CEP50N06/CEB50N06 N-Channel Enhancement Mode Field Effect Transistor FEATURES 60V, 50A ,RDS(ON) = 17mΩ (typ) @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit 60 Units V VGS ±20 V ID 50 A IDM 150 A 131 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 0.88 W/ C Single Pulsed Avalanche Energy d EAS 225 mJ Single Pulsed Avalanche Current d IAS 50 A TJ,Tstg -55 to 175 C Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 1.14 W/ C Thermal Resistance, Junction-to-Ambient RθJA 62.5 W/ C Specification and data are subject to change without notice . 1 Rev 2. 2007.March http://www.cetsemi.com CEP50N06/CEB50N06 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 60 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 54V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 22 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance Forward Transconductance Dynamic Characteristics VGS(th) VGS = VDS, ID = 250µA 2 RDS(on) VGS = 10V, ID = 50A 17 gFS VDS = 10V, ID = 25A 19 S 1420 pF 400 pF 50 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 30V, ID = 48A, VGS = 10V, RGEN = 7.5Ω 17.2 34.4 ns 5 10 ns 32.5 65 ns Turn-Off Fall Time tf 10 20 ns Total Gate Charge Qg 28.2 37.5 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 48V, ID = 48A, VGS = 10V 8.5 nC 7 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 50A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 90µH, IAS = 50A, VDD = 24V, RG = 25Ω, Starting TJ = 25 C 2 50 A 1.5 V 4 CEP50N06/CEB50N06 125 VGS=10V 25 C VGS=8V 100 80 ID, Drain Current (A) ID, Drain Current (A) 120 VGS=7V 60 VGS=6V 40 VGS=5V 20 0 0 1 2 3 4 5 0 0 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 1500 1000 Coss 500 Crss 0 5 10 15 20 25 2.6 2.2 ID=50A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 -55 C VDS, Drain-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 25 6 2000 1.2 50 TJ=125 C 2500 1.3 75 VGS=4V 3000 0 100 -25 0 25 50 75 100 125 150 VGS=0V 10 1 10 0 10 -1 0.3 0.6 0.9 1.2 1.5 1.8 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 V =48V DS ID=48A RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP50N06/CEB50N06 6 4 2 0 0 10 20 30 10 10 10 40 4 2 100µs 1ms 10ms 100ms DC 1 TC=25 C TJ=175 C Single Pulse 0 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -5 t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2