Cypress CY2509ZC-1 Spread awareâ ¢, ten/eleven output zero delay buffer Datasheet

CY2509/10
Spread Aware™, Ten/Eleven Output Zero Delay Buffer
Features
Key Specifications
• Spread Aware™—designed to work with SSFTG
reference signals
Operating Voltage: ................................................3.3V±10%
• Well suited to both 100- and 133-MHz designs
Cycle-to-Cycle Jitter: ................................................ <100 ps
Operating Range: ....................... 40 MHz < fOUT < 140 MHz
• Ten (CY2509) or eleven (CY2510) LVCMOS/LVTTL
outputs
• 50 ps typical peak cycle-to-cycle jitter
Output to Output Skew: ........................................... <100 ps
Phase Error Jitter:..................................................... <100 ps
• Single output enable pin for CY2510 version, dual pins
on CY2509 devices allow shutting down a portion of the
outputs
• 3.3V power supply
• On board 25Ω damping resistors
• Available in 24-pin TSSOP package
• Improved tracking skew, but narrower frequency
support limit when compared to W132-09B/10B
Block Diagram
FBIN
CLK
Pin Configurations
FBOUT
PLL
Q0
Q1
OE0:4
Q3
Q4
OE
Q5
Q6
OE5:8
1
24
CLK
VDD
2
23
AVDD
Q0
3
22
VDD
Q1
4
21
Q9
Q2
5
20
Q8
GND
6
19
GND
GND
7
18
GND
Q3
8
17
Q7
Q4
9
16
Q6
VDD
10
15
Q5
CY2510
Q2
AGND
Q7
OE
11
14
VDD
Q8
FBOUT
12
13
FBIN
AGND
1
24
CLK
VDD
2
23
AVDD
Q0
3
22
VDD
Q1
4
21
Q8
Q2
5
20
Q7
GND
6
19
GND
GND
7
18
GND
Q3
8
17
Q6
Q4
9
16
Q5
VDD
10
15
VDD
OE0:4
11
14
OE5:8
FBOUT
12
13
FBIN
Q9
Configuration of these blocks dependent upon specific option being used
•
3901 North First Street
•
CY2509
Cypress Semiconductor Corporation
Document #: 38-07230 Rev. *C
San Jose, CA 95134
•
408-943-2600
Revised July 01, 2005
CY2509/10
Pin Definitions
Pin
Name
Pin No.
(2509)
Pin No.
(2510)
Pin
Type
Pin Description
CLK
24
24
I
Reference Input: Output signals Q0:9 will be synchronized to this signal.
FBIN
13
13
I
Feedback Input: This input must be fed by one of the outputs (typically FBOUT)
to ensure proper functionality. If the trace between FBIN and FBOUT is equal in
length to the traces between the outputs and the signal destinations, then the
signals received at the destinations will be synchronized to the CLK signal input.
Q0:8
3, 4, 5, 8,
9, 16, 17,
20, 21
3, 4, 5, 8,
9, 15, 16,
17, 20
O
Integrated Series Resistor Outputs: The frequency and phase of the signals
provided by these pins will be equal to the reference signal if properly laid out.
Each output has a 25Ω series damping resistor integrated.
Q9
n/a
21
O
Integrated Series Resistor Output: The frequency and phase of the signal
provided by this pin will be equal to the reference signal if properly laid out. This
output has a 25Ω series damping resistor integrated.
FBOUT
12
12
O
Feedback Output: This output has a 25Ω series resistor integrated on chip.
Typically it is connected directly to the FBIN input with a trace equal in length to
the traces between outputs Q0:9 and the destination points of these output
signals.
AVDD
23
23
P
Analog Power Connection: Connect to 3.3V. Use ferrite beads to help reduce
noise for optimal jitter performance.
1
1
G
Analog Ground Connection: Connect to common system ground plane.
VDD
AGND
2, 10, 15,
22
2, 10, 14,
22
P
Power Connections: Connect to 3.3V. Use ferrite beads to help reduce noise
for optimal jitter performance.
GND
6, 7, 18,
19
6, 7, 18,
19
G
Ground Connections: Connect to common system ground plane.
OE
n/a
11
I
Output Enable Input: Tie to VDD (HIGH, 1) for normal operation. When brought
to GND (LOW, 0) all outputs are disabled to a LOW state.
OE0:4
11
n/a
I
Output Enable Input: Tie to VDD (HIGH, 1) for normal operation. When brought
to GND (LOW, 0) outputs Q0:4 are disabled to a LOW state.
OE5:8
14
n/a
I
Output Enable Input: Tie to VDD (HIGH, 1) for normal operation. When brought
to GND (LOW, 0) outputs Q5:8 are disabled to a LOW state.
Overview
The CY2509/10 is a PLL-based clock driver designed for use
in dual inline memory modules. The clock driver has output
frequencies of up to 133 MHz and output to output skews of
less than 250 ps. The CY2509/10 provides minimum cycle-tocycle and long-term jitter, which is of significant importance to
meet the tight input-to-input skew budget in DIMM applications.
The current generation of 256- and 512-megabyte memory
modules needs to support 100-MHz clocking speeds.
Especially for cards configured in 16x4 or 8x8 format, the clock
signal provided from the motherboard is generally not strong
Document #: 38-07230 Rev. *C
enough to meet all the requirements of the memory and logic
on the DIMM. The CY2509/10 takes in the signal from the
motherboard and buffers out clock signals with enough drive
to support all the DIMM board clocking needs. The CY2509/10
is also designed to meet the needs of new PC133 SDRAM
designs, operating to 133 MHz.
The CY2509/10 was specifically designed to accept SSFTG
signals currently being used in motherboard designs to reduce
EMI. Zero delay buffers which are not designed to pass this
feature through may cause skewing failures.
Output enable pins allow for shutdown of output when they are
not being used. This reduces EMI and power consumption.
Page 2 of 6
CY2509/10
VDD
0.1µF
AGND
2
VDD
CLK 24
3
Q0
VDD 22
4
Q1
Q9
21
5
Q2
Q8
20
6
GND
7
GND
8
Q3
Q7
17
9
Q4
Q6
16
10
VDD
Q5
15
11
OE
VDD 14
12
FBOUT
FBIN 13
AVDD 23
CY2510
VDD
0.1µF
1
0.1µF
3.3V
FB
10 µF
0.1µF
10 µF
FB
VDD
GND 19
GND 18
0.1µF
VDD
Figure 1. Schematic
Spread Aware™
Many systems being designed now utilize a technology called
Spread Spectrum Frequency Timing Generation. Cypress has
been one of the pioneers of SSFTG development, and we
designed this product so as not to filter off the Spread
Spectrum feature of the Reference input, assuming it exists.
When a zero delay buffer is not designed to pass the SS
feature through, the result is a significant amount of tracking
skew which may cause problems in systems requiring
synchronization.
For more details on Spread Spectrum timing technology,
please see the Cypress application note titled, “EMI
Suppression Techniques with Spread Spectrum Frequency
Timing Generator (SSFTG) ICs.”
How to Implement Zero Delay
Typically, Zero Delay Buffers (ZDBs) are used because a
designer wants to provide multiple copies of a clock signal in
phase with each other. The whole concept behind ZDBs is that
the signals at the destination chips are all going HIGH at the
same time as the input to the ZDB. In order to achieve this,
layout must compensate for trace length between the ZDB and
the target devices. The method of compensation is described
below.
External feedback is the trait that allows for this compensation.
Since the PLL on the ZDB will cause the feedback signal to be
in phase with the reference signal. When laying out the board,
match the trace lengths between the output being used for
feed back and the FBIN input to the PLL.
Document #: 38-07230 Rev. *C
If it is desirable to either add a little delay, or slightly precede
the input signal, this may also be affected by either making the
trace to the FBIN pin a little shorter or a little longer than the
traces to the devices being clocked.
Inserting Other Devices in Feedback Path
Another nice feature available due to the external feedback is
the ability to synchronize signals up to the signal coming from
some other device. This implementation can be applied to any
device (ASIC, multiple output clock buffer/driver, etc.) which is
put into the feedback path.
Referring to Figure 2, if the traces between the ASIC/buffer
and the destination of the clock signal(s) (A) are equal in length
to the trace between the buffer and the FBIN pin, the signals
at the destination(s) device will be driven HIGH at the same
time the Reference clock provided to the ZDB goes HIGH.
Synchronizing the other outputs of the ZDB to the outputs form
the ASIC/Buffer is more complex however, as any propagation
delay in the ASIC/Buffer must be accounted for.
Reference
Signal
Feedback
Input
Zero
Delay
Buffer
ASIC/
Buffer
A
Figure 2. Six Output Buffers in the Feedback Path
Page 3 of 6
CY2509/10
Absolute Maximum Ratings [1]
Stresses greater than those listed in this table may cause
permanent damage to the device. These represent a stress
rating only. Operation of the device at these or any other condi-
tions above those specified in the operating sections of this
specification is not implied. Maximum conditions for extended
periods may affect reliability.
.
Parameter
Description
Rating
Unit
VDD, VIN
Voltage on any pin with respect to GND
–0.5 to +7.0
V
TSTG
Storage Temperature
–65 to +150
°C
TA
Operating Temperature
0 to +70
°C
TB
Ambient Temperature under Bias
–55 to +125
°C
PD
Power Dissipation
0.5
W
DC Electrical Characteristics: TA =0°C to 70°C, VDD = 3.3V ±10%
Parameter
Description
Test Condition
Unloaded, 100 MHz
Min.
Typ.
Max.
Unit
IDD
Supply Current
–
–
200
mA
VIL
Input Low Voltage
–
–
0.8
V
VIH
Input High Voltage
2.0
–
VDD+0.3
V
VOL
Output Low Voltage
IOL = 12 mA
–
–
0.8
V
VOH
Output High Voltage
IOH = –12 mA
2.1
–
–
V
IIL
Input Low Current
VIN = 0V
–
–
50
µA
IIH
Input High Current
VIN = VDD
–
–
50
µA
Min.
Typ.
Max.
Unit
40
–
140
MHz
AC Electrical Characteristics: TA = 0°C to +70°C, VDD = 3.3V ±10%
Parameter
Description
Test Condition
load[5]
fOUT
Output Frequency
30-pF
tR
Output Rise Time
0.8V to 2.0V, 30-pF load
–
–
2.1
ns
tF
Output Fall Time
2.0V to 0.8V, 30-pF load
–
–
2.5
ns
–
–
4.5
ns
–
–
4.5
ns
Measured at VDD/2
–350
0
350
ps
–100
0
100
ps
tICLKR
tICLKF
Input Clock Rise
Input Clock Fall
Time[2]
Time[2]
Variation[3, 4]
tPEJ
CLK to FBIN Skew
tSK
Output to Output Skew
All outputs loaded equally
tD
Duty Cycle
30-pF load
43
50
58
%
tLOCK
PLL Lock Time
Power supply stable
–
–
1.0
ms
tJC
Jitter, Cycle-to-Cycle
–
50
100
ps
Notes:
1. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
2. Longer input rise and fall time will degrade skew and jitter performance.
3. Skew is measured at VDD/2 on rising edges.
4. Duty cycle is measured at VDD/2.
5. Production tests are run at 133 MHz.
Document #: 38-07230 Rev. *C
Page 4 of 6
CY2509/10
Ordering Information
Ordering Code
Package Type
Temperature Range
CY2509ZC-1
24-pin TSSOP
Commercial
CY2509ZC-1T
24-pin TSSOP - Tape and Reel
Commercial
CY2510ZC-1
24-pin TSSOP
Commercial
CY2510ZC-1T
24-pin TSSOP - Tape and Reel
Commercial
CY2509ZXC-1
24-pin TSSOP
Commercial
CY2509ZXC-1T
24-pin TSSOP - Tape and Reel
Commercial
CY2510ZXC-1
24-pin TSSOP
Commercial
CY2510ZXC-1T
24-pin TSSOP - Tape and Reel
Commercial
Lead-free
Package Drawing and Dimensions
24-Lead Thin Shrunk Small Outline Package (4.40-mm Body) Z24
PIN 1 ID
1
6.25[0.246]
6.50[0.256]
4.30[0.169]
4.50[0.177]
24
0.65[0.025]
BSC.
0.19[0.007]
0.30[0.012]
0.25[0.010]
BSC
1.10[0.043] MAX.
GAUGE
PLANE
0°-8°
0.076[0.003]
0.85[0.033]
0.95[0.037]
7.70[0.303]
7.90[0.311]
0.05[0.002]
0.15[0.006]
SEATING
PLANE
0.50[0.020]
0.70[0.027]
0.09[[0.003]
0.20[0.008]
51-85119-*A
Spread Aware is a trademark of Cypress Semiconductor Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.
Document #: 38-07230 Rev. *C
Page 5 of 6
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
CY2509/10
Document History Page
Document Title: CY2509/10 Spread Aware™, Ten/Eleven Output Zero Delay Buffer
Document Number: 38-07230
REV.
ECN NO.
Issue
Date
Orig. of
Change
Description of Change
**
110495
01/07/02
SZV
Change from Spec number: 38-00914 to 38-07230
*A
122844
12/14/02
RBI
Power up requirements added to Operating Conditions Information
*B
352015
See ECN
RGL
Added Lead-free devices
Added typical jitter and max. VIH numbers
*C
385383
See ECN
RGL
Minor Change: Replaced the wrong package drawing
Document #: 38-07230 Rev. *C
Page 6 of 6
Similar pages