Microsemi APT14M120S N-channel mosfet Datasheet

APT14M120B
APT14M120S
1200V, 14A, 1.20Ω Max
N-Channel MOSFET
Power MOS 8™ is a high speed, high voltage N-channel switch-mode power MOSFET.
A proprietary planar stripe design yields excellent reliability and manufacturability. Low
switching loss is achieved with low input capacitance and ultra low Crss "Miller" capacitance. The intrinsic gate resistance and capacitance of the poly-silicon gate structure
help control slew rates during switching, resulting in low EMI and reliable paralleling,
even when switching at very high frequency. Reliability in flyback, boost, forward, and
other circuits is enhanced by the high avalanche energy capability.
TO
-2
47
D3PAK
APT14M120B
APT14M120S
Single die MOSFET
D
G
S
TYPICAL APPLICATIONS
FEATURES
• Fast switching with low EMI/RFI
• PFC and other boost converter
• Low RDS(on)
• Buck converter
• Ultra low Crss for improved noise immunity
• Two switch forward (asymmetrical bridge)
• Low gate charge
• Single switch forward
• Avalanche energy rated
• Flyback
• RoHS compliant
• Inverters
Absolute Maximum Ratings
Symbol
ID
Parameter
Unit
Ratings
Continuous Drain Current @ TC = 25°C
14
Continuous Drain Current @ TC = 100°C
9
A
IDM
Pulsed Drain Current
VGS
Gate-Source Voltage
±30
V
EAS
Single Pulse Avalanche Energy 2
1070
mJ
IAR
Avalanche Current, Repetitive or Non-Repetitive
7
A
1
51
Thermal and Mechanical Characteristics
Max
Unit
W
PD
Total Power Dissipation @ TC = 25°C
625
RθJC
Junction to Case Thermal Resistance
0.20
RθCS
Case to Sink Thermal Resistance, Flat, Greased Surface
TJ,TSTG
Operating and Storage Junction Temperature Range
TL
Soldering Temperature for 10 Seconds (1.6mm from case)
WT
Package Weight
Torque
Mounting Torque ( TO-247 Package), 6-32 or M3 screw
Microsemi Website - http://www.microsemi.com
0.11
-55
150
300
°C/W
°C
0.22
oz
6.2
g
10
in·lbf
1.1
N·m
10-2006
Typ
Rev A
Min
Characteristic
050-8094
Symbol
Static Characteristics
TJ = 25°C unless otherwise specified
Symbol
Parameter
Test Conditions
Min
VBR(DSS)
Drain-Source Breakdown Voltage
VGS = 0V, ID = 250µA
1200
∆VBR(DSS)/∆TJ
Drain-Source On Resistance
VGS(th)
Gate-Source Threshold Voltage
∆VGS(th)/∆TJ
VGS = 10V, ID = 7A
3
Zero Gate Voltage Drain Current
IGSS
Gate-Source Leakage Current
Dynamic Characteristics
VDS = 1200V
VGS = 0V
Forward Transconductance
Ciss
Input Capacitance
Crss
Reverse Transfer Capacitance
Coss
Output Capacitance
1.20
5
100
500
±100
TJ = 125°C
Min
VGS = 0V, VDS = 25V
f = 1MHz
Effective Output Capacitance, Charge Related
Co(er)
5
Effective Output Capacitance, Energy Related
Typ
15
4765
55
350
Max
Unit
V
V/°C
Ω
V
mV/°C
µA
nA
Unit
S
pF
135
VGS = 0V, VDS = 0V to 800V
70
Qg
Total Gate Charge
Qgs
Gate-Source Charge
Qgd
Gate-Drain Charge
td(on)
Turn-On Delay Time
Resistive Switching
Current Rise Time
VDD = 800V, ID = 7A
tf
1.41
0.97
4
-10
TJ = 25°C
Test Conditions
VDS = 50V, ID = 7A
4
td(off)
Max
TJ = 25°C unless otherwise specified
Co(cr)
tr
Typ
VGS = ±30V
Parameter
gfs
3
VGS = VDS, ID = 1mA
Threshold Voltage Temperature Coefficient
IDSS
Symbol
Reference to 25°C, ID = 250µA
Breakdown Voltage Temperature Coefficient
RDS(on)
APT14M120B_S
Turn-Off Delay Time
145
24
70
26
15
85
24
VGS = 0 to 10V, ID = 7A,
VDS = 600V
RG = 4.7Ω 6 , VGG = 15V
Current Fall Time
nC
ns
Source-Drain Diode Characteristics
Symbol
IS
ISM
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 1
Test Conditions
MOSFET symbol
showing the
integral reverse p-n
junction diode
(body diode)
Diode Forward Voltage
ISD = 7A, TJ = 25°C, VGS = 0V
trr
Reverse Recovery Time
ISD = 7A 3
Qrr
Reverse Recovery Charge
Peak Recovery dv/dt
Typ
Max
Unit
14
A
G
VSD
dv/dt
Min
D
51
S
diSD/dt = 100A/µs, TJ = 25°C
ISD ≤ 7A, di/dt ≤1000A/µs, VDD = 800V,
TJ = 125°C
1.0
1205
23
V
ns
µC
10
V/ns
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Starting at TJ = 25°C, L = 43.59mH, RG = 4.7Ω, IAS = 7A.
050-8094
Rev A
10-2006
3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.
4 Co(cr) is defined as a fixed capacitance with the same stored charge as COSS with VDS = 67% of V(BR)DSS.
5 Co(er) is defined as a fixed capacitance with the same stored energy as COSS with VDS = 67% of V(BR)DSS. To calculate Co(er) for any value of
VDS less than V(BR)DSS, use this equation: Co(er) = -2.17E-8/VDS^2 + 2.63E-9/VDS + 3.74E-11.
6 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
40
V
GS
= 10V
12
TJ = -55°C
30
ID, DRIAN CURRENT (A)
25
20
TJ = 25°C
15
10
TJ = 150°C
8
5V
6
4
0
30
25
20
15
10
5
0
VDS(ON), DRAIN-TO-SOURCE VOLTAGE (V)
4.5V
0
250µSEC. PULSE TEST
@ <0.5 % DUTY CYCLE
40
2.0
1.5
1.0
0.5
30
TJ = -55°C
TJ = 25°C
20
TJ = 125°C
10
0
0
25 50 75 100 125 150
0
-55 -25
TJ, JUNCTION TEMPERATURE (°C)
Figure 3, RDS(ON) vs Junction Temperature
0
8
7
6
5
4
3
2
1
VGS, GATE-TO-SOURCE VOLTAGE (V)
Figure 4, Transfer Characteristics
6,000
18
Ciss
16
TJ = -55°C
TJ = 25°C
TJ = 125°C
10
1,000
8
6
4
100
Coss
2
0
VGS, GATE-TO-SOURCE VOLTAGE (V)
16
6
4
2
ID, DRAIN CURRENT (A)
Figure 5, Gain vs Drain Current
12
VDS = 600V
8
6
VDS = 960V
4
2
20 40 60 80 100 120 140 160 180 200
Qg, TOTAL GATE CHARGE (nC)
Figure 7, Gate Charge vs Gate-to-Source Voltage
0
0
50
VDS = 240V
10
Crss
800 1000 1200
600
400
200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 6, Capacitance vs Drain-to-Source Voltage
ID = 7A
14
0
10
8
ISD, REVERSE DRAIN CURRENT (A)
0
45
40
35
30
25
TJ = 25°C
20
TJ = 150°C
15
10
5
0
1.2
1.0
0.8
0.6
0.4
0.2
VSD, SOURCE-TO-DRAIN VOLTAGE (V)
Figure 8, Reverse Drain Current vs Source-to-Drain Voltage
0
10-2006
12
Rev A
14
C, CAPACITANCE (pF)
gfs, TRANSCONDUCTANCE
VDS> ID(ON) x RDS(ON) MAX.
VGS = 10V @ 7A
ID, DRAIN CURRENT (A)
RDS(ON), DRAIN-TO-SOURCE ON RESISTANCE
50
NORMALIZED TO
2.5
30
25
20
15
10
5
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 2, Output Characteristics
Figure 1, Output Characteristics
3.0
= 6, 7, 8 & 9V
GS
2
TJ = 125°C
5
V
10
050-8094
ID, DRAIN CURRENT (A)
T = 125°C
J
35
0
APT14M120B_S
14
DM
10
13µs
100µs
1ms
Rds(on)
Rds(on)
13µs
100µs
1ms
DC line
0.1
10
100
1200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 9, Forward Safe Operating Area
10ms
100ms
TJ = 150°C
TC = 25°C
1
DC line
Scaling for Different Case & Junction
Temperatures:
ID = ID(T = 25 C)*(TJ - TC)/125
100ms
TJ = 125°C
TC = 75°C
1
10ms
10
C
°
1
10
100
1200
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
Figure 10, Maximum Forward Safe Operating Area
TJ (°C)
TC (°C)
0.0166
0.0688
0.114
Dissipated Power
(Watts)
0.00467
0.0176
ZEXT
1
IDM
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
I
0.1
APT14M120B_S
100
100
0.270
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
Figure 11, Transient Thermal Impedance Model
0.20
D = 0.9
0.15
0.7
Note:
0.5
0.10
PDM
Z JC, THERMAL IMPEDANCE (°C/W)
θ
0.25
t2
0.3
t1 = Pulse Duration
0.05
0
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0.1
0.05
10-5
t1
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (seconds)
Figure 12. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
1.0
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Drain
(Heat Sink)
e3 100% Sn Plated
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Drain
13.79 (.543)
13.99(.551)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
10-2006
Rev A
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
050-8094
13.41 (.528)
13.51(.532)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Drain
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Source
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Source
Drain
Gate
Dimensions in Millimeters (Inches)
Microsemi's products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
Similar pages