MOTOROLA BUT34 50 amperes npn silicon power darlington transistor 850 volts 250 watt Datasheet

 Order this document
by BUT34/D
SEMICONDUCTOR TECHNICAL DATA
 "#
&" "$ "##$ "# &$ # $$"
!%! 50 AMPERES
NPN SILICON
POWER DARLINGTON
TRANSISTOR
850 VOLTS
250 WATTS
The BUT34 Darlington transistor is designed for high–voltage, high–speed, power
switching in inductive circuits where fall time is critical. They are particularly suited for
line–operated SWITCHMODE applications such as:
•
•
•
•
•
AC and DC Motor Controls
Switching Regulators
Inverters
Solenoid and Relay Drivers
Fast Turn–Off Times
0.7 µs Inductive Fall Time at 25_C (Typ)
1.8 µs Inductive Storage Time at 25_C (Typ)
• Operating Temperature Range –65 to 200_C
CASE 197A–05
TO–204AE
(TO–3)
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
x
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
≈ 50
≈8
MAXIMUM RATINGS
Rating
Symbol
BUT34
Unit
Collector–Emitter Voltage
VCEO(sus)
500
Vdc
Collector–Emitter Voltage
VCEV
850
Vdc
Emitter–Base Voltage
VEB
10
Vdc
Collector Current — Continuous
Collector Current — Peak (1)
IC
ICM
50
75
Adc
Base Current — Continuous
Base Current — Peak (1)
IB
IBM
10
15
Adc
Free Wheel Diode Forward Current — Continuous
Free Wheel Diode Forward Current — Peak
IF
IFM
50
75
Adc
Total Power Dissipation @ TC = 25_C
@ TC = 100_C
Derate above 25_C
PD
250
140
Watts
W/_C
Operating and Storage Junction Temperature Range
TJ, Tstg
– 65 to + 200
_C
Symbol
Max
Unit
RθJC
0.7
_C/W
TL
275
_C
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering Purpose:
1/8″ from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle
10%.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
REV 7
 Motorola, Inc. 1995
Motorola Bipolar Power Transistor Device Data
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
BUT34
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
VCEO(sus)
500
—
—
Vdc
—
—
—
—
0.2
4.0
—
—
350
OFF CHARACTERISTICS
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 100 mA, IB = 0)
Collector Cutoff Current
(VCEV = Rated Value, VBE(off) = 1.5 Vdc)
(VCEV = Rated Value, VBE(off) = 1.5 Vdc, TC = 100_C)
ICEV
Emitter Cutoff Current
(VEB = 2.0 V, IC = 0)
IEBO
mAdc
mAdc
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased
Clamped Inductive SOA with Base Reverse Biased
IS/b
See Figure 16
RBSOA
See Figure 17
ON CHARACTERISTICS (1)
DC Current Gain
(IC = 16 A, VCE = 5 V)
(IC = 32 A, VCE = 5 V)
hFE
30
15
—
—
—
—
—
—
—
—
—
—
—
—
2.0
3.0
3.5
5.0
—
—
—
—
—
—
2.5
2.9
3.3
Vf
—
—
4.0
Vdc
See Table 1
ts
—
1.8
3.0
µs
IC = 32 A
tf
—
0.7
1.5
µs
IB1 = 3.2 A
ts
—
2.2
—
µs
VBE(off) = 5 V
tf
—
0.8
—
µs
Collector–Emitter Saturation Voltage
(IC = 16 A, IB = 0.8 A)
(IC = 32 A, IB = 3.2 A)
(IC = 40 A, IB = 4 A)
(IC = 50 A, IB = 10 A)
VCE(sat)
Base–Emitter Saturation Voltage
(IC = 16 A, IB = 0.8 A)
(IC = 32 A, IB = 3.2 A)
(IC = 40 A, IB = 4 A)
VBE(sat)
Diode Forward Voltage
(IF = 40 A)
Vdc
Vdc
SWITCHING CHARACTERISTICS
Inductive Load, Clamped (Table 1)
Storage Time
TC = 25_C
Fall Time
Storage Time
TC = 100_C
Fall Time
(1) Pulse Test: PW = 300 µs, Duty Cycle
2
2%.
Motorola Bipolar Power Transistor Device Data
BUT34
TYPICAL CHARACTERISTICS
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
400
hFE, DC CURRENT GAIN
200
100
50
30
20
10
5
3
2
1
TC = 25°C
VCE = 5.0 V
1
2
3 4
7
10
20
IC, COLLECTOR CURRENT (AMPS)
30 40
60
4
3
IC = 40 A
2
IC = 20 A
1
0
TC = 25°C
0.1
VBE, BASE–EMITTER VOLTAGE (VOLTS)
2.2
1.9
1.6
1.3
40°C
1.0
25°C
0.7
0.4
2 3
0.5
1
IB, BASE CURRENT (AMPS)
5
100°C
10
TC = 25°C
IC/IB = 10
3.2
2.8
2.5
2.2
1.9
1.6
25°C
1.3
100°C
1
2
3
5
7
10
20
30
50
1.0
1
2
3
5
7
10
20
30
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
Figure 3. Collector–Emitter Saturation Voltage
Figure 4. Base–Emitter Voltage
1
0.7
0.5
7
Figure 2. Collector Saturation Region
TC = 25°C
IC/IB = 10
2.5
r(t), EFFECTIVE TRANSIENT THERMAL
RESISTANCE (NORMALIZED)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 1. DC Current Gain
0.2 0.3
50
D = 0.5
0.3
0.2
0.2
0.1
0.1
0.07
0.05
0.05
0.02
0.01
0.03
0.02
0.01
0.01
SINGLE PULSE
0.02 0.03
0.05
P(pk)
RθJC(t) = r(t) RθJC
RθJC = 1.17°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) – TC = P(pk) RθJC(t)
0.1
0.2 0.3
0.5
1
2 3
5
t, TIME (ms)
10
20
30
t1
t2
DUTY CYCLE, D = t1/t2
50
100
200 300
500
100
0
Figure 5. Thermal Response
Motorola Bipolar Power Transistor Device Data
3
BUT34
Table 1. Test Conditions for Dynamic Performance
VCEO(sus)
INPUT
CONDITIONS
20 Ω
RBSOA AND INDUCTIVE SWITCHING
33
2W
1
5V
220
0
+10 V
22 µF
160
2N6438
D3
MR854
100
22
680 pF
2
Ib1 ADJUST
D1 D2 D3 D4 1N4934
CIRCUIT
VALUES
680 pF
PULSES
δ = 3%
2N3763
TEST CIRCUITS
D3
TUT
t1 Adjusted to
Obtain IC
t1
VCE
VCC
RS =
0.1 Ω
tf
VCEM
TIME
15
10
tf Clamped
t
ICM
Lcoil
Vclamp
–
AV
up to
50 V
OUTPUT WAVEFORMS
Rcoil
1N4937
OR
EQUIVALENT
2
Vclamp
5
4
3
5
t1
[ LcoilVCC(ICM)
t2
(ICM)
[ Lcoil
Vclamp
CRONETICS
PG130
up to
50 V
5 µs
1%
σ tF = 200 ns
IC = 16 A σ t = 400 ns
S
tS
t, TIME ( µs)
1
0.5
ID
VBE(off) = 5 V
2
3
2
10 V
1
0.5
VBE(off) = 5 V
0.3
IC = 25 A
10 V
0.2
tF
0.1
1
2
3
4
5
Ib2/Ib1
6
7
8
9
0.1
10
1
10
8
8
6
IC = 25 A
5
t, TIME ( µs)
t, TIME ( µs)
5
4
3
IC = 50 A
4
IC = 25 A
3
2
2
IC = 50 A
TC = 25°C
IC/IB = 5
TC = 25°C
VBE(off) = 5 V
4
IC/IB = 10
TC = 25°C
IC/IB = 20
30
50
Figure 7. Turn–Off Time versus IC
10
6
20
3
5
7
10
IC, COLLECTOR CURRENT (AMPS)
2
Figure 6. Fall Time versus IB2/IB1
1
VD
510
Test Equipment
Scope — Tektronix
475 or Equivalent
t
t2
TC = 25°C
IC/IB = 5
IC = 50 A
2N6339
22 µF
IC
1
ID
VCC
INDUCTIVE TEST CIRCUIT
INPUT
SEE ABOVE FOR
DETAILED CONDITIONS
D4
VD
DRIVER
Ib2 ADJUST
dTb ADJUST
dT
MR854
160
33
2W
Lcoil = 180 µH
Rcoil = 0.05 Ω
VCC = 10 V
1 µF
22
100
680 pF
Lcoil = 10 mH, VCC = 10 V
Rcoil = 0.7 Ω
Vclamp = VCEO(sus)
0.3
0.2
+
MM3735
PW Varied to Attain
IC = 100 mA
t, TIME ( µs)
D1
TEST CIRCUIT
for
FREE–WHEEL
DIODE
1
2
3
4
5
6
7
8
9
10
1
1
2
3
4
5
6
7
8
βf, FORCED GAIN
Ib2/Ib1
Figure 8. Storage Time versus Forced Gain
Figure 9. Storage Time versus Ib2/Ib1
9
Motorola Bipolar Power Transistor Device Data
10
BUT34
FREE–WHEEL DIODE CHARACTERISTICS
50
I
IE , EMITTER CURRENT (AMPS)
IFM
25 IRM
t
Id
IRM
1
0
VD
trr
DYN
–σ
di/dt = 25 A/µs
10 (VDYN VFM)
VFM
+σ
40
30
20
10
TC = 25°C
TFR
0
0
1
2
3
4
VEC, EMITTER COLLECTOR VOLTAGE (VOLTS)
Figure 11. Forward Voltage
30
25
20
15
10
5
0
40°C
0
10
TC = 25°C
20
30
IE, EMITTER CURRENT (AMPS)
40
50
I RM , PEAK REVERSE RECOVERY CURRENT (AMPS)
Vdyn , FORWARD MODULATION VOLTAGE (VOLTS)
Figure 10. Free Wheel Diode Measurements
5
50
TC = 25°C
40
30
20
10
0
0
Figure 12. Forward Modulation Voltage
10
20
30
IE, EMITTER CURREMT (AMPS)
40
50
Figure 13. Peak Reverse Recovery Current
2.2
TRR, REVERSE RECOVERY TIME ( µs)
TFR , FORWARD RECOVERY TIME ( µs)
15
TC = 25°C
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0
10
20
30
IE, EMITTER CURRENT (AMPS)
40
Figure 14. Forward Recovery Time
Motorola Bipolar Power Transistor Device Data
50
10
TC = 25°C
7
5
3
2
0.1
0.7
0.5
0.3
0
10
20
30
IE, EMITTER CURRENT (AMPS)
40
50
Figure 15. Reverse Recovery Time
5
BUT34
The Safe Operating Area figures shown in Figures 16 and 17 are
specifed for these devices under the test conditions shown.
SAFE OPERATING AREA INFORMATION
FORWARD BIAS
IC, COLLECTOR CURRENT (AMPS)
60
10 µs
DC
30
1 ms
100 µs
10
3.0
y
1.0
0.5
0.3
0.1
There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC – VCE limits of
the transistor that must be observed for reliable operation,
i.e., the transistor must not be subject to greater dissipation
than the curves indicate.
The data of Figure 16 is based on TC = 25_C; TJ(pk) is
variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated
when TC
25_C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the
voltages shown on Figure 16 may be found at any case temperature by using the appropriate curve on Figure 18.
TJ(pk) may be calculated from the data in Figure 5. At high
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations imposed by second breakdown.
TC = 25°C
1
10
100
300
5
30
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
1000
Figure 16. Safe Operating Area
ICM , PEAK COLLECTOR CURRENT (AMPS)
REVERSE BIAS
For inductive loads, high voltage and high current must be
sustained simultaneously during turn–off, in most cases, with
the base to emitter junction reverse biased. Under these
conditions the collector voltage must be held to a safe level
at or below a specific value of collector current. This can be
accomplished by several means such as active clamping,
RC snubbing, load line shaping, etc. The safe level for these
devices is specified as Reverse Bias Safe Operating Area
and represents the voltage–current condition allowable during reverse biased turnoff. This rating is verified under
clamped conditions so that the device is never subjected to
an avalanche mode. Figure 17 gives the RBSOA characteristics.
60
40
20
TC = 25°C
IC/IB = 10
VBE(off) = 5 V
0
0
200
400
600
850
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 17. Reverse Bias Safe Operating Area
POWER DERATING (FACTOR)
100
SECOND BREAKDOWN
DERATING
80
60
THERMAL
DERATING
40
20
0
0
40
80
120
IC, CASE TEMPERATURE (°C)
160
200
Figure 18. Power Derating
6
Motorola Bipolar Power Transistor Device Data
BUT34
PACKAGE DIMENSIONS
A
N
C
–T–
E
D
K
2 PL
0.30 (0.012)
U
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
SEATING
PLANE
T Q
M
M
Y
M
–Y–
L
2
H
G
B
M
T Y
1
–Q–
0.25 (0.010)
M
DIM
A
B
C
D
E
G
H
K
L
N
Q
U
V
INCHES
MIN
MAX
1.530 REF
0.990
1.050
0.250
0.335
0.057
0.063
0.060
0.070
0.430 BSC
0.215 BSC
0.440
0.480
0.665 BSC
0.760
0.830
0.151
0.165
1.187 BSC
0.131
0.188
MILLIMETERS
MIN
MAX
38.86 REF
25.15
26.67
6.35
8.51
1.45
1.60
1.53
1.77
10.92 BSC
5.46 BSC
11.18
12.19
16.89 BSC
19.31
21.08
3.84
4.19
30.15 BSC
3.33
4.77
STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
CASE 197A–05
TO–204AE (TO–3)
ISSUE J
Motorola Bipolar Power Transistor Device Data
7
BUT34
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315
MFAX: [email protected] – TOUCHTONE (602) 244–6609
INTERNET: http://Design–NET.com
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
8
◊
Motorola Bipolar Power Transistor Device Data
*BUT34/D*
BUT34/D
Similar pages