Atmel 8-bit AVR Microcontroller with 2K Bytes In-System Programmable Flash ATtiny261A Appendix A – ATtiny261A Specification at 105°C This document contains information specific to devices operating at temperatures up to 105°C. Only deviations are covered in this appendix, all other information can be found in the complete datasheet. The complete datasheet can be found at www.atmel.com. Rev. 8197D–AVR–02/2013 8197D–AVR–02/2013 1. Electrical Characteristics 1.1 Absolute Maximum Ratings* Operating Temperature.................................. -55C to +125C *NOTICE: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Storage Temperature ..................................... -65C to +150C Voltage on any Pin except RESET with respect to Ground ............................... -0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins ................................ 200.0 mA 1.2 DC Characteristics Table 1-1. Symbol VIL VIH DC Characteristics. TA = -40C to +105C, VCC = 1.8V to 5.5V (unless otherwise noted). Parameter Input Low-voltage Input High-voltage Condition Min Except XTAL1 and RESET pins Max Units -0.5 0.2VCC(3) V XTAL1 pin, External Clock Selected -0.5 0.1VCC(3) V RESET pin -0.5 0.2VCC(3) V RESET pin as I/O -0.5 0.2VCC(3) V Except XTAL1 and RESET pins 0.7VCC(2) VCC +0.5 V XTAL1 pin, External Clock Selected 0.8VCC(2) VCC +0.5 V RESET pin 0.9VCC(2) VCC +0.5 V (2) VCC +0.5 V 0.6 0.5 V V RESET pin as I/O (4) Typ (1) 0.7VCC VOL Output Low Voltage (Except Reset pin) (6) IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V VOH Output High-voltage (5) (Except Reset pin) (6) IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V IIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) < 0.05 1 µA IIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) < 0.05 1 µA RRST Reset Pull-up Resistor 30 60 k RPU I/O Pin Pull-up Resistor 20 50 k 4.3 2.5 V V ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 2 Table 1-1. Symbol DC Characteristics. TA = -40C to +105C, VCC = 1.8V to 5.5V (unless otherwise noted). (Continued) Parameter Power Supply Current (7) ICC Power-down mode (8) Notes: Typ (1) Max Units Active 1MHz, VCC = 2V 0.2 0.5 mA Active 4MHz, VCC = 3V 1.2 2 mA Active 8MHz, VCC = 5V 3.6 7 mA Idle 1MHz, VCC = 2V 0.035 0.15 mA Idle 4MHz, VCC = 3V 0.25 0.4 mA Idle 8MHz, VCC = 5V 0.9 1.5 mA WDT enabled, VCC = 3V 4 20 µA WDT disabled, VCC = 3V 0.2 10 µA Condition Min 1. Typical values at 25C. 2. “Min” means the lowest value where the pin is guaranteed to be read as high. 3. “Max” means the highest value where the pin is guaranteed to be read as low. 4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence, has a weak drive strength as compared to regular I/O pins. 7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive. 8. BOD Disabled. ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 3 1.3 Clock Characteristics 1.3.1 Accuracy of Calibrated Internal Oscillator It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be found in Figure 2-42 on page 28 and Figure 2-43 on page 28. Table 1-2. Calibration Accuracy of Internal Oscillator Calibration Method Target Frequency VCC Temperature Accuracy at given voltage & temperature (1) 8.0 MHz 3V 25C ±10% Fixed frequency within: 7.3 – 8.1 MHz Fixed voltage within: 1.8V – 5.5V Fixed temperature within: -40C to +105C ±1% Factory Calibration User Calibration Notes: 1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage). 1.4 System and Reset Characteristics 1.4.1 Enhanced Power-On Reset Table 1-3. Symbol Characteristics of Enhanced Power-On Reset. TA = -40C to +105C Parameter Release threshold of power-on reset (2) VPOR VPOA Activation threshold of power-on reset SRON Power-On Slope Rate Note: (3) Min(1) Typ(1) Max(1) Units 1.1 1.4 1.7 V 0.6 1.3 1.7 V 0.01 V/ms 1. Values are guidelines, only. 2. Threshold where device is released from reset when voltage is rising. 3. The Power-on Reset will not work unless the supply voltage has been below VPOA. ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 4 1.5 ADC Characteristics Table 1-4. Symbol ADC Characteristics, Single Ended Channels. T = -40C to +105C Parameter Condition Min Typ Resolution Absolute accuracy (Including INL, DNL, and Quantization, Gain and Offset Errors) Max Units 10 Bits VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz 3 LSB VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 1.5 LSB VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 2.5 LSB Integral Non-Linearity (INL) (Accuracy after Offset and Gain Calibration) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1 LSB Differential Non-linearity (DNL) VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 LSB Gain Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2.5 LSB Offset Error VREF = 4V, VCC = 4V, ADC clock = 200 kHz 1.5 LSB Conversion Time Free Running Conversion 13 260 µs 50 1000 kHz VCC - 0.3 VCC + 0.3 V Single Ended Conversions 2.0 AVCC V Differential Conversions 2.0 AVCC - 1.0 V GND VREF 0 AVCC (1) Clock Frequency AVCC Analog Supply Voltage AREF External Voltage Reference VIN Input Voltage Single Ended Conversions Differential Conversions Single Ended Conversions 38.5 Input Bandwidth kHz Differential Conversions Internal 1.1V Reference VINT Internal 2.56V Reference V (1) VCC > 3.0V 4 1.0 1.1 1.2 V 2.3 2.56 2.8 V RREF Reference Input Resistance 35 k RAIN Analog Input Resistance 100 M ADC Conversion Output Note: 0 1023 LSB 1. VDIFF must be below VREF. 2. Not tested in production. ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 5 1.6 Serial Programming Characteristics Figure 1-1. Serial Programming Waveforms SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE Figure 1-2. Serial Programming Timing MOSI SCK tSLSH tSHOX tOVSH tSHSL MISO tSLIV Table 1-5. Serial Programming Characteristics, TA = -40C to +105C, VCC = 1.8 - 5.5V (Unless Otherwise Noted) Symbol Parameter 1/tCLCL Oscillator Frequency tCLCL Oscillator Period 1/tCLCL tCLCL tSHSL Min 0 Max Units 4 MHz 250 Oscillator Frequency (VCC = 4.5V - 5.5V) 0 Oscillator Period VCC = 4.5V - 5.5V 50 SCK Pulse Width High Typ ns 20 MHz ns 2 tCLCL (1) ns 2 tCLCL (1) ns tSLSH SCK Pulse Width Low tOVSH MOSI Setup to SCK High tCLCL ns tSHOX MOSI Hold after SCK High 2 tCLCL ns tSLIV SCK Low to MISO Valid Note: 100 ns 1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 6 2. Typical Characteristics The data contained in this section is largely based on simulations and characterization of similar devices in the same process and design methods. Thus, the data should be treated as indications of how the part will behave. The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly at frequencies higher than the ordering code indicates. This device has been characterised at temperatures of -40C, 25C, 85C and 125C, but not at 105C. Although the device is not guaranteed to operate reliably at temperatures above 105C, characteristic data for 105C can be interpolated from the 85C and 125C curves, provided in the figures to follow. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pullups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down mode is independent of clock selection. The difference between current consumption in Power-Down mode with Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. The current drawn from pins with a capacitive load may be estimated (for one pin) as follows: I CP V CC C L f SW where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin. Current Consumption in Active Mode Figure 2-1. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz) 5 125 °C 85 °C 25 °C -40 °C 4 3 ICC (mA) 2.1 2 1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 7 Figure 2-2. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz) 1,2 125 °C 85 °C 25 °C -40 °C 1 ICC (mA) 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-3. Active Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz) 0,12 -40 °C 125 °C 25 °C 85 °C 0,1 ICC (mA) 0,08 0,06 0,04 0,02 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 8 Current Consumption in Idle Mode Figure 2-4. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz) 1,4 125 °C 85 °C 25 °C -40 °C 1,2 ICC (mA) 1 0,8 0,6 0,4 0,2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-5. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz) 0,35 125 °C 85 °C 25 °C -40 °C 0,3 0,25 ICC (mA) 2.2 0,2 0,15 0,1 0,05 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 9 Figure 2-6. Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz) 0,025 125 °C -40 °C 25 °C 85 °C ICC (mA) 0,02 0,015 0,01 0,005 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Current Consumption in Power-Down Mode Figure 2-7. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 3 125 °C 2,5 2 ICC (uA) 2.3 1,5 1 85 °C 0,5 25 °C -40 °C 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 10 Figure 2-8. Power-down Supply Current vs. VCC (Watchdog Timer Enabled) 12 125 °C 10 ICC (uA) 8 -40 °C 25 °C 85 °C 6 4 2 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Current Consumption of Peripheral Units Figure 2-9. Brownout Detector Current vs. VCC 40 35 30 125 °C 85 °C 25 °C -40 °C 25 ICC (uA) 2.4 20 15 10 5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 11 Figure 2-10. Programming Current vs. VCC 9000 -40 °C 8000 7000 25 °C ICC (uA) 6000 5000 85 °C 4000 125 °C 3000 2000 1000 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Pull-up Resistors Figure 2-11. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V) 60 50 40 IOP (uA) 2.5 30 20 10 25 °C 85 °C -40 °C 125 °C 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VOP (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 12 Figure 2-12. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 2.7V) 90 80 70 IOP (uA) 60 50 40 30 20 25 °C 85 °C -40 °C 125 °C 10 0 0 0,5 1 1,5 2 2,5 3 VOP (V) Figure 2-13. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V) 160 140 120 IOP (uA) 100 80 60 40 25 °C 85 °C -40 °C 125 °C 20 0 0 1 2 3 4 5 6 VOP (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 13 Figure 2-14. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 1.8V) 40 35 IRESET (uA) 30 25 20 15 10 25 °C -40 °C 85 °C 125 °C 5 0 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 2 VRESET (V) Figure 2-15. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 2.7V) 60 50 IRESET (uA) 40 30 20 10 25 °C -40 °C 85 °C 125 °C 0 0 0,5 1 1,5 2 2,5 3 VRESET (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 14 Figure 2-16. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 5V) 120 100 IRESET (uA) 80 60 40 20 25 °C -40 °C 85 °C 125 °C 0 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 VRESET (V) Output Driver Strength Figure 2-17. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V) 0,4 125 °C 0,35 85 °C 0,3 25 °C 0,25 VOL (V) 2.6 -40 °C 0,2 0,15 0,1 0,05 0 0 1 2 3 4 5 IOL (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 15 Figure 2-18. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V) 0,5 125 °C 0,4 85 °C 25 °C VOL (V) 0,3 -40 °C 0,2 0,1 0 0 2 4 6 8 10 IOL (mA) Figure 2-19. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V) 0,7 125 °C 0,6 VOL (V) 85 °C 0,5 25 °C 0,4 -40 °C 0,3 0,2 0,1 0 0 2 4 6 8 10 12 14 16 18 20 IOL (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 16 Figure 2-20. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V) 1,8 1,7 VOH (V) 1,6 1,5 -40 °C 25 °C 1,4 85 °C 125 °C 1,3 0 1 2 3 4 5 IOH (mA) Figure 2-21. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V) 3 2,9 VOH (V) 2,8 2,7 -40 °C 25 °C 2,6 85 °C 125 °C 2,5 0 2 4 6 8 10 IOH (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 17 Figure 2-22. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V) 5 VOH (V) 4,8 4,6 -40 °C 25 °C 4,4 85 °C 125 °C 4,2 0 5 10 15 20 IOH (mA) Figure 2-23. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V) 0,8 VOL (V) 0,6 0,4 125 °C 85 °C 25 °C -40 °C 0,2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 IOL (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 18 Figure 2-24. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V) 0,8 VOL (V) 0,6 0,4 125 °C 85 °C 25 °C 0,2 -40 °C 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 IOL (mA) Figure 2-25. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V) 0,8 VOL (V) 0,6 0,4 0,2 125 °C 85 °C 25 °C -40 °C 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 IOL (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 19 Figure 2-26. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V) 5 4 VOH (V) 3 2 1 -40 °C 25 °C 85 °C 125 °C 0 0 0,2 0,4 0,6 0,8 1 IOH (mA) Figure 2-27. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V) 5 4 VOH (V) 3 2 -40 °C 25 °C 85 °C 125 °C 1 0 0 0,2 0,4 0,6 0,8 1 IOH (mA) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 20 Figure 2-28. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V) 5 4 125 °C 85 °C 25 °C -40 °C VOH (V) 3 2 1 0 0 0,2 0,4 0,6 0,8 1 IOH (mA) Input Thresholds and Hysteresis Figure 2-29. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’) 3,5 3 125 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2.7 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 21 Figure 2-30. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’) 3 125 °C 85 °C 25 °C -40 °C 2,5 Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 4 4,5 5 5,5 VCC (V) Figure 2-31. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin) 0,6 -40 °C Input Hysteresis (V) 0,5 25 °C 0,4 85 °C 0,3 125 °C 0,2 0,1 0 1,5 2 2,5 3 3,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 22 Figure 2-32. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’) 2,5 Threshold (V) 2 1,5 -40 °C 1 25 °C 85 °C 125 °C 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-33. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’) 2,5 125 °C 85 °C 25 °C -40 °C Threshold (V) 2 1,5 1 0,5 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 23 Figure 2-34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin) 1 0,9 0,8 Input Hysteresis (V) 0,7 -40 °C 0,6 0,5 25 °C 0,4 85 °C 0,3 0,2 125 °C 0,1 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) BOD, Bandgap and Reset Figure 2-35. BOD Threshold vs. Temperature (BOD Level set to 4.3V) 4,38 4,36 4,34 Threshold (V) 2.8 VCC RISING 4,32 4,3 4,28 4,26 VCC FALLING 4,24 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 24 Figure 2-36. BOD Threshold vs. Temperature (BOD Level set to 2.7V) 2,78 2,76 VCC RISING Threshold (V) 2,74 2,72 2,7 2,68 VCC FALLING 2,66 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) Figure 2-37. BOD Threshold vs. Temperature (BOD Level set to 1.8V) 1,85 1,84 Threshold (V) 1,83 1,82 VCC RISING 1,81 1,8 1,79 VCC FALLING 1,78 -40 -20 0 20 40 60 80 100 120 140 Temperature (C) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 25 Figure 2-38. Bandgap Voltage vs. Supply Voltage. 1,11 Bandgap Voltage (V) 1,1 85 °C 125 °C 25 °C 1,09 1,08 -40 °C 1,07 1,5 2,5 3,5 4,5 5,5 VCC (V) Figure 2-39. Minimum Reset Pulse Width vs. VCC 1800 1600 1400 Pulsewidth (ns) 1200 1000 800 600 400 125 °C 85 °C 25 °C -40 °C 200 0 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 26 Internal Oscillators Figure 2-40. Frequency of Watchdog Oscillator vs. VCC 130000 Frequency (Hz) 125000 -40 °C 120000 25 °C 85 °C 115000 125 °C 110000 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-41. Frequency of Watchdog Oscillator vs. Temperature 130000 125000 Frequency (kHz) 2.9 120000 1.8 V 115000 3.0 V 5.0 V 110000 -40 -20 0 20 40 60 80 100 120 140 Temperature ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 27 Figure 2-42. Frequency of Calibrated 8.0 MHz Oscillator vs. VCC 8,4 -40 °C 25 °C 8,2 Frequency (MHz) 85 °C 125 °C 8 7,8 7,6 1,5 2 2,5 3 3,5 4 4,5 5 5,5 VCC (V) Figure 2-43. Frequency of Calibrated 8.0 MHz Oscillator vs. Temperature 8,2 Frequency (MHz) 8,1 8 5.0 V 7,9 3.0 V 7,8 1.8 V 7,7 -40 -20 0 20 40 60 80 100 120 140 Temperature ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 28 Figure 2-44. Frequency of Calibrated 8.0 MHz Oscillator vs. OSCCAL Value 16 -40 °C 25 °C 85 °C 125 °C 14 12 FRC (MHz) 10 8 6 4 2 0 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 OSCCAL (X1) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 29 3. Ordering Information Notes: Speed (MHz) Power Supply Ordering Code (1) 20 1.8 – 5.5V ATtiny261A-MN ATtiny261A-MNR(2) Package (1) 32M1-A Operational Range Industrial (-40C to +105C) 1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also halide-free and fully green. 2. Tape & Reel. Package Type 32M1-A 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF) ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 30 4. Revision History Revision No. History 8197A–Appendix A–AVR–06/2010 Initial revision 8197C–Appendix A–AVR–08/2011 Updated contact information 8197D–Appendix A–AVR–02/2013 Updated ordering codes Updated contact information at the last page. ATtiny261A [DATASHEET APPENDIX A] 8197D–AVR–02/2013 31 Atmel Corporation 1600 Technology Drive Atmel Asia Limited Unit 01-5 & 16, 19F Atmel Munich GmbH Business Campus Atmel Japan G.K. 16F Shin-Osaki Kangyo Bldg San Jose, CA 95110 BEA Tower, Millennium City 5 Parkring 4 1-6-4 Osaki, Shinagawa-ku USA 418 Kwun Tong Roa D-85748 Garching b. Munich Tokyo 141-0032 Tel: (+1) (408) 441-0311 Kwun Tong, Kowloon GERMANY JAPAN Fax: (+1) (408) 487-2600 HONG KONG Tel: (+49) 89-31970-0 Tel: (+81) (3) 6417-0300 www.atmel.com Tel: (+852) 2245-6100 Fax: (+49) 89-3194621 Fax: (+81) (3) 6417-0370 Fax: (+852) 2722-1369 © 2013 Atmel Corporation. All rights reserved. / Rev.: 8197D–AVR–02/2013 Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.