Zstub
RS
Zstub
EN
T
-
+
RS
Zstub
RS
BIBUF_LVDS
-
RS
...
Z0
Z0
Z0
Z0
Z0
Z0
RT Z
0
Z0
Z0
Z0
Z0
Z0
RT
Figure 2-24 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
LVPECL
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It
requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It
also requires external resistor termination.
The full implementation of the LVDS transmitter and receiver is shown in an example in
Figure 2-25. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.
The values for the three driver resistors are different from those used in the LVDS implementation
because the output standard specifications are different.
Bourns Part Number: CAT16-PC4F12
OUTBUF_LVPECL
FPGA
P
100 Ω
Z0 = 50 Ω
187 W
N
100 Ω
P
+
–
100 Ω
Z0 = 50 Ω
FPGA
INBUF_LVPECL
N
Figure 2-25 • LVPECL Circuit Diagram and Board-Level Implementation
A dv a n c e v 0. 3
2 - 65
IGLOOe DC and Switching Characteristics
Table 2-109 • Minimum and Maximum DC Input and Output Levels
DC Parameter
Description
Min.
Max.
Min.
Max.
Min.
Max.
Units
VCCI
Supply Voltage
VOL
Output LOW Voltage
0.96
1.27
1.06
1.43
1.30
1.57
V
VOH
Output HIGH Voltage
1.8
2.11
1.92
2.28
2.13
2.41
V
VIL, VIH
Input LOW, Input HIGH Voltages
0
3.3
0
3.6
0
3.9
V
VODIFF
Differential Output Voltage
0.625
0.97
0.625
0.97
0.625
0.97
V
VOCM
Output Common-Mode Voltage
1.762
1.98
1.762
1.98
1.762
1.98
V
VICM
Input Common-Mode Voltage
1.01
2.57
1.01
2.57
1.01
2.57
V
VIDIFF
Input Differential Voltage
300
3.0
3.3
3.6
300
V
300
mV
Table 2-110 • AC Waveforms, Measuring Points, and Capacitive Loads
Input LOW (V)
Input HIGH (V)
Measuring Point* (V)
VREF (typ.) (V)
1.94
Cross point
–
1.64
* Measuring point = Vtrip. See Table 2-22 on page 2-22 for a complete table of trip points.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-111 • LVPECL – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
0.98
1.75
0.19
1.45
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-112 • LVPECL – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Speed Grade
Std.
tDOUT
tDP
tDIN
tPY
Units
1.55
2.16
0.26
1.70
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -6 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
I/O Register Specifications
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Preset
INBUF
Preset
L
DOUT
Data_out
E
F
Y
Core
Array
G
PRE
D
Q
DFN1E1P1
TRIBUF
CLKBUF
CLK
INBUF
Enable
PRE
D
Q
C DFN1E1P1
INBUF
Data
Pad Out
D
E
E
EOUT
B
H
I
A
J
K
CLKBUF
INBUF
INBUF
CLK
Enable
D_Enable
Data Input I/O Register with:
Active High Enable
Active High Preset
Positive-Edge Triggered
PRE
D
Q
DFN1E1P1
E
Data Output Register and
Enable Output Register with:
Active High Enable
Active High Preset
Postive-Edge Triggered
Figure 2-26 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset
A dv a n c e v 0. 3
2 - 67
IGLOOe DC and Switching Characteristics
Table 2-113 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
F, H
tOHD
Data Hold Time for the Output Data Register
F, H
tOSUE
Enable Setup Time for the Output Data Register
G, H
tOHE
Enable Hold Time for the Output Data Register
G, H
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
L, H
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
L, H
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
J, H
tOEHD
Data Hold Time for the Output Enable Register
J, H
tOESUE
Enable Setup Time for the Output Enable Register
K, H
tOEHE
Enable Hold Time for the Output Enable Register
K, H
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
I, H
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
I, H
tICLKQ
Clock-to-Q of the Input Data Register
A, E
tISUD
Data Setup Time for the Input Data Register
C, A
tIHD
Data Hold Time for the Input Data Register
C, A
tISUE
Enable Setup Time for the Input Data Register
B, A
tIHE
Enable Hold Time for the Input Data Register
B, A
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
D, E
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
D, A
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
D, A
* See Figure 2-26 on page 2-67 for more information.
2 -6 8
A d v a n c e v 0. 3
H, DOUT
L, DOUT
H, EOUT
I, EOUT
IGLOOe DC and Switching Characteristics
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous
Clear
Pad Out
DOUT
D
CC
Core
Array
Q
DFN1E1C1
EE
Data_out FF
D
Q
DFN1E1C1
TRIBUF
INBUF
Data
Y
GG
INBUF
Enable
BB
EOUT
E
E
CLR
CLR
LL
INBUF
CLR
CLKBUF
CLK
HH
AA
JJ
DD
D
Q
DFN1E1C1
KK
Data Input I/O Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
E
INBUF
CLKBUF
CLK
Enable
INBUF
D_Enable
CLR
Data Output Register and
Enable Output Register with
Active High Enable
Active High Clear
Positive-Edge Triggered
Figure 2-27 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
A dv a n c e v 0. 3
2 - 69
IGLOOe DC and Switching Characteristics
Table 2-114 • Parameter Definition and Measuring Nodes
Parameter Name
Parameter Definition
Measuring Nodes
(from, to)*
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
FF, HH
tOHD
Data Hold Time for the Output Data Register
FF, HH
tOSUE
Enable Setup Time for the Output Data Register
GG, HH
tOHE
Enable Hold Time for the Output Data Register
GG, HH
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
LL, HH
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
LL, HH
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
JJ, HH
tOEHD
Data Hold Time for the Output Enable Register
JJ, HH
tOESUE
Enable Setup Time for the Output Enable Register
KK, HH
tOEHE
Enable Hold Time for the Output Enable Register
KK, HH
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
II, EOUT
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
II, HH
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
II, HH
tICLKQ
Clock-to-Q of the Input Data Register
AA, EE
tISUD
Data Setup Time for the Input Data Register
CC, AA
tIHD
Data Hold Time for the Input Data Register
CC, AA
tISUE
Enable Setup Time for the Input Data Register
BB, AA
tIHE
Enable Hold Time for the Input Data Register
BB, AA
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
DD, EE
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
DD, AA
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
DD, AA
* See Figure 2-27 on page 2-69 for more information.
2 -7 0
A d v a n c e v 0. 3
HH, DOUT
LL, DOUT
HH, EOUT
IGLOOe DC and Switching Characteristics
Input Register
tICKMPWH tICKMPWL
CLK
50%
50%
Enable
50%
1
50%
50%
50%
tIHD
tISUD
Data
50%
50%
50%
0
tIREMPRE
tIRECPRE
tIWPRE
50%
tIHE
Preset
tISUE
50%
50%
50%
tIWCLR
50%
Clear
tIRECCLR
tIREMCLR
50%
50%
tIPRE2Q
50%
Out_1
50%
tICLR2Q
50%
tICLKQ
Figure 2-28 • Input Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-115 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Std.
Units
tICLKQ
Clock-to-Q of the Input Data Register
Description
0.42
ns
tISUD
Data Setup Time for the Input Data Register
0.47
ns
tIHD
Data Hold Time for the Input Data Register
0.00
ns
tISUE
Enable Setup Time for the Input Data Register
0.67
ns
tIHE
Enable Hold Time for the Input Data Register
0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
0.79
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
0.79
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.24
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.24
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.31
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 71
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-116 • Input Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
0.68
ns
tICLKQ
Clock-to-Q of the Input Data Register
tISUD
Data Setup Time for the Input Data Register
0.97
ns
tIHD
Data Hold Time for the Input Data Register
0.00
ns
tISUE
Enable Setup Time for the Input Data Register
1.02
ns
tIHE
Enable Hold Time for the Input Data Register
0.00
ns
tICLR2Q
Asynchronous Clear-to-Q of the Input Data Register
1.19
ns
tIPRE2Q
Asynchronous Preset-to-Q of the Input Data Register
1.19
ns
tIREMCLR
Asynchronous Clear Removal Time for the Input Data Register
0.00
ns
tIRECCLR
Asynchronous Clear Recovery Time for the Input Data Register
0.24
ns
tIREMPRE
Asynchronous Preset Removal Time for the Input Data Register
0.00
ns
tIRECPRE
Asynchronous Preset Recovery Time for the Input Data Register
0.24
ns
tIWCLR
Asynchronous Clear Minimum Pulse Width for the Input Data Register
0.19
ns
tIWPRE
Asynchronous Preset Minimum Pulse Width for the Input Data Register
0.19
ns
tICKMPWH
Clock Minimum Pulse Width HIGH for the Input Data Register
0.31
ns
tICKMPWL
Clock Minimum Pulse Width LOW for the Input Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -7 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Output Register
tOCKMPWH tOCKMPWL
CLK
50%
50%
50%
50%
50%
50%
50%
tOSUD tOHD
1
Data_out
Enable
50%
50%
0
50%
tOWPRE
tOHE
Preset
tOSUE
tOREMPRE
tORECPRE
50%
50%
50%
tOWCLR
50%
Clear
tORECCLR
50%
tOREMCLR
50%
tOPRE2Q
50%
DOUT
50%
tOCLR2Q
50%
tOCLKQ
Figure 2-29 • Output Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-117 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tOCLKQ
Clock-to-Q of the Output Data Register
1.00
ns
tOSUD
Data Setup Time for the Output Data Register
0.51
ns
tOHD
Data Hold Time for the Output Data Register
0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
0.70
ns
tOHE
Enable Hold Time for the Output Data Register
0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.34
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.34
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.24
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.24
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.31
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 73
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-118 • Output Data Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
1.52
ns
tOCLKQ
Clock-to-Q of the Output Data Register
tOSUD
Data Setup Time for the Output Data Register
1.15
ns
tOHD
Data Hold Time for the Output Data Register
0.00
ns
tOSUE
Enable Setup Time for the Output Data Register
1.11
ns
tOHE
Enable Hold Time for the Output Data Register
0.00
ns
tOCLR2Q
Asynchronous Clear-to-Q of the Output Data Register
1.96
ns
tOPRE2Q
Asynchronous Preset-to-Q of the Output Data Register
1.96
ns
tOREMCLR
Asynchronous Clear Removal Time for the Output Data Register
0.00
ns
tORECCLR
Asynchronous Clear Recovery Time for the Output Data Register
0.24
ns
tOREMPRE
Asynchronous Preset Removal Time for the Output Data Register
0.00
ns
tORECPRE
Asynchronous Preset Recovery Time for the Output Data Register
0.24
ns
tOWCLR
Asynchronous Clear Minimum Pulse Width for the Output Data Register
0.19
ns
tOWPRE
Asynchronous Preset Minimum Pulse Width for the Output Data Register
0.19
ns
tOCKMPWH
Clock Minimum Pulse Width HIGH for the Output Data Register
0.31
ns
tOCKMPWL
Clock Minimum Pulse Width LOW for the Output Data Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -7 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Output Enable Register
tOECKMPWH tOECKMPWL
50%
50%
50%
50%
50%
50%
50%
CLK
tOESUD tOEHD
1
D_Enable
Enable
Preset
50%
0 50%
50%
tOEWPRE
50%
tOESUEtOEHE
tOEREMPRE
tOERECPRE
50%
50%
tOEWCLR
50%
tOERECCLR
tOEREMCLR
50%
50%
Clear
EOUT
50%
tOEPRE2Q
tOECLR2Q
50%
50%
tOECLKQ
Figure 2-30 • Output Enable Register Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-119 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tOECLKQ
Clock-to-Q of the Output Enable Register
0.75
ns
tOESUD
Data Setup Time for the Output Enable Register
0.51
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
0.73
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
1.13
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
1.13
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.24
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.24
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19
ns
tOECKMPWH
Clock Minimum Pulse Width HIGH for the Output Enable Register
0.31
ns
tOECKMPWL
Clock Minimum Pulse Width LOW for the Output Enable Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 75
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-120 • Output Enable Register Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
1.10
ns
tOECLKQ
Clock-to-Q of the Output Enable Register
tOESUD
Data Setup Time for the Output Enable Register
1.15
ns
tOEHD
Data Hold Time for the Output Enable Register
0.00
ns
tOESUE
Enable Setup Time for the Output Enable Register
1.22
ns
tOEHE
Enable Hold Time for the Output Enable Register
0.00
ns
tOECLR2Q
Asynchronous Clear-to-Q of the Output Enable Register
1.65
ns
tOEPRE2Q
Asynchronous Preset-to-Q of the Output Enable Register
1.65
ns
tOEREMCLR
Asynchronous Clear Removal Time for the Output Enable Register
0.00
ns
tOERECCLR
Asynchronous Clear Recovery Time for the Output Enable Register
0.24
ns
tOEREMPRE
Asynchronous Preset Removal Time for the Output Enable Register
0.00
ns
tOERECPRE
Asynchronous Preset Recovery Time for the Output Enable Register
0.24
ns
tOEWCLR
Asynchronous Clear Minimum Pulse Width for the Output Enable Register
0.19
ns
tOEWPRE
Asynchronous Preset Minimum Pulse Width for the Output Enable Register
0.19
ns
tOECKMPWH
Clock Minimum Pulse Width HIGH for the Output Enable Register
0.31
ns
tOECKMPWL
Clock Minimum Pulse Width LOW for the Output Enable Register
0.28
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -7 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
DDR Module Specifications
Input DDR Module
Input DDR
INBUF
Data
A
D
Out_QF
(to core)
E
Out_QR
(to core)
FF1
B
CLK
CLKBUF
FF2
C
CLR
INBUF
DDR_IN
Figure 2-31 • Input DDR Timing Model
Table 2-121 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDRICLKQ1
Clock-to-Out Out_QR
B, D
tDDRICLKQ2
Clock-to-Out Out_QF
B, E
tDDRISUD
Data Setup Time of DDR input
A, B
tDDRIHD
Data Hold Time of DDR input
A, B
tDDRICLR2Q1
Clear-to-Out Out_QR
C, D
tDDRICLR2Q2
Clear-to-Out Out_QF
C, E
tDDRIREMCLR
Clear Removal
C, B
tDDRIRECCLR
Clear Recovery
C, B
A dv a n c e v 0. 3
2 - 77
IGLOOe DC and Switching Characteristics
CLK
tDDRISUD
Data
1
2
3
4
5
tDDRIHD
6
7
8
9
tDDRIRECCLR
CLR
tDDRIREMCLR
tDDRICLKQ1
tDDRICLR2Q1
Out_QF
2
6
4
tDDRICLKQ2
tDDRICLR2Q2
Out_QR
3
5
7
Figure 2-32 • Input DDR Timing Diagram
Timing Characteristics
1.5 V DC Core Voltage
Table 2-122 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.48
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.65
ns
tDDRISUD1
Data Setup for Input DDR (negedge)
0.50
ns
tDDRISUD2
Data Setup for Input DDR (posedge)
0.40
ns
tDDRIHD1
Data Hold for Input DDR (negedge)
0.00
ns
tDDRIHD2
Data Hold for Input DDR (posedge)
0.00
ns
tDDRICLR2Q1
Asynchronous Clear to Out Out_QR for Input DDR
0.82
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
0.98
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.23
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.31
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.28
ns
FDDRIMAX
Maximum Frequency for Input DDR
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2 -7 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-123 • Input DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tDDRICLKQ1
Clock-to-Out Out_QR for Input DDR
0.76
ns
tDDRICLKQ2
Clock-to-Out Out_QF for Input DDR
0.94
ns
tDDRISUD1
Data Setup for Input DDR (negedge)
0.93
ns
tDDRISUD2
Data Setup for Input DDR (posedge)
0.84
ns
tDDRIHD1
Data Hold for Input DDR (negedge)
0.00
ns
tDDRIHD2
Data Hold for Input DDR (posedge)
0.00
ns
tDDRICLR2Q1
Asynchronous Clear to Out Out_QR for Input DDR
1.23
ns
tDDRICLR2Q2
Asynchronous Clear-to-Out Out_QF for Input DDR
1.42
ns
tDDRIREMCLR
Asynchronous Clear Removal Time for Input DDR
0.00
ns
tDDRIRECCLR
Asynchronous Clear Recovery Time for Input DDR
0.24
ns
tDDRIWCLR
Asynchronous Clear Minimum Pulse Width for Input DDR
0.19
ns
tDDRICKMPWH
Clock Minimum Pulse Width HIGH for Input DDR
0.31
ns
tDDRICKMPWL
Clock Minimum Pulse Width LOW for Input DDR
0.28
ns
FDDRIMAX
Maximum Frequency for Input DDR
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 79
IGLOOe DC and Switching Characteristics
Output DDR Module
Output DDR
A
X
Data_F
(from core)
FF1
Out
B
CLK
0
X
CLKBUF
C
D
Data_R
(from core)
E
X
1
X
X
OUTBUF
FF2
B
CLR
INBUF
C
X
X
DDR_OUT
Figure 2-33 • Output DDR Timing Model
Table 2-124 • Parameter Definitions
Parameter Name
Parameter Definition
Measuring Nodes (from, to)
tDDROCLKQ
Clock-to-Out
B, E
tDDROCLR2Q
Asynchronous Clear-to-Out
C, E
tDDROREMCLR
Clear Removal
C, B
tDDRORECCLR
Clear Recovery
C, B
tDDROSUD1
Data Setup Data_F
A, B
tDDROSUD2
Data Setup Data_R
D, B
tDDROHD1
Data Hold Data_F
A, B
tDDROHD2
Data Hold Data_R
D, B
2 -8 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
CLK
tDDROSUD2 tDDROHD2
Data_F
1
2
tDDROREMCLR
Data_R 6
4
3
5
tDDROHD1
7
8
9
10
11
tDDRORECCLR
CLR
tDDROREMCLR
tDDROCLR2Q
Out
tDDROCLKQ
7
2
8
3
9
4
10
Figure 2-34 • Output DDR Timing Diagram
A dv a n c e v 0. 3
2 - 81
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-125 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
Description
1.07
ns
tDDROSUD1
Data_F Data Setup for Output DDR
0.67
ns
tDDROSUD2
Data_R Data Setup for Output DDR
0.67
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.38
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.23
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.31
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.28
ns
FDDOMAX
Maximum Frequency for the Output DDR
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-126 • Output DDR Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Std.
Units
tDDROCLKQ
Clock-to-Out of DDR for Output DDR
Description
1.60
ns
tDDROSUD1
Data_F Data Setup for Output DDR
1.09
ns
tDDROSUD2
Data_R Data Setup for Output DDR
1.16
ns
tDDROHD1
Data_F Data Hold for Output DDR
0.00
ns
tDDROHD2
Data_R Data Hold for Output DDR
0.00
ns
tDDROCLR2Q
Asynchronous Clear-to-Out for Output DDR
1.99
ns
tDDROREMCLR
Asynchronous Clear Removal Time for Output DDR
0.00
ns
tDDRORECCLR
Asynchronous Clear Recovery Time for Output DDR
0.24
ns
tDDROWCLR1
Asynchronous Clear Minimum Pulse Width for Output DDR
0.19
ns
tDDROCKMPWH
Clock Minimum Pulse Width HIGH for the Output DDR
0.31
ns
tDDROCKMPWL
Clock Minimum Pulse Width LOW for the Output DDR
0.28
ns
FDDOMAX
Maximum Frequency for the Output DDR
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -8 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
VersaTile Characteristics
VersaTile Specifications as a Combinatorial Module
The IGLOOe library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library. For more details, refer to the IGLOO,
Fusion, and ProASIC3 Macro Library Guide.
A
A
A
OR2
NOR2
Y
A
AND2
A
Y
NAND2
B
Y
B
A
B
C
A
XOR2
Y
A
A
B
C
Y
B
B
B
Y
INV
NAND3
Y
A
MAJ3
B
XOR3
0
Y
MUX2
B
Y
1
C
S
Figure 2-35 • Sample of Combinatorial Cells
A dv a n c e v 0. 3
2 - 83
IGLOOe DC and Switching Characteristics
tPD
Fanout = 4
A
Net
NAND2 or Any
Combinatorial
Logic
Length = 1 VersaTile
B
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
tPD = MAX(tPD(RR), tPD(RF),
tPD(FF), tPD(FR)) where edges are
applicable for a particular
combinatorial cell
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
A
Net
Length = 1 VersaTile
B
Y
NAND2 or Any
Combinatorial
Logic
VCC
50%
50%
A, B, C
GND
VCC
50%
50%
OUT
GND
VCC
tPD
tPD
(FF)
(RR)
tPD
OUT
(FR)
50%
tPD
(RF)
GND
Figure 2-36 • Timing Model and Waveforms
2 -8 4
A d v a n c e v 0. 3
Y
50%
IGLOOe DC and Switching Characteristics
Timing Characteristics
1.5 V DC Core Voltage
Table 2-127 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
Std.
Units
Y = !A
tPD
0.80
ns
Y=A·B
tPD
0.84
ns
Y = !(A · B)
tPD
0.90
ns
Y=A+B
tPD
1.19
ns
NOR2
Y = !(A + B)
tPD
1.10
ns
XOR2
Y=A⊕B
tPD
1.37
ns
MAJ3
Y = MAJ(A , B, C)
tPD
1.33
ns
XOR3
Y=A⊕B⊕C
tPD
1.79
ns
MUX2
Y = A !S + B S
tPD
1.48
ns
AND3
Y=A·B·C
tPD
1.21
ns
INV
AND2
NAND2
OR2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
1.2 V DC Core Voltage
Table 2-128 • Combinatorial Cell Propagation Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Combinatorial Cell
Equation
Parameter
Std.
Units
Y = !A
tPD
1.35
ns
Y=A·B
tPD
1.42
ns
Y = !(A · B)
tPD
1.58
ns
Y=A+B
tPD
2.10
ns
NOR2
Y = !(A + B)
tPD
1.94
ns
XOR2
Y=A⊕B
tPD
2.33
ns
MAJ3
Y = MAJ(A , B, C)
tPD
2.34
ns
XOR3
Y=A⊕B⊕C
tPD
3.05
ns
MUX2
Y = A !S + B S
tPD
2.64
ns
AND3
Y=A·B·C
tPD
2.10
ns
INV
AND2
NAND2
OR2
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 85
IGLOOe DC and Switching Characteristics
VersaTile Specifications as a Sequential Module
The IGLOOe library offers a wide variety of sequential cells, including flip-flops and latches. Each
has a data input and optional enable, clear, or preset. In this section, timing characteristics are
presented for a representative sample from the library. For more details, refer to the IGLOO,
Fusion, and ProASIC3 Macro Library Guide.
Data
D
Q
Out
Data
Out
D
En
DFN1
CLK
Q
DFN1E1
CLK
PRE
Data
D
Q
Out
DFN1C1
En
CLK
CLK
CLR
Figure 2-37 • Sample of Sequential Cells
2 -8 6
Data
A d v a n c e v 0. 3
D
Q
DFI1E1P1
Out
IGLOOe DC and Switching Characteristics
tCKMPWH tCKMPWL
CLK
50%
50%
tSUD
50%
Data
50%
50%
50%
50%
50%
tHD
50%
0
EN
50%
PRE
tRECPRE
tWPRE
tSUE
tHE
50%
tREMPRE
50%
50%
50%
CLR
tPRE2Q
50%
Out
tREMCLR
tRECCLR
tWCLR
50%
50%
tCLR2Q
50%
50%
tCLKQ
Figure 2-38 • Timing Model and Waveforms
Timing Characteristics
1.5 V DC Core Voltage
Table 2-129 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
Description
0.89
ns
tSUD
Data Setup Time for the Core Register
0.81
ns
tHD
Data Hold Time for the Core Register
0.00
ns
tSUE
Enable Setup Time for the Core Register
0.73
ns
tHE
Enable Hold Time for the Core Register
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.60
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.62
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.24
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.23
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.30
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.30
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.56
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.56
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 - 87
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-130 • Register Delays
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tCLKQ
Clock-to-Q of the Core Register
1.61
ns
tSUD
Data Setup Time for the Core Register
1.17
ns
tHD
Data Hold Time for the Core Register
0.00
ns
tSUE
Enable Setup Time for the Core Register
1.29
ns
tHE
Enable Hold Time for the Core Register
0.00
ns
tCLR2Q
Asynchronous Clear-to-Q of the Core Register
0.87
ns
tPRE2Q
Asynchronous Preset-to-Q of the Core Register
0.89
ns
tREMCLR
Asynchronous Clear Removal Time for the Core Register
0.00
ns
tRECCLR
Asynchronous Clear Recovery Time for the Core Register
0.24
ns
tREMPRE
Asynchronous Preset Removal Time for the Core Register
0.00
ns
tRECPRE
Asynchronous Preset Recovery Time for the Core Register
0.24
ns
tWCLR
Asynchronous Clear Minimum Pulse Width for the Core Register
0.46
ns
tWPRE
Asynchronous Preset Minimum Pulse Width for the Core Register
0.46
ns
tCKMPWH
Clock Minimum Pulse Width HIGH for the Core Register
0.95
ns
tCKMPWL
Clock Minimum Pulse Width LOW for the Core Register
0.95
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -8 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Global Resource Characteristics
AGLE600 Clock Tree Topology
Clock delays are device-specific. Figure 2-39 is an example of a global tree used for clock routing.
The global tree presented in Figure 2-39 is driven by a CCC located on the west side of the AGLE600
device. It is used to drive all D-flip-flops in the device.
Central
Global Rib
CCC
VersaTile
Rows
Global Spine
Figure 2-39 • Example of Global Tree Use in an AGLE600 Device for Clock Routing
A dv a n c e v 0. 3
2 - 89
IGLOOe DC and Switching Characteristics
Global Tree Timing Characteristics
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be
driven and conditioned internally by the CCC module. For more details on clock conditioning
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-92. Table 2-131 and
Table 2-133 present minimum and maximum global clock delays within the device. Minimum and
maximum delays are measured with minimum and maximum loading.
Timing Characteristics
1.5 V DC Core Voltage
Table 2-131 • AGLE600 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
1.48
1.82
ns
tRCKH
Input HIGH Delay for Global Clock
1.52
1.94
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.42
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
Table 2-132 • AGLE3000 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Std.
Parameter
Description
1
Min.
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
2.00
2.34
ns
tRCKH
Input HIGH Delay for Global Clock
2.09
2.51
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
ns
ns
0.42
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
2 -9 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
1.2 V DC Core Voltage
Table 2-133 • AGLE600 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
Min.1
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
2.22
2.67
ns
tRCKH
Input HIGH Delay for Global Clock
2.32
2.93
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
ns
ns
0.61
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
Table 2-134 • AGLE3000 Global Resource
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Std.
Parameter
Description
1
Min.
Max.2
Units
tRCKL
Input LOW Delay for Global Clock
2.83
3.27
ns
tRCKH
Input HIGH Delay for Global Clock
3.00
3.61
ns
tRCKMPWH
Minimum Pulse Width HIGH for Global Clock
ns
tRCKMPWL
Minimum Pulse Width LOW for Global Clock
ns
tRCKSW
Maximum Skew for Global Clock
FRMAX
Maximum Frequency for Global Clock
0.61
ns
MHz
Notes:
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential
element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,
located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.
A dv a n c e v 0. 3
2 - 91
IGLOOe DC and Switching Characteristics
Clock Conditioning Circuits
CCC Electrical Specifications
Timing Characteristics
Table 2-135 • IGLOOe CCC/PLL Specification
For IGLOOe V2 or V5 Devices, 1.5 V DC Core Supply Voltage
Parameter
Min.
Max.
Units
1.5
250
MHz
0.75
250
MHz
100
ps
Number of Programmable Values in Each Programmable Delay
Block
32
ns
Input Cycle-to-Cycle Jitter (peak magnitude)
1
Clock Conditioning Circuitry Input Frequency fIN_CCC
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Typ.
Serial Clock (SCLK) for Dynamic PLL3
Delay Increments in Programmable Delay
Blocks1, 2
360
Max Peak-to-Peak Period Jitter
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
1 Global
Network
Used
External
FB Used
3 Global
Networks
Used
0.75 MHz to 24 MHz
0.50%
0.75%
0.70%
24 MHz to 100 MHz
1.00%
1.50%
1.20%
100 MHz to 250 MHz
2.50%
3.75%
2.75%
Acquisition Time
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
2.5
ns
LockControl = 1
1.5
ns
Tracking Jitter
Output Duty Cycle
48.5
51.5
%
Delay Range in Block: Programmable Delay 1
1, 2, 4
1.25
15.65
ns
Delay Range in Block: Programmable Delay 2
1, 2, 4
0.025
15.65
ns
Delay Range in Block: Fixed Delay
1, 2
3.5
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6
for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. Maximum value obtained for a Std. speed grade device in Worst Case Commercial Conditions.For specific
junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.
4. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the Clock Conditioning Circuits in
IGLOO and ProASIC3 Devices chapter of the handbook.
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by
the period jitter parameter.
2 -9 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-136 • IGLOOe CCC/PLL Specification
For IGLOOe V2 Devices, 1.2 V DC Core Supply Voltage
Parameter
Min.
Clock Conditioning Circuitry Input Frequency fIN_CCC
Clock Conditioning Circuitry Output Frequency fOUT_CCC
Typ.
Max.
Units
1.5
160
MHz
0.75
160
MHz
60
ps
Serial Clock (SCLK) for Dynamic PLL4
Delay Increments in Programmable Delay
Blocks1, 2
580
ps
Number of Programmable Values in Each Programmable Delay
Block
32
Input Cycle-to-Cycle Jitter (peak magnitude)
0.25
ns
Max Peak-to-Peak Period Jitter
CCC Output Peak-to-Peak Period Jitter FCCC_OUT
1 Global
Network
Used
External
FB Used
3 Global
Networks
Used
0.75 MHz to 24 MHz
0.50%
0.75%
0.70%
24 MHz to 100 MHz
1.00%
1.50%
1.20%
100 MHz to 160 MHz
2.50%
3.75%
2.75%
Acquisition Time
LockControl = 0
300
µs
LockControl = 1
6.0
ms
LockControl = 0
4
ns
LockControl = 1
3
ns
Tracking Jitter
Output Duty Cycle
48.5
51.5
%
Delay Range in Block: Programmable Delay 1
1, 2
2.3
20.86
ns
Delay Range in Block: Programmable Delay 2
1, 2
0.025
20.86
ns
Delay Range in Block: Fixed Delay
1, 2
5.7
ns
Notes:
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 and Table 2-7 on page 2-6
for deratings.
2. TJ = 25°C, VCC = 1.5 V
3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input
clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by period
jitter parameter.
Output Signal
Tperiod_max
Tperiod_min
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min.
Figure 2-40 • Peak-to-Peak Jitter Definition
A dv a n c e v 0. 3
2 - 93
IGLOOe DC and Switching Characteristics
Embedded SRAM and FIFO Characteristics
SRAM
RAM4K9
RAM512X18
ADDRA11
ADDRA10
DOUTA8
DOUTA7
RADDR8
RADDR7
RD17
RD16
ADDRA0
DINA8
DINA7
DOUTA0
RADDR0
RD0
RW1
RW0
DINA0
WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA
PIPE
REN
RCLK
ADDRB11
ADDRB10
DOUTB8
DOUTB7
ADDRB0
DOUTB0
DINB8
DINB7
WADDR8
WADDR7
WADDR0
WD17
WD16
WD0
DINB0
WW1
WW0
WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB
WEN
WCLK
RESET
RESET
Figure 2-41 • RAM Models
2 -9 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Waveforms
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tCKQ1
DO
Dn
D0
D1
D2
tDOH1
Figure 2-42 • RAM Read for Pass-Through Output
tCYC
tCKH
tCKL
CLK
t
AS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENH
tENS
WEN_B
tCKQ2
DO
Dn
D0
D1
tDOH2
Figure 2-43 • RAM Read for Pipelined Output
A dv a n c e v 0. 3
2 - 95
IGLOOe DC and Switching Characteristics
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
tENH
WEN_B
tDS
DI0
DI
tDH
DI1
D2
Dn
DO
Figure 2-44 • RAM Write, Output Retained (WMODE = 0)
tCYC
tCKH
tCKL
CLK
tAS
tAH
A0
ADD
A1
A2
tBKS
tBKH
BLK_B
tENS
WEN_B
tDS
DI0
DI
DO
(pass-through)
DO
(pipelined)
tDH
DI1
Dn
DI1
DI0
DI0
Dn
Figure 2-45 • RAM Write, Output as Write Data (WMODE = 1)
2 -9 6
DI2
A d v a n c e v 0. 3
DI1
IGLOOe DC and Switching Characteristics
CLK1
tAS
tAH
A1
A3
tDS
A0
tDH
D1
D2
D3
ADD1
DI1
tCCKH
CLK2
WEN_B1
WEN_B2
tAS
ADD2
A0
DI2
D0
tAH
A0
A4
D4
tCKQ1
DO2
(pass-through)
Dn
D0
tCKQ2
DO2
(pipelined)
Dn
D0
Figure 2-46 • Write Access after Write onto Same Address
A dv a n c e v 0. 3
2 - 97
IGLOOe DC and Switching Characteristics
CLK1
tAS tAH
ADD1
DI1
A0
tDS tDH
D0
tWRO
A2
A3
D2
D3
CLK2
WEN_B1
WEN_B2
tAS tAH
A0
ADD2
A1
A4
tCKQ1
DO2
(pass-through)
DO2
(pipelined)
Dn
D0
tCKQ2
Dn
D0
Figure 2-47 • Read Access after Write onto Same Address
2 -9 8
D1
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
CLK1
tAS
tAH
A0
ADD1
A1
A0
WEN_B1
tCKQ1
DO1
(pass-through)
tCKQ1
D0
Dn
D1
tCKQ2
DO1
(pipelined)
D0
Dn
tCCKH
CLK2
tAS
tAH
ADD2
A0
A1
A3
DI2
D1
D2
D3
WEN_B2
Figure 2-48 • Write Access after Read onto Same Address
tCYC
tCKH
tCKL
CLK
RESET_B
tRSTBQ
DO
Dm
Dn
Figure 2-49 • RAM Reset
A dv a n c e v 0. 3
2 - 99
IGLOOe DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-137 • RAM4K9
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Description
Std.
Units
tAS
Address Setup Time
0.83
ns
tAH
Address Hold Time
0.16
ns
tENS
REN_B, WEN_B Setup Time
0.81
ns
tENH
REN_B, WEN_B Hold Time
0.16
ns
tBKS
BLK_B Setup Time
1.65
ns
tBKH
BLK_B Hold Time
0.16
ns
tDS
Input Data (DI) Setup Time
0.71
ns
tDH
Input Data (DI) Hold Time
0.36
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
3.53
ns
Clock HIGH to New Data Valid on DO (pass-through, WMODE = 1)
3.06
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.81
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on
same address
TBD
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after
write/read on same address
TBD
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
2.06
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
2.06
ns
tREMRSTB
RESET_B Removal
0.61
ns
tRECRSTB
RESET_B Recovery
3.21
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.68
ns
tCYC
Clock Cycle Time
6.24
ns
FMAX
Maximum Frequency
160
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2 -1 0 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-138 • RAM512X18
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V
Parameter
Std.
Units
tAS
Address Setup Time
Description
0.83
ns
tAH
Address Hold Time
0.16
ns
tENS
REN_B, WEN_B Setup Time
0.73
ns
tENH
REB_B, WEN_B Hold Time
0.08
ns
tDS
Input Data (DI) Setup Time
0.71
ns
tD H
Input Data (DI) Hold Time
0.36
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
4.21
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.71
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on
same address
TBD
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after
write/read on same address
TBD
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
2.06
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
2.06
ns
tREMRSTB
RESET_B Removal
0.61
ns
tRECRSTB
RESET_B Recovery
3.21
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.68
ns
tCYC
Clock Cycle Time
6.24
ns
FMAX
Maximum Frequency
160
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 -101
IGLOOe DC and Switching Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-139 • RAM4K9
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Description
Std.
Units
tAS
Address Setup Time
1.53
ns
tAH
Address Hold Time
0.29
ns
tENS
REN_B, WEN_B Setup Time
1.50
ns
tENH
REN_B, WEN_B Hold Time
0.29
ns
tBKS
BLK_B Setup Time
3.05
ns
tBKH
BLK_B Hold Time
0.29
ns
tDS
Input Data (DI) Setup Time
1.33
ns
tDH
Input Data (DI) Hold Time
0.66
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
6.61
ns
Clock HIGH to New Data Valid on DO (pass-through, WMODE = 1)
5.72
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
3.38
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on
same address
TBD
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after
write/read on same address
TBD
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
3.86
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
3.86
ns
tREMRSTB
RESET_B Removal
1.12
ns
tRECRSTB
RESET_B Recovery
5.93
ns
tMPWRSTB
RESET_B Minimum Pulse Width
1.18
ns
tCYC
Clock Cycle Time
10.90
ns
FMAX
Maximum Frequency
92
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -1 0 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Table 2-140 • RAM512X18
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V
Parameter
Std.
Units
tAS
Address Setup Time
Description
1.53
ns
tAH
Address Hold Time
0.29
ns
tENS
REN_B, WEN_B Setup Time
1.36
ns
tENH
REB_B, WEN_B Hold Time
0.15
ns
tDS
Input Data (DI) Setup Time
1.33
ns
tD H
Input Data (DI) Hold Time
0.66
ns
tCKQ1
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)
7.88
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
3.20
ns
tWRO
Address collision clk-to-clk delay for reliable read access after write on
same address
TBD
ns
tCCKH
Address collision clk-to-clk delay for reliable write access after
write/read on same address
TBD
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
3.86
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
3.86
ns
tREMRSTB
RESET_B Removal
1.12
ns
tRECRSTB
RESET_B Recovery
5.93
ns
tMPWRSTB
RESET_B Minimum Pulse Width
1.18
ns
tCYC
Clock Cycle Time
10.90
ns
FMAX
Maximum Frequency
92
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 -103
IGLOOe DC and Switching Characteristics
FIFO
FIFO4K18
RW2
RW1
RW0
WW2
WW1
WW0
ESTOP
FSTOP
RD17
RD16
RD0
FULL
AFULL
EMPTY
AEMPTY
AEVAL11
AEVAL10
AEVAL0
AFVAL11
AFVAL10
AFVAL0
REN
RBLK
RCLK
WD17
WD16
WD0
WEN
WBLK
WCLK
RPIPE
RESET
Figure 2-50 • FIFO Model
2 -1 0 4
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Waveforms
RCLK/
WCLK
tMPWRSTB
tRSTCK
RESET_B
tRSTFG
EMPTY
tRSTAF
AEMPTY
tRSTFG
FULL
tRSTAF
AFULL
WA/RA
(Address Counter)
MATCH (A0)
Figure 2-51 • FIFO Reset
tCYC
RCLK
tRCKEF
EMPTY
tCKAF
AEMPTY
WA/RA
(Address Counter)
NO MATCH
NO MATCH
Dist = AEF_TH
MATCH (EMPTY)
Figure 2-52 • FIFO EMPTY Flag and AEMPTY Flag Assertion
A dv a n c e v 0. 3
2 -105
IGLOOe DC and Switching Characteristics
tCYC
WCLK
tWCKFF
FULL
tCKAF
AFULL
WA/RA NO MATCH
(Address Counter)
NO MATCH
Dist = AFF_TH
MATCH (FULL)
Figure 2-53 • FIFO FULL Flag and AFULL Flag Assertion
WCLK
WA/RA
(Address Counter)
RCLK
MATCH
(EMPTY)
NO MATCH
1st Rising
Edge
After 1st
Write
NO MATCH
NO MATCH
NO MATCH
Dist = AEF_TH + 1
2nd Rising
Edge
After 1st
Write
tRCKEF
EMPTY
tCKAF
AEMPTY
Figure 2-54 • FIFO EMPTY Flag and AEMPTY Flag Deassertion
RCLK
WA/RA MATCH (FULL)
NO MATCH
(Address Counter)
1st Rising
Edge
After 1st
WCLK
Read
NO MATCH
NO MATCH
NO MATCH
Dist = AFF_TH – 1
1st Rising
Edge
After 2nd
Read
tWCKF
FULL
tCKAF
AFULL
Figure 2-55 • FIFO FULL Flag and AFULL Flag Deassertion
2 -1 0 6
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-141 • FIFO
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
Std.
Units
tENS
REN_B, WEN_B Setup Time
1.99
ns
tENH
REN_B, WEN_B Hold Time
0.16
ns
tBKS
BLK_B Setup Time
0.30
ns
tBKH
BLK_B Hold Time
0.00
ns
tDS
Input Data (DI) Setup Time
0.76
ns
tDH
Input Data (DI) Hold Time
0.25
ns
tCKQ1
Clock HIGH to New Data Valid on DO (pass-through)
3.33
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
1.80
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
3.53
ns
tWCKFF
WCLK HIGH to Full Flag Valid
3.35
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
12.85
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
3.48
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
12.72
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
2.02
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
2.02
ns
tREMRSTB
RESET_B Removal
0.61
ns
tRECRSTB
RESET_B Recovery
3.21
ns
tMPWRSTB
RESET_B Minimum Pulse Width
0.68
ns
tCYC
Clock Cycle Time
6.24
ns
FMAX
Maximum Frequency
160
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
A dv a n c e v 0. 3
2 -107
IGLOOe DC and Switching Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-142 • FIFO
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Description
Std.
Units
tENS
REN_B, WEN_B Setup Time
4.13
ns
tENH
REN_B, WEN_B Hold Time
0.31
ns
tBKS
BLK_B Setup Time
0.47
ns
tBKH
BLK_B Hold Time
0.00
ns
tDS
Input Data (DI) Setup Time
1.56
ns
tDH
Input Data (DI) Hold Time
0.49
ns
tCKQ1
Clock HIGH to New Data Valid on DO (pass-through)
6.80
ns
tCKQ2
Clock HIGH to New Data Valid on DO (pipelined)
3.62
ns
tRCKEF
RCLK HIGH to Empty Flag Valid
7.23
ns
tWCKFF
WCLK HIGH to Full Flag Valid
6.85
ns
tCKAF
Clock HIGH to Almost Empty/Full Flag Valid
26.61
ns
tRSTFG
RESET_B LOW to Empty/Full Flag Valid
7.12
ns
tRSTAF
RESET_B LOW to Almost Empty/Full Flag Valid
26.33
ns
tRSTBQ
RESET_B LOW to Data Out LOW on DO (pass-through)
4.09
ns
RESET_B LOW to Data Out LOW on DO (pipelined)
4.09
ns
tREMRSTB
RESET_B Removal
1.23
ns
tRECRSTB
RESET_B Recovery
6.58
ns
tMPWRSTB
RESET_B Minimum Pulse Width
1.18
ns
tCYC
Clock Cycle Time
10.90
ns
FMAX
Maximum Frequency
92
MHz
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
2 -1 0 8
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Embedded FlashROM Characteristics
tSU
CLK
tSU
tHOLD
Address
tSU
tHOLD
A0
tHOLD
A1
tCKQ2
tCKQ2
D0
Data
tCKQ2
D0
D1
Figure 2-56 • Timing Diagram
Timing Characteristics
Applies to 1.5 V DC Core Voltage
Table 2-143 • Embedded FlashROM Access Time
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
Std.
Units
0.58
ns
tSU
Address Setup Time
tHOLD
Address Hold Time
0.00
ns
tCK2Q
Clock-to-Out
34.14
ns
FMAX
Maximum Clock Frequency
15
MHz
Applies to 1.2 V DC Core Voltage
Table 2-144 • Embedded FlashROM Access Time
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Std.
Units
tSU
Address Setup Time
Description
0.59
ns
tHOLD
Address Hold Time
0.00
ns
tCK2Q
Clock-to-Out
52.90
ns
FMAX
Maximum Clock Frequency
10
MHz
A dv a n c e v 0. 3
2 -109
IGLOOe DC and Switching Characteristics
JTAG 1532 Characteristics
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer
delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User
I/O Characteristics" section on page 2-16 for more details.
Timing Characteristics
Applies to 1.2 V DC Core Voltage
Table 2-145 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, VCC = 1.14 V
Parameter
Std.
Units
tDISU
Test Data Input Setup Time
Description
1.50
ns
tDIHD
Test Data Input Hold Time
3.00
ns
tTMSSU
Test Mode Select Setup Time
1.50
ns
tTMDHD
Test Mode Select Hold Time
3.00
ns
tTCK2Q
Clock to Q (data out)
11.00
ns
tRSTB2Q
Reset to Q (data out)
30.00
ns
FTCKMAX
TCK Maximum Frequency
9.00
MHz
tTRSTREM
ResetB Removal Time
1.18
ns
tTRSTREC
ResetB Recovery Time
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating
values.
Applies to 1.5 V DC Core Voltage
Table 2-146 • JTAG 1532
Commercial-Case Conditions: TJ = 70°C, VCC = 1.425 V
Parameter
Description
Std.
Units
ns
tDISU
Test Data Input Setup Time
1.00
tDIHD
Test Data Input Hold Time
2.00
ns
tTMSSU
Test Mode Select Setup Time
1.00
ns
tTMDHD
Test Mode Select Hold Time
2.00
ns
tTCK2Q
Clock to Q (data out)
8.00
ns
tRSTB2Q
Reset to Q (data out)
25.00
ns
FTCKMAX
TCK Maximum Frequency
15.00
MHz
tTRSTREM
ResetB Removal Time
0.58
ns
tTRSTREC
ResetB Recovery Time
0.00
ns
tTRSTMPW
ResetB Minimum Pulse
TBD
ns
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating
values.
2 -1 1 0
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Part Number and Revision Date
Part Number 51700096-002-2
Revised July 2008
List of Changes
The following table lists critical changes that were made in the current version of the chapter.
Previous Version
Changes in Current Version (Advance v0.3)
Page
Advance v0.2
(June 2008)
As a result of the Libero IDE v8.4 release, Actel now offers a wide range of
core voltage support. The document was updated to change 1.2 V / 1.5 V to
1.2 V to 1.5 V.
2-2
Advance v0.1
(January 2008)
Tables have been updated to reflect default values in the software. The
default I/O capacitance is 5 pF. Tables have been updated to include the
LVCMOS 1.2 V I/O set.
N/A
DDR Tables have two additional data points added to reflect both edges for
Input DDR setup and hold time.
The power data table has been updated to match SmartPower data rather
then simulation values.
Table 2-1 · Absolute Maximum Ratings was updated to add VMV to the VCCI
parameter row and remove the word "output" from the parameter
description for VCCI. Table note 3 was added.
2-1
Table 2-2 · Recommended Operating Conditions 4 was updated to include the
TJ parameter. Table note 9 is new.
2-2
In Table 2-3 · Flash Programming Limits – Retention, Storage, and Operating
Temperature1, the maximum operating junction temperature was changed
from 110° to 100°.
2-2
VMV was removed fromTable 2-4 · Overshoot and Undershoot Limits 1. The
title of the table was revised to remove "as measured on quiet I/Os." Table
note 2 was revised to remove "estimated SSO density over cycles." Table note
3 was deleted.
2-3
The "PLL Behavior at Brownout Condition" section is new.
2-4
Figure 2-2 · V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels
is new.
2-5
EQ 2-2 was updated. The temperature was changed to 100°C, and therefore
the end result changed.
2-6
The table notes for Table 2-8 · Quiescent Supply Current (IDD), IGLOOe
Flash*Freeze Mode*, Table 2-9 · Quiescent Supply Current (IDD), IGLOOe Sleep
Mode (VCC = 0 V)*, and Table 2-10 · Quiescent Supply Current (IDD), IGLOOe
Shutdown Mode (VCC, VCCI = 0 V)* were updated to remove VMV and include
PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in
the table note for Table 2-9 · Quiescent Supply Current (IDD), IGLOOe Sleep
Mode (VCC = 0 V)*.
2-7
Note 2 of Table 2-11 · Quiescent Supply Current, No IGLOOe Flash*Freeze
Mode* was updated to include VCCPLL. Note 4 was updated to include PDC6
and PDC7.
2-8
Table note 3 was added to Table 2-12 · Summary of I/O Input Buffer Power
(per pin) – Default I/O Software Settings and referenced for 1.2 V LVCMOS.
2-9
A dv a n c e v 0. 3
2 -111
IGLOOe DC and Switching Characteristics
Previous Version
Changes in Current Version (Advance v0.3)
Page
Table 2-13 · Summary of I/O Output Buffer Power (per pin) – Default I/O
Software Settings1 was updated to change PDC3 to PDC7. The table notes were
updated to reflect that power was measured on VCCI. Table note 4 is new.
2-10
Table 2-15 · Different Components Contributing to the Static Power
Consumption in IGLOO Devices and Table 2-17 · Different Components
Contributing to the Static Power Consumption in IGLOO Devices were
updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank
quiescent power.
2-11,
2-12
A table subtitle was added for Table 2-17 · Different Components
Contributing to the Static Power Consumption in IGLOO Devices
2-12
The "Total Static Power Consumption—PSTAT" section was updated to revise
the calculation of PSTAT, including PDC6 and PDC7.
2-13
Footnote 1 was updated to include information about PAC13. The PLL
Contribution equation was changed from: PPLL = PAC13 + PAC14 * FCLKOUT to PPLL
= PDC4 + PAC13 * FCLKOUT.
2-14
The "Timing Model" was updated to be consistent with the revised timing
numbers.
2-16
In Table 2-21 · Summary of Maximum and Minimum DC Input Levels, TJ was
changed to TA in notes 1 and 2.
2-21
Table 2-31 · Schmitt Trigger Input Hysteresis was updated to included a
hysteresis value for 1.2 V LVCMOS (Schmitt trigger mode).
2-28
All AC Loading figures for single-ended I/O standards were changed from
Datapaths at 35 pF to 5 pF.
N/A
The "1.2 V LVCMOS (JESD8-12A)" section is new.
2-41
Advance v0.4
(December 2007)
This document was previously in datasheet Advance v0.4. As a result of
moving to the handbook format, Actel has restarted the version numbers. The
new version number is Advance v0.1.
N/A
Advance v0.3
(September 2007)
Table 2-4 • IGLOOe CCC/PLL Specification and Table 2-5 • IGLOOe CCC/PLL
Specification were updated.
2-18,
2-19
The "During Flash*Freeze Mode" section was updated to include information
about the output of the I/O to the FPGA core.
2-60
Figure 2-38 • Flash*Freeze Mode Type 1 – Timing Diagram was updated to
modify the LSICC signal.
2-56
Table 2-32 • Flash*Freeze Pin Location in IGLOOe Family Packages (deviceindependent) was updated for the FG896 package.
2-64
Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to
modify the LSICC Signal.
2-58
Information regarding calculation of the quiescent supply current was added
to the "Quiescent Supply Current" section.
3-6
Table 3-8 • Quiescent Supply Current (IDD), IGLOOe Flash*Freeze Mode† was
updated.
3-6
Table 3-9 • Quiescent Supply Current (IDD), IGLOOe Sleep Mode (VCC = 0 V)†
was updated.
3-6
Table 3-11 • Quiescent Supply Current, No IGLOOe Flash*Freeze Mode1 was
updated.
3-6
Advance v0.1
(continued)
2 -1 1 2
A d v a n c e v 0. 3
IGLOOe DC and Switching Characteristics
Previous Version
Advance v0.3
(continued)
Advance v0.1
Changes in Current Version (Advance v0.3)
Page
Table 3-99 • Minimum and Maximum DC Input and Output Levels was
updated.
3-51
Table 3-136 • JTAG 1532 and Table 3-135 • JTAG 1532 were updated.
3-95
The TJ parameter in Table 3-2 • Recommended Operating Conditions was
changed to TA, ambient temperature, and table notes 6–8 were added.
3-2
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status datasheet may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
A dv a n c e v 0. 3
2 -113
IGLOO®e Packaging
3 – Package Pin Assignments
256-Pin FBGA
A1 Ball Pad Corner
16 15 14 13 12 11 10 9
8
7
6 5 4
3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
v1.1
3-1
Package Pin Assignments
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
A1
GND
C4
VCCPLA
E8
IO13NDB0V2
A2
GAA0/IO00NDB0V0
C5
GAC0/IO02NDB0V0
E9
IO21NDB1V0
A3
GAA1/IO00PDB0V0
C6
GAC1/IO02PDB0V0
E10
VCCIB1
A4
GAB0/IO01NDB0V0
C7
IO15NDB0V2
E11
VCCIB1
A5
IO05PDB0V0
C8
IO15PDB0V2
E12
VMV1
A6
IO10PDB0V1
C9
IO20PDB1V0
E13
GBC2/IO38PDB2V0
A7
IO12PDB0V2
C10
IO25NDB1V0
E14
IO37NDB2V0
A8
IO16NDB0V2
C11
IO27PDB1V0
E15
IO41NDB2V0
A9
IO23NDB1V0
C12
GBC0/IO33NDB1V1
E16
IO41PDB2V0
A10
IO23PDB1V0
C13
VCCPLB
F1
IO124PDB7V0
A11
IO28NDB1V1
C14
VMV2
F2
IO125PDB7V0
A12
IO28PDB1V1
C15
IO36NDB2V0
F3
IO126PDB7V0
A13
GBB1/IO34PDB1V1
C16
IO42PDB2V0
F4
IO130NDB7V1
A14
GBA0/IO35NDB1V1
D1
IO128PDB7V1
F5
VCCIB7
A15
GBA1/IO35PDB1V1
D2
IO129PDB7V1
F6
GND
A16
GND
D3
GAC2/IO132PDB7V1
F7
VCC
B1
GAB2/IO133PDB7V1
D4
VCOMPLA
F8
VCC
B2
GAA2/IO134PDB7V
1
D5
GNDQ
F9
VCC
D6
IO09NDB0V1
F10
VCC
B3
GNDQ
D7
IO09PDB0V1
F11
GND
B4
GAB1/IO01PDB0V0
D8
IO13PDB0V2
F12
VCCIB2
B5
IO05NDB0V0
D9
IO21PDB1V0
F13
IO38NDB2V0
B6
IO10NDB0V1
D10
IO25PDB1V0
F14
IO40NDB2V0
B7
IO12NDB0V2
D11
IO27NDB1V0
F15
IO40PDB2V0
B8
IO16PDB0V2
D12
GNDQ
F16
IO45PSB2V1
B9
IO20NDB1V0
D13
VCOMPLB
G1
IO124NDB7V0
B10
IO24NDB1V0
D14
GBB2/IO37PDB2V0
G2
IO125NDB7V0
B11
IO24PDB1V0
D15
IO39PDB2V0
G3
IO126NDB7V0
B12
GBC1/IO33PDB1V1
D16
IO39NDB2V0
G4
GFC1/IO120PPB7V0
B13
GBB0/IO34NDB1V1
E1
IO128NDB7V1
G5
VCCIB7
B14
GNDQ
E2
IO129NDB7V1
G6
VCC
B15
GBA2/IO36PDB2V0
E3
IO132NDB7V1
G7
GND
B16
IO42NDB2V0
E4
IO130PDB7V1
G8
GND
C1
IO133NDB7V1
E5
VMV0
G9
GND
C2
IO134NDB7V1
E6
VCCIB0
G10
GND
C3
VMV7
E7
VCCIB0
G11
VCC
3 -2
v1.1
IGLOOe Packaging
256-Pin FBGA
256-Pin FBGA
256-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
G12
VCCIB2
J16
GCA2/IO53PSB3V0
M4
GEC0/IO104NPB6V0
G13
GCC1/IO50PPB2V1
K1
GFC2/IO115PSB6V1
M5
VMV5
G14
IO44NDB2V1
K2
IO113PPB6V1
M6
VCCIB5
G15
IO44PDB2V1
K3
IO112PDB6V1
M7
VCCIB5
G16
IO49NSB2V1
K4
IO112NDB6V1
M8
IO84NDB5V0
H1
GFB0/IO119NPB7V0
K5
VCCIB6
M9
IO84PDB5V0
H2
GFA0/IO118NDB6V1
K6
VCC
M10
VCCIB4
H3
GFB1/IO119PPB7V0
K7
GND
M11
VCCIB4
H4
VCOMPLF
K8
GND
M12
VMV3
H5
GFC0/IO120NPB7V0
K9
GND
M13
VCCPLD
H6
VCC
K10
GND
M14
GDB1/IO66PPB3V1
H7
GND
K11
VCC
M15
GDC1/IO65PDB3V1
H8
GND
K12
VCCIB3
M16
IO61NDB3V1
H9
GND
K13
IO54NPB3V0
N1
IO105PDB6V0
H10
GND
K14
IO57NPB3V0
N2
IO105NDB6V0
H11
VCC
K15
IO55NPB3V0
N3
GEC1/IO104PPB6V0
H12
GCC0/IO50NPB2V1
K16
IO57PPB3V0
N4
VCOMPLE
H13
GCB1/IO51PPB2V1
L1
IO113NPB6V1
N5
GNDQ
H14
GCA0/IO52NPB3V0
L2
IO109PPB6V0
N6
GEA2/IO101PPB5V2
H15
VCOMPLC
L3
IO108PDB6V0
N7
IO92NDB5V1
H16
GCB0/IO51NPB2V1
L4
IO108NDB6V0
N8
IO90NDB5V1
J1
GFA2/IO117PSB6V1
L5
VCCIB6
N9
IO82NDB5V0
J2
GFA1/IO118PDB6V1
L6
GND
N10
IO74NDB4V1
J3
VCCPLF
L7
VCC
N11
IO74PDB4V1
J4
IO116NDB6V1
L8
VCC
N12
GNDQ
J5
GFB2/IO116PDB6V1
L9
VCC
N13
VCOMPLD
J6
VCC
L10
VCC
N14
VJTAG
J7
GND
L11
GND
N15
GDC0/IO65NDB3V1
J8
GND
L12
VCCIB3
N16
GDA1/IO67PDB3V1
J9
GND
L13
GDB0/IO66NPB3V1
P1
GEB1/IO103PDB6V0
J10
GND
L14
IO60NDB3V1
P2
GEB0/IO103NDB6V0
J11
VCC
L15
IO60PDB3V1
P3
VMV6
J12
GCB2/IO54PPB3V0
L16
IO61PDB3V1
P4
VCCPLE
J13
GCA1/IO52PPB3V0
M1
IO109NPB6V0
P5
IO101NPB5V2
J14
GCC2/IO55PPB3V0
M2
IO106NDB6V0
P6
IO95PPB5V1
J15
VCCPLC
M3
IO106PDB6V0
P7
IO92PDB5V1
v1.1
3-3
Package Pin Assignments
256-Pin FBGA
256-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
P8
IO90PDB5V1
T10
IO81PDB4V1
P9
IO82PDB5V0
T11
IO70NDB4V0
P10
IO76NDB4V1
T12
GDC2/IO70PDB4V0
P11
IO76PDB4V1
T13
IO68NDB4V0
P12
VMV4
T14
GDA2/IO68PDB4V0
P13
TCK
T15
TMS
P14
VPUMP
T16
GND
P15
TRST
P16
GDA0/IO67NDB3V1
R1
GEA1/IO102PDB6V0
R2
GEA0/IO102NDB6V
0
R3
GNDQ
R4
GEC2/IO99PDB5V2
R5
IO95NPB5V1
R6
IO91NDB5V1
R7
IO91PDB5V1
R8
IO83NDB5V0
R9
IO83PDB5V0
R10
IO77NDB4V1
R11
IO77PDB4V1
R12
IO69NDB4V0
R13
GDB2/IO69PDB4V0
R14
TDI
R15
GNDQ
R16
TDO
T1
GND
T2
IO100NDB5V2
T3
FF/GEB2/IO100PDB5
V2
T4
IO99NDB5V2
T5
IO88NDB5V0
T6
IO88PDB5V0
T7
IO89NSB5V0
T8
IO80NSB4V1
T9
IO81NDB4V1
3 -4
v1.1
IGLOOe Packaging
484-Pin FBGA
A1 Ball Pad Corner
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
v1.1
3-5
Package Pin Assignments
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
A1
GND
AA15
NC
B7
IO07PDB0V1
A2
GND
AA16
IO71NDB4V0
B8
IO11NDB0V1
A3
VCCIB0
AA17
IO71PDB4V0
B9
IO17NDB0V2
A4
IO06NDB0V1
AA18
NC
B10
IO14PDB0V2
A5
IO06PDB0V1
AA19
NC
B11
IO19PDB0V2
A6
IO08NDB0V1
AA20
NC
B12
IO22NDB1V0
A7
IO08PDB0V1
AA21
VCCIB3
B13
IO26NDB1V0
A8
IO11PDB0V1
AA22
GND
B14
NC
A9
IO17PDB0V2
AB1
GND
B15
NC
A10
IO18NDB0V2
AB2
GND
B16
IO30NDB1V1
A11
IO18PDB0V2
AB3
VCCIB5
B17
IO30PDB1V1
A12
IO22PDB1V0
AB4
IO97NDB5V2
B18
IO32PDB1V1
A13
IO26PDB1V0
AB5
IO97PDB5V2
B19
NC
A14
IO29NDB1V1
AB6
IO93NDB5V1
B20
NC
A15
IO29PDB1V1
AB7
IO93PDB5V1
B21
VCCIB2
A16
IO31NDB1V1
AB8
IO87NDB5V0
B22
GND
A17
IO31PDB1V1
AB9
IO87PDB5V0
C1
VCCIB7
A18
IO32NDB1V1
AB10
NC
C2
NC
A19
NC
AB11
NC
C3
NC
A20
VCCIB1
AB12
IO75NDB4V1
C4
NC
A21
GND
AB13
IO75PDB4V1
C5
GND
A22
GND
AB14
IO72NDB4V0
C6
IO04NDB0V0
AA1
GND
AB15
IO72PDB4V0
C7
IO04PDB0V0
AA2
VCCIB6
AB16
IO73NDB4V0
C8
VCC
AA3
NC
AB17
IO73PDB4V0
C9
VCC
AA4
IO98PDB5V2
AB18
NC
C10
IO14NDB0V2
AA5
IO96NDB5V2
AB19
NC
C11
IO19NDB0V2
AA6
IO96PDB5V2
AB20
VCCIB4
C12
NC
AA7
IO86NDB5V0
AB21
GND
C13
NC
AA8
IO86PDB5V0
AB22
GND
C14
VCC
AA9
IO85PDB5V0
B1
GND
C15
VCC
AA10
IO85NDB5V0
B2
VCCIB7
C16
NC
AA11
IO78PPB4V1
B3
NC
C17
NC
AA12
IO79NDB4V1
B4
IO03NDB0V0
C18
GND
AA13
IO79PDB4V1
B5
IO03PDB0V0
C19
NC
AA14
NC
B6
IO07NDB0V1
C20
NC
3 -6
v1.1
IGLOOe Packaging
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
C21
NC
E11
IO16PDB0V2
G3
NC
C22
VCCIB2
E12
IO20NDB1V0
G4
IO128PDB7V1
D1
NC
E13
IO24NDB1V0
G5
IO129PDB7V1
D2
NC
E14
IO24PDB1V0
G6
D3
NC
E15
GBC1/IO33PDB1V1
GAC2/IO132PDB7V
1
D4
GND
E16
GBB0/IO34NDB1V1
G7
VCOMPLA
D5
GAA0/IO00NDB0V0
E17
GNDQ
G8
GNDQ
D6
GAA1/IO00PDB0V0
E18
GBA2/IO36PDB2V0
G9
IO09NDB0V1
D7
GAB0/IO01NDB0V0
E19
IO42NDB2V0
G10
IO09PDB0V1
D8
IO05PDB0V0
E20
GND
G11
IO13PDB0V2
D9
IO10PDB0V1
E21
NC
G12
IO21PDB1V0
D10
IO12PDB0V2
E22
NC
G13
IO25PDB1V0
D11
IO16NDB0V2
F1
NC
G14
IO27NDB1V0
D12
IO23NDB1V0
F2
IO131NDB7V1
G15
GNDQ
D13
IO23PDB1V0
F3
IO131PDB7V1
G16
VCOMPLB
D14
IO28NDB1V1
F4
IO133NDB7V1
G17
GBB2/IO37PDB2V0
D15
IO28PDB1V1
F5
IO134NDB7V1
G18
IO39PDB2V0
D16
GBB1/IO34PDB1V1
F6
VMV7
G19
IO39NDB2V0
D17
GBA0/IO35NDB1V1
F7
VCCPLA
G20
IO43PDB2V0
D18
GBA1/IO35PDB1V1
F8
GAC0/IO02NDB0V0
G21
IO43NDB2V0
D19
GND
F9
GAC1/IO02PDB0V0
G22
NC
D20
NC
F10
IO15NDB0V2
H1
NC
D21
NC
F11
IO15PDB0V2
H2
NC
D22
NC
F12
IO20PDB1V0
H3
VCC
E1
NC
F13
IO25NDB1V0
H4
IO128NDB7V1
E2
NC
F14
IO27PDB1V0
H5
IO129NDB7V1
E3
GND
F15
GBC0/IO33NDB1V1
H6
IO132NDB7V1
E4
GAB2/IO133PDB7V
1
F16
VCCPLB
H7
IO130PDB7V1
F17
VMV2
H8
VMV0
F18
IO36NDB2V0
H9
VCCIB0
F19
IO42PDB2V0
H10
VCCIB0
F20
NC
H11
IO13NDB0V2
F21
NC
H12
IO21NDB1V0
F22
NC
H13
VCCIB1
G1
IO127NDB7V1
H14
VCCIB1
G2
IO127PDB7V1
H15
VMV1
E5
GAA2/IO134PDB7V
1
E6
GNDQ
E7
GAB1/IO01PDB0V0
E8
IO05NDB0V0
E9
IO10NDB0V1
E10
IO12NDB0V2
v1.1
3-7
Package Pin Assignments
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
H16
GBC2/IO38PDB2V0
K8
VCCIB7
L21
IO47NDB2V1
H17
IO37NDB2V0
K9
VCC
L22
IO47PDB2V1
H18
IO41NDB2V0
K10
GND
M1
NC
H19
IO41PDB2V0
K11
GND
M2
IO114NPB6V1
H20
VCC
K12
GND
M3
IO117NDB6V1
H21
NC
K13
GND
M4
GFA2/IO117PDB6V1
H22
NC
K14
VCC
M5
GFA1/IO118PDB6V1
J1
IO123NDB7V0
K15
VCCIB2
M6
VCCPLF
J2
IO123PDB7V0
K16
GCC1/IO50PPB2V1
M7
IO116NDB6V1
J3
NC
K17
IO44NDB2V1
M8
GFB2/IO116PDB6V1
J4
IO124PDB7V0
K18
IO44PDB2V1
M9
VCC
J5
IO125PDB7V0
K19
IO49NPB2V1
M10
GND
J6
IO126PDB7V0
K20
IO45NPB2V1
M11
GND
J7
IO130NDB7V1
K21
IO48NDB2V1
M12
GND
J8
VCCIB7
K22
IO46NDB2V1
M13
GND
J9
GND
L1
NC
M14
VCC
J10
VCC
L2
IO122PDB7V0
M15
GCB2/IO54PPB3V0
J11
VCC
L3
IO122NDB7V0
M16
GCA1/IO52PPB3V0
J12
VCC
L4
GFB0/IO119NPB7V0
M17
GCC2/IO55PPB3V0
J13
VCC
L5
M18
VCCPLC
J14
GND
GFA0/IO118NDB6V
1
M19
GCA2/IO53PDB3V0
L6
GFB1/IO119PPB7V0
M20
IO53NDB3V0
L7
VCOMPLF
M21
IO56PDB3V0
L8
GFC0/IO120NPB7V0
M22
NC
L9
VCC
N1
IO114PPB6V1
L10
GND
N2
IO111NDB6V1
L11
GND
N3
NC
L12
GND
N4
GFC2/IO115PPB6V1
L13
GND
N5
IO113PPB6V1
L14
VCC
N6
IO112PDB6V1
L15
GCC0/IO50NPB2V1
N7
IO112NDB6V1
L16
GCB1/IO51PPB2V1
N8
VCCIB6
L17
GCA0/IO52NPB3V0
N9
VCC
L18
VCOMPLC
N10
GND
L19
GCB0/IO51NPB2V1
N11
GND
L20
IO49PPB2V1
N12
GND
J15
J16
J17
J18
J19
J20
J21
J22
K1
K2
K3
K4
K5
K6
K7
3 -8
VCCIB2
IO38NDB2V0
IO40NDB2V0
IO40PDB2V0
IO45PPB2V1
NC
IO48PDB2V1
IO46PDB2V1
IO121NDB7V0
IO121PDB7V0
NC
IO124NDB7V0
IO125NDB7V0
IO126NDB7V0
GFC1/IO120PPB7V0
v1.1
IGLOOe Packaging
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
N13
GND
R5
IO106NDB6V0
T19
GDA1/IO67PDB3V1
N14
VCC
R6
IO106PDB6V0
T20
NC
N15
VCCIB3
R7
GEC0/IO104NPB6V0
T21
IO64PDB3V1
N16
IO54NPB3V0
R8
VMV5
T22
IO62NDB3V1
N17
IO57NPB3V0
R9
VCCIB5
U1
NC
N18
IO55NPB3V0
R10
VCCIB5
U2
IO107PDB6V0
N19
IO57PPB3V0
R11
IO84NDB5V0
U3
IO107NDB6V0
N20
NC
R12
IO84PDB5V0
U4
GEB1/IO103PDB6V0
N21
IO56NDB3V0
R13
VCCIB4
U5
N22
IO58PDB3V0
R14
VCCIB4
GEB0/IO103NDB6V
0
P1
NC
R15
VMV3
U6
VMV6
P2
IO111PDB6V1
R16
VCCPLD
U7
VCCPLE
P3
IO115NPB6V1
R17
GDB1/IO66PPB3V1
U8
IO101NPB5V2
P4
IO113NPB6V1
R18
GDC1/IO65PDB3V1
U9
IO95PPB5V1
P5
IO109PPB6V0
R19
IO61NDB3V1
U10
IO92PDB5V1
P6
IO108PDB6V0
R20
VCC
U11
IO90PDB5V1
P7
IO108NDB6V0
R21
IO59NDB3V0
U12
IO82PDB5V0
P8
VCCIB6
R22
IO62PDB3V1
U13
IO76NDB4V1
P9
GND
T1
NC
U14
IO76PDB4V1
P10
VCC
T2
IO110NDB6V0
U15
VMV4
P11
VCC
T3
NC
U16
TCK
P12
VCC
T4
IO105PDB6V0
U17
VPUMP
P13
VCC
T5
IO105NDB6V0
U18
TRST
P14
GND
T6
GEC1/IO104PPB6V0
U19
GDA0/IO67NDB3V1
P15
VCCIB3
T7
VCOMPLE
U20
NC
P16
GDB0/IO66NPB3V1
T8
GNDQ
U21
IO64NDB3V1
P17
IO60NDB3V1
T9
GEA2/IO101PPB5V2
U22
IO63PDB3V1
P18
IO60PDB3V1
T10
IO92NDB5V1
V1
NC
P19
IO61PDB3V1
T11
IO90NDB5V1
V2
NC
P20
NC
T12
IO82NDB5V0
V3
GND
P21
IO59PDB3V0
T13
IO74NDB4V1
V4
GEA1/IO102PDB6V
0
P22
IO58NDB3V0
T14
IO74PDB4V1
V5
R1
NC
T15
GNDQ
GEA0/IO102NDB6V
0
R2
IO110PDB6V0
T16
VCOMPLD
V6
GNDQ
R3
VCC
T17
VJTAG
V7
GEC2/IO99PDB5V2
R4
IO109NPB6V0
T18
GDC0/IO65NDB3V1
V8
IO95NPB5V1
v1.1
3-9
Package Pin Assignments
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE600 Function
Pin Number
AGLE600 Function
V9
IO91NDB5V1
W22
NC
V10
IO91PDB5V1
Y1
VCCIB6
V11
IO83NDB5V0
Y2
NC
V12
IO83PDB5V0
Y3
NC
V13
IO77NDB4V1
Y4
IO98NDB5V2
V14
IO77PDB4V1
Y5
GND
V15
IO69NDB4V0
Y6
IO94NDB5V1
V16
GDB2/IO69PDB4V0
Y7
IO94PDB5V1
V17
TDI
Y8
VCC
V18
GNDQ
Y9
VCC
V19
TDO
Y10
IO89PDB5V0
V20
GND
Y11
IO80PDB4V1
V21
NC
Y12
IO78NPB4V1
V22
IO63NDB3V1
Y13
NC
W1
NC
Y14
VCC
W2
NC
Y15
VCC
W3
NC
Y16
NC
W4
GND
Y17
NC
W5
IO100NDB5V2
Y18
GND
W6
FF/GEB2/IO100PDB5
V2
Y19
NC
Y20
NC
W7
IO99NDB5V2
Y21
NC
W8
IO88NDB5V0
Y22
VCCIB3
W9
IO88PDB5V0
W10
IO89NDB5V0
W11
IO80NDB4V1
W12
IO81NDB4V1
W13
IO81PDB4V1
W14
IO70NDB4V0
W15
GDC2/IO70PDB4V0
W16
IO68NDB4V0
W17
GDA2/IO68PDB4V0
W18
TMS
W19
GND
W20
NC
W21
NC
3 -1 0
v1.1
IGLOOe Packaging
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
A1
GND
AA15
IO170PDB4V2
B7
IO14PDB0V1
A2
GND
AA16
IO166NDB4V1
B8
IO18NDB0V2
A3
VCCIB0
AA17
IO166PDB4V1
B9
IO24NDB0V2
A4
IO10NDB0V1
AA18
IO160NDB4V0
B10
IO34PDB0V4
A5
IO10PDB0V1
AA19
IO160PDB4V0
B11
IO40PDB0V4
A6
IO16NDB0V1
AA20
IO158NPB4V0
B12
IO46NDB1V0
A7
IO16PDB0V1
AA21
VCCIB3
B13
IO54NDB1V1
A8
IO18PDB0V2
AA22
GND
B14
IO62NDB1V2
A9
IO24PDB0V2
AB1
GND
B15
IO62PDB1V2
A10
IO28NDB0V3
AB2
GND
B16
IO68NDB1V3
A11
IO28PDB0V3
AB3
VCCIB5
B17
IO68PDB1V3
A12
IO46PDB1V0
AB4
IO216NDB5V2
B18
IO72PDB1V3
A13
IO54PDB1V1
AB5
IO216PDB5V2
B19
IO74PDB1V4
A14
IO56NDB1V1
AB6
IO210NDB5V2
B20
IO76NPB1V4
A15
IO56PDB1V1
AB7
IO210PDB5V2
B21
VCCIB2
A16
IO64NDB1V2
AB8
IO208NDB5V1
B22
GND
A17
IO64PDB1V2
AB9
IO208PDB5V1
C1
VCCIB7
A18
IO72NDB1V3
AB10
IO197NDB5V0
C2
IO303PDB7V3
A19
IO74NDB1V4
AB11
IO197PDB5V0
C3
IO305PDB7V3
A20
VCCIB1
AB12
IO174NDB4V2
C4
IO06NPB0V0
A21
GND
AB13
IO174PDB4V2
C5
GND
A22
GND
AB14
IO172NDB4V2
C6
IO12NDB0V1
AA1
GND
AB15
IO172PDB4V2
C7
IO12PDB0V1
AA2
VCCIB6
AB16
IO168NDB4V1
C8
VCC
AA3
IO228PDB5V4
AB17
IO168PDB4V1
C9
VCC
AA4
IO224PDB5V3
AB18
IO162NDB4V1
C10
IO34NDB0V4
AA5
IO218NDB5V3
AB19
IO162PDB4V1
C11
IO40NDB0V4
AA6
IO218PDB5V3
AB20
VCCIB4
C12
IO48NDB1V0
AA7
IO212NDB5V2
AB21
GND
C13
IO48PDB1V0
AA8
IO212PDB5V2
AB22
GND
C14
VCC
AA9
IO198PDB5V0
B1
GND
C15
VCC
AA10
IO198NDB5V0
B2
VCCIB7
C16
IO70NDB1V3
AA11
IO188PPB4V4
B3
IO06PPB0V0
C17
IO70PDB1V3
AA12
IO180NDB4V3
B4
IO08NDB0V0
C18
GND
AA13
IO180PDB4V3
B5
IO08PDB0V0
C19
IO76PPB1V4
AA14
IO170NDB4V2
B6
IO14NDB0V1
C20
IO88NDB2V0
v1.1
3 - 11
Package Pin Assignments
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
C21
IO94PPB2V1
E13
IO58NDB1V2
G5
IO297PDB7V2
C22
VCCIB2
E14
IO58PDB1V2
G6
GAC2/IO307PDB7V4
D1
IO293PDB7V2
E15
GBC1/IO79PDB1V4
G7
VCOMPLA
D2
IO303NDB7V3
E16
GBB0/IO80NDB1V4
G8
GNDQ
D3
IO305NDB7V3
E17
GNDQ
G9
IO26NDB0V3
D4
GND
E18
GBA2/IO82PDB2V0
G10
IO26PDB0V3
D5
GAA0/IO00NDB0V0
E19
IO86NDB2V0
G11
IO36PDB0V4
D6
GAA1/IO00PDB0V0
E20
GND
G12
IO42PDB1V0
D7
GAB0/IO01NDB0V0
E21
IO90NDB2V1
G13
IO50PDB1V1
D8
IO20PDB0V2
E22
IO98PDB2V2
G14
IO60NDB1V2
D9
IO22PDB0V2
F1
IO299NPB7V3
G15
GNDQ
D10
IO30PDB0V3
F2
IO301NDB7V3
G16
VCOMPLB
D11
IO38NDB0V4
F3
IO301PDB7V3
G17
GBB2/IO83PDB2V0
D12
IO52NDB1V1
F4
IO308NDB7V4
G18
IO92PDB2V1
D13
IO52PDB1V1
F5
IO309NDB7V4
G19
IO92NDB2V1
D14
IO66NDB1V3
F6
VMV7
G20
IO102PDB2V2
D15
IO66PDB1V3
F7
VCCPLA
G21
IO102NDB2V2
D16
GBB1/IO80PDB1V4
F8
GAC0/IO02NDB0V0
G22
IO105NDB2V2
D17
GBA0/IO81NDB1V4
F9
GAC1/IO02PDB0V0
H1
IO286PSB7V1
D18
GBA1/IO81PDB1V4
F10
IO32NDB0V3
H2
IO291NPB7V2
D19
GND
F11
IO32PDB0V3
H3
VCC
D20
IO88PDB2V0
F12
IO44PDB1V0
H4
IO295NDB7V2
D21
IO90PDB2V1
F13
IO50NDB1V1
H5
IO297NDB7V2
D22
IO94NPB2V1
F14
IO60PDB1V2
H6
IO307NDB7V4
E1
IO293NDB7V2
F15
GBC0/IO79NDB1V4
H7
IO287PDB7V1
E2
IO299PPB7V3
F16
VCCPLB
H8
VMV0
E3
GND
F17
VMV2
H9
VCCIB0
E4
GAB2/IO308PDB7V4
F18
IO82NDB2V0
H10
VCCIB0
E5
GAA2/IO309PDB7V4
F19
IO86PDB2V0
H11
IO36NDB0V4
E6
GNDQ
F20
IO96PDB2V1
H12
IO42NDB1V0
E7
GAB1/IO01PDB0V0
F21
IO96NDB2V1
H13
VCCIB1
E8
IO20NDB0V2
F22
IO98NDB2V2
H14
VCCIB1
E9
IO22NDB0V2
G1
IO289NDB7V1
H15
VMV1
E10
IO30NDB0V3
G2
IO289PDB7V1
H16
GBC2/IO84PDB2V0
E11
IO38PDB0V4
G3
IO291PPB7V2
H17
IO83NDB2V0
E12
IO44NDB1V0
G4
IO295PDB7V2
H18
IO100NDB2V2
3 -1 2
v1.1
IGLOOe Packaging
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
H19
IO100PDB2V2
K11
GND
M3
IO272NDB6V4
H20
VCC
K12
GND
M4
GFA2/IO272PDB6V4
H21
VMV2
K13
GND
M5
GFA1/IO273PDB6V4
H22
IO105PDB2V2
K14
VCC
M6
VCCPLF
J1
IO285NDB7V1
K15
VCCIB2
M7
IO271NDB6V4
J2
IO285PDB7V1
K16
GCC1/IO112PPB2V3
M8
GFB2/IO271PDB6V4
J3
VMV7
K17
IO108NDB2V3
M9
VCC
J4
IO279PDB7V0
K18
IO108PDB2V3
M10
GND
J5
IO283PDB7V1
K19
IO110NPB2V3
M11
GND
J6
IO281PDB7V0
K20
IO106NPB2V3
M12
GND
J7
IO287NDB7V1
K21
IO109NDB2V3
M13
GND
J8
VCCIB7
K22
IO107NDB2V3
M14
VCC
J9
GND
L1
IO257PSB6V2
M15
GCB2/IO116PPB3V0
J10
VCC
L2
IO276PDB7V0
M16
GCA1/IO114PPB3V0
J11
VCC
L3
IO276NDB7V0
M17
GCC2/IO117PPB3V0
J12
VCC
L4
GFB0/IO274NPB7V0
M18
VCCPLC
J13
VCC
L5
GFA0/IO273NDB6V4
M19
GCA2/IO115PDB3V0
J14
GND
L6
GFB1/IO274PPB7V0
M20
IO115NDB3V0
J15
VCCIB2
L7
VCOMPLF
M21
IO126PDB3V1
J16
IO84NDB2V0
L8
GFC0/IO275NPB7V0
M22
IO124PSB3V1
J17
IO104NDB2V2
L9
VCC
N1
IO255PPB6V2
J18
IO104PDB2V2
L10
GND
N2
IO253NDB6V2
J19
IO106PPB2V3
L11
GND
N3
VMV6
J20
GNDQ
L12
GND
N4
GFC2/IO270PPB6V4
J21
IO109PDB2V3
L13
GND
N5
IO261PPB6V3
J22
IO107PDB2V3
L14
VCC
N6
IO263PDB6V3
K1
IO277NDB7V0
L15
GCC0/IO112NPB2V3
N7
IO263NDB6V3
K2
IO277PDB7V0
L16
GCB1/IO113PPB2V3
N8
VCCIB6
K3
GNDQ
L17
GCA0/IO114NPB3V0
N9
VCC
K4
IO279NDB7V0
L18
VCOMPLC
N10
GND
K5
IO283NDB7V1
L19
GCB0/IO113NPB2V3
N11
GND
K6
IO281NDB7V0
L20
IO110PPB2V3
N12
GND
K7
GFC1/IO275PPB7V0
L21
IO111NDB2V3
N13
GND
K8
VCCIB7
L22
IO111PDB2V3
N14
VCC
K9
VCC
M1
GNDQ
N15
VCCIB3
K10
GND
M2
IO255NPB6V2
N16
IO116NPB3V0
v1.1
3 - 13
Package Pin Assignments
484-Pin FBGA
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
N17
IO132NPB3V2
R9
VCCIB5
U1
IO240PPB6V0
N18
IO117NPB3V0
R10
VCCIB5
U2
IO238PDB6V0
N19
IO132PPB3V2
R11
IO196NDB5V0
U3
IO238NDB6V0
N20
GNDQ
R12
IO196PDB5V0
U4
GEB1/IO235PDB6V0
N21
IO126NDB3V1
R13
VCCIB4
U5
GEB0/IO235NDB6V0
N22
IO128PDB3V1
R14
VCCIB4
U6
VMV6
P1
IO247PDB6V1
R15
VMV3
U7
VCCPLE
P2
IO253PDB6V2
R16
VCCPLD
U8
IO233NPB5V4
P3
IO270NPB6V4
R17
GDB1/IO152PPB3V4
U9
IO222PPB5V3
P4
IO261NPB6V3
R18
GDC1/IO151PDB3V4
U10
IO206PDB5V1
P5
IO249PPB6V1
R19
IO138NDB3V3
U11
IO202PDB5V1
P6
IO259PDB6V3
R20
VCC
U12
IO194PDB5V0
P7
IO259NDB6V3
R21
IO130NDB3V2
U13
IO176NDB4V2
P8
VCCIB6
R22
IO134PDB3V2
U14
IO176PDB4V2
P9
GND
T1
IO243PPB6V1
U15
VMV4
P10
VCC
T2
IO245NDB6V1
U16
TCK
P11
VCC
T3
IO243NPB6V1
U17
VPUMP
P12
VCC
T4
IO241PDB6V0
U18
TRST
P13
VCC
T5
IO241NDB6V0
U19
GDA0/IO153NDB3V4
P14
GND
T6
GEC1/IO236PPB6V0
U20
IO144NDB3V3
P15
VCCIB3
T7
VCOMPLE
U21
IO140NDB3V3
P16
GDB0/IO152NPB3V4
T8
GNDQ
U22
IO142PDB3V3
P17
IO136NDB3V2
T9
GEA2/IO233PPB5V4
V1
IO239PDB6V0
P18
IO136PDB3V2
T10
IO206NDB5V1
V2
IO240NPB6V0
P19
IO138PDB3V3
T11
IO202NDB5V1
V3
GND
P20
VMV3
T12
IO194NDB5V0
V4
GEA1/IO234PDB6V0
P21
IO130PDB3V2
T13
IO186NDB4V4
V5
GEA0/IO234NDB6V0
P22
IO128NDB3V1
T14
IO186PDB4V4
V6
GNDQ
R1
IO247NDB6V1
T15
GNDQ
V7
GEC2/IO231PDB5V4
R2
IO245PDB6V1
T16
VCOMPLD
V8
IO222NPB5V3
R3
VCC
T17
VJTAG
V9
IO204NDB5V1
R4
IO249NPB6V1
T18
GDC0/IO151NDB3V4
V10
IO204PDB5V1
R5
IO251NDB6V2
T19
GDA1/IO153PDB3V4
V11
IO195NDB5V0
R6
IO251PDB6V2
T20
IO144PDB3V3
V12
IO195PDB5V0
R7
GEC0/IO236NPB6V0
T21
IO140PDB3V3
V13
IO178NDB4V3
R8
VMV5
T22
IO134NDB3V2
V14
IO178PDB4V3
3 -1 4
v1.1
IGLOOe Packaging
484-Pin FBGA
484-Pin FBGA
Pin Number
AGLE3000 Function
Pin Number
AGLE3000 Function
V15
IO155NDB4V0
Y6
IO220NDB5V3
V16
GDB2/IO155PDB4V0
Y7
IO220PDB5V3
V17
TDI
Y8
VCC
V18
GNDQ
Y9
VCC
V19
TDO
Y10
IO200PDB5V0
V20
GND
Y11
IO192PDB4V4
V21
IO146PDB3V4
Y12
IO188NPB4V4
V22
IO142NDB3V3
Y13
IO187PSB4V4
W1
IO239NDB6V0
Y14
VCC
W2
IO237PDB6V0
Y15
VCC
W3
IO230PSB5V4
Y16
IO164NDB4V1
W4
GND
Y17
IO164PDB4V1
W5
IO232NDB5V4
Y18
GND
W6
FF/GEB2/IO232PDB5V
4
Y19
IO158PPB4V0
Y20
IO150PDB3V4
W7
IO231NDB5V4
Y21
IO148NPB3V4
W8
IO214NDB5V2
Y22
VCCIB3
W9
IO214PDB5V2
W10
IO200NDB5V0
W11
IO192NDB4V4
W12
IO184NDB4V3
W13
IO184PDB4V3
W14
IO156NDB4V0
W15
GDC2/IO156PDB4V0
W16
IO154NDB4V0
W17
GDA2/IO154PDB4V0
W18
TMS
W19
GND
W20
IO150NDB3V4
W21
IO146NDB3V4
W22
IO148PPB3V4
Y1
VCCIB6
Y2
IO237NDB6V0
Y3
IO228NDB5V4
Y4
IO224NDB5V3
Y5
GND
v1.1
3 - 15
Package Pin Assignments
896-Pin FBGA
A1 Ball Pad Corner
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
Note: This is the bottom view of the package.
Note
For Package Manufacturing and Environmental information, visit the Resource Center at
http://www.actel.com/products/solutions/package/docs.aspx.
3 -1 6
v1.1
IGLOOe Packaging
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
A2
GND
AA8
IO245NDB6V1
AB13
IO206PDB5V1
A3
GND
AA9
GEB1/IO235PPB6V0
AB14
IO198NDB5V0
A4
IO14NPB0V1
AA10
VCC
AB15
IO198PDB5V0
A5
GND
AA11
IO226PPB5V4
AB16
IO192NDB4V4
A6
IO07NPB0V0
AA12
VCCIB5
AB17
IO192PDB4V4
A7
GND
AA13
VCCIB5
AB18
IO178NDB4V3
A8
IO09NDB0V1
AA14
VCCIB5
AB19
IO178PDB4V3
A9
IO17NDB0V2
AA15
VCCIB5
AB20
IO174NDB4V2
A10
IO17PDB0V2
AA16
VCCIB4
AB21
IO162NPB4V1
A11
IO21NDB0V2
AA17
VCCIB4
AB22
VCC
A12
IO21PDB0V2
AA18
VCCIB4
AB23
VCCPLD
A13
IO33NDB0V4
AA19
VCCIB4
AB24
VCCIB3
A14
IO33PDB0V4
AA20
IO174PDB4V2
AB25
IO150PDB3V4
A15
IO35NDB0V4
AA21
VCC
AB26
IO148PDB3V4
A16
IO35PDB0V4
AA22
IO142NPB3V3
AB27
IO147NDB3V4
A17
IO41NDB1V0
AA23
IO144NDB3V3
AB28
IO145PDB3V3
A18
IO43NDB1V0
AA24
IO144PDB3V3
AB29
IO143PDB3V3
A19
IO43PDB1V0
AA25
IO146NDB3V4
AB30
IO137PDB3V2
A20
IO45NDB1V0
AA26
IO146PDB3V4
AC1
IO254PDB6V2
A21
IO45PDB1V0
AA27
IO147PDB3V4
AC2
IO254NDB6V2
A22
IO57NDB1V2
AA28
IO139NDB3V3
AC3
IO240PDB6V0
A23
IO57PDB1V2
AA29
IO139PDB3V3
AC4
GEC1/IO236PDB6V0
A24
GND
AA30
IO133NDB3V2
AC5
IO237PDB6V0
A25
IO69PPB1V3
AB1
IO256NDB6V2
AC6
IO237NDB6V0
A26
GND
AB2
IO244PDB6V1
AC7
VCOMPLE
A27
GBC1/IO79PPB1V4
AB3
IO244NDB6V1
AC8
GND
A28
GND
AB4
IO241PDB6V0
AC9
IO226NPB5V4
A29
GND
AB5
IO241NDB6V0
AC10
IO222NDB5V3
AA1
IO256PDB6V2
AB6
IO243NPB6V1
AC11
IO216NPB5V2
AA2
IO248PDB6V1
AB7
VCCIB6
AC12
IO210NPB5V2
AA3
IO248NDB6V1
AB8
VCCPLE
AC13
IO204NDB5V1
AA4
IO246NDB6V1
AB9
VCC
AC14
IO204PDB5V1
AA5
GEA1/IO234PDB6V0
AB10
IO222PDB5V3
AC15
IO194NDB5V0
AA6
GEA0/IO234NDB6V0
AB11
IO218PPB5V3
AC16
IO188NDB4V4
AA7
IO243PPB6V1
AB12
IO206NDB5V1
AC17
IO188PDB4V4
v1.1
3 - 17
Package Pin Assignments
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
AC18
IO182PPB4V3
AD22
VCCIB4
AE26
GDB0/IO152NDB3V4
AC19
IO170NPB4V2
AD23
TCK
AE27
GDB1/IO152PDB3V4
AC20
IO164NDB4V1
AD24
VCC
AE28
VMV3
AC21
IO164PDB4V1
AD25
TRST
AE28
VMV3
AC22
IO162PPB4V1
AD26
VCCIB3
AE29
VCC
AC23
GND
AD27
GDA0/IO153NDB3V4
AE30
IO149PDB3V4
AC24
VCOMPLD
AD28
GDC0/IO151NDB3V4
AF1
GND
AC25
IO150NDB3V4
AD29
GDC1/IO151PDB3V4
AF2
IO238PPB6V0
AC26
IO148NDB3V4
AD30
GND
AF3
VCCIB6
AC27
GDA1/IO153PDB3V4
AE1
IO242PPB6V1
AF4
IO220NPB5V3
AC28
IO145NDB3V3
AE2
VCC
AF5
VCC
AC29
IO143NDB3V3
AE3
IO239PDB6V0
AF6
IO228NDB5V4
AC30
IO137NDB3V2
AE4
IO239NDB6V0
AF7
VCCIB5
AD1
GND
AE5
VMV6
AF8
IO230PDB5V4
AD2
IO242NPB6V1
AE5
VMV6
AF9
IO229NDB5V4
AD3
IO240NDB6V0
AE6
GND
AF10
IO229PDB5V4
AD4
GEC0/IO236NDB6V0
AE7
GNDQ
AF11
IO214PPB5V2
AD5
VCCIB6
AE8
IO230NDB5V4
AF12
IO208NDB5V1
AD6
GNDQ
AE9
IO224NPB5V3
AF13
IO208PDB5V1
AD6
GNDQ
AE10
IO214NPB5V2
AF14
IO200PDB5V0
AD7
VCC
AE11
IO212NDB5V2
AF15
IO196NDB5V0
AD8
VMV5
AE12
IO212PDB5V2
AF16
IO186NDB4V4
AD9
VCCIB5
AE13
IO202NPB5V1
AF17
IO186PDB4V4
AD10
IO224PPB5V3
AE14
IO200NDB5V0
AF18
IO180NDB4V3
AD11
IO218NPB5V3
AE15
IO196PDB5V0
AF19
IO180PDB4V3
AD12
IO216PPB5V2
AE16
IO190NDB4V4
AF20
IO168NDB4V1
AD13
IO210PPB5V2
AE17
IO184PDB4V3
AF21
IO168PDB4V1
AD14
IO202PPB5V1
AE18
IO184NDB4V3
AF22
IO160NDB4V0
AD15
IO194PDB5V0
AE19
IO172PDB4V2
AF23
IO158NPB4V0
AD16
IO190PDB4V4
AE20
IO172NDB4V2
AF24
VCCIB4
AD17
IO182NPB4V3
AE21
IO166NDB4V1
AF25
IO154NPB4V0
AD18
IO176NDB4V2
AE22
IO160PDB4V0
AF26
VCC
AD19
IO176PDB4V2
AE23
GNDQ
AF27
TDO
AD20
IO170PPB4V2
AE24
VMV4
AF28
VCCIB3
AD21
IO166PDB4V1
AE25
GND
AF29
GNDQ
3 -1 8
v1.1
IGLOOe Packaging
896-Pin FBGA
896-Pin FBGA
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AF29
GNDQ
AH4
AF30
GND
FF/GEB2/IO232PPB5V
4
AH5
VCCIB5
AH6
IO219NDB5V3
AH7
IO219PDB5V3
AH8
IO227NDB5V4
AH9
IO227PDB5V4
AH10
IO225PPB5V3
AH11
IO223PPB5V3
AH12
IO211NDB5V2
AH13
IO211PDB5V2
AH14
IO205PPB5V1
AH15
IO195NDB5V0
AH16
IO185NDB4V3
AH17
IO185PDB4V3
AH18
IO181PDB4V3
AH19
IO177NDB4V2
AH20
IO171NPB4V2
AH21
IO165PPB4V1
AH22
IO161PPB4V0
AH23
IO157NDB4V0
AH24
IO157PDB4V0
AH25
IO155NDB4V0
AH26
VCCIB4
AH27
TDI
AH28
VCC
AH29
VPUMP
AH30
GND
AJ1
GND
AJ2
GND
AJ3
GEA2/IO233PPB5V4
AJ4
VCC
AJ5
IO217NPB5V2
AJ6
VCC
AJ7
IO215NPB5V2
AG1
AG2
AG3
AG4
AG5
AG6
AG7
AG8
AG9
AG10
AG11
AG12
AG13
AG14
AG15
AG16
AG17
AG18
AG19
AG20
AG21
AG22
AG23
AG24
AG25
AG26
AG27
AG28
AG29
AG30
AH1
AH2
AH3
IO238NPB6V0
VCC
IO232NPB5V4
GND
IO220PPB5V3
IO228PDB5V4
IO231NDB5V4
GEC2/IO231PDB5V4
IO225NPB5V3
IO223NPB5V3
IO221PDB5V3
IO221NDB5V3
IO205NPB5V1
IO199NDB5V0
IO199PDB5V0
IO187NDB4V4
IO187PDB4V4
IO181NDB4V3
IO171PPB4V2
IO165NPB4V1
IO161NPB4V0
IO159NDB4V0
IO159PDB4V0
IO158PPB4V0
GDB2/IO155PDB4V0
GDA2/IO154PPB4V0
GND
VJTAG
VCC
IO149NDB3V4
GND
IO233NPB5V4
VCC
v1.1
896-Pin FBGA
Pin Number
AGLE3000
Function
AJ8
IO213NDB5V2
AJ9
IO213PDB5V2
AJ10
IO209NDB5V1
AJ11
IO209PDB5V1
AJ12
IO203NDB5V1
AJ13
IO203PDB5V1
AJ14
IO197NDB5V0
AJ15
IO195PDB5V0
AJ16
IO183NDB4V3
AJ17
IO183PDB4V3
AJ18
IO179NPB4V3
AJ19
IO177PDB4V2
AJ20
IO173NDB4V2
AJ21
IO173PDB4V2
AJ22
IO163NDB4V1
AJ23
IO163PDB4V1
AJ24
IO167NPB4V1
AJ25
VCC
AJ26
IO156NPB4V0
AJ27
VCC
AJ28
TMS
AJ29
GND
AJ30
GND
AK2
GND
AK3
GND
AK4
IO217PPB5V2
AK5
GND
AK6
IO215PPB5V2
AK7
GND
AK8
IO207NDB5V1
AK9
IO207PDB5V1
AK10
IO201NDB5V0
AK11
IO201PDB5V0
AK12
IO193NDB4V4
AK13
IO193PDB4V4
3 - 19
Package Pin Assignments
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
AK14
IO197PDB5V0
B20
IO53PDB1V1
C25
IO75PDB1V4
AK15
IO191NDB4V4
B21
IO53NDB1V1
C26
VCCIB1
AK16
IO191PDB4V4
B22
IO61NDB1V2
C27
IO64PPB1V2
AK17
IO189NDB4V4
B23
IO61PDB1V2
C28
VCC
AK18
IO189PDB4V4
B24
IO69NPB1V3
C29
GBA1/IO81PPB1V4
AK19
IO179PPB4V3
B25
VCC
C30
GND
AK20
IO175NDB4V2
B26
GBC0/IO79NPB1V4
D1
IO303PPB7V3
AK21
IO175PDB4V2
B27
VCC
D2
VCC
AK22
IO169NDB4V1
B28
IO64NPB1V2
D3
IO305NPB7V3
AK23
IO169PDB4V1
B29
GND
D4
GND
AK24
GND
B30
GND
D5
GAA1/IO00PPB0V0
AK25
IO167PPB4V1
C1
GND
D6
GAC1/IO02PDB0V0
AK26
GND
C2
IO309NPB7V4
D7
IO06NPB0V0
AK27
GDC2/IO156PPB4V0
C3
VCC
D8
GAB0/IO01NDB0V0
AK28
GND
C4
GAA0/IO00NPB0V0
D9
IO05NDB0V0
AK29
GND
C5
VCCIB0
D10
IO11NDB0V1
B1
GND
C6
IO03PDB0V0
D11
IO11PDB0V1
B2
GND
C7
IO03NDB0V0
D12
IO23NDB0V2
B3
GAA2/IO309PPB7V4
C8
GAB1/IO01PDB0V0
D13
IO23PDB0V2
B4
VCC
C9
IO05PDB0V0
D14
IO27PDB0V3
B5
IO14PPB0V1
C10
IO15NPB0V1
D15
IO40PDB0V4
B6
VCC
C11
IO25NDB0V3
D16
IO47NDB1V0
B7
IO07PPB0V0
C12
IO25PDB0V3
D17
IO47PDB1V0
B8
IO09PDB0V1
C13
IO31NPB0V3
D18
IO55NPB1V1
B9
IO15PPB0V1
C14
IO27NDB0V3
D19
IO65NDB1V3
B10
IO19NDB0V2
C15
IO39NDB0V4
D20
IO65PDB1V3
B11
IO19PDB0V2
C16
IO39PDB0V4
D21
IO71NDB1V3
B12
IO29NDB0V3
C17
IO55PPB1V1
D22
IO71PDB1V3
B13
IO29PDB0V3
C18
IO51PDB1V1
D23
IO73NDB1V4
B14
IO31PPB0V3
C19
IO59NDB1V2
D24
IO73PDB1V4
B15
IO37NDB0V4
C20
IO63NDB1V2
D25
IO74NDB1V4
B16
IO37PDB0V4
C21
IO63PDB1V2
D26
GBB0/IO80NPB1V4
B17
IO41PDB1V0
C22
IO67NDB1V3
D27
GND
B18
IO51NDB1V1
C23
IO67PDB1V3
D28
GBA0/IO81NPB1V4
B19
IO59PDB1V2
C24
IO75NDB1V4
D29
VCC
3 -2 0
v1.1
IGLOOe Packaging
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
D30
GBA2/IO82PPB2V0
F5
VMV7
G7
VCC
E1
GND
F5
VMV7
G8
VMV0
E2
IO303NPB7V3
F6
GND
G9
VCCIB0
E3
VCCIB7
F7
GNDQ
G10
IO10NDB0V1
E4
IO305PPB7V3
F8
IO12NDB0V1
G11
IO16NDB0V1
E5
VCC
F9
IO12PDB0V1
G12
IO22PDB0V2
E6
GAC0/IO02NDB0V0
F10
IO10PDB0V1
G13
IO26PPB0V3
E7
VCCIB0
F11
IO16PDB0V1
G14
IO38NPB0V4
E8
IO06PPB0V0
F12
IO22NDB0V2
G15
IO36NDB0V4
E9
IO24NDB0V2
F13
IO30NDB0V3
G16
IO46NDB1V0
E10
IO24PDB0V2
F14
IO30PDB0V3
G17
IO46PDB1V0
E11
IO13NDB0V1
F15
IO36PDB0V4
G18
IO56NDB1V1
E12
IO13PDB0V1
F16
IO48NDB1V0
G19
IO56PDB1V1
E13
IO34NDB0V4
F17
IO48PDB1V0
G20
IO66NDB1V3
E14
IO34PDB0V4
F18
IO50NDB1V1
G21
IO66PDB1V3
E15
IO40NDB0V4
F19
IO58NDB1V2
G22
VCCIB1
E16
IO49NDB1V1
F20
IO60PDB1V2
G23
VMV1
E17
IO49PDB1V1
F21
IO77NDB1V4
G24
VCC
E18
IO50PDB1V1
F22
IO72NDB1V3
G25
GNDQ
E19
IO58PDB1V2
F23
IO72PDB1V3
G25
GNDQ
E20
IO60NDB1V2
F24
GNDQ
G26
VCCIB2
E21
IO77PDB1V4
F25
GND
G27
IO86NDB2V0
E22
IO68NDB1V3
F26
VMV2
G28
IO92NDB2V1
E23
IO68PDB1V3
F26
VMV2
G29
IO100PPB2V2
E24
VCCIB1
F27
IO86PDB2V0
G30
GND
E25
IO74PDB1V4
F28
IO92PDB2V1
H1
IO294PDB7V2
E26
VCC
F29
VCC
H2
IO294NDB7V2
E27
GBB1/IO80PPB1V4
F30
IO100NPB2V2
H3
IO300NDB7V3
E28
VCCIB2
G1
GND
H4
IO300PDB7V3
E29
IO82NPB2V0
G2
IO296NPB7V2
H5
IO295PDB7V2
E30
GND
G3
IO306NDB7V4
H6
IO299PDB7V3
F1
IO296PPB7V2
G4
IO297NDB7V2
H7
VCOMPLA
F2
VCC
G5
VCCIB7
H8
GND
F3
IO306PDB7V4
G6
GNDQ
H9
IO08NDB0V0
F4
IO297PDB7V2
G6
GNDQ
H10
IO08PDB0V0
v1.1
3 - 21
Package Pin Assignments
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
H11
IO18PDB0V2
J16
IO42PDB1V0
K21
VCC
H12
IO26NPB0V3
J17
IO44NDB1V0
K22
IO78PPB1V4
H13
IO28NDB0V3
J18
IO44PDB1V0
K23
IO88NDB2V0
H14
IO28PDB0V3
J19
IO54NDB1V1
K24
IO88PDB2V0
H15
IO38PPB0V4
J20
IO54PDB1V1
K25
IO94PDB2V1
H16
IO42NDB1V0
J21
IO76NPB1V4
K26
IO94NDB2V1
H17
IO52NDB1V1
J22
VCC
K27
IO85PDB2V0
H18
IO52PDB1V1
J23
VCCPLB
K28
IO85NDB2V0
H19
IO62NDB1V2
J24
VCCIB2
K29
IO93PDB2V1
H20
IO62PDB1V2
J25
IO90PDB2V1
K30
IO93NDB2V1
H21
IO70NDB1V3
J26
IO90NDB2V1
L1
IO286NDB7V1
H22
IO70PDB1V3
J27
GBB2/IO83PDB2V0
L2
IO286PDB7V1
H23
GND
J28
IO83NDB2V0
L3
IO298NDB7V3
H24
VCOMPLB
J29
IO91PDB2V1
L4
IO298PDB7V3
H25
GBC2/IO84PDB2V0
J30
IO91NDB2V1
L5
IO283PDB7V1
H26
IO84NDB2V0
K1
IO288NDB7V1
L6
IO291NDB7V2
H27
IO96PDB2V1
K2
IO288PDB7V1
L7
IO291PDB7V2
H28
IO96NDB2V1
K3
IO304NDB7V3
L8
IO293PDB7V2
H29
IO89PDB2V0
K4
IO304PDB7V3
L9
IO293NDB7V2
H30
IO89NDB2V0
K5
GAB2/IO308PDB7V4
L10
IO307NPB7V4
J1
IO290NDB7V2
K6
IO308NDB7V4
L11
VCC
J2
IO290PDB7V2
K7
IO301PDB7V3
L12
VCC
J3
IO302NDB7V3
K8
IO301NDB7V3
L13
VCC
J4
IO302PDB7V3
K9
GAC2/IO307PPB7V4
L14
VCC
J5
IO295NDB7V2
K10
VCC
L15
VCC
J6
IO299NDB7V3
K11
IO04PPB0V0
L16
VCC
J7
VCCIB7
K12
VCCIB0
L17
VCC
J8
VCCPLA
K13
VCCIB0
L18
VCC
J9
VCC
K14
VCCIB0
L19
VCC
J10
IO04NPB0V0
K15
VCCIB0
L20
VCC
J11
IO18NDB0V2
K16
VCCIB1
L21
IO78NPB1V4
J12
IO20NDB0V2
K17
VCCIB1
L22
IO104NPB2V2
J13
IO20PDB0V2
K18
VCCIB1
L23
IO98NDB2V2
J14
IO32NDB0V3
K19
VCCIB1
L24
IO98PDB2V2
J15
IO32PDB0V3
K20
IO76PPB1V4
L25
IO87PDB2V0
3 -2 2
v1.1
IGLOOe Packaging
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
L26
IO87NDB2V0
N1
IO276PDB7V0
P6
GFC1/IO275PDB7V0
L27
IO97PDB2V1
N2
IO278PDB7V0
P7
GFC0/IO275NDB7V0
L28
IO101PDB2V2
N3
IO280PDB7V0
P8
IO277PDB7V0
L29
IO103PDB2V2
N4
IO284PDB7V1
P9
IO277NDB7V0
L30
IO119NDB3V0
N5
IO279PDB7V0
P10
VCCIB7
M1
IO282NDB7V1
N6
IO285NDB7V1
P11
VCC
M2
IO282PDB7V1
N7
IO287NDB7V1
P12
GND
M3
IO292NDB7V2
N8
IO281NDB7V0
P13
GND
M4
IO292PDB7V2
N9
IO281PDB7V0
P14
GND
M5
IO283NDB7V1
N10
VCCIB7
P15
GND
M6
IO285PDB7V1
N11
VCC
P16
GND
M7
IO287PDB7V1
N12
GND
P17
GND
M8
IO289PDB7V1
N13
GND
P18
GND
M9
IO289NDB7V1
N14
GND
P19
GND
M10
VCCIB7
N15
GND
P20
VCC
M11
VCC
N16
GND
P21
VCCIB2
M12
GND
N17
GND
P22
GCC1/IO112PDB2V3
M13
GND
N18
GND
P23
IO110PDB2V3
M14
GND
N19
GND
P24
IO110NDB2V3
M15
GND
N20
VCC
P25
IO109PPB2V3
M16
GND
N21
VCCIB2
P26
IO111NPB2V3
M17
GND
N22
IO106NDB2V3
P27
IO105PDB2V2
M18
GND
N23
IO106PDB2V3
P28
IO105NDB2V2
M19
GND
N24
IO108PDB2V3
P29
GCC2/IO117PDB3V0
M20
VCC
N25
IO108NDB2V3
P30
IO117NDB3V0
M21
VCCIB2
N26
IO95NDB2V1
R1
GFC2/IO270PDB6V4
M22
NC
N27
IO99NDB2V2
R2
GFB1/IO274PPB7V0
M23
IO104PPB2V2
N28
IO99PDB2V2
R3
VCOMPLF
M24
IO102PDB2V2
N29
IO107PDB2V3
R4
GFA0/IO273NDB6V4
M25
IO102NDB2V2
N30
IO107NDB2V3
R5
GFB0/IO274NPB7V0
M26
IO95PDB2V1
P1
IO276NDB7V0
R6
IO271NDB6V4
M27
IO97NDB2V1
P2
IO278NDB7V0
R7
GFB2/IO271PDB6V4
M28
IO101NDB2V2
P3
IO280NDB7V0
R8
IO269PDB6V4
M29
IO103NDB2V2
P4
IO284NDB7V1
R9
IO269NDB6V4
M30
IO119PDB3V0
P5
IO279NDB7V0
R10
VCCIB7
v1.1
3 - 23
Package Pin Assignments
896-Pin FBGA
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
R11
VCC
T16
GND
U21
VCCIB3
R12
GND
T17
GND
U22
IO120PDB3V0
R13
GND
T18
GND
U23
IO128PDB3V1
R14
GND
T19
GND
U24
IO124PDB3V1
R15
GND
T20
VCC
U25
IO124NDB3V1
R16
GND
T21
VCCIB3
U26
IO126PDB3V1
R17
GND
T22
IO109NPB2V3
U27
IO129PDB3V1
R18
GND
T23
IO116NDB3V0
U28
IO127PDB3V1
R19
GND
T24
IO118NDB3V0
U29
IO125PDB3V1
R20
VCC
T25
IO122NPB3V1
U30
IO121NDB3V0
R21
VCCIB2
T26
GCA1/IO114PPB3V0
V1
IO268NDB6V4
R22
GCC0/IO112NDB2V3
T27
GCB0/IO113NPB2V3
V2
IO262PDB6V3
R23
GCB2/IO116PDB3V0
T28
GCA2/IO115PPB3V0
V3
IO260PDB6V3
R24
IO118PDB3V0
T29
VCCPLC
V4
IO252PDB6V2
R25
IO111PPB2V3
T30
IO121PDB3V0
V5
IO257NPB6V2
R26
IO122PPB3V1
U1
IO268PDB6V4
V6
IO261NPB6V3
R27
GCA0/IO114NPB3V0
U2
IO264NDB6V3
V7
IO255PDB6V2
R28
VCOMPLC
U3
IO264PDB6V3
V8
IO259PDB6V3
R29
GCB1/IO113PPB2V3
U4
IO258PDB6V3
V9
IO259NDB6V3
R30
IO115NPB3V0
U5
IO258NDB6V3
V10
VCCIB6
T1
IO270NDB6V4
U6
IO257PPB6V2
V11
VCC
T2
VCCPLF
U7
IO261PPB6V3
V12
GND
T3
GFA2/IO272PPB6V4
U8
IO265NDB6V3
V13
GND
T4
GFA1/IO273PDB6V4
U9
IO263NDB6V3
V14
GND
T5
IO272NPB6V4
U10
VCCIB6
V15
GND
T6
IO267NDB6V4
U11
VCC
V16
GND
T7
IO267PDB6V4
U12
GND
V17
GND
T8
IO265PDB6V3
U13
GND
V18
GND
T9
IO263PDB6V3
U14
GND
V19
GND
T10
VCCIB6
U15
GND
V20
VCC
T11
VCC
U16
GND
V21
VCCIB3
T12
GND
U17
GND
V22
IO120NDB3V0
T13
GND
U18
GND
V23
IO128NDB3V1
T14
GND
U19
GND
V24
IO132PDB3V2
T15
GND
U20
VCC
V25
IO130PPB3V2
3 -2 4
v1.1
IGLOOe Packaging
896-Pin FBGA
896-Pin FBGA
Pin Number
AGLE3000
Function
Pin Number
AGLE3000
Function
V26
IO126NDB3V1
Y1
IO266PDB6V4
V27
IO129NDB3V1
Y2
IO250PDB6V2
V28
IO127NDB3V1
Y3
IO250NDB6V2
V29
IO125NDB3V1
Y4
IO246PDB6V1
V30
IO123PDB3V1
Y5
IO247NDB6V1
W1
IO266NDB6V4
Y6
IO247PDB6V1
W2
IO262NDB6V3
Y7
IO249NPB6V1
W3
IO260NDB6V3
Y8
IO245PDB6V1
W4
IO252NDB6V2
Y9
IO253NDB6V2
W5
IO251NDB6V2
Y10
GEB0/IO235NPB6V0
W6
IO251PDB6V2
Y11
VCC
W7
IO255NDB6V2
Y12
VCC
W8
IO249PPB6V1
Y13
VCC
W9
IO253PDB6V2
Y14
VCC
W10
VCCIB6
Y15
VCC
W11
VCC
Y16
VCC
W12
GND
Y17
VCC
W13
GND
Y18
VCC
W14
GND
Y19
VCC
W15
GND
Y20
VCC
W16
GND
Y21
IO142PPB3V3
W17
GND
Y22
IO134NDB3V2
W18
GND
Y23
IO138NDB3V3
W19
GND
Y24
IO140NDB3V3
W20
VCC
Y25
IO140PDB3V3
W21
VCCIB3
Y26
IO136PPB3V2
W22
IO134PDB3V2
Y27
IO141NDB3V3
W23
IO138PDB3V3
Y28
IO135NDB3V2
W24
IO132NDB3V2
Y29
IO131NDB3V2
W25
IO136NPB3V2
Y30
IO133PDB3V2
W26
IO130NPB3V2
W27
IO141PDB3V3
W28
IO135PDB3V2
W29
IO131PDB3V2
W30
IO123NDB3V1
v1.1
3 - 25
Package Pin Assignments
Part Number and Revision Date
Part Number 51700096-003-1
Revised June 2008
List of Changes
The following table lists critical changes that were made in the current version of the chapter.
Previous Version
v1.0
(January 2008)
Changes in Current Version (v1.1)
Page
The naming conventions changed for the following pins in the "484-Pin
FBGA" for the A3GLE600:
3-6
Pin Number
New Function Name
J19
IO45PPB2V1
K20
IO45NPB2V1
M2
IO114NPB6V1
N1
IO114PPB6V1
N4
GFC2/IO115PPB6V1
P3
IO115NPB6V1
Advance v0.4
(December 2007)
This document was previously in datasheet Advance v0.4. As a result of
moving to the handbook format, Actel has restarted the version numbers. The
new version number is v1.0.
N/A
Advance v0.3
(September 2007)
The "484-Pin FBGA" table for AGLE3000 is new.
4-11
The "896-Pin FBGA" package and table for AGLE3000 is new.
4-16
3 -2 6
v1.1
IGLOOe Packaging
Datasheet Categories
Categories
In order to provide the latest information to designers, some datasheets are published before data
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"
"Preliminary," and "Production." The definition of these categories are as follows:
Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains
general product information. This document gives an overview of specific device and family
information.
Advance
This version contains initial estimated information based on simulation, other products, devices, or
speed grades. This information can be used as estimates, but not for production. This label only
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used
when the data has not been fully characterized.
Preliminary
The datasheet contains information based on simulation and/or initial characterization. The
information is believed to be correct, but changes are possible.
Unmarked (production)
This version contains information that is considered to be final.
Export Administration Regulations (EAR)
The products described in this document are subject to the Export Administration Regulations
(EAR). They could require an approved export license prior to export from the United States. An
export includes release of product or disclosure of technology to a foreign national inside or
outside the United States.
Actel Safety Critical, Life Support, and High-Reliability
Applications Policy
The Actel products described in this advance status document may not have completed Actel’s
qualification process. Actel may amend or enhance products during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the
responsibility of each customer to ensure the fitness of any Actel product (but especially a new
product) for a particular purpose, including appropriateness for safety-critical, life-support, and
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your
local Actel sales office for additional reliability information.
v1.1
3 - 27
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.
w w w. a c t e l . c o m
Actel Corporation
Actel Europe Ltd.
Actel Japan
Actel Hong Kong
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
River Court,Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540
EXOS Ebisu Buillding 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
http://jp.actel.com
Room 2107, China Resources Building
26 Harbour Road
Wanchai, Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn
51700096-005-5/10.08
Similar pages