EtronTech EM639325 4M x 32 bit Synchronous DRAM (SDRAM) Advance (Rev. 2.1, Aug. /2015) Features Overview • • • • • • The EM639325 SDRAM is a high-speed CMOS synchronous DRAM containing 128 Mbits. It is internally configured as a quad 1M x 32 DRAM with a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 1M x 32 bit banks is organized as 4096 rows by 256 columns by 32 bits. Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of a BankActivate command which is then followed by a Read or Write command. The EM639325 provides for programmable Read or Write burst lengths of 1, 2, 4, 8, or full page, with a burst termination option. An auto precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst sequence. The refresh functions, either Auto or Self Refresh are easy to use. By having a programmable mode register, the system can choose the most suitable modes to maximize its performance. These devices are well suited for applications requiring high memory bandwidth. • • • • • • • • • Fast access time from clock: 5/5.4/5.4 ns Fast clock rate: 200/166/143 MHz Fully synchronous operation Internal pipelined architecture Four internal banks (1M x 32-bit x 4bank) Programmable Mode - CAS Latency: 2 or 3 - Burst Length: 1, 2, 4, 8, or full page - Burst Type: Sequential & Interleaved - Burst-Read-Single-Write Burst stop function Individual byte controlled by DQM0-3 Auto Refresh and Self Refresh 4096 refresh cycles/64ms Single 3.3V ±0.3V power supply Industrial Temperature: TA = -40~85°C Interface: LVTTL 86-pin 400 mil plastic TSOP II package - Pb free and Halogen free 90-ball 8 x 13 x 1.2mm FBGA package - Pb and Halogen Free Table 1. Key Specifications EM639325 -5I/6I/7I tCK3 Clock Cycle time(min.) tAC3 Access time from CLK (max.) 5/5.4/5.4 ns tRAS Row Active time(min.) 40/42/42 ns 55/60/63 ns tRC Row Cycle time(min.) 5/6/7 ns Table 2. Ordering Information Part Number Frequency Package EM639325TS-5IG 200MHz TSOP II EM639325TS-6IG 166MHz EM639325TS-7IG 143MHz EM639325BK-5IH 200MHz EM639325BK-6IH 166MHz EM639325BK-7IH 143MHz TS: indicates TSOP II Package BK: indicates 8 x 13 x 1.2mm FBGA Package I: indicates Industrial Grade G: indicates Pb and Halogen Free for TSOP II Package H: indicates Pb and Halogen Free for FBGA Package TSOP II TSOP II FBGA FBGA FBGA Etron Technology, Inc. No. 6, Technology Rd. V, Hsinchu Science Park, Hsinchu, Taiwan 30078, R.O.C. TEL: (886)-3-5782345 FAX: (886)-3-5778671 Etron Technology, Inc. reserves the right to change products or specification without notice. EtronTech EM639325 Figure 1. Pin Assignment (Top View) VDD 1 86 VSS DQ0 2 85 DQ15 VDDQ 3 84 VSSQ DQ1 4 83 DQ14 DQ2 5 82 DQ13 VSSQ 6 81 VDDQ DQ3 7 80 DQ12 DQ4 8 79 DQ11 VDDQ 9 78 VSSQ DQ5 10 77 DQ10 DQ6 11 76 DQ9 VSSQ 12 75 VDDQ DQ7 13 74 DQ8 NC 14 73 NC VDD 15 72 VSS DQM0 16 71 DQM1 WE# 17 70 NC CAS# 18 69 NC RAS# 19 68 CLK CS# 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10/AP 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25 VDDQ 41 46 VSSQ DQ23 42 45 DQ24 VDD 43 44 VSS Rev. 2.1 2 Aug. /2015 EtronTech EM639325 Figure 2. Ball Assignment (Top View) 1 2 3 7 8 9 A DQ26 DQ24 VSS VDD DQ23 DQ21 B DQ28 VDDQ VSSQ VDDQ VSSQ DQ19 C VSSQ DQ27 DQ25 DQ22 DQ20 VDDQ D VSSQ DQ29 DQ30 DQ17 DQ18 VDDQ E VDDQ DQ31 NC NC DQ16 VSSQ F VSS DQM3 A3 A2 DQM2 VDD G A4 A5 A6 A10 A0 A1 H A7 A8 NC NC BA1 A11 J CLK CKE A9 BA0 CS# RAS# K DQM1 NC NC CAS# WE# DQM0 L VDDQ DQ8 VSS VDD DQ7 VSSQ M VSSQ DQ10 DQ9 DQ6 DQ5 VDDQ N VSSQ DQ12 DQ14 DQ1 DQ3 VDDQ P DQ11 VDDQ VSSQ VDDQ VSSQ DQ4 R DQ13 DQ15 VSS VDD DQ0 DQ2 Rev. 2.1 3 Aug. /2015 EtronTech EM639325 CLOCK BUFFER Column Decoder CKE A10/AP DQ0 DQ Buffer COMMAND DECODER DQ31 CONTROL SIGNAL GENERATOR DQM0~3 Row Decoder CS# RAS# CAS# WE# 4096 x 256 x 32 CELL ARRAY (BANK #0) COLUMN COUNTER ~ CLK Row Decoder Figure 3. Block Diagram 4096 x 256 x 32 CELL ARRAY (BANK #1) Column Decoder MODE REGISTER 4096 x256 x 32 CELL ARRAY (BANK #2) Column Decoder REFRESH COUNTER Row Decoder A9 A11 BA0 BA1 ADDRESS BUFFER Row Decoder ~ A0 4096 x 256 x 32 CELL ARRAY (BANK #3) Column Decoder Rev. 2.1 4 Aug. /2015 EtronTech EM639325 Pin Descriptions Table 3. Pin Details Symbol Type Description CLK Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampled on the positive edge of CLK. CLK also increments the internal burst counter and controls the output registers. CKE Input Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal. If CKE goes low synchronously with clock(set-up and hold time same as other inputs), the internal clock is suspended from the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. When all banks are in the idle state, deactivating the clock controls the entry to the Power Down and Self Refresh modes. CKE is synchronous except after the device enters Power Down and Self Refresh modes, where CKE becomes asynchronous until exiting the same mode. The input buffers, including CLK, are disabled during Power Down and Self Refresh modes, providing low standby power. BA0, BA1 Input Bank Activate: BA0 and BA1 defines to which bank the BankActivate, Read, Write, or BankPrecharge command is being applied. The bank address BA0 and BA1 is used latched in mode register set. A0-A11 Input Address Inputs: A0-A11 are sampled during the BankActivate command (row address A0-A11) and Read/Write command (column address A0-A7 with A10 defining Auto Precharge) to select one location out of the 1M available in the respective bank. During a Precharge command, A10 is sampled to determine if all banks are to be precharged (A10 = HIGH). The address inputs also provide the opcode during a Mode Register Set or Special Mode Register Set command. CS# Input Chip Select: CS# enables (sampled LOW) and disables (sampled HIGH) the command decoder. All commands are masked when CS# is sampled HIGH. CS# provides for external bank selection on systems with multiple banks. It is considered part of the command code. RAS# Input Row Address Strobe: The RAS# signal defines the operation commands in conjunction with the CAS# and WE# signals and is latched at the positive edges of CLK. When RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH," either the BankActivate command or the Precharge command is selected by the WE# signal. When the WE# is asserted "HIGH," the BankActivate command is selected and the bank designated by BA is turned on to the active state. When the WE# is asserted "LOW," the Precharge command is selected and the bank designated by BA is switched to the idle state after the precharge operation. CAS# Input Column Address Strobe: The CAS# signal defines the operation commands in conjunction with the RAS# and WE# signals and is latched at the positive edges of CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column access is started by asserting CAS# "LOW." Then, the Read or Write command is selected by asserting WE# "LOW" or "HIGH." WE# Input Write Enable: The WE# signal defines the operation commands in conjunction with the RAS# and CAS# signals and is latched at the positive edges of CLK. The WE# input is used to select the BankActivate or Precharge command and Read or Write command. DQM0DQM3 Input Data Input/Output Mask: Data Input Mask: DQM0-DQM3 are byte specific. Input data is masked when DQM is sampled HIGH during a write cycle. DQM3 masks DQ31-DQ24, DQM2 masks DQ23-DQ16, DQM1 masks DQ15-DQ8, and DQM0 masks DQ7-DQ0. DQ0DQ31 Input/ Output Data I/O: The DQ0-31 input and output data are synchronized with the positive edges of CLK. The I/Os are byte-maskable during Reads and Writes. Rev. 2.1 5 Aug. /2015 EtronTech EM639325 No Connect: These pins should be left unconnected. NC - VDDQ Supply DQ Power: Provide isolated power to DQs for improved noise immunity. VSSQ Supply DQ Ground: Provide isolated ground to DQs for improved noise immunity. VDD Supply Power Supply: 3.3V ±0.3V. VSS Supply Ground Rev. 2.1 6 Aug. /2015 EtronTech EM639325 Operation Mode Fully synchronous operations are performed to latch the commands at the positive edges of CLK. Table 4 shows the truth table for the operation commands. Table 4. Truth Table (Note (1), (2)) Command BankActivate State CKEn-1 CKEn DQM(6) BA0,1 A10 A11, A9-0 CS# RAS# CAS# WE# Idle(3) H X X V Row address L L H H BankPrecharge Any H X X V L X L L H L PrechargeAll Any H X X X H X L L H L Write Active(3) H X V V L L H L L Write and AutoPrecharge Active(3) H X V V H Column address (A0 ~ A7) L H L L Read Active(3) H X V V L L H L H Read and Autoprecharge Active(3) H X V V H L H L H Mode Register Set Idle H X X L L L L No-Operation Any H X X X X X L H H H Active(4) H X X X X X L H H L Device Deselect Any H X X X X X H X X X AutoRefresh Idle H H X X X X L L L H SelfRefresh Entry Idle H L X X X X L L L H SelfRefresh Exit Idle L H X X X X H X X X L H H H H X X X L V V V H X X X L H H H Burst Stop Column address (A0 ~ A7) OP code (SelfRefresh) Clock Suspend Mode Entry Active Power Down Mode Entry Any(5) Clock Suspend Mode Exit H H L L X X X X X X X X Active L H X X X X X X X X Any L H X X X X H X X X L H H H X X X X Active H X H X X X X X X Note: 1. V = Valid, X = Don't care, L = Logic low, H = Logic high 2. CKEn signal is input level when commands are provided. CKEn-1 signal is input level one clock cycle before the commands are provided. 3. These are states of bank designated by BA signal. 4. Device state is 1, 2, 4, 8, and full page burst operation. 5. Power Down Mode can not enter in the burst operation. When this command is asserted in the burst cycle, device state is clock suspend mode. 6. DQM0-3 X Power Down Mode Exit (PowerDown) Data Write/Output Enable Active H X L X Data Mask/Output Disable Rev. 2.1 7 X X Aug. /2015 EtronTech EM639325 Commands 1 BankActivate (RAS# = "L", CAS# = "H", WE# = "H", BA 0,1= Bank, A0-A11 = Row Address) The BankActivate command activates the idle bank designated by the BA0,1 (Bank Activate) signal. By latching the row address on A0 to A11 at the time of this command, the selected row access is initiated. The read or write operation in the same bank can occur after a time delay of tRCD(min.) from the time of bank activation. A subsequent BankActivate command to a different row in the same bank can only be issued after the previous active row has been precharged (refer to the following figure). The minimum time interval between successive BankActivate commands to the same bank is defined by tRC(min.). The SDRAM has four internal banks on the same chip and shares part of the internal circuitry to reduce chip area; therefore it restricts the back-to-back activation of the two banks. tRRD(min.) specifies the minimum time required between activating different banks. After this command is used, the Write command performs the no mask write operation. Figure 4. BankActivate Command Cycle (Burst Length = n) T0 T1 T2 T3 Tn+3 Tn+4 Tn+5 Tn+6 CLK ADDRESS Bank A Row Addr. Bank A Col Addr. Bank B Row Addr. RAS# - CAS# delay(tRCD) COMMAND Bank A Activate NOP NOP Bank A Row Addr. RAS# - RAS# delay time(tRRD) Bank B Activate R/W A with AutoPrecharge NOP NOP Bank A Activate RAS# - Cycle time(tRC) AutoPrecharge Begin Don’t Care 2 BankPrecharge command (RAS# = "L", CAS# = "H", WE# = "L", BA0, 1 = Bank, A10 = "L", A0-A9, A11 = Don't care) The BankPrecharge command precharges the bank designated by BA0, 1 signal. The precharged bank is switched from the active state to the idle state. This command can be asserted anytime after tRAS(min.) is satisfied from the BankActivate command in the desired bank. The maximum time any bank can be active is specified by tRAS(max.). Therefore, the precharge function must be performed in any active bank within tRAS(max.). At the end of precharge, the precharged bank is still in the idle state and is ready to be activated again. 3 PrechargeAll command (RAS# = "L", CAS# = "H", WE# = "L", BA0,1 = Don’t care, A10 = "H", A0-A9, A11 = Don't care) The PrechargeAll command precharges all the four banks simultaneously and can be issued even if all banks are not in the active state. All banks are then switched to the idle state. 4 Read command (RAS# = "H", CAS# = "L", WE# = "H", BA0, 1 = Bank, A10 = "L", A0-A7 = Column Address) The Read command is used to read a burst of data on consecutive clock cycles from an active row in an active bank. The bank must be active for at least tRCD(min.) before the Read command is issued. During read bursts, the valid data-out element from the starting column address will be available following the CAS latency after the issue of the Read command. Each subsequent data-out element will be valid by the next positive clock edge (refer to the following figure). The DQs go into high-impedance at the end of the burst unless other command is initiated. The burst length, burst sequence, and CAS latency are determined by the mode register which is already programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue). Rev. 2.1 8 Aug. /2015 EtronTech EM639325 Figure 5. Burst Read Operation (Burst Length = 4, CAS# Latency = 2, 3) T0 T1 READ A NOP T2 T3 T4 T5 T6 T7 T8 CLK COMMAND CAS# latency=2 tCK2, DQ NOP NOP NOP NOP NOP NOP NOP DOUT A0 DOUT A1 DOUT A2 DOUT A3 CAS# latency=3 tCK3, DQ DOUT A0 DOUT A1 DOUT A2 DOUT A3 The read data appears on the DQs subject to the values on the DQM inputs two clocks earlier (i.e. DQM latency is two clocks for output buffers). A read burst without the auto precharge function may be interrupted by a subsequent Read or Write command to the same bank or the other active bank before the end of the burst length. It may be interrupted by a BankPrecharge/ PrechargeAll command to the same bank too. The interrupt coming from the Read command can occur on any clock cycle following a previous Read command (refer to the following figure). Figure 6. Read Interrupted by a Read (Burst Length = 4, CAS# Latency = 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND CAS# latency=2 tCK2, DQ READ A READ B NOP DOUT A0 CAS# latency=3 tCK3, DQ NOP NOP NOP DOUT B0 DOUT B1 DOUT B2 DOUT A0 DOUT B0 DOUT B1 NOP NOP NOP DOUT B3 DOUT B2 DOUT B3 The DQM inputs are used to avoid I/O contention on the DQ pins when the interrupt comes from a Write command. The DQMs must be asserted (HIGH) at least two clocks prior to the Write command to suppress data-out on the DQ pins. To guarantee the DQ pins against I/O contention, a single cycle with high-impedance on the DQ pins must occur between the last read data and the Write command (refer to the following figure). If the data output of the burst read occurs at the second clock of the burst write, the DQMs must be asserted (HIGH) at least one clock prior to the Write command to avoid internal bus contention. Rev. 2.1 9 Aug. /2015 EtronTech EM639325 Figure 7. Read to Write Interval (Burst Length ≥ 4, CAS# Latency = 2) T0 T1 T2 T3 T4 T5 T6 T7 T9 T8 CLK DQM COMMAND NOP NOP BANKA ACTIVATE NOP CAS# latency=2 tCK2, DQ READ A NOP WRITE A NOP NOP DIN A0 DIN A1 DIN A2 NOP DIN A3 Must be Hi-Z before the Write Command Figure 8. Read to Write Interval (Burst Length ≥ 4, CAS# Latency = 2) CLK T0 T1 T2 T3 T4 T5 T6 T7 T8 DQM COMMAND NOP NOP READ A NOP CAS# latency=2 tCK2, DQ NOP WRITE B DIN B0 NOP NOP NOP DIN B1 DIN B2 DIN B3 Must be Hi-Z before the Write Command Don’t Care Figure 9. Read to Write Interval (Burst Length ≧ 4, CAS# Latency = 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK DQM COMMAND NOP READ A NOP NOP CAS# Latency=3 tCK3, DQ NOP DOUT A0 NOP WRITE B NOP NOP DIN B0 DIN B1 DIN B2 Must be Hi-Z before the Write Command Don’t Care A read burst without the auto precharge function may be interrupted by a BankPrecharge/ PrechargeAll command to the same bank. The following figure shows the optimum time that BankPrecharge/ PrechargeAll command is issued in different CAS latency. Rev. 2.1 10 Aug. /2015 EtronTech EM639325 Figure 10. Read to Precharge (CAS# Latency = 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK ADDRESS Bank, Col A Bank Row Bank(s) tRP COMMAND READ A NOP CAS# latency=2 tCK2, DQ NOP NOP Precharge NOP NOP Activate NOP DOUT A0 DOUT A1 DOUT A2 DOUT A3 CAS# latency=3 tCK3, DQ DOUT A0 DOUT A1 DOUT A2 DOUT A3 Don’t Care 5 Read and AutoPrecharge command (RAS# = "H", CAS# = "L", WE# = "H", BA = Bank, A10 = "H", A0-A7 = Column Address) The Read and AutoPrecharge command automatically performs the precharge operation after the read operation. Once this command is given, any subsequent command cannot occur within a time delay of {tRP(min.) + burst length}. At full-page burst, only the read operation is performed in this command and the auto precharge function is ignored. 6 Write command (RAS# = "H", CAS# = "L", WE# = "L", BA = Bank, A10 = "L", A0-A7 = Column Address) The Write command is used to write a burst of data on consecutive clock cycles from an active row in an active bank. The bank must be active for at least tRCD(min.) before the Write command is issued. During write bursts, the first valid data-in element will be registered coincident with the Write command. Subsequent data elements will be registered on each successive positive clock edge (refer to the following figure). The DQs remain with high-impedance at the end of the burst unless another command is initiated. The burst length and burst sequence are determined by the mode register, which is already programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue). Figure 11. Burst Write Operation (Burst Length = 4) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND DQ NOP WRITE A NOP NOP NOP DIN A0 DIN A1 DIN A2 DIN A3 The first data element and the write are registered on the same clock edge NOP NOP NOP NOP Don’t Care A write burst without the AutoPrecharge function may be interrupted by a subsequent Write, BankPrecharge/PrechargeAll, or Read command before the end of the burst length. An interrupt coming from Write command can occur on any clock cycle following the previous Write command (refer to the following figure). Rev. 2.1 11 Aug. /2015 EtronTech EM639325 Figure 12. Write Interrupted by a Write (Burst Length = 4) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND NOP DQ WRITE A WRITE B NOP NOP NOP DIN A0 DIN B0 DIN B1 DIN B2 DIN B3 NOP NOP NOP The Read command that interrupts a write burst without auto precharge function should be issued one cycle after the clock edge in which the last data-in element is registered. In order to avoid data contention, input data must be removed from the DQs at least one clock cycle before the first read data appears on the outputs (refer to the following figure). Once the Read command is registered, the data inputs will be ignored and writes will not be executed. Figure 13. Write Interrupted by a Read (Burst Length = 4, CAS# Latency = 2, 3) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND NOP WRITE A CAS# latency=2 tCK2, DQ DIN A0 CAS# latency=3 tCK3, DQ DIN A0 READ B NOP NOP NOP NOP NOP NOP DOUT B0 DOUT B1 DOUT B2 DOUT B3 DOUT B0 DOUT B1 DOUT B2 DOUT B3 Input data must be removed from the DQ at least one clock cycle before the Read data appears on the outputs to avoid data contention Don’t Care The BankPrecharge/PrechargeAll command that interrupts a write burst without the auto precharge function should be issued m cycles after the clock edge in which the last data-in element is registered, where m equals tWR/tCK rounded up to the next whole number. In addition, the DQM signals must be used to mask input data, starting with the clock edge following the last data-in element and ending with the clock edge on which the BankPrecharge/PrechargeAll command is entered (refer to the following figure). Rev. 2.1 12 Aug. /2015 EtronTech EM639325 Figure 14. Write to Precharge T0 CLK T1 T2 T3 T4 T5 T6 T7 Activate NOP DQM tRP COMMAND WRITE ADDRESS BANK COL n NOP NOP Precharge NOP NOP BANK(S) ROW tWR DIN N+1 DIN N DQ Don’t Care Note: The DQMs can remain low in this example if the length of the write burst is 1 or 2. 7 Write and AutoPrecharge command (RAS# = "H", CAS# = "L", WE# = "L", BA = Bank, A10 = "H", A0-A7 = Column Address) The Write and AutoPrecharge command performs the precharge operation automatically after the write operation. Once this command is given, any subsequent command can not occur within a time delay of {(burst length -1) + tWR + tRP(min.)}. At full-page burst, only the write operation is performed in this command and the auto precharge function is ignored. Figure 15. Burst Write with Auto-Precharge (Burst Length = 2) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 CLK COMMAND Bank A Activate NOP NOP WRITE A Auto Precharge NOP NOP NOP NOP NOP Bank A Activate tDAL DQ DIN A0 tDAL=tWR+tRP 8 DIN A1 Begin AutoPrecharge Bank can be reactivated at completion of tDAL Mode Register Set command (RAS# = "L", CAS# = "L", WE# = "L", A0-A11 = Register Data) The mode register stores the data for controlling the various operating modes of SDRAM. The Mode Register Set command programs the values of CAS latency, Addressing Mode and Burst Length in the Mode register to make SDRAM useful for a variety of different applications. The default values of the Mode Register after power-up are undefined; therefore this command must be issued at the power-up sequence. The state of pins A0~A9 and A11 in the same cycle is the data written to the mode register. Two clock cycles are required to complete the write in the mode register (refer to the following figure). The contents of the mode register can be changed using the same command and the clock cycle requirements during operation as long as all banks are in the idle state. Rev. 2.1 13 Aug. /2015 EtronTech EM639325 Table 5. Mode Register Bitmap BA1 0 A9 0 1 BA0 0 A11 0 A10 A9 0 W.B.L Write Burst Length Burst Single Bit A6 0 0 0 0 1 A8 0 1 0 A8 A7 A6 A5 A4 CAS Latency TM A7 0 0 1 Test Mode Normal Reserved Reserved A3 BT A3 0 1 A2 A1 A0 Burst Length Burst Type Sequential Interleave A5 0 0 1 1 0 A4 CAS Latency A2 A1 A0 Burst Length 0 Reserved 0 0 0 1 1 Reserved 0 0 1 2 0 2 clocks 0 1 0 4 1 3 clocks 0 1 1 8 0 Reserved 1 1 1 Full Page (Sequential) All other Reserved All other Reserved Note: Column address is repeated until terminated in Full Page Mode Figure 16. Mode Register Set Cycle T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 CLK CKE tMRD CS# RAS# CAS# WE# BA0,1 A10 Address Key A0-A9, A11 DQM DQ tRP Hi-Z PrechargeAll Rev. 2.1 Mode Register Set Command 14 Any Command Don’t Care Aug. /2015 EtronTech EM639325 • Burst Definition, Addressing Sequence of Sequential and Interleave Mode Table 6. Burst Definition Start Address A2 A1 A0 X X 0 X X 1 X 0 0 X 0 1 X 1 0 X 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 Burst Length 2 4 8 Full page 9 location = 0-255 Sequential Interleave 0, 1 1, 0 0, 1, 2, 3 1, 2, 3, 0 2, 3, 0, 1 3, 0, 1, 2 0, 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 0 2, 3, 4, 5, 6, 7, 0, 1 3, 4, 5, 6, 7, 0, 1, 2 4, 5, 6, 7, 0, 1, 2, 3 5, 6, 7, 0, 1, 2, 3, 4 6, 7, 0, 1, 2, 3, 4, 5 7, 0, 1, 2, 3, 4, 5, 6 n, n+1, n+2, n+3, …255, 0, 1, 2, … n-1, n, … 0, 1 1, 0 0, 1, 2, 3 1, 0, 3, 2 2, 3, 0, 1 3, 2, 1, 0 0, 1, 2, 3, 4, 5, 6, 7 1, 0, 3, 2, 5, 4, 7, 6 2, 3, 0, 1, 6, 7, 4, 5 3, 2, 1, 0, 7, 6, 5, 4 4, 5, 6, 7, 0, 1, 2, 3 5, 4, 7, 6, 1, 0, 3, 2 6, 7, 4, 5, 2, 3, 0, 1 7, 6, 5, 4, 3, 2, 1, 0 Not Support No-Operation command (RAS# = "H", CAS# = "H", WE# = "H") The No-Operation command is used to perform a NOP to the SDRAM which is selected (CS# is Low). This prevents unwanted commands from being registered during idle or wait states. 10 Burst Stop command (RAS# = "H", CAS# = "H", WE# = "L") The Burst Stop command is used to terminate either fixed-length or full-page bursts. This command is only effective in a read/write burst without the auto precharge function. The terminated read burst ends after a delay equal to the CAS latency (refer to the following figure). The termination of a write burst is shown in the following figure. Figure 17. Termination of a Burst Read Operation (Burst Length>4, CAS# Latency = 2, 3) T0 T1 T2 T3 READ A NOP NOP NOP CLK COMMAND CAS# latency=2 tCK2, DQ CAS# latency=3 tCK3, DQ Rev. 2.1 T4 Burst Stop T5 NOP T6 NOP T7 NOP T8 NOP The burst ends after a delay equal to the CAS# latency DOUT A0 DOUT A1 DOUT A2 DOUT A3 DOUT A0 DOUT A1 DOUT A2 15 DOUT A3 Aug. /2015 EtronTech EM639325 Figure 18. Termination of a Burst Write Operation (Burst Length = X) T0 T1 T2 T3 T4 T5 T6 T7 T8 CLK COMMAND DQ NOP Burst Stop WRITE A NOP NOP DIN A0 DIN A1 DIN A2 NOP NOP NOP NOP Don’t Care 11 Device Deselect command (CS# = "H") The Device Deselect command disables the command decoder so that the RAS#, CAS#, WE# and Address inputs are ignored, regardless of whether the CLK is enabled. This command is similar to the No Operation command. 12 AutoRefresh command (RAS# = "L", CAS# = "L", WE# = "H",CKE = "H", BA0,1 = “Don‘t care, A0-A11 = Don't care) The AutoRefresh command is used during normal operation of the SDRAM and is analogous to CAS#-before-RAS# (CBR) Refresh in conventional DRAMs. This command is non-persistent, so it must be issued each time a refresh is required. The addressing is generated by the internal refresh controller. This makes the address bits a "don't care" during an AutoRefresh command. The internal refresh counter increments automatically on every auto refresh cycle to all of the rows. The refresh operation must be performed 4096 times within 64ms. The time required to complete the auto refresh operation is specified by tRC(min.). To provide the AutoRefresh command, all banks need to be in the idle state and the device must not be in power down mode (CKE is high in the previous cycle). This command must be followed by NOPs until the auto refresh operation is completed. The precharge time requirement, tRP(min), must be met before successive auto refresh operations are performed. 13 SelfRefresh Entry command (RAS# = "L", CAS# = "L", WE# = "H", CKE = "L", A0-A11 = Don't care) The SelfRefresh is another refresh mode available in the SDRAM. It is the preferred refresh mode for data retention and low power operation. Once the SelfRefresh command is registered, all the inputs to the SDRAM become "don't care" with the exception of CKE, which must remain LOW. The refresh addressing and timing is internally generated to reduce power consumption. The SDRAM may remain in SelfRefresh mode for an indefinite period. The SelfRefresh mode is exited by restarting the external clock and then asserting HIGH on CKE (SelfRefresh Exit command). 14 SelfRefresh Exit command (CKE = "H", CS# = "H" or CKE = "H", RAS# = "H", CAS# = "H", WE# = "H") This command is used to exit from the SelfRefresh mode. Once this command is registered, NOP or Device Deselect commands must be issued for tRC(min.) because time is required for the completion of any bank currently being internally refreshed. If auto refresh cycles in bursts are performed during normal operation, a burst of 4096 auto refresh cycles should be completed just prior to entering and just after exiting the SelfRefresh mode. 15 Clock Suspend Mode Entry / PowerDown Mode Entry command (CKE = "L") When the SDRAM is operating the burst cycle, the internal CLK is suspended (masked) from the subsequent cycle by issuing this command (asserting CKE "LOW"). The device operation is held intact while CLK is suspended. On the other hand, when all banks are in the idle state, this command performs entry into the PowerDown mode. All input and output buffers (except the CKE buffer) are turned off in the PowerDown mode. The device may not remain in the Clock Suspend or PowerDown state longer than the refresh period (64ms) since the command does not perform any refresh operations. Rev. 2.1 16 Aug. /2015 EtronTech EM639325 16 Clock Suspend Mode Exit / PowerDown Mode Exit command When the internal CLK has been suspended, the operation of the internal CLK is reinitiated from the subsequent cycle by providing this command (asserting CKE "HIGH", the command should be NOP or deselect). When the device is in the PowerDown mode, the device exits this mode and all disabled buffers are turned on to the active state. tXSR(min.) is required when the device exits from the PowerDown mode. Any subsequent commands can be issued after one clock cycle from the end of this command. 17 Data Write / Output Enable, Data Mask / Output Disable command (DQM = "L", "H") During a write cycle, the DQM signal functions as a Data Mask and can control every word of the input data. During a read cycle, the DQM functions as the controller of output buffers. DQM is also used for device selection, byte selection and bus control in a memory system. Rev. 2.1 17 Aug. /2015 EtronTech EM639325 Table 7. Absolute Maximum Rating Symbol VIN, VOUT Item Input, Output Voltage Values -1.0 ~ 4.6 Unit V VDD, VDDQ Power Supply Voltage -1.0 ~ 4.6 V TA Ambient Temperature -40 ~ 85 °C TSTG Storage Temperature -55 ~ 150 °C PD Power Dissipation 1.1 W IOS Short Circuit Output Current 50 mA Note Note: Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Table 8. Recommended D.C. Operating Conditions (VDD = 3.3V ±0.3V, TA = -40~85°C) Symbol Parameter/ Condition Min. Typ. Max. Unit Note VDD DRAM Core Supply Voltage 3.0 3.3 3.6 V 2 VDDQ I/O Supply Voltage 3.0 3.3 3.6 V 2 VIH Input High Level Voltage 2 - VDDQ+0.3 V 2 VIL Input Low Level Voltage -0.3 - 0.8 V 2 -10 - 10 µA -10 - 10 µA IIL Input Leakage Current ( 0V≦VIN≦VDD, All other pins not under test = 0V ) IOZ Output Leakage Current (Output Disable, 0V≦VIN≦VDDQ ) VOH Output High Level Voltage ( IOUT = -2mA ) 2.4 - - V VOL Output Low Level Voltage ( IOUT = 2mA ) - - 0.4 V Table 9. Capacitance (VDD = 3.3V, f = 1MHz, TA = 25°C) Symbol CI CI/O Parameter Input Capacitance Input/Output Capacitance Min. 3.5 5.5 Max. 5.5 7.5 Unit pF pF Note: These parameters are periodically sampled and are not 100% tested. Rev. 2.1 18 Aug. /2015 EtronTech EM639325 Table 10. D.C. Characteristics (VDD = 3.3V ±0.3V, TA = -40~85°C) Description/Test condition Operating Current tRC ≥ tRC(min), Outputs Open, One bank active Precharge Standby Current in power down mode tCK = 15ns, CKE ≤ VIL(max) Precharge Standby Current in power down mode tCK = ∞, CKE ≤ VIL(max) Precharge Standby Current in non-power down mode tCK = 15ns, CS# ≥ VIH(min), CKE ≥ VIH Input signals are changed every 2clks Precharge Standby Current in non-power down mode tCK = ∞, CLK ≤ VIL(max), CKE ≥ VIH Active Standby Current in non-power down mode tCK = 15ns, CKE ≥ VIH(min), CS# ≥ VIH(min) Input signals are changed every 2clks Active Standby Current in non-power down mode CKE ≥ VIH(min), CLK ≤ VIL(max), tCK = ∞ Operating Current (Burst mode) tCK =tCK(min), Outputs Open, Multi-bank interleave Refresh Current tRC ≥ tRC(min) Self Refresh Current CKE ≤ 0.2V ; for other inputs VIH≧VDD - 0.2V, VIL ≤ 0.2V Rev. 2.1 -5I -6I Max. -7I IDD1 200 160 140 IDD2P 3 3 3 IDD2PS 3 3 3 50 50 50 30 30 30 Symbol 19 IDD2N IDD2NS Unit Note 3 mA IDD3N 60 60 60 IDD3NS 50 50 50 IDD4 240 200 170 3, 4 IDD5 300 260 230 3 IDD6 3 3 3 Aug. /2015 EtronTech EM639325 Table 11. Electrical Characteristics and Recommended A.C. Operating Conditions (VDD = 3.3V ±0.3V, TA = -40~85°C) (Note: 5~8) Symbol -5I Min. Max. A.C. Parameter -6I Min. Max. -7I Min. Max. tRC Row cycle time (same bank) 55 - 60 - 63 - tRCD RAS# to CAS# delay (same bank) 15 - 18 - 21 - tRP Precharge to refresh / row activate command (same bank) Row activate to row active delay 15 - 18 - 21 - tRRD (different banks) tRAS Row activate to precharge time (same bank) Unit Note ns 10 - 12 - 14 - 40 100K 42 100K 42 100K tWR Write recovery time 2 - 2 - 2 - tCCD CAS# to CAS# Delay time 1 - 1 - 1 - Clock cycle time CL* = 2 - - 10 - 10 - tCK CL* = 3 5 - 6 - 7 - tCH Clock high time 2 - 2.5 - 2.5 - tCL Clock low time 2 - 2.5 - 2.5 - tCK ns 9 10 10 Access time from CLK CL* = 2 - - - 6 - 6.5 tAC (positive edge) CL* = 3 - 5 - 5.4 - 5.4 tOH Data output hold time 2 - 2.5 - 2.5 - tLZ Data output low impedance 1 - 1 - 1 - tHZ Data output high impedance CL* = 3 - 5 - 5.4 - 5.4 tIS Data/Address/Control Input set-up time 1.5 - 1.5 - 1.5 - tIH Data/Address/Control Input hold time 0.8 - 0.8 - 0.8 - ns tPDE PowerDown Exit Setup Time tIS+tCK - tIS+tCK - tIS+tCK - ns tMRD Mode Register Set Command Cycle Time 2 - 2 - 2 - tCK tREFI Refresh Interval Time - 15.6 - 15.6 - 15.6 µs tXSR Exit Self-Refresh to any Command tRC+tIS - tRC+tIS - tRC+tIS - ns 9 ns 8 10 10 *CL is CAS Latency. Note: 1. Stress greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. 2. All voltages are referenced to VSS. VIH (Max) = 4.6V for pulse width ≦3ns. VIL(Min) = -1.0V for pulse width ≦ 3ns. 3. These parameters depend on the cycle rate and these values are measured by the cycle rate under the minimum value of tCK and tRC. Input signals are changed one time during every 2 tCK. 4. These parameters depend on the output loading. Specified values are obtained with the output open. 5. Power-up sequence is described in Note 11. 6. A.C. Test Conditions Rev. 2.1 20 Aug. /2015 EtronTech EM639325 Table 12. LVTTL Interface Reference Level of Output Signals 1.4V / 1.4V Output Load Reference to the Under Output Load (B) Input Signal Levels (VIH /VIL) 2.4V / 0.4V Transition Time (Rise and Fall) of Input Signals 1ns Reference Level of Input Signals 1.4V 1.4V 3.3V 50Ω 1.2KΩ Output Output 30pF Z0=50Ω 870Ω Figure 19.1 LVTTL D.C. Test Load (A) 30pF Figure 19.2 LVTTL A.C. Test Load (B) 7. Transition times are measured between VIH and VIL. Transition (rise and fall) of input signals are in a fixed slope (1 ns). 8. tHZ defines the time in which the outputs achieve the open circuit condition and are not at reference levels. 9. If clock rising time is longer than 1 ns, (tR / 2 -0.5) ns should be added to the parameter. 10. Assumed input rise and fall time tT (tR & tF ) = 1 ns If tR or tF is longer than 1 ns, transient time compensation should be considered, i.e., [(tr + tf)/2 - 1] ns should be added to the parameter. 11. Power up Sequence Power up must be performed in the following sequence. 1) Power must be applied to VDD and VDDQ (simultaneously) when CKE= “L”, DQM= “H” and all input signals are held "NOP" state. 2) Start clock and maintain stable condition for minimum 200 µs, then bring CKE= “H” and, it is recommended that DQM is held "HIGH" (VDD levels) to ensure DQ output is in high impedance. 3) All banks must be precharged. 4) Mode Register Set command must be asserted to initialize the Mode register. 5) A minimum of 2 Auto-Refresh dummy cycles must be required to stabilize the internal circuitry of the device. * The Auto Refresh command can be issue before or after Mode Register Set command Rev. 2.1 21 Aug. /2015 EtronTech EM639325 Timing Waveforms Figure 20. AC Parameters for Write Timing (Burst Length=4) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 tCH tCL CKE tIS tIS Begin Auto Precharge Bank A tIH Begin Auto Precharge Bank B CS# RAS# CAS# WE# BA0,1 tIH A10 RAx RBx RAy tIS A0-A9, A11 RAx CAx RBx CBx RAy CAy DQM tRCD tDAL tIS tRC DQ Hi-Z Ax0 Activate Command Bank A Ax1 Write with Auto Precharge Command Bank A Ax2 Activate Command Bank B tWR tIH Ax3 Bx0 Bx1 Write with Auto Precharge Command Bank B Bx2 Bx3 Ay0 Activate Command Bank A Write Command Bank A Ay1 Ay2 Ay3 Precharge Command Bank A Don’t Care Rev. 2.1 22 Aug. /2015 EtronTech EM639325 Figure 21. AC Parameters for Read Timing (Burst Length=2, CAS# Latency=3) T0 CLK T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 tCH tCL CKE tIS Begin Auto Precharge Bank B tIS tIH tIH CS# RAS# CAS# WE# BA0,1 tIH A10 RAx RBx RAy tIS A0-A9, A11 RAx CAx RBx CBx RAy tRRD tRAS DQM tRC tAC tRCD tHZ tLZ DQ Hi-Z Ax0 Ax1 Read Command Bank A Activate Command Bank B Bx0 Bx1 tHZ tOH Activate Command Bank A tRP Read with Precharge Auto Precharge Command Command Bank A Bank B Activate Command Bank A Don’t Care Rev. 2.1 23 Aug. /2015 EtronTech EM639325 Figure 22. Auto Refresh (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx tRP tRC tRC CAx tRCD DQM DQ Ax0 Precharge All Command Auto Refresh Command Auto Refresh Command Activate Command Bank A Read Command Bank A Don’t Care Rev. 2.1 24 Aug. /2015 EtronTech EM639325 Figure 23. Power on Sequence and Auto Refresh T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High Level Is reguired Minimum for 2 Refresh Cycles are required CS# RAS# CAS# WE# BA0,1 A10 Address Key A0-A9, A11 DQM DQ tRP tMRD Hi-Z Precharge All Command Inputs must be Stable for 200µs Mode Register Set Command 1st Auto Refresh(*) Command 2nd Auto Refresh(*) Command Any Command Don’t Care Note(*): The Auto Refresh command can be issue before or after Mode Register Set command Rev. 2.1 25 Aug. /2015 EtronTech EM639325 Figure 24. Self Refresh Entry & Exit Cycle T0 T1 T2 T3 T4 CLK *Note 1 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 *Note 2 CKE tXSR *Note 5 *Note 3,4 *Note 8 tPDE tIS tIH *Note 6 tIS CS# *Note 7 RAS# *Note 9 CAS# WE# BA0,1 A10 A0-A9, A11 DQM DQ Hi-Z Hi-Z Self Refresh Exit Self Refresh Entry Auto Refresh Don’t Care Note: To Enter SelfRefresh Mode 1. CS#, RAS# & CAS# with CKE should be low at the same clock cycle. 2. After 1 clock cycle, all the inputs including the system clock can be don't care except for CKE. 3. The device remains in SelfRefresh mode as long as CKE stays "low". 4. Once the device enters SelfRefresh mode, minimum tRAS is required before exit from SelfRefresh. 5. 6. 7. 8. 9. To Exit SelfRefresh Mode System clock restart and be stable before returning CKE high. Enable CKE and CKE should be set high for valid setup time and hold time. CS# starts from high. Minimum tXSR is required after CKE going high to complete SelfRefresh exit. 4096 cycles of burst AutoRefresh is required before SelfRefresh entry and after SelfRefresh exit if the system uses burst refresh. Rev. 2.1 26 Aug. /2015 EtronTech EM639325 Figure 25. Clock Suspension During Burst Read (Using CKE) (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx CAx DQM DQ tHZ Hi-Z Ax0 Activate Command Bank A Read Command Bank A Ax1 Ax2 Clock Suspend 1 Cycle Clock Suspend 2 Cycles Ax3 Clock Suspend 3 Cycles Don’t Care Rev. 2.1 27 Aug. /2015 EtronTech EM639325 Figure 26. Clock Suspension During Burst Write (Using CKE) (Burst Length=4) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx CAx DQM DQ Hi-Z DAx0 Activate Command Bank A Rev. 2.1 DAx1 Clock Suspend 1 Cycle Write Command Bank A DAx2 DAx3 Clock Suspend 3 Cycles Clock Suspend 2 Cycles Don’t Care 28 Aug. /2015 EtronTech EM639325 Figure 27. Power Down Mode and Clock Suspension (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 CLK T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 tIH tIS tPDE CKE Valid CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx CAx DQM DQ tHZ Hi-Z Ax0 ACTIVE Activate Read STANDBY Command Command Bank A Bank A Power Down Power Down Mode Exit Mode Entry Rev. 2.1 Ax1 Clock Suspension Start Ax2 Ax3 Clock Suspension End Precharge Command Bank A Power Down Mode Entry 29 PRECHARGE STANDBY Power Down Mode Exit Any Command Don’t Care Aug. /2015 EtronTech EM639325 Figure 28. Random Column Read (Page within same Bank) (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAw A0-A9, A11 RAw RAz CAw CAx CAy RAz CAz DQM DQ Hi-Z Aw0 Activate Command Bank A Read Command Bank A Aw1 Aw2 Read Command Bank A Aw3 Ax0 Read Command Bank A Ax1 Ay0 Ay1 Ay2 Precharge Command Bank A Ay3 Activate Command Bank A Read Command Bank A Don’t Care Rev. 2.1 30 Aug. /2015 EtronTech EM639325 Figure 29. Random Column Write (Page within same Bank) (Burst Length=4) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RBw A0-A9, A11 RBw RBz CBw CBx CBy RBz CBz DQM DQ Hi-Z DBw0 DBw1 DBw2 DBw3 DBx0 Activate Command Bank B Write Command Bank B DBx1 Write Command Bank B DBy0 DBy1 DBy2 Write Command Bank B DBy3 DBz0 Precharge Command Bank B Activate Command Bank B DBz1 Write Command Bank B Don’t Care Rev. 2.1 31 Aug. /2015 EtronTech EM639325 Figure 30. Random Row Read (Interleaving Banks) (Burst Length=8, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High CS# RAS# CAS# WE# BA0,1 A10 RBx A0-A9, A11 RBx CBx Hi-Z Activate Command Bank B RBy RAx CAx RBy tAC tRCD DQM DQ RAx tRP Bx0 Read Command Bank B CBy Bx1 Bx2 Bx3 Bx4 Activate Command Bank A Bx5 Bx6 Read Command Bank A Bx7 Ax0 Precharge Command Bank B Ax1 Ax2 Ax3 Activate Command Bank B Ax4 Ax5 Ax6 Read Command Bank B Ax7 By0 Precharge Command Bank A Don’t Care Rev. 2.1 32 Aug. /2015 EtronTech EM639325 Figure 31. Random Row Write (Interleaving Banks) (Burst Length=8) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx CAx RAy RBx CBx tRCD DQM DQ RBx Hi-Z Activate Command Bank A tWR* DAx0 DAx1 Write Command Bank A DAx2 DAx3 DAx4 DAx5 DAx6 Activate Command Bank B DAx7 DBx0 CAy tRP DBx1 DBx2 DBx3 Write Command Bank B Precharge Command Bank A tWR* DBx4 DBx5 DBx6 Activate Command Bank A DBx7 DAy0 DAy1 DAy2 Write Command Bank A DAy3 Precharge Command Bank B Don’t Care *tWR>tWR (min.) Rev. 2.1 RAy 33 Aug. /2015 EtronTech EM639325 Figure 32. Read and Write Cycle (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx CAx CAy CAz DQM DQ Hi-Z Ax0 Activate Command Bank A Rev. 2.1 Ax1 Ax2 Ax3 Read Command Bank A DAy0 DAy1 Write Command Bank A 34 DAy3 The Write Data is Masked with a Zero Clock Read Latency Command Bank A Az0 Az1 Az3 The Read Data is Masked with a Two Clock Latency Don’t Care Aug. /2015 EtronTech EM639325 Figure 33. Interleaved Column Read Cycle (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBx CAx RBx CBx CBy CBz CAy tRCD DQM tAC DQ Hi-Z Ax0 Activate Command Bank A Rev. 2.1 Read Command Bank A Activate Command Bank B Ax1 Ax2 Read Command Bank B Ax3 Bx0 Read Command Bank B Bx1 By0 Read Command Bank B By1 Bz0 Read Command Bank A Bz1 Ay0 Precharge Command Bank B Ay1 Ay2 Ay3 Precharge Command Bank A Don’t Care 35 Aug. /2015 EtronTech EM639325 Figure 34. Interleaved Column Write Cycle (Burst Length=4) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBw CAx RBw CBw CBx CBy CAy CBz tWR tRCD tWR DQM tRRD>tRRD (min) DQ Hi-Z DAx0 Activate Command Bank A Rev. 2.1 DAx1 DAx2 DAx3 DBw0 DBw1 DBx0 DBx1 DBy0 Write Command Bank A Activate Command Bank B Write Command Bank B Write Command Bank B 36 DBy1 Write Command Bank B DAy0 DAy1 DBz0 Write Command Bank A DBz1 DBz2 Write Command Bank B Precharge Command Bank A DBz3 Precharge Command Bank B Don’t Care Aug. /2015 EtronTech EM639325 Figure 35. Auto Precharge after Read Burst (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE Begin Auto Precharge Bank A Begin Auto Precharge Bank B High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBy RBx CAx RBx CBx CAy RBy CBy tRP DQM DQ Hi-Z Activate Command Bank A Rev. 2.1 Ax0 Read Command Bank A Activate Command Bank B Ax1 Ax2 Ax3 Bx0 Read with Auto Precharge Command Bank B Bx1 Bx2 Read with Auto Precharge Command Bank A Bx3 Ay0 Ay1 Activate Command Bank B Ay2 Ay3 By0 By1 By2 Read with Auto Precharge Command Bank B Don’t Care 37 Aug. /2015 EtronTech EM639325 Figure 36. Auto Precharge after Write Burst (Burst Length=4) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE Begin Auto Precharge Bank A Begin Auto Precharge Bank B High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBy RBx CAx RBx CBx CAy RBy CBy tDAL DQM DQ Hi-Z Activate Command Bank A Rev. 2.1 DAx0 DAx1 DAx2 Write Command Bank A Activate Command Bank B DAx3 DBx0 DBx1 DBx2 DBx3 Write with Auto Precharge Command Bank B DAy0 DAy1 DAy2 Write with Auto Precharge Command Bank A DAy3 DBy0 DBy1 DBy2 Activate Command Bank B DBy3 Write with Auto Precharge Command Bank B Don’t Care 38 Aug. /2015 EtronTech EM639325 Figure 37. Full Page Read Cycle (Burst Length=Full Page, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBy RBx CAx RBx CBx RBy tRP DQM DQ Hi-Z Activate Command Bank A Ax Read Command Bank A Activate Command Bank B Ax+1 Ax+2 Ax-2 Ax-1 Ax Ax+1 Bx Bx+1 Bx+2 Read Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval Bx+3 Bx+4 Bx+5 Precharge Command Bank B Burst Stop Command Activate Command Bank B Don’t Care Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address Rev. 2.1 39 Aug. /2015 EtronTech EM639325 Figure 38. Full Page Write Cycle (Burst Length=Full Page) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RBy RBx CAx RBx CBx RBy DQM Data is ignored DQ Hi-Z Activate Command Bank A Rev. 2.1 DAx DAx+1 Write Command Bank A DAx+2 DAx+3 DAx-1 DAx DAx+1 Activate Command Bank B The burst counter wraps from the highest order page address back to zero during this time interval DBx DBx+1 DBx+2 DBx+3 DBx+4 DBx+5 Write Command Bank B Full Page burst operation does not terminate when the burst length is satisfied; the burst counter increments and continues bursting beginning with the starting address 40 Precharge Command Bank B Burst Stop Command Activate Command Bank B Don’t Care Aug. /2015 EtronTech EM639325 Figure 39. Byte Read and Write Operation (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T5 T6 CLK CKE High CS# RAS# CAS# WE# BA0, 1 A10 RAx A0-A9, A11 RAx CAx CAy CAz DQM m DQM n DQ M Ax0 DQ N Activate Command Bank A Read Command Bank A Ax1 Ax2 Ax1 Ax2 Upper Byte is masked DAy1 Ax3 DAy0 Lower Byte is masked DAy1 Write Command Bank A Day2 DAy3 Upper Byte is masked Az0 Read Command Bank A Lower Byte is masked Az1 Az2 Az1 Az2 Az3 Lower Byte is masked Don’t Care Note : M represent DQ in the byte m; N represent DQ in the byte n. Rev. 2.1 41 Aug. /2015 EtronTech EM639325 Figure 40. Random Row Read (Interleaving Banks) (Burst Length=4, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0, 1 A10 RAx RBx A0-A9, A11 RAx RBx RBw CAx CBx CBy CAy CBz RBw tRP DQM tRRD DQ Hi-Z Ax0 Activate Command Bank A Rev. 2.1 tRCD Ax1 Activate Read Command Command Bank B Bank B Read Read Command Command Bank A Bank A Bx0 Ay0 Read Command Bank B Ay1 By0 By1 By2 By3 Read Command Bank B Bz0 Bz1 Bz2 Precharge Activate Command Bank B Command (Precharge Temination) Bank B Don’t Care 42 Aug. /2015 EtronTech EM639325 Figure 41. Full Page Random Column Read (Burst Length=Full Page, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx RBx A0-A9, A11 RAx RBx RBw CAx CBx CAy CBy CAz CBz RBw tRP DQM tRRD DQ Hi-Z Ax0 Activate Command Bank A Rev. 2.1 tRCD Ax1 Activate Read Command Command Bank B Bank B Read Read Command Command Bank A Bank A Bx0 Ay0 Read Command Bank B Ay1 By0 Read Command Bank A By1 Az0 Az1 Read Command Bank B Az2 Bz0 Bz1 Bz2 Precharge Activate Command Bank B Command (Precharge Temination) Bank B Don’t Care 43 Aug. /2015 EtronTech EM639325 Figure 42. Full Page Random Column Write (Burst Length=Full Page) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE CS# RAS# CAS# WE# BA0,1 A10 RAx RBx A0-A9, A11 RAx RBx RBw CAx CBx CBy CAy CAz CBz RBw tWR tRP DQM tRRD DQ Hi-Z DAx0 DAx1 Activate Command Bank A Rev. 2.1 tRCD Activate Command Bank B Write Command Bank A DBx0 DAy0 DAy1 DBy0 DBy1 Write Command Bank B Write Command Bank A Write Command Bank B DAz0 DAz1 Write Command Bank A DAz2 DBz0 DBz1 Write Command Bank B DBz2 Precharge Activate Command Bank B Command (Precharge Temination) Bank B Write Data are masked 44 Don’t Care Aug. /2015 EtronTech EM639325 Figure 43. Precharge Termination of a Burst (Burst Length=4, 8 or Full Page, CAS# Latency=3) T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 CLK CKE High CS# RAS# CAS# WE# BA0,1 A10 RAx A0-A9, A11 RAx RAy CAx RAy tWR RAz CAy RAz tRP tRP DQM DQ DAx0 DAx1 Activate Command Bank B Rev. 2.1 Precharge Write Command Command Bank A Bank A Precharge Termination of a Write Burst Write Data are masked Ay0 Activate Command Bank A Read Command Bank A Ay1 Precharge Command Bank A Ay2 Activate Command Bank A Precharge Termination of a Read Burst Don’t Care 45 Aug. /2015 EtronTech EM639325 Figure 44. 86 Pin TSOP II Package Outline Drawing Information 86 0.254 HE E 44 θ° L L1 A1 A2 e B S Symbol A A1 A2 B C D E e HE L L1 S y θ C 43 D A 1 L L1 y Dimension in inch Min Normal Max 0.047 - - 0.002 0.004 0.008 0.035 0.039 0.043 0.007 0.009 0.011 0.005 - - 0.87 0.875 0.88 0.395 0.400 0.405 0.0197 - - 0.455 0.463 0.471 0.016 0.020 0.024 0.0315 - - 0.024 - - 0.004 - - - 0° 8° Min - 0.05 0.9 0.17 - 22.09 10.03 - 11.56 0.40 - - - 0° Dimension in mm Normal - 0.10 1 0.22 0.127 22.22 10.16 0.50 11.76 0.50 0.80 0.61 - - Max 1.20 0.2 1.1 0.27 - 22.35 10.29 - 11.96 0.60 - - 0.10 8° Notes: 1. Dimension D&E do not include interlead flash. 2. Dimension B does not include dambar protrusion/intrusion. 3. Dimension S includes end flash. 4. Controlling dimension: mm Rev. 2.1 46 Aug. /2015 EtronTech EM639325 Figure 45. 90 ball FBGA 8x13x1.2mm(max.) Outline Drawing Information PIN #1 Top View Bottom View Side View DETAIL : "A" Symbol A A1 A2 C D E D1 E1 e b F Rev. 2.1 Dimension in inch Dimension in mm Min Nom Max Min Nom Max --0.047 --1.20 0.012 0.014 0.016 0.30 0.35 0.40 0.027 0.029 0.031 0.69 0.74 0.79 0.007 0.008 0.010 0.17 0.21 0.25 0.311 0.315 0.319 7.90 8.00 8.10 0.508 0.512 0.516 12.90 13.00 13.10 -0.252 --6.40 --0.441 --11.2 --0.031 --0.80 -0.016 0.018 0.020 0.40 0.45 0.50 -0.126 --3.2 -47 Aug. /2015