Agilent AMMC-5026 2–35 GHz GaAs MMIC Traveling Wave Amplifier Data Sheet Features • Frequency range: 2 – 35 GHz • Gain: 10.5 dB • Gain flatness: ± 0.8 dB • Return loss: Input 17 dB, Output: 15 dB • Output power (P-1dB): 24 dBm at 10 GHz 23 dBm at 20 GHz 22 dBm at 26 GHz • Noise figure (6–19 GHz): ≤ 4 dB Chip Size: 3050 x 840 µm (119 x 33 mils) Chip Size Tolerance: ±10 µm (±0.4 mils) Chip Thickness: 100 ± 10 µm (4 ± 0.4 mils) Pad Dimensions: 75 x 75 µm (2.9 ± 0.4 mils) Description The AMMC-5026 is a broadband PHEMT GaAs MMIC Traveling Wave Amplifier (TWA) designed for medium output power and high gain over the full 2 GHz to 35 GHz frequency range. The design employs a 6-section cascode connected FET structure to provide flat gain and medium power as well as uniform group delay. Applications • Broadband gain block • Broadband driver amplifier • 10 Gb/s Fiber Optics Absolute Maximum Ratings [1] Symbol Parameters/Conditions Units Min. Max. Vdd Positive Drain Voltage V 10 Idd Total Drain Current mA 450 Vg1 First Gate Voltage V -5 Ig1 First Gate Current mA -9 +5 Vg2 Second Gate Voltage V -3 +3.5 Ig2 Second Gate Current mA -10 Pin CW Input Power dBm Tch Channel Temperature °C Tb Operating Backside Temperature °C -55 Tstg Storage Temperature °C -65 Tmax Max. Assembly Temp (60 sec max) °C 23 +150 +165 +300 Notes: 1. Operation in excess of any one of these conditions may result in permanent damage to this device. AMMC-5026 DC Specifications/Physical Properties[1] Symbol Parameters and Test Conditions Units Min. Typ. Max. Idss Saturated Drain Current (Vdd =7 V, Vg1 =0 V, Vg2 =open circuit) mA 250 350 450 Vp1 First Gate Pinch-off Voltage (Vdd =7 V, Idd =0.1 Idss, Vg2 =open circuit) V -1.2 Vg2 Second Gate Self-bias Voltage (Vdd =7 V, Idd =150 mA, Vg2 =open circuit) V 3.5 Idsoff (Vg1) First Gate Pinch-off Current (Vdd=7 V, Vg1=3.5 V, Vg2=open circuit) mA 75 θch-b Thermal Resistance[2] (Backside temperature, Tb = 25°C) °C/W 28 Notes: 1. Backside temperature Tb = 25°C unless otherwise noted. 2. Channel-to-backside Thermal Resistance (θch-b) = 38°C/W at Tchannel (Tc) = 150°C as measured using the liquid crystal method. Thermal Resistance at backside temperature (Tb) = 25°C calculated from measured data. RF Specifications[3,4] (Vdd = 7V, Idd (Q) = 150 mA, Zin = Z0 = 50Ω) Symbol |S21| 2 ∆|S21| RLin RLout |S12| 2 2 Parameters and Test Conditions Units Min. Typ. Max. Small-signal Gain dB 8.5 10.5 12.5 Small-signal Gain Flatness dB ±0.75 ±1.5 Input Return Loss dB 13 17 Output Return Loss dB 12 15 Isolation dB 23 26 22 24 P-1dB Output Power @ 1 dB Gain Compression f = 10 GHz dBm Psat Saturated Output Power f = 10 GHz dBm 26 dBm 31 dB dB 3.6 4.3 rd OIP3 Output 3 Order Intercept Point, RFin1 = RFin2 = - 20 dBm, f = 10 GHz, ∆f = 2 MHz NF Noise Figure H2 Second Harmonic (Pin = 12 dBm at 10 GHz) dBc -20 -17.5 H3 Third Harmonic (Pin = 12 dBm at 10 GHz) dBc -30 -28 f = 10 GHz f = 20 GHz Notes: 3. Data measured in wafer form, Tchuck = 25°C. 4. 100% on wafer RF test is done at frequency = 2, 10, 22, 26.5, and 35 GHz, except as noted. 2 AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 0 15 RETURN LOSS (dB) GAIN (dB) 5 0 -5 -10 -15 -20 -25 -10 5 10 15 20 25 30 35 40 19 16 10 0 5 10 15 20 25 30 35 40 0 5 10 FREQUENCY (GHz) FREQUENCY (GHz) 160 30 35 40 30 6 IP3 (dBm) NOISE FIGURE (dB) 25 40 7 80 20 Figure 3. Output Power at P1dB and P3dB. 8 120 15 FREQUENCY (GHz) Figure 2. Input and Output Return Loss. Figure 1. Gain. tg (pS) 22 13 -30 0 P1dB P3dB 25 P1dB, P3dB (dBm) -5 10 -15 28 S11(dB) S22(dB) 5 20 10 4 40 0 3 0 0 5 10 15 20 25 FREQUENCY (GHz) Figure 4. Group Delay. 3 30 35 40 2 0 5 10 15 20 25 FREQUENCY (GHz) Figure 5. Noise Figure. 30 35 40 -10 0 5 10 15 20 25 30 35 40 FREQUENCY (GHz) Figure 6. Output 3rd Order Intercept Point. AMMC-5026 Typical Performance (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA, Vg2 = Open, Z0 = 50Ω) 0 15 RETURN LOSS (dB) GAIN (dB) 5 0 -5 -10 -15 -20 -25 -10 5 10 15 20 25 30 35 40 5 10 80 7 20 25 30 35 40 60 20 15 20 25 30 35 5 0 5 10 15 20 25 30 35 40 NF (dB) 6 0 10 15 2 20 25 30 FREQUENCY (GHz) Figure 13. Gain vs. Temperature. 4 35 40 40 20 10 0 0 5 10 15 20 -10 0 5 10 15 20 25 30 35 40 Figure 12. Output 3rd Order Intercept Point. 4 5 35 FREQUENCY (GHz) NF @ 25°C NF @ -40°C NF @ 85°C 8 S21(dB) 25°C S21(dB) -40°C S21(dB) 80°C 30 0 10 5 25 4 Figure 11. Noise Figure. 10 20 30 FREQUENCY (GHz) 15 15 Figure 9. Output Power at P1dB and P3dB. 6 2 40 Figure 10. Group Delay. 0 10 40 FREQUENCY (GHz) -5 5 FREQUENCY (GHz) 3 10 0 OIP3 (dBm) NOISE FIGURE (dB) tg (pS) 8 40 S21 (dB) 15 Figure 8. Input and Output Return Loss. 100 5 16 FREQUENCY (GHz) Figure 7. Gain. 0 19 10 0 FREQUENCY (GHz) 0 22 13 -30 0 P1dB P3dB 25 P1dB, P3dB (dBm) -5 10 -15 28 S11(dB) S22(dB) 25 30 35 FREQUENCY (GHz) Figure 14. Noise Figure vs. Temperature. 40 AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 7 V, Idd = 150 mA) Freq. GHz 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 dB S11 Mag Ang dB S21 Mag Ang dB S12 Mag Ang dB S22 Mag Ang -24.93 -26.84 -25.16 -23.72 -22.99 -22.58 -21.97 -21.29 -20.67 -20.29 -20.47 -21.49 -23.65 -28.02 -39.49 -31.18 -24.21 -20.93 -18.20 -17.48 -17.43 -17.77 -18.27 -18.66 -18.56 -18.60 -19.07 -19.79 -18.63 -15.62 -13.40 -12.69 -14.73 -26.00 -14.82 -10.01 -9.81 -6.40 -4.23 0.06 0.05 0.06 0.07 0.07 0.07 0.08 0.09 0.09 0.10 0.09 0.08 0.07 0.04 0.01 0.03 0.06 0.09 0.12 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.10 0.12 0.17 0.21 0.23 0.18 0.05 0.18 0.32 0.32 0.48 0.61 -56 -18 -2 2 2 1 1 -3 -7 -16 -29 -43 -59 -81 -131 86 60 38 13 -17 -46 -81 -119 -161 156 112 66 9 -59 -116 -161 161 127 120 -157 172 161 157 135 9.89 9.50 9.14 8.90 8.81 8.87 9.04 9.24 9.42 9.53 9.56 9.52 9.46 9.40 9.36 9.41 9.52 9.68 9.79 9.94 10.02 10.07 10.06 10.04 10.08 10.20 10.46 10.75 10.99 11.07 10.93 10.79 10.78 10.83 10.24 8.79 6.12 -0.65 -7.76 3.12 2.98 2.87 2.79 2.76 2.78 2.83 2.90 2.96 2.99 3.01 2.99 2.97 2.95 2.94 2.95 2.99 3.05 3.09 3.14 3.17 3.19 3.18 3.18 3.19 3.24 3.33 3.45 3.54 3.58 3.52 3.46 3.46 3.48 3.25 2.75 2.02 0.93 0.41 130 112 94 77 60 42 24 5 -15 -35 -56 -76 -97 -117 -137 -157 -177 162 141 119 96 73 50 27 4 -19 -44 -70 -98 -127 -158 171 139 102 58 12 -42 -90 -109 -52.04 -48.40 -45.19 -43.10 -41.31 -40.00 -38.94 -38.13 -37.33 -36.65 -36.03 -35.34 -34.61 -33.89 -32.96 -32.22 -31.57 -30.96 -30.60 -30.17 -29.90 -29.74 -29.50 -29.24 -28.85 -28.34 -27.70 -27.23 -26.80 -26.67 -26.82 -26.97 -26.96 -26.76 -27.23 -28.38 -30.66 -36.71 -42.85 0.0025 0.0038 0.0055 0.0070 0.0086 0.0100 0.0113 0.0124 0.0136 0.0147 0.0158 0.0171 0.0186 0.0202 0.0225 0.0245 0.0264 0.0283 0.0295 0.0310 0.0320 0.0326 0.0335 0.0345 0.0361 0.0383 0.0412 0.0435 0.0457 0.0464 0.0456 0.0448 0.0449 0.0459 0.0435 0.0381 0.0293 0.0146 0.0072 -109 -131 -154 -174 164 143 122 103 84 66 49 32 14 -3 -22 -41 -62 -82 -104 -125 -147 -168 171 150 129 107 83 57 29 0 -29 -58 -89 -125 -169 146 91 44 18 -17.16 -15.78 -14.87 -14.55 -14.82 -15.68 -17.22 -19.41 -21.84 -22.43 -20.48 -18.32 -16.78 -15.83 -15.57 -15.93 -16.86 -18.63 -21.67 -27.56 -32.88 -24.55 -19.79 -17.19 -15.72 -15.10 -15.28 -16.61 -19.73 -24.26 -21.06 -17.40 -15.99 -17.25 -18.78 -16.58 -18.73 -13.68 -10.52 0.14 0.16 0.18 0.19 0.18 0.16 0.14 0.11 0.08 0.08 0.09 0.12 0.14 0.16 0.17 0.16 0.14 0.12 0.08 0.04 0.02 0.06 0.10 0.14 0.16 0.18 0.17 0.15 0.10 0.06 0.09 0.13 0.16 0.14 0.12 0.15 0.12 0.21 0.30 -126 -154 179 154 128 101 73 39 -6 -62 -110 -145 -172 165 144 125 107 91 78 74 142 171 163 150 135 119 104 89 80 102 136 133 118 107 120 125 125 154 139 Note: 1. Data obtained from on-wafer measurements. 5 AMMC-5026 Typical Scattering Parameters[1] (Tchuck = 25°C, Vdd = 8 V, Idd = 150 mA) Freq. GHz 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 32.0 33.0 34.0 35.0 36.0 37.0 38.0 39.0 40.0 dB S11 Mag Ang dB S21 Mag Ang dB S12 Mag Ang dB S22 Mag Ang -24.88 -26.86 -25.30 -23.94 -23.17 -22.72 -22.09 -21.42 -20.79 -20.42 -20.68 -21.76 -24.04 -28.68 -40.72 -30.52 -24.07 -21.00 -18.37 -17.78 -17.89 -18.34 -18.89 -19.20 -19.05 -19.12 -19.87 -20.78 -19.42 -16.18 -13.92 -13.31 -15.52 -23.72 -14.68 -10.47 -9.72 -6.77 -4.70 0.06 0.05 0.05 0.06 0.07 0.07 0.08 0.08 0.09 0.10 0.09 0.08 0.06 0.04 0.01 0.03 0.06 0.09 0.12 0.13 0.13 0.12 0.11 0.11 0.11 0.11 0.10 0.09 0.11 0.16 0.20 0.22 0.17 0.07 0.18 0.30 0.33 0.46 0.58 -57 -19 -2 2 2 1 1 -3 -7 -17 -30 -44 -61 -83 -151 86 58 36 12 -18 -49 -84 -123 -166 151 108 62 3 -67 -123 -166 158 129 144 -169 166 159 152 133 9.59 9.20 8.85 8.59 8.49 8.54 8.70 8.89 9.07 9.17 9.20 9.15 9.08 9.01 8.97 9.00 9.11 9.26 9.35 9.49 9.57 9.60 9.57 9.53 9.55 9.65 9.88 10.14 10.33 10.37 10.21 10.03 9.95 9.82 9.06 7.43 4.27 -2.02 -8.14 3.02 2.88 2.77 2.69 2.66 2.67 2.72 2.78 2.84 2.87 2.88 2.87 2.84 2.82 2.81 2.82 2.85 2.90 2.93 2.98 3.01 3.02 3.01 3.00 3.00 3.04 3.12 3.21 3.29 3.30 3.24 3.17 3.14 3.10 2.84 2.35 1.64 0.79 0.39 129 112 94 76 59 41 23 4 -16 -37 -58 -78 -99 -119 -139 -159 -180 159 137 115 93 70 46 23 0 -24 -49 -75 -103 -133 -164 165 132 95 52 6 -46 -88 -108 -51.70 -47.74 -45.04 -42.85 -41.11 -39.74 -38.56 -37.72 -37.02 -36.31 -35.60 -34.94 -34.20 -33.47 -32.62 -31.87 -31.28 -30.66 -30.26 -29.87 -29.53 -29.42 -29.17 -28.95 -28.57 -28.09 -27.47 -27.05 -26.69 -26.60 -26.76 -26.92 -26.97 -27.01 -27.64 -29.02 -31.77 -37.46 -42.97 0.0026 0.0041 0.0056 0.0072 0.0088 0.0103 0.0118 0.0130 0.0141 0.0153 0.0166 0.0179 0.0195 0.0212 0.0234 0.0255 0.0273 0.0293 0.0307 0.0321 0.0334 0.0338 0.0348 0.0357 0.0373 0.0394 0.0423 0.0444 0.0463 0.0468 0.0459 0.0451 0.0448 0.0446 0.0415 0.0354 0.0258 0.0134 0.0071 -109 -131 -153 -175 164 144 123 104 85 67 49 32 14 -3 -21 -41 -61 -81 -103 -124 -146 -168 172 151 130 108 84 58 30 1 -28 -57 -88 -124 -167 148 96 53 28 -17.27 -15.97 -15.10 -14.79 -15.05 -15.89 -17.37 -19.46 -21.68 -22.16 -20.38 -18.33 -16.84 -15.91 -15.67 -16.02 -16.95 -18.70 -21.76 -27.81 -34.56 -24.90 -19.97 -17.32 -15.83 -15.23 -15.44 -16.82 -20.01 -24.45 -21.24 -17.71 -16.44 -17.71 -18.68 -16.97 -18.00 -13.26 -10.51 0.14 0.16 0.18 0.18 0.18 0.16 0.14 0.11 0.08 0.08 0.10 0.12 0.14 0.16 0.16 0.16 0.14 0.12 0.08 0.04 0.02 0.06 0.10 0.14 0.16 0.17 0.17 0.14 0.10 0.06 0.09 0.13 0.15 0.13 0.12 0.14 0.13 0.22 0.30 -123 -152 -179 155 129 102 72 38 -7 -61 -108 -143 -171 166 145 125 107 91 77 69 146 175 165 151 136 120 105 90 81 103 136 133 119 111 123 127 136 151 138 Note: 1. Data obtained from on-wafer measurements. 6 Biasing and Operation AMMC-5026 is biased with a single positive drain supply (Vd) and a negative gate supply (Vg1). The recommended bias conditions for the HMMC-5026 is Vdd = 7 V and Idd = 150 mA for best overall performance. Open circuit is the default setting for the Vg2 biasing. Figure 17 shows a typical bonding configuration for the 2 to 35 GHz operations. In this case, auxiliary drain and Vg1 capacitors (>0.5 µF) are used for low frequency (below 2 GHz) performance. Input and output RF ports are DC coupled; therefore, DC decoupling capacitors are required if there are DC paths. The auxiliary gate and drain contacts are used for low frequency performance extension below 1 GHz. When used, these contacts must be AC coupled only. (Do not attempt to apply bias to these pads.) Ground connections are made with plated through-holes to the backside of the device. Vd Assembly Techniques The chip should be attached directly to the ground plane using either a fluxless AuSn solder preform or electrically conductive epoxy[1]. For conductive epoxy, the amount should be just enough to provide a thin fillet around the bottom perimeter of the die. The ground plane should be free of any residue that may jeopardize electrical or mechanical attachment. Caution should be taken to not exceed the Absolute Maximum Rating for assembly temperature and time. Thermosonic wedge bonding is the preferred method for wire attachment to the bond pads. The RF connections should be kept as short as possible to minimize inductance. Gold mesh[2] or double-bonding with 0.7 mil gold wire is recommended. Mesh can be attached using a 2 mil round tracking tool and a tool force of approximately 22 grams with an ultrasonic power of roughly 55 dB for a duration of 76 ± 8 mS. A guided wedge at an ultrasonic power level of 64 dB can be used for the 0.7 mil wire. The recommended wire bond stage temperature is 150 ± 2°C. The chip is 100 mm thick and should be handled with care. This MMIC has exposed air bridges on the top surface. Handle at edges or with a custom collet (do not pick up die with vacuum on die center.) This MMIC is also static sensitive and ESD handling precautions should be taken. For more information, see Agilent Application Note 54 “GaAs MMIC ESD, Die Attach and Bonding Guidelines.” Notes: 1. Ablebond 84-1 LM1 silver epoxy is recommended. 2. Buckbee-Mears Corporation, St. Paul, MN, 800-262-3824. RF Output Aux Vd Aux Vg2 RF Input Vg1 Figure 15. AMMC-5026 Schematic. 7 Aux Vg1 89 2964 (RF Output Pad) 750 (Vd) 840 (±10 µm) 587 (Aux Vd) 505 318 (Aux Vg2) 252 2323 (Vg1) 89 (RF Input Pad) 2563 (Aux Vg1) 3050 (± 10 µm) Notes: All dimensions in microns. Rectangular Pad Dim: 75 x 75 µm Figure 16. AMMC-5026 Bonding Pad Locations. (dimensions in micrometers) 1.5 mil dia.Gold Wire Bond to ≥15 nF DC Feedthru ≥68 pF Capacitor 4 nH Inductor (1.0 mil Gold Wire Bond with length of 200 mils) Input and Output Thin Film Circuit with ≥8 pF DC Blocking Capacitor Gold Plated Shim 2.0 mil nom. gap Vd IN OUT HMMC-5026 2.0 mil nom. gap Vg Bonding Island 0.7 mil dia. Gold Bond Wire (Length Not important) 1.5 mil dia.Gold Wire Bond to ≥15 nF DC Feedthru Figure 17. AMMC-5026 Assembly Diagram. www.agilent.com/semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: +1 (800) 235-0312 or (916) 788-6763 Europe: +49 (0) 6441 92460 China: 10800 650 0017 Hong Kong: (65) 6756 2394 India, Australia, New Zealand: (65) 6755 1939 Japan: (+81 3) 3335-8152(Domestic/International), or 0120-61-1280(Domestic Only) Korea: (65) 6755 1989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (65) 6755 2044 Taiwan: (65) 6755 1843 Data subject to change. Copyright © 2004 Agilent Technologies, Inc. April 6, 2004 5988-9882EN 2951