AT-41532 General Purpose, Low Current NPN Silicon Bipolar Transistor Data Sheet Description Features Avago’s AT-41532 is a general purpose NPN bipolar transistor that has been optimized for maximum ft at low voltage operation, making it ideal for use in battery powered applications in cellular/PCS and other wireless markets. The AT-41532 uses the miniature 3-lead SOT-323 (SC-70) plastic package. • General Purpose NPN Bipolar Transistor Optimized for Low Current, Low Voltage Applications at 900 MHz, 1.8 GHz, and 2.4 GHz Optimized performance at 5 V makes this device ideal for use in 900 MHz, 1.8 GHz, and 2.4 GHz systems. Typical amplifier design at 900 MHz yields 1 dB NF and 15.5 dB associated gain at 5 V and 5 mA bias. High gain capability at 1 V and 1 mA makes this device a good fit for 900 MHz pager applications. A good noise match near 50 ohms at 900 MHz makes this a very user-friendly device. Moreover, voltage breakdowns are high enough to support operation at 10 V. The AT-41532 belongs to Avago’s AT-4XXXX series bipolar transistors. It exhibits excellent device uniformity, performance, and reliability as a result of ion-implantation, self-alignment techniques, and gold metalization in the fabrication process. 3-Lead SC-70 (SOT-323) Surface Mount Plastic Package Pin Configuration COLLECTOR 41 BASE EMITTER • Performance (5 V, 5 mA) 0.9 GHz: 1 dB NF, 15.5 dB GA 1.8 GHz: 1.4 dB NF, 10.5 dB GA 2.4 GHz: 1.9 dB NF, 9 dB GA • Characterized for 3, 5, and 8 V Use • Miniature 3-lead SOT-323 (SC-70) Plastic Package • High Breakdown Voltage (can be operated up to 10 V) • Lead-free Applications • LNA, Oscillator, Driver Amplifier, Buffer Amplifier, and Down Converter for Cellular and PCS Handsets and Cordless Telephones • LNA, Oscillator, Mixer, and Gain Amplifier for Pagers • Power Amplifier and Oscillator for RF-ID Tag • LNA and Gain Amplifier for GPS • LNA for CATV Set-Top Box AT-41532 Absolute Maximum Ratings Symbol Parameter Units Absolute Maximum[1] VEBO Emitter-Base Voltage V 1.5 VCBO Collector-Base Voltage V 20 VCEO Collector-Emitter Voltage V 12 IC Collector Current mA 50 PT Power Dissipation[2, 3] mW 225 Tj Junction Temperature °C 150 TSTG Storage Temperature °C -65 to 150 Thermal Resistance [2]: qjc = 350°C/W Notes: 1. Operation of this device above any one of these parameters may cause permanent damage. 2. Tmounting surface = 25°C. 3. Derate at 2.86 mW/°C for Tmounting surface > 72°C. Electrical Specifications, TA = 25°C Symbol Parameters and Test Conditions Units Min Typ Max hFE Forward Current Transfer Ratio VCE = 5 V, IC = 5 mA – 30 150 270 ICBO Collector Cutoff Current VCB = 3 V mA 0.2 IEBO Emitter Cutoff Current VEB = 1 V mA 1.0 Characterization Information, TA = 25°C Symbol Parameters and Test Conditions NF Noise Figure VCE = 5 V, IC = 5 mA GA Associated Gain VCE = 5 V, IC = 5 mA Units Min Typ f = 0.9 GHz f = 1.8 GHz f = 2.4 GHz dB 1.0 1.4 1.9 f = 0.9 GHz f = 1.8 GHz f = 2.4 GHz dB 15.5 10.5 9.0 P1dB Power at 1 dB Gain Compression (opt tuning) VCE = 5 V, IC = 25 mA f = 0.9 GHz dBm 14.5 G1dB Gain at 1 dB Gain Compression (opt tuning) VCE = 5 V, IC = 25 mA f = 0.9 GHz dB 14.5 IP3 Output Third Order Intercept Point (opt tuning) VCE = 5 V, IC = 25 mA f = 0.9 GHz dBm 25 |S21E|2 Gain in 50 Ω System VCE = 5 V, IC = 5 mA f = 0.9 GHz f = 2.4 GHz dB 12.5 13.25 5.2 AT-41532 Typical Performance 4.0 3.5 3.5 NOISE FIGURE (dB) NOISE FIGURE (dB) 2.5 2.0 1.5 1.0 2.5 2.0 1.5 1.0 0.5 0.5 0 1.0 2.0 3.0 0 4.0 0 1.0 3.0 1.5 1.0 0 4.0 0 1.0 2.0 16 2 mA 5 mA GAIN (dB) 12 GAIN (dB) 12 4 8 4 2 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 FREQUENCY (GHz) 2.0 2.5 3.0 3.5 4.0 FREQUENCY (GHz) Figure 4. AT-41532 Associated Gain vs. Frequency at 1 V, 1 mA. 8 7 G1 dB (dB) 10 5 0 6 5 4 3 2 2.7 V 5V -5 0 5 10 15 20 2.7 V 5V 1 25 COLLECTOR CURRENT (mA) Figure 7. AT-41532 P1 dB vs. Collector Current and Voltage (valid up to 2.4 GHz). 0 0 5 10 15 1.0 1.5 2.0 2.5 3.0 3.5 Figure 6. AT-41532 Associated Gain vs. Frequency and Current at 5 V. 9 15 0 0.5 FREQUENCY (GHz) Figure 5. AT-41532 Associated Gain vs. Frequency and Current at 2.7 V. 20 8 4 0 0.5 4.0 4.0 Figure 3. AT-41532 Typical Noise Figure vs. Frequency and Current at 5 V. 2 mA 5 mA 6 3.0 FREQUENCY (GHz) 16 8 GAIN (dB) 2.0 Figure 2. AT-41532 Typical Noise Figure vs. Frequency and Current at 2.7 V. 10 P1 dB (dBm) 2.0 FREQUENCY (GHz) Figure 1. AT-41532 Typical Noise Figure vs. Frequency at 1 V, 1 mA. 2.5 0.5 FREQUENCY (GHz) -10 2 mA 5 mA 3.0 NOISE FIGURE (dB) 3.0 3.0 0 3.5 2 mA 5 mA 20 25 COLLECTOR CURRENT (mA) Figure 8. AT-41532 G1 dB vs. Collector Current and Voltage (valid up to 2.4 GHz). 4.0 AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 1 V, IC = 1 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.787 -75 8.79 2.750 125 -20.18 0.098 49 0.860 -22 0.75 0.697 -104 7.28 2.311 106 -18.74 0.116 38 0.785 -28 1.0 0.620 -128 5.84 1.960 90 -18.40 0.120 31 0.734 -32 1.5 0.554 -166 3.40 1.480 66 -18.80 0.115 30 0.678 -40 2.0 0.538 -164 1.52 1.191 48 -18.69 0.116 42 0.653 -50 3.0 0.543 118 -1.06 0.886 22 -13.30 0.216 60 0.620 -73 4.0 0.559 79 -2.61 0.741 5 -8.03 0.397 47 0.568 -102 5.0 0.561 47 -3.06 0.703 -7 -4.83 0.574 24 0.487 -137 6.0 0.545 28 -2.81 0.724 -20 -3.11 0.699 0 0.398 -180 7.0 0.534 14 -2.46 0.754 -35 -2.30 0.768 -23 0.362 130 8.0 0.544 2 -2.38 0.761 -52 -2.08 0.787 -44 0.407 88 9.0 0.563 -10 -2.49 0.751 -68 -2.18 0.778 -63 0.467 58 10.0 0.597 -23 -2.79 0.725 -84 -2.52 0.748 -80 0.523 35 11.0 0.655 -34 -3.39 0.677 -100 -3.15 0.696 -96 0.593 16 12.0 0.703 -42 -4.03 0.629 -112 -3.76 0.649 -110 0.665 -6 AT-41532 Typical Noise Parameters, Common Emitter, ZO = 50 Ω, VCE = 1 V, IC = 1 mA 0.9 1.50 gmax dB(S|2,1|) k Mag Ang Rn ohms Gassoc dB 16 1.4 0.44 92 12.4 9.4 12 1.00 1.8 1.8 0.57 -183 3.0 7.6 8 0.75 2.0 1.9 0.60 -169 3.3 6.7 2.5 2.2 0.66 -140 10.1 5.7 4 0.50 3.0 2.6 0.71 -116 27.6 4.6 0 0.25 3.5 3.1 0.75 -95 59.9 3.5 -4 4.0 3.6 0.77 -77 103.0 2.1 0 1 2 3 4 1.25 5 0 6 FREQUENCY (GHz) Figure 9. Gain vs. Frequency at 1 V, 1 mA. gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor MAG = S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| Note: dB(|S 21|) = 20 * log(|S 21|) k Fmin dB GAIN (dB) Freq. GHz 20 Γopt AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.647 -82 13.45 4.702 119 -23.97 0.063 52 0.808 -21 0.75 0.532 -111 11.34 3.691 101 -22.60 0.074 46 0.737 -24 1.0 0.455 -134 9.54 3.000 88 -21.87 0.081 46 0.696 -27 1.5 0.394 -171 6.70 2.162 68 -20.48 0.095 52 0.658 -33 2.0 0.382 160 4.64 1.707 51 -18.50 0.119 59 0.643 -40 3.0 0.397 116 1.87 1.240 26 -13.56 0.210 61 0.627 -59 4.0 0.434 80 0.03 1.004 5 -9.26 0.344 50 0.604 -81 5.0 0.474 50 -1.20 0.871 -10 -6.05 0.498 32 0.556 -108 6.0 0.497 30 -1.81 0.812 -23 -3.84 0.643 11 0.470 -142 7.0 0.501 15 -1.88 0.805 -36 -2.40 0.759 -12 0.377 174 8.0 0.512 4 -1.89 0.804 -51 -1.73 0.819 -34 0.361 123 9.0 0.532 -9 -1.99 0.796 -67 -1.61 0.831 -55 0.411 82 10.0 0.569 -22 -2.31 0.767 -83 -1.86 0.808 -74 0.476 52 11.0 0.643 -32 -2.37 0.762 -97 -2.41 0.758 -93 0.562 27 12.0 0.687 -40 -3.51 0.668 -112 -3.10 0.700 -107 0.639 1 AT-32032 Typical Noise Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 2 mA 0.9 20 Γopt Mag Ang Rn ohms 1.2 0.35 100 8.7 12.9 1.8 1.6 0.48 -179 3.3 9.7 2.0 1.7 0.51 -165 3.7 9.1 2.5 1.9 0.60 -136 8.9 8.0 3.0 2.2 0.65 -112 21.0 6.9 0 3.5 2.5 0.70 -91 42.0 5.9 -4 4.0 2.9 0.74 -74 72.0 5.1 1.2 gmax dB(S|2,1|) k Gassoc dB 16 12 0.8 8 0.6 4 0.4 0.2 0 1 2 3 4 1 5 k Fmin dB GAIN (dB) Freq. GHz 0 6 FREQUENCY (GHz) Figure 10. Gain vs. Frequency at 2.7 V, 2 mA. gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor MAG = S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| Note: dB(|S 21|) = 20 * log(|S 21|) AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.400 -102 17.03 7.106 106 -25.97 0.050 59 0.671 -22 0.75 0.312 -130 14.15 5.101 91 -23.86 0.064 60 0.615 -24 1.0 0.270 -152 11.97 3.969 80 -22.09 0.079 61 0.588 -25 1.5 0.247 175 8.82 2.762 64 -19.10 0.111 63 0.564 -30 2.0 0.253 149 6.67 2.154 50 -16.60 0.148 62 0.553 -37 3.0 0.280 112 3.86 1.559 26 -12.48 0.238 55 0.535 -54 4.0 0.323 80 2.07 1.269 6 -9.19 0.347 43 0.514 -75 5.0 0.379 55 0.80 1.097 -12 -6.55 0.471 27 0.472 -99 6.0 0.434 38 -0.13 0.986 -28 -4.50 0.595 9 0.398 -130 7.0 0.480 24 -0.72 0.920 -43 -2.96 0.711 -11 0.309 -174 8.0 0.522 10 -1.20 0.871 -58 -2.07 0.788 -32 0.299 131 9.0 0.557 -5 -1.64 0.828 -72 -1.73 0.820 -53 0.366 87 10.0 0.595 -19 -2.17 0.779 -87 -1.86 0.808 -73 0.449 55 11.0 0.662 -29 -2.38 0.761 -99 -2.43 0.756 -92 0.533 27 12.0 0.709 -39 -3.56 0.664 -115 -3.03 0.705 -107 0.633 3 AT-41532 Typical Noise Parameters, Fmin dB 0.9 Γopt 25 1.2 Gassoc dB 20 1 15 0.8 10 0.6 5 0.4 Mag Ang Rn ohms 1.2 0.283 106 7.3 14.0 1.8 1.4 0.41 -165 3.9 10.7 2.0 1.5 0.44 -151 4.8 9.8 2.5 1.7 0.53 -126 9.2 8.5 3.0 1.9 0.60 -106 18.4 7.5 3.5 2.2 0.67 -86 35.0 6.6 4.0 2.5 0.71 -69 58.0 5.8 GAIN (dB) Freq. GHz gmax dB(S|2,1|) k -5 0 1 2 0 k Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 5 mA 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 11. Gain vs. Frequency at 2.7 V, 5 mA. gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor MAG = S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| Note: dB(|S 21|) = 20 * log(|S 21|) AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 2.7 V, IC = 10 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.243 -122 18.39 8.310 97 -26.90 0.045 68 0.586 -21 0.75 0.199 -149 15.19 5.751 85 -23.99 0.063 69 0.552 -21 1.0 0.184 -169 12.88 4.408 76 -21.74 0.082 69 0.536 -23 1.5 0.186 161 9.64 3.034 62 -18.35 0.121 67 0.520 -28 2.0 0.199 139 7.44 2.354 49 -15.79 0.162 63 0.510 -35 3.0 0.232 107 4.61 1.700 27 -11.93 0.253 52 0.491 -52 4.0 0.275 79 2.84 1.387 6 -9.00 0.355 39 0.467 -72 5.0 0.334 56 1.60 1.202 -12 -6.66 0.465 24 0.424 -95 6.0 0.399 41 0.66 1.079 -29 -4.79 0.576 7 0.349 -125 7.0 0.462 27 -0.02 0.997 -45 -3.30 0.684 -12 0.261 -167 8.0 0.521 14 -0.67 0.926 -60 -2.34 0.764 -32 0.251 134 9.0 0.566 -2 -1.26 0.865 -75 -1.89 0.805 -52 0.328 88 10.0 0.609 -18 -1.88 0.805 -90 -1.92 0.802 -72 0.422 56 11.0 0.678 -28 -2.97 0.711 -101 -2.32 0.766 -91 0.485 29 12.0 0.722 -39 -3.38 0.678 -116 -3.02 0.706 -106 0.620 3 S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| 25 1.25 20 1 15 0.75 10 0.5 5 0.25 k MAG = GAIN (dB) gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor gmax dB(S|2,1|) k 0 0 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 12. Gain vs. Frequency at 2.7 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 2 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.659 -79 13.43 4.696 121 -25.16 0.055 53 0.836 -18 0.75 0.540 -108 11.41 3.720 103 -23.78 0.065 48 0.774 -22 1.0 0.456 -131 9.64 3.034 89 -23.06 0.070 48 0.738 -24 1.5 0.387 -169 6.81 2.190 69 -21.69 0.082 55 0.705 -30 2.0 0.371 162 4.74 1.726 53 -19.63 0.104 63 0.694 -37 3.0 0.387 116 1.91 1.247 27 -14.40 0.191 67 0.685 -54 4.0 0.428 79 0.01 1.001 7 -9.89 0.320 56 0.673 -75 5.0 0.472 49 -1.31 0.860 -8 -6.47 0.475 38 0.635 -100 6.0 0.494 28 -1.96 0.798 -20 -4.05 0.627 17 0.556 -131 7.0 0.490 13 -1.95 0.799 -33 -2.36 0.762 -5 0.448 -170 8.0 0.489 2 -1.81 0.812 -48 -1.51 0.840 -29 0.388 141 9.0 0.506 -10 -1.84 0.810 -64 -1.28 0.863 -51 0.408 96 10.0 0.541 -22 -2.07 0.788 -80 -1.51 0.841 -71 0.462 62 11.0 0.634 -33 -2.46 0.754 -94 -2.09 0.786 -90 0.539 35 12.0 0.670 -39 -3.23 0.689 -109 -2.75 0.729 -105 0.625 6 AT-41532 Typical Noise Parameters, Fmin dB 0.9 Γopt 25 1.2 Gassoc dB 20 1 15 0.8 10 0.6 5 0.4 Mag Ang Rn ohms 1.2 0.35 100 8.5 13.5 1.8 1.5 0.48 178 3.4 10.6 2.0 1.6 0.51 -166 3.7 9.7 2.5 1.9 0.60 -137 8.8 8.8 3.0 2.2 0.65 -112 21.7 7.8 3.5 2.5 0.70 -92 44.6 7.1 4.0 2.9 0.74 -73 79.5 6.0 GAIN (dB) Freq. GHz gmax dB(S|2,1|) k -5 0 1 2 0 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 13. Gain vs. Frequency at 5 V, 2 mA. gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor MAG = S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| Note: dB(|S 21|) = 20 * log(|S 21|) k Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 2 mA AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 5 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.402 -98 17.27 7.303 107 -27.15 0.044 60 0.713 -19 0.75 0.304 -124 14.42 5.260 92 -25.04 0.056 61 0.663 -21 1.0 0.255 -147 12.25 4.095 82 -23.26 0.069 63 0.640 -23 1.5 0.225 178 9.09 2.848 65 -20.23 0.097 66 0.621 -28 2.0 0.227 151 6.92 2.218 52 -17.66 0.131 65 0.613 -34 3.0 0.256 111 4.06 1.596 28 -13.38 0.214 59 0.603 -51 4.0 0.301 79 2.22 1.291 8 -9.92 0.319 48 0.592 -69 5.0 0.359 53 0.92 1.111 -10 -7.07 0.443 33 0.562 -92 6.0 0.414 36 -0.02 0.997 -26 -4.78 0.577 16 0.498 -120 7.0 0.457 22 -0.60 0.933 -40 -2.97 0.711 -4 0.401 -156 8.0 0.496 10 -1.00 0.891 -55 -1.84 0.809 -26 0.344 154 9.0 0.531 -4 -1.42 0.849 -70 -1.37 0.854 -49 0.374 105 10.0 0.573 -19 -1.89 0.805 -85 -1.44 0.847 -69 0.441 67 11.0 0.633 -28 -2.40 0.759 -95 -2.03 0.792 -88 0.516 38 12.0 0.696 -38 -3.32 0.682 -113 -2.63 0.739 -105 0.624 8 AT-41532 Typical Noise Parameters, Fmin dB 0.9 Γopt 25 1.2 Gassoc dB 20 1 15 0.8 10 0.6 5 0.4 Mag Ang Rn ohms 1.1 0.29 110 7.0 14.8 1.8 1.4 0.41 -167 3.9 11.3 2.0 1.5 0.44 -153 4.7 10.5 2.5 1.7 0.53 -127 9.3 9.3 3.0 1.9 0.60 -106 18.6 8.4 3.5 2.2 0.67 -86 36.8 7.5 4.0 2.4 0.71 -70 59.5 6.7 GAIN (dB) Freq. GHz gmax dB(S|2,1|) k -5 0 1 2 0 0.2 3 4 5 0 6 FREQUENCY (GHz) Figure 14. Gain vs. Frequency at 5 V, 5 mA. gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor MAG = S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| Note: dB(|S 21|) = 20 * log(|S 21|) k Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 5 mA AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 Ω, VCE = 5 V, IC = 10 mA Freq. GHz S11 S21 S12 S22 Mag Ang dB Mag Ang dB Mag Ang Mag Ang 0.5 0.239 -113 18.69 8.601 98 -28.05 0.040 69 0.641 -18 0.75 0.182 -140 15.51 5.966 86 -25.18 0.055 70 0.611 -19 1.0 0.160 -162 13.20 4.571 78 -22.94 0.071 71 0.597 -20 1.5 0.155 164 9.95 3.144 63 -19.50 0.106 69 0.585 -26 2.0 0.167 140 7.75 2.440 51 -16.89 0.143 66 0.578 -33 3.0 0.201 105 4.87 1.751 29 -12.90 0.226 57 0.566 -49 4.0 0.246 76 3.05 1.421 9 -9.80 0.324 45 0.553 -67 5.0 0.306 54 1.79 1.229 -10 -7.24 0.434 31 0.523 -88 6.0 0.369 40 0.86 1.105 -26 -5.11 0.555 14 0.461 -115 7.0 0.430 27 0.23 1.027 -42 -3.33 0.682 -5 0.366 -149 8.0 0.489 14 -0.35 0.961 -58 -2.11 0.785 -26 0.308 161 9.0 0.539 -1 -0.91 0.900 -73 -1.49 0.842 -47 0.342 110 10.0 0.588 -16 -1.58 0.834 -88 -1.45 0.846 -68 0.419 70 11.0 0.638 -29 -3.09 0.701 -102 -1.93 0.801 -88 0.501 40 12.0 0.713 -38 -3.24 0.689 -115 -2.58 0.743 -104 0.616 9 S21 (k ± √ k2–1) S12 MSG = |S21| /|S12| 1 – |S11|2 – |S22|2 + |D|2 k= ; D = S11S22 – S12 S21 2*|S12| |S21| 25 1.25 20 1 15 0.75 10 0.5 5 0.25 k MAG = GAIN (dB) gmax = maximum available gain (MAG) if k > 1 gmax = maximum stable gain (MSG) if k < 1 k = stability factor gmax dB(S|2,1|) k 0 0 1 2 3 4 5 0 6 FREQUENCY (GHz) Figure 15. Gain vs. Frequency at 5 V, 10 mA. Note: dB(|S 21|) = 20 * log(|S 21|) 10 AT-41532 Application Information The AT-41532 is described in a low noise amplifier for use in the 800 to 900 MHz frequency range. The amplifier is designed for use with .032 inch thickness FR-4 printed circuit board material. AT-3XX32 AT-4XX32 IN 01/98 AJW .062 FR-4 OUT 900 MHz LNA Design The amplifier is designed for a VCE of 5 volts and IC of 5 mA. and a minimum power supply voltage of 5.25 volts. Higher power supply voltages will require an additional resistance to be inserted at the power supply terminal. The amplifier schematic is shown in Figure 16. A component list is shown in Figure 17. The artwork including component placement is shown in Figure 18. INPUT C3 C2 Zo C1 C4 L1 Q1 R6 L3 C4 L2 R1 OUTPUT Zo R5 R2 R4 C5 VCC = 5.25 V R3 Figure 16. Schematic Diagram. Vcc Figure 18. 1X Artwork showing Component Placement. The input matching network uses a series inductor for the noise match. Some fine tuning for lowest noise figure and improved input VSWR can be accomplished by adding capacitance at C2. The shunt C is accomplished with an open circuited stub while a chip inductor is used for the series element. The output impedance matching network is a high pass structure consisting of a series capacitor and shunt inductor. A resistor is paralleled across the shunt inductor to enhance broad band stability through 10 GHz. Bias insertion is accomplished through the use of the shunt inductor appropriately bypassed. Surface mount Coilcraft inductors were chosen for their small size. Biasing C1,C4 10 pF chip capacitor C2 Open circuited stub – see text C3 2.7 pF chip capacitor C5 1000 pF chip capacitor L1 8 nH chip inductor (Coilcraft 1008CS-080) L2 Optional (see R1) L3 15 nH chip inductor (Coilcraft 1008CS-150) Q1 Avago AT-41532 Silicon Bipolar Transistor R1 10K Ω chip resistor (may want to substitute a 180 nH chip inductor and 50 Ω resistor for lower noise figure , better low freq stability, then readjust R2) R2 48 K Ω chip resistor (adjust for rated Ic) R3 3.32 K Ω chip resistor R4 3.32 K Ω chip resistor R5 51.1 Ω chip resistor R6 1.1K Ω chip resistor (see text) Zo 50 Ω microstripline Figure 17. Component Parts List. 11 The bias network is designed for a nominal power supply voltage of 5.25 volts. Resistors R1 and R2 are used to adjust collector current. Resistor R4 can be attached to the junction of R5 and C5 to improve bias point stability. Performance Modifications to Original Demo Board The measured gain of the completed amplifier is shown in Figure 19. The gain varies The original demo board dated 01/98 requires some modification to work as described in this application note. The modification is to add resistor R6 in series with the collector lead. This is accomplished by cutting the etch at the output of Q1 such that resistor R6 can be placed on the circuit board as shown in Figure 17. Inductor L3 will then have be placed at a 90 degree angle with respect to its original intended location. L3 is then connected to the junction of R6 and L4 with a small piece of wire or etch. from 14 to 15 dB over the 800 to 900 MHz frequency range. Noise figure versus frequency is shown in Figure 20. Best performance occurs at 850 MHz providing a near 1 dB noise figure. Measured input and output return loss is shown in Figure 21. The input return loss is 10 dB at 850 MHz and can be improved with slight tuning at C2. Output return loss was measured at almost 10 dB at 850 MHz. There is considerable tuning interaction between input and output matching networks in any single stage amplifier. Having a somewhat better input return loss coincident with low noise figure may necessitate a compromise in output return loss. Using the AT-41532 at Other Frequencies The demo board and design techniques presented here can be used to build low noise amplifiers for other frequencies in the VHF through 1.9 GHz frequency range. Output intercept point, IP3, was measured at 850 MHz to be +12 dBm. Removing the 1.1 KΩ resistor at R6 increases IP3 to +13.6 dBm. Resistor R6 was originally added to enhance stability; caution is urged when removing this resistor or increasing its value without careful analysis. Another alternative to the shunt resistor R6 would be to incorporate a resistor in series with the transistor collector lead. This resistor would be in the 10 to 27Ω range and has similar effects on circuit stability. A third alternative is to re-optimize the output match for power as opposed to matching for lowest output VSWR. This may make the output return loss less than 10 dB but it would enhance power output. NOISE FIGURE (dB) GAIN (dB) 14 12 10 8 6 500 1.6 0 1.5 -2 RETURN LOSS (dB) 16 1.4 1.3 1.2 700 800 900 FREQUENCY (MHz) Figure 17. AT-41532 Gain vs. Frequency. Figure 19. Gain vs Frequency. 1000 -6 -8 -10 1.1 600 -4 1 500 -12 600 700 800 900 1000 FREQUENCY (MHz) Figure 18. AT-41532 Noise Figure vs. Frequency. Figure 20. Noise Figure vs Frequency. -14 500 Input Output 600 700 800 900 FREQUENCY (MHz) Figure 19. Input/Output Return Loss. Figure 21. Input/Output Return Loss. 1000 Ordering Information Part Numbers No. of Devices Comments AT-41532-BLK 100 Bulk AT-41532-BLKG 100 Bulk AT-41532-TR1 3000 7" Reel AT-41532-TR1G 3000 7" Reel AT-41532-TR2 10000 13" Ree AT-41532-TR2G 10000 13" Reel Note: Order part number with a “G” suffix if lead-free option is desired. Package Dimensions SOT-323 Plastic Package e1 XXX E E1 e L B C D DIMENSIONS (mm) A A1 Notes: XXX-package marking Drawings are not to scale SYMBOL A A1 B C D E1 e e1 E L MIN. MAX. 0.80 1.00 0.00 0.10 0.15 0.40 0.08 0.25 1.80 2.25 1.10 1.40 0.65 typical 1.30 typical 1.80 2.40 0.26 0.46 Tape Dimensions and Product Orientation For Outline SOT-323 (SC-70 3 Lead) P P2 D P0 E F W C D1 t1 (CARRIER TAPE THICKNESS) K0 8° MAX. 5° MAX. A0 DESCRIPTION Tt (COVER TAPE THICKNESS) B0 SYMBOL SIZE (mm) SIZE (INCHES) CAVITY LENGTH WIDTH DEPTH PITCH BOTTOM HOLE DIAMETER A0 B0 K0 P D1 2.24 ± 0.10 2.34 ± 0.10 1.22 ± 0.10 4.00 ± 0.10 1.00 + 0.25 0.088 ± 0.004 0.092 ± 0.004 0.048 ± 0.004 0.157 ± 0.004 0.039 + 0.010 PERFORATION DIAMETER PITCH POSITION D P0 E 1.55 ± 0.05 4.00 ± 0.10 1.75 ± 0.10 0.061 ± 0.002 0.157 ± 0.004 0.069 ± 0.004 CARRIER TAPE WIDTH THICKNESS W t1 8.00 ± 0.30 0.255 ± 0.013 0.315 ± 0.012 0.010 ± 0.0005 COVER TAPE WIDTH TAPE THICKNESS C Tt 5.4 ± 0.10 0.062 ± 0.001 0.205 ± 0.004 0.0025 ± 0.00004 DISTANCE CAVITY TO PERFORATION (WIDTH DIRECTION) F 3.50 ± 0.05 0.138 ± 0.002 CAVITY TO PERFORATION (LENGTH DIRECTION) P2 2.00 ± 0.05 0.079 ± 0.002 MGA-81563 Tape Dimensions MGA-81563 Tape Dimensions chart For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved. Obsoletes 5989-2650EN AV02-1964EN - June 9, 2009