Infineon BFP620F Npn silicon germanium rf transistor Datasheet

BFP620F
NPN Silicon Germanium RF Transistor*
• High gain low noise RF transistor
3
• Small package 1.4 x 0.8 x 0.59 mm
2
4
1
• Outstanding noise figure F = 0.7 dB at 1.8 GHz
Outstanding noise figure F = 1.3 dB at 6 GHz
• Maximum stable gain
Gms = 21 dB at 1.8 GHz
Gma = 10 dB at 6 GHz
Top View
4
3
• Gold metallization for extra high reliability
XYs
• Pb-free (RoHS compliant) package 1)
1
• Qualified according AEC Q101
2
Direction of Unreeling
* Short term description
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP620F
Marking
R2s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
TSFP-4
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0 °C
2.3
TA ≤ 0 °C
2.1
Collector-emitter voltage
VCES
7.5
Collector-base voltage
VCBO
7.5
Emitter-base voltage
VEBO
1.2
Collector current
IC
80
Base current
IB
3
Total power dissipation2)
Ptot
185
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 96°C
1Pb-containing
2T
package may be available upon special request
is
measured
on the collector lead at the soldering point to the pcb
S
2007-04-20
1
BFP620F
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 1)
RthJS
≤ 290
K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
2.3
2.8
-
V
ICES
-
-
10
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
110
180
270
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 7.5 V, V BE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 50 mA, VCE = 1.5 V, pulse measured
1For
calculation of RthJA please refer to Application Note Thermal Resistance
2007-04-20
2
BFP620F
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
-
65
-
Ccb
-
0.12
0.2
Cce
-
0.2
-
Ceb
-
0.45
-
GHz
IC = 50 mA, VCE = 1.5 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz, V BE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, V BE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Noise figure
dB
F
IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt
-
0.7
-
IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt
-
1.3
-
G ms
-
21
-
dB
G ma
-
10
-
dB
Power gain, maximum stable1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 50 mA, VCE = 1.5 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
dB
IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
-
19.5
-
f = 6 GHz
-
9.5
-
IP 3
-
25
-
P-1dB
-
14
-
Third order intercept point at output2)
dBm
VCE = 2 V, I C = 50 mA, ZS =ZL=50 Ω, f = 1.8 GHz
1dB Compression point at output
IC = 50 mA, VCE = 2 V, ZS =ZL=50 Ω, f = 1.8 GHz
1/2
ma = |S 21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e |
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
1G
2007-04-20
3
BFP620F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transistor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
TITF1
0.22
1000
2
2
2
2.707
250.7
1.43
2.4
0.6
0.2
0.5
3
fA
V
V
-
2
-0.0065
-
Ω
fF
ps
A
V
ns
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
NK =
FC =
KF =
TITF2
425
0.25
50
10
3.129
0.6
0.75
10
0
0.5
128.1
-1.42
0.8
7.291E-11
1.0E-5
A
mA
Ω
V
deg
fF
-
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.025
21
1
18
1.522
2.364
0.3
1.5
124.9
1
0.52
1.078
298
fA
pA
mA
Ω
V
fF
V
eV
K
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:
To avoid high complexity of the package equivalent circuit,
both emitter leads of TSFP-4 are combined in one electrical
connection.RLxI are series resistors for the inductances LxI
and Kxa-yb are the coupling coefficients between the
inductances Lxa and Lyb .
LB0 =
LE0 =
LC0 =
KB0-E0 =
KB0-C0 =
KE0-C0 =
CBE =
CBC =
CCE =
LBI =
RLBI =
LEI =
RLEI =
LCI =
RLI =
KBI-EI =
KBI-CI =
KEI-CI =
0.22
0.28
0.22
0.1
0.01
0.11
34
2
33
0.42
0.15
0.26
0.11
0.35
0.13
-0.05
-0.08
0.2
nH
nH
nH
fF
fF
fF
nH
Ω
nH
Ω
nH
Ω
-
Valid up to 6GHz
2007-04-20
4
BFP620F
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
200
mW
160
K/W
RthJS
Ptot
140
120
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 2
100
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
TS
s
10
tp
Permissible Pulse Load
Collector-base capacitance Ccb= ƒ(VCB)
Ptotmax/P totDC = ƒ(tp)
f = 1MHz
10 1
0.4
Ptotmax / PtotDC
pF
CCB
0.3
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
0.25
0.2
0.15
0.1
0.05
10 0 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
0
tp
1
2
3
4
5
6
V
8
VCB
2007-04-20
5
0
BFP620F
Third order Intercept Point IP3=ƒ(IC)
Transition frequency fT = ƒ(IC)
(Output, ZS=ZL=50Ω)
f = 1GHz
VCE = parameter, f =1.8GHz
VCE = Parameter in V
30
70
GHz
2.3V
dBm
60
1.7V
1 to 2.3
55
20
50
fT
IP3
1.4V
15
45
0.8
40
0.8V
10
35
1.1V
30
25
5
20
15
0
10
0.3
0.5
5
-5
0
10
20
30
40
50
60
70 mA
0
0
90
10
20
30
40
50
60
70
80 mA
IC
100
IC
Power gain Gma, Gms = ƒ(IC)
Power Gain Gma, Gms = ƒ(f),
VCE = 1.5V
|S21|² = f (f)
f = Parameter in GHz
VCE = 1.5V, I C = 50mA
50
30
dB
dB
0.9
26
40
24
35
1.8
G
G
22
20
30
18
2.4
16
3
14
4
12
5
10
6
25
20
|S21|²
Gma
15
10
8
6
0
Gms
10
20
30
40
50
60
70 mA
5
0
90
IC
1
2
3
4
GHz
6
f
2007-04-20
6
BFP620F
Power gain Gma, Gms = ƒ (VCE)
Noise figure F = ƒ(I C)
IC = 50mA
VCE = 1.5V, ZS = ZSopt
f = Parameter in GHz
30
3
dB
0.9
24
2.5
1.8
G
20
2.4
2
3
16
4
F [dB]
5
12
1.5
6
8
1
4
f = 6GHz
f = 5GHz
f = 4GHz
f = 3GHz
f = 2.4GHz
f = 1.8GHz
f = 0.9GHz
0.5
0
-4
0.2
0.6
1
1.4
V
1.8
2.6
0
0
VCE
10
20
30
40
50
60
70
80
I [mA]
c
Noise figure F = ƒ(IC )
Noise figure F = ƒ(f)
VCE = 1.5V, f = 1.8 GHz
VCE = 1.5V, ZS = ZSopt
3
2.5
2.5
2
2
I = 50mA
F [dB]
F [dB]
1.5
1.5
C
IC = 5.0mA
1
1
ZS = 50Ω
Z =Z
S
Sopt
0.5
0.5
0
0
0
10
20
30
40
50
60
70
80
1
I [mA]
2
3
4
5
6
7
f [GHz]
c
2007-04-20
7
BFP620F
Source impedance for min.
noise figure vs. frequency
VCE = 1.5V, IC = 5.0mA/50.0mA
1
1.5
2
0.5
0.4
3
0.3
4
0.2
2.4GHz
5
1.8GHz
3GHz
10
0.1
0.1
0
0.2 0.3 0.4 0.5
1
4GHz
−0.1
1.5
2
3
4 5
5GHz
−10
6GHz
−0.2
Ic = 5.0mA
−0.3
−5
−4
−3
Ic = 50mA
−0.4
−0.5
−2
−1.5
−1
2007-04-20
8
Package TSFP-4
BFP620F
Package Outline
0.55 ±0.04
0.2 ±0.05
3
1
1.2 ±0.05
0.2 ±0.05
4
2
0.2 ±0.05
10˚ MAX.
0.8 ±0.05
1.4 ±0.05
0.15 ±0.05
0.5 ±0.05
0.5 ±0.05
Foot Print
0.9
0.45
0.35
0.5
0.5
Marking Layout (Example)
Manufacturer
BFP420F
Type code
Pin 1
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
1.4
8
4
Pin 1
0.7
1.55
2007-04-20
9
BFP620F
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office ( www.infineon.com ).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
2007-04-20
10
Similar pages