April 2008 FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET tm 30V, 40A, 15mΩ Features rDS(ON) = 15mΩ, VGS = 10V, ID = 35A rDS(ON) = 18.5mΩ, VGS = 4.5V, ID = 35A High performance trench technology for extremely low General Description This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low r DS(ON) and fast switching speed. r DS(ON) Low gate charge High power and current handling capability RoHS Compliant Application DC / DC Converters D D G S D-PAK (TO-252) ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 I-PAK (TO-251AA) G D S G S www.fairchildsemi.com 1 FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET 0 Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V 40 A Continuous (TC = 25 C, VGS = 4.5V) (Note 1) 36 A Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 52oC/W) 11 A Drain Current Continuous (TC = 25oC, VGS = 10V) (Note 1) o ID Pulsed E AS Figure 4 A 25 mJ Single Pulse Avalanche Energy (Note 2) Power dissipation PD Derate above 25oC TJ, TSTG Operating and Storage Temperature 40 W 0.27 W/oC o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-252, TO-251 3.75 oC/W RθJA Thermal Resistance Junction to Ambient TO-252, TO-251 100 o C/W 52 o C/W 2 RθJA Thermal Resistance Junction to Ambient TO-252, 1in copper pad area Package Marking and Ordering Information Device Marking FDD8878 Device FDD8878 Package TO-252AA Reel Size 13” Tape Width 12mm Quantity 2500 units FDU8878 FDU8878 TO-251AA Tube N/A 75 units F F Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 µA - - ±100 nA V Off Characteristics B VDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V V DS = 24V VGS = 0V TC = 150oC VGS = ±20V On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 V GS = VDS, ID = 250µA 1.2 - 2.5 ID = 35A, VGS = 10V - 0.011 0.015 ID = 35A, VGS = 4.5V - 0.014 0.0185 ID = 35A, VGS = 10V, TJ = 175oC - 0.018 0.024 2 Ω www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Absolute Maximum Ratings TC = 25°C unless otherwise noted CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance RG Gate Resistance Qg(TOT) Total Gate Charge at 10V - 880 - - 195 - pF - 110 - pF VGS = 0.5V, f = 1MHz - 3.1 - Ω VGS = 0V to 10V - 19 26 nC V DS = 15V, VGS = 0V, f = 1MHz Qg(5) Total Gate Charge at 5V VGS = 0V to 5V Qg(TH) Threshold Gate Charge VGS = 0V to 1V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge Switching Characteristics VDD = 15V ID = 35A Ig = 1.0mA pF - 10 14 nC - 0.9 1.3 nC - 2.6 - nC - 1.7 - nC - 4.5 - nC (VGS = 10V) tON Turn-On Time - - 129 ns td(ON) Turn-On Delay Time - 7 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 79 - ns - 38 - ns Fall Time - 27 - ns Turn-Off Time - - 97 ns V V DD = 15V, ID = 35A V GS = 4.5V, RGS = 16Ω Drain-Source Diode Characteristics ISD = 35A - - 1.25 ISD = 3.2A - - 1.0 V Reverse Recovery Time ISD = 35A, dISD/dt = 100A/µs - - 23 ns Reverse Recovered Charge ISD = 35A, dISD/dt = 100A/µs - - 9 nC V SD Source to Drain Diode Voltage trr QRR Notes: 1: Package current limitation is 35A. 2: Starting T J = 25°C, L = 65uH, IAS = 28A, VDD = 27V, VGS = 10V. 3 ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 3 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Dynamic Characteristics 50 CURRENT LIMITED BY PACKAGE 1.0 40 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 VGS = 10V 30 VGS = 4.5V 20 10 0.2 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (o C) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Case Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 500 TC = 25o C IDM, PEAK CURRENT (A) TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION FOR TEMPERATURES ABOVE 25o C DERATE PEAK CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 4.5V 100 VGS = 10V 30 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 4 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 1000 500 100 10µs 10 100µs 1 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC If R = 0 tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(I AS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING T J = 25o C 10 STARTING TJ = 150o C DC 1 0.01 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 60 0.1 1 tAV, TIME IN AVALANCHE (ms) NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability 80 80 VGS = 5V ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 60 TJ = 25o C 40 20 TJ = 175o C 60 VGS = 10V VGS = 4V 40 VGS = 3V 20 TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TJ = -55oC 0 0 1.5 2.0 2.5 3.0 3.5 VGS , GATE TO SOURCE VOLTAGE (V) 0 4.0 0.25 0.5 0.75 1.0 1.25 1.5 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics Figure 8. Saturation Characteristics 1.8 30 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 10 25 20 15 ID = 1A PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.6 1.4 1.2 1.0 0.8 VGS = 10V, ID = 35A 10 2 4 6 8 0.6 -80 10 VGS, GATE TO SOURCE VOLTAGE (V) Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature 5 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 1.2 1.10 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 1.0 0.8 0.6 0.4 -80 -40 0 40 80 120 160 1.05 1.00 0.95 0.90 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 80 120 160 200 10 VDD = 15V VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD 1000 C, CAPACITANCE (pF) 40 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 2000 COSS ≅ CDS + C GD CRSS = CGD 100 VGS = 0V, f = 1MHz 50 0.1 0 TJ , JUNCTION TEMPERATURE (oC) 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 1A 2 0 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 0 30 Figure 13. Capacitance vs Drain to Source Voltage ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 5 10 Qg, GATE CHARGE (nC) 15 20 Figure 14. Gate Charge Waveforms for Constant Gate Current 6 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted VDS BVDSS tP L VDS VARY tP TO OBTAIN REQUIRED PEAK IAS IAS + RG VDD VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS = 10V VGS Qg(5) + Qgs2 VDD VGS = 5V DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 10% Figure 20. Switching Time Waveforms 7 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Test Circuits and Waveforms The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. RθJA = 33.32+ 23.84/(0.268+Area) EQ.2 RθJA = 33.32+ 154/(1.73+Area) EQ.3 100 RθJA (oC/W) (T –T ) JM A P D M = ----------------------------R θ JA 125 (EQ. 1) 75 50 In using surface mount devices such as the TO-252 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 25 0.01 (0.0645) 0.1 (0.645) 1 10 (6.45) (64.5) AREA, TOP COPPER AREA in2 (cm2) Figure 21. Thermal Resistance vs Mounting Pad Area 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R θ JA 23.84 ( 0.268 + Area ) = 33.32 + ------------------------------------- (EQ. 2) Area in Inches Squared R θ JA 154 ( 1.73 + Area ) = 33.32 + ---------------------------------- (EQ. 3) Area in Centimeters Squared ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 8 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET Thermal Resistance vs. Mounting Pad Area .SUBCKT FDD8878 2 1 3 ; rev February 2004 Ca 12 8 8.6e-10 Cb 15 14 7.2e-10 Cin 6 8 8e-10 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RLDRAIN RSLC1 51 5 51 EVTHRES + 19 8 + LGATE GATE 1 ESLC 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + RSLC2 Ebreak 11 7 17 18 32.97 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE Lgate 1 9 5.4e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2e-9 LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE RLgate 1 9 54 RLdrain 2 5 10 RLsource 3 7 20 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A 13 8 14 13 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 6.9e-3 Rgate 9 20 3.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 2.7e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 5 8 EDS - 19 VBAT + IT 14 + + - 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*125),5))} .MODEL DbodyMOD D (IS=2.6E-12 IKF=8 N=1.01 RS=6.4e-3 TRS1=8e-4 TRS2=2e-7 + CJO=3.4e-10 M=0.53 TT=1e-17 XTI=2) .MODEL DbreakMOD D (RS=1.4 TRS1=1e-3 TRS2=-5e-6) .MODEL DplcapMOD D (CJO=3.4e-10 IS=1e-30 N=10 M=0.39) .MODEL MmedMOD NMOS (VTO=1.75 KP=7 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=3.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.2 KP=100 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.45 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=31 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-8e-7) .MODEL RdrainMOD RES (TC1=1e-4 TC2=7.5e-6) .MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=1.3e-2 TC2=2e-6) .MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8e-6) .MODEL RvtempMOD RES (TC1=-2.2e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.5 VOFF=-3.5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3.5 VOFF=-4.5) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-1) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-2) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 9 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET PSPICE Electrical Model rev February 2004 template FDD8878 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=2.6e-12,ikf=8,nl=1.01,rs=6.4e-3,trs1=8e-4,trs2=2e-7,cjo=3.4e-10,m=0.53,tt=1e-17,xti=2) dp..model dbreakmod = (rs=1.4,trs1=1e-3,trs2=-5e-6) dp..model dplcapmod = (cjo=3.4e-10,isl=10e-30,nl=10,m=0.39) m..model mmedmod = (type=_n,vto=1.75,kp=7,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.2,kp=100,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.45,kp=0.03,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4.5,voff=-3.5) DPLCAP 5 DRAIN 2 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-4.5) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-1) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-1,voff=-2) 51 c.ca n12 n8 = 8.6e-10 RSLC2 c.cb n15 n14 = 7.2e-10 ISCL c.cin n6 n8 = 8e-10 spe.ebreak n11 n7 n17 n18 = 32.97 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 LSOURCE SOURCE 3 7 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 5.4e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2e-9 S2A 13 8 res.rlgate n1 n9 = 54 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 20 15 14 13 S1B 17 18 RVTEMP S2B 13 CA RBREAK CB 6 8 EGS 19 - IT 14 + + VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-8e-7 res.rdrain n50 n16 = 6.9e-3, tc1=1e-4,tc2=7.5e-6 res.rgate n9 n20 = 3.1 res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 2.7e-3, tc1=1.3e-2,tc2=2e-6 res.rvthres n22 n8 = 1, tc1=-1.7e-3,tc2=-8e-6 res.rvtemp n18 n19 = 1, tc1=-2.2e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/125))** 5)) } } ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 10 www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET SABER Electrical Model th JUNCTION REV 23 February 2004 FDD8878T CTHERM1 TH 6 3.5e-4 CTHERM2 6 5 5e-4 CTHERM3 5 4 2.5e-3 CTHERM4 4 3 2.7e-3 CTHERM5 3 2 5e-3 CTHERM6 2 TL 1e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 2.9e-1 RTHERM2 6 5 3.5e-1 RTHERM3 5 4 4.5e-1 RTHERM4 4 3 5.2e-1 RTHERM5 3 2 6.9e-1 RTHERM6 2 TL 7e-1 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model FDD8878T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =3.5e-4 ctherm.ctherm2 6 5 =5e-4 ctherm.ctherm3 5 4 =2.5e-3 ctherm.ctherm4 4 3 =2.7e-3 ctherm.ctherm5 3 2 =5e-3 ctherm.ctherm6 2 tl =1e-2 RTHERM3 CTHERM3 4 RTHERM4 rtherm.rtherm1 th 6 =2.9e-1 rtherm.rtherm2 6 5 =3.5e-1 rtherm.rtherm3 5 4 =4.5e-1 rtherm.rtherm4 4 3 =5.2e-1 rtherm.rtherm5 3 2 =6.9e-1 rtherm.rtherm6 2 tl =7e-1 } CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 11 CASE www.fairchildsemi.com FDD8878 / FDU8878 N-Channel PowerTrench® MOSFET PSPICE Thermal Model TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. ACEx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * ® PDP-SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ ® The Power Franchise® tm TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ tm * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I34 ©2008 Fairchild Semiconductor Corporation FDD8878 / FDU8878 Rev. A4 www.fairchildsemi.com