ATMEL ATTINY261A High performance, low power avr Datasheet

Atmel 8-bit AVR Microcontroller with 2K
Bytes In-System Programmable Flash
ATtiny261A
Appendix A – ATtiny261A Specification at 105°C
This document contains information specific to devices operating at temperatures up to
105°C. Only deviations are covered in this appendix, all other information can be found in
the complete datasheet. The complete datasheet can be found at www.atmel.com.
Rev. 8197D–AVR–02/2013
8197D–AVR–02/2013
1. Electrical Characteristics
1.1
Absolute Maximum Ratings*
Operating Temperature.................................. -55C to +125C
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Storage Temperature ..................................... -65C to +150C
Voltage on any Pin except RESET
with respect to Ground ............................... -0.5V to VCC+0.5V
Voltage on RESET with respect to Ground......-0.5V to +13.0V
Maximum Operating Voltage ............................................ 6.0V
DC Current per I/O Pin ............................................... 40.0 mA
DC Current VCC and GND Pins ................................ 200.0 mA
1.2
DC Characteristics
Table 1-1.
Symbol
VIL
VIH
DC Characteristics. TA = -40C to +105C, VCC = 1.8V to 5.5V (unless otherwise noted).
Parameter
Input Low-voltage
Input High-voltage
Condition
Min
Except XTAL1 and
RESET pins
Max
Units
-0.5
0.2VCC(3)
V
XTAL1 pin,
External Clock Selected
-0.5
0.1VCC(3)
V
RESET pin
-0.5
0.2VCC(3)
V
RESET pin as I/O
-0.5
0.2VCC(3)
V
Except XTAL1 and
RESET pins
0.7VCC(2)
VCC +0.5
V
XTAL1 pin,
External Clock Selected
0.8VCC(2)
VCC +0.5
V
RESET pin
0.9VCC(2)
VCC +0.5
V
(2)
VCC +0.5
V
0.6
0.5
V
V
RESET pin as I/O
(4)
Typ (1)
0.7VCC
VOL
Output Low Voltage
(Except Reset pin) (6)
IOL = 10 mA, VCC = 5V
IOL = 5 mA, VCC = 3V
VOH
Output High-voltage (5)
(Except Reset pin) (6)
IOH = -10 mA, VCC = 5V
IOH = -5 mA, VCC = 3V
IIL
Input Leakage
Current I/O Pin
VCC = 5.5V, pin low
(absolute value)
< 0.05
1
µA
IIH
Input Leakage
Current I/O Pin
VCC = 5.5V, pin high
(absolute value)
< 0.05
1
µA
RRST
Reset Pull-up Resistor
30
60
k
RPU
I/O Pin Pull-up Resistor
20
50
k
4.3
2.5
V
V
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
2
Table 1-1.
Symbol
DC Characteristics. TA = -40C to +105C, VCC = 1.8V to 5.5V (unless otherwise noted). (Continued)
Parameter
Power Supply Current (7)
ICC
Power-down mode (8)
Notes:
Typ (1)
Max
Units
Active 1MHz, VCC = 2V
0.2
0.5
mA
Active 4MHz, VCC = 3V
1.2
2
mA
Active 8MHz, VCC = 5V
3.6
7
mA
Idle 1MHz, VCC = 2V
0.035
0.15
mA
Idle 4MHz, VCC = 3V
0.25
0.4
mA
Idle 8MHz, VCC = 5V
0.9
1.5
mA
WDT enabled, VCC = 3V
4
20
µA
WDT disabled, VCC = 3V
0.2
10
µA
Condition
Min
1. Typical values at 25C.
2. “Min” means the lowest value where the pin is guaranteed to be read as high.
3. “Max” means the highest value where the pin is guaranteed to be read as low.
4. Although each I/O port can sink more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOL (for all ports) should not exceed 60 mA. If IOL exceeds the test conditions, VOL
may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition.
5. Although each I/O port can source more than the test conditions (10 mA at VCC = 5V, 5 mA at VCC = 3V) under steady state
conditions (non-transient), the sum of all IOH (for all ports) should not exceed 60 mA. If IOH exceeds the test condition, VOH
may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition.
6. The RESET pin must tolerate high voltages when entering and operating in programming modes and, as a consequence,
has a weak drive strength as compared to regular I/O pins.
7. Values are with external clock. Power Reduction is enabled (PRR = 0xFF) and there is no I/O drive.
8. BOD Disabled.
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
3
1.3
Clock Characteristics
1.3.1
Accuracy of Calibrated Internal Oscillator
It is possible to manually calibrate the internal oscillator to be more accurate than default factory calibration. Note
that the oscillator frequency depends on temperature and voltage. Voltage and temperature characteristics can be
found in Figure 2-42 on page 28 and Figure 2-43 on page 28.
Table 1-2.
Calibration Accuracy of Internal Oscillator
Calibration
Method
Target Frequency
VCC
Temperature
Accuracy at given
voltage & temperature (1)
8.0 MHz
3V
25C
±10%
Fixed frequency
within:
7.3 – 8.1 MHz
Fixed voltage within:
1.8V – 5.5V
Fixed temperature
within:
-40C to +105C
±1%
Factory
Calibration
User
Calibration
Notes:
1. Accuracy of oscillator frequency at calibration point (fixed temperature and fixed voltage).
1.4
System and Reset Characteristics
1.4.1
Enhanced Power-On Reset
Table 1-3.
Symbol
Characteristics of Enhanced Power-On Reset. TA = -40C to +105C
Parameter
Release threshold of power-on reset (2)
VPOR
VPOA
Activation threshold of power-on reset
SRON
Power-On Slope Rate
Note:
(3)
Min(1)
Typ(1)
Max(1)
Units
1.1
1.4
1.7
V
0.6
1.3
1.7
V
0.01
V/ms
1. Values are guidelines, only.
2. Threshold where device is released from reset when voltage is rising.
3. The Power-on Reset will not work unless the supply voltage has been below VPOA.
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
4
1.5
ADC Characteristics
Table 1-4.
Symbol
ADC Characteristics, Single Ended Channels. T = -40C to +105C
Parameter
Condition
Min
Typ
Resolution
Absolute accuracy
(Including INL, DNL, and
Quantization, Gain and Offset
Errors)
Max
Units
10
Bits
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
3
LSB
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
Noise Reduction Mode
1.5
LSB
VREF = 4V, VCC = 4V,
ADC clock = 1 MHz
Noise Reduction Mode
2.5
LSB
Integral Non-Linearity (INL)
(Accuracy after Offset and
Gain Calibration)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1
LSB
Differential Non-linearity (DNL)
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
0.5
LSB
Gain Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
2.5
LSB
Offset Error
VREF = 4V, VCC = 4V,
ADC clock = 200 kHz
1.5
LSB
Conversion Time
Free Running Conversion
13
260
µs
50
1000
kHz
VCC - 0.3
VCC + 0.3
V
Single Ended Conversions
2.0
AVCC
V
Differential Conversions
2.0
AVCC - 1.0
V
GND
VREF
0
AVCC (1)
Clock Frequency
AVCC
Analog Supply Voltage
AREF
External Voltage Reference
VIN
Input Voltage
Single Ended Conversions
Differential Conversions
Single Ended Conversions
38.5
Input Bandwidth
kHz
Differential Conversions
Internal 1.1V Reference
VINT
Internal 2.56V Reference
V
(1)
VCC > 3.0V
4
1.0
1.1
1.2
V
2.3
2.56
2.8
V
RREF
Reference Input Resistance
35
k
RAIN
Analog Input Resistance
100
M
ADC Conversion Output
Note:
0
1023
LSB
1. VDIFF must be below VREF.
2. Not tested in production.
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
5
1.6
Serial Programming Characteristics
Figure 1-1.
Serial Programming Waveforms
SERIAL DATA INPUT
(MOSI)
MSB
LSB
SERIAL DATA OUTPUT
(MISO)
MSB
LSB
SERIAL CLOCK INPUT
(SCK)
SAMPLE
Figure 1-2.
Serial Programming Timing
MOSI
SCK
tSLSH
tSHOX
tOVSH
tSHSL
MISO
tSLIV
Table 1-5.
Serial Programming Characteristics, TA = -40C to +105C, VCC = 1.8 - 5.5V (Unless Otherwise
Noted)
Symbol
Parameter
1/tCLCL
Oscillator Frequency
tCLCL
Oscillator Period
1/tCLCL
tCLCL
tSHSL
Min
0
Max
Units
4
MHz
250
Oscillator Frequency (VCC = 4.5V - 5.5V)
0
Oscillator Period VCC = 4.5V - 5.5V
50
SCK Pulse Width High
Typ
ns
20
MHz
ns
2 tCLCL
(1)
ns
2 tCLCL
(1)
ns
tSLSH
SCK Pulse Width Low
tOVSH
MOSI Setup to SCK High
tCLCL
ns
tSHOX
MOSI Hold after SCK High
2 tCLCL
ns
tSLIV
SCK Low to MISO Valid
Note:
100
ns
1. 2 tCLCL for fck < 12 MHz, 3 tCLCL for fck >= 12 MHz
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
6
2. Typical Characteristics
The data contained in this section is largely based on simulations and characterization of similar devices in the
same process and design methods. Thus, the data should be treated as indications of how the part will behave.
The following charts show typical behavior. These figures are not tested during manufacturing. During characterisation devices are operated at frequencies higher than test limits but they are not guaranteed to function properly
at frequencies higher than the ordering code indicates.
This device has been characterised at temperatures of -40C, 25C, 85C and 125C, but not at 105C. Although
the device is not guaranteed to operate reliably at temperatures above 105C, characteristic data for 105C can be
interpolated from the 85C and 125C curves, provided in the figures to follow.
All current consumption measurements are performed with all I/O pins configured as inputs and with internal pullups enabled. Current consumption is a function of several factors such as operating voltage, operating frequency,
loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are
operating voltage and frequency.
A sine wave generator with rail-to-rail output is used as clock source but current consumption in Power-Down
mode is independent of clock selection. The difference between current consumption in Power-Down mode with
Watchdog Timer enabled and Power-Down mode with Watchdog Timer disabled represents the differential current
drawn by the Watchdog Timer.
The current drawn from pins with a capacitive load may be estimated (for one pin) as follows:
I CP  V CC  C L  f SW
where VCC = operating voltage, CL = load capacitance and fSW = average switching frequency of I/O pin.
Current Consumption in Active Mode
Figure 2-1.
Active Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz)
5
125 °C
85 °C
25 °C
-40 °C
4
3
ICC (mA)
2.1
2
1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
7
Figure 2-2.
Active Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz)
1,2
125 °C
85 °C
25 °C
-40 °C
1
ICC (mA)
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-3.
Active Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz)
0,12
-40 °C
125 °C
25 °C
85 °C
0,1
ICC (mA)
0,08
0,06
0,04
0,02
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
8
Current Consumption in Idle Mode
Figure 2-4.
Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 8 MHz)
1,4
125 °C
85 °C
25 °C
-40 °C
1,2
ICC (mA)
1
0,8
0,6
0,4
0,2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-5.
Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 1 MHz)
0,35
125 °C
85 °C
25 °C
-40 °C
0,3
0,25
ICC (mA)
2.2
0,2
0,15
0,1
0,05
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
9
Figure 2-6.
Idle Supply Current vs. VCC (Internal Calibrated Oscillator, 128 kHz)
0,025
125 °C
-40 °C
25 °C
85 °C
ICC (mA)
0,02
0,015
0,01
0,005
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Current Consumption in Power-Down Mode
Figure 2-7.
Power-down Supply Current vs. VCC (Watchdog Timer Disabled)
3
125 °C
2,5
2
ICC (uA)
2.3
1,5
1
85 °C
0,5
25 °C
-40 °C
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
10
Figure 2-8.
Power-down Supply Current vs. VCC (Watchdog Timer Enabled)
12
125 °C
10
ICC (uA)
8
-40 °C
25 °C
85 °C
6
4
2
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Current Consumption of Peripheral Units
Figure 2-9.
Brownout Detector Current vs. VCC
40
35
30
125 °C
85 °C
25 °C
-40 °C
25
ICC (uA)
2.4
20
15
10
5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
11
Figure 2-10. Programming Current vs. VCC
9000
-40 °C
8000
7000
25 °C
ICC (uA)
6000
5000
85 °C
4000
125 °C
3000
2000
1000
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Pull-up Resistors
Figure 2-11. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 1.8V)
60
50
40
IOP (uA)
2.5
30
20
10
25 °C
85 °C
-40 °C
125 °C
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VOP (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
12
Figure 2-12. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 2.7V)
90
80
70
IOP (uA)
60
50
40
30
20
25 °C
85 °C
-40 °C
125 °C
10
0
0
0,5
1
1,5
2
2,5
3
VOP (V)
Figure 2-13. Pull-Up Resistor Current vs. Input Voltage (I/O Pin, VCC = 5V)
160
140
120
IOP (uA)
100
80
60
40
25 °C
85 °C
-40 °C
125 °C
20
0
0
1
2
3
4
5
6
VOP (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
13
Figure 2-14. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 1.8V)
40
35
IRESET (uA)
30
25
20
15
10
25 °C
-40 °C
85 °C
125 °C
5
0
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
1,8
2
VRESET (V)
Figure 2-15. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 2.7V)
60
50
IRESET (uA)
40
30
20
10
25 °C
-40 °C
85 °C
125 °C
0
0
0,5
1
1,5
2
2,5
3
VRESET (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
14
Figure 2-16. Pull-Up Resistor Current vs. Input Voltage (Reset Pin, VCC = 5V)
120
100
IRESET (uA)
80
60
40
20
25 °C
-40 °C
85 °C
125 °C
0
0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5
VRESET (V)
Output Driver Strength
Figure 2-17. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 1.8V)
0,4
125 °C
0,35
85 °C
0,3
25 °C
0,25
VOL (V)
2.6
-40 °C
0,2
0,15
0,1
0,05
0
0
1
2
3
4
5
IOL (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
15
Figure 2-18. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 3V)
0,5
125 °C
0,4
85 °C
25 °C
VOL (V)
0,3
-40 °C
0,2
0,1
0
0
2
4
6
8
10
IOL (mA)
Figure 2-19. VOL: Output Voltage vs. Sink Current (I/O Pin, VCC = 5V)
0,7
125 °C
0,6
VOL (V)
85 °C
0,5
25 °C
0,4
-40 °C
0,3
0,2
0,1
0
0
2
4
6
8
10
12
14
16
18
20
IOL (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
16
Figure 2-20. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 1.8V)
1,8
1,7
VOH (V)
1,6
1,5
-40 °C
25 °C
1,4
85 °C
125 °C
1,3
0
1
2
3
4
5
IOH (mA)
Figure 2-21. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 3V)
3
2,9
VOH (V)
2,8
2,7
-40 °C
25 °C
2,6
85 °C
125 °C
2,5
0
2
4
6
8
10
IOH (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
17
Figure 2-22. VOH: Output Voltage vs. Source Current (I/O Pin, VCC = 5V)
5
VOH (V)
4,8
4,6
-40 °C
25 °C
4,4
85 °C
125 °C
4,2
0
5
10
15
20
IOH (mA)
Figure 2-23. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 1.8V)
0,8
VOL (V)
0,6
0,4
125 °C
85 °C
25 °C
-40 °C
0,2
0
0
0,1
0,2
0,3
0,4
0,5
0,6
IOL (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
18
Figure 2-24. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 3V)
0,8
VOL (V)
0,6
0,4
125 °C
85 °C
25 °C
0,2
-40 °C
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
IOL (mA)
Figure 2-25. VOL: Output Voltage vs. Sink Current (Reset Pin as I/O, VCC = 5V)
0,8
VOL (V)
0,6
0,4
0,2
125 °C
85 °C
25 °C
-40 °C
0
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
IOL (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
19
Figure 2-26. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 1.8V)
5
4
VOH (V)
3
2
1
-40 °C
25 °C
85 °C
125 °C
0
0
0,2
0,4
0,6
0,8
1
IOH (mA)
Figure 2-27. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 3V)
5
4
VOH (V)
3
2
-40 °C
25 °C
85 °C
125 °C
1
0
0
0,2
0,4
0,6
0,8
1
IOH (mA)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
20
Figure 2-28. VOH: Output Voltage vs. Source Current (Reset Pin as I/O, VCC = 5V)
5
4
125 °C
85 °C
25 °C
-40 °C
VOH (V)
3
2
1
0
0
0,2
0,4
0,6
0,8
1
IOH (mA)
Input Thresholds and Hysteresis
Figure 2-29. VIH: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘1’)
3,5
3
125 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2.7
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
21
Figure 2-30. VIL: Input Threshold Voltage vs. VCC (I/O Pin, Read as ‘0’)
3
125 °C
85 °C
25 °C
-40 °C
2,5
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
4
4,5
5
5,5
VCC (V)
Figure 2-31. VIH-VIL: Input Hysteresis vs. VCC (I/O Pin)
0,6
-40 °C
Input Hysteresis (V)
0,5
25 °C
0,4
85 °C
0,3
125 °C
0,2
0,1
0
1,5
2
2,5
3
3,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
22
Figure 2-32. VIH: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘1’)
2,5
Threshold (V)
2
1,5
-40 °C
1
25 °C
85 °C
125 °C
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-33. VIL: Input Threshold Voltage vs. VCC (Reset Pin, Read as ‘0’)
2,5
125 °C
85 °C
25 °C
-40 °C
Threshold (V)
2
1,5
1
0,5
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
23
Figure 2-34. VIH-VIL: Input Hysteresis vs. VCC (Reset Pin)
1
0,9
0,8
Input Hysteresis (V)
0,7
-40 °C
0,6
0,5
25 °C
0,4
85 °C
0,3
0,2
125 °C
0,1
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
BOD, Bandgap and Reset
Figure 2-35. BOD Threshold vs. Temperature (BOD Level set to 4.3V)
4,38
4,36
4,34
Threshold (V)
2.8
VCC RISING
4,32
4,3
4,28
4,26
VCC FALLING
4,24
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
24
Figure 2-36. BOD Threshold vs. Temperature (BOD Level set to 2.7V)
2,78
2,76
VCC RISING
Threshold (V)
2,74
2,72
2,7
2,68
VCC FALLING
2,66
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
Figure 2-37. BOD Threshold vs. Temperature (BOD Level set to 1.8V)
1,85
1,84
Threshold (V)
1,83
1,82
VCC RISING
1,81
1,8
1,79
VCC FALLING
1,78
-40
-20
0
20
40
60
80
100
120
140
Temperature (C)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
25
Figure 2-38. Bandgap Voltage vs. Supply Voltage.
1,11
Bandgap Voltage (V)
1,1
85 °C
125 °C
25 °C
1,09
1,08
-40 °C
1,07
1,5
2,5
3,5
4,5
5,5
VCC (V)
Figure 2-39. Minimum Reset Pulse Width vs. VCC
1800
1600
1400
Pulsewidth (ns)
1200
1000
800
600
400
125 °C
85 °C
25 °C
-40 °C
200
0
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
26
Internal Oscillators
Figure 2-40. Frequency of Watchdog Oscillator vs. VCC
130000
Frequency (Hz)
125000
-40 °C
120000
25 °C
85 °C
115000
125 °C
110000
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-41. Frequency of Watchdog Oscillator vs. Temperature
130000
125000
Frequency (kHz)
2.9
120000
1.8 V
115000
3.0 V
5.0 V
110000
-40
-20
0
20
40
60
80
100
120
140
Temperature
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
27
Figure 2-42. Frequency of Calibrated 8.0 MHz Oscillator vs. VCC
8,4
-40 °C
25 °C
8,2
Frequency (MHz)
85 °C
125 °C
8
7,8
7,6
1,5
2
2,5
3
3,5
4
4,5
5
5,5
VCC (V)
Figure 2-43. Frequency of Calibrated 8.0 MHz Oscillator vs. Temperature
8,2
Frequency (MHz)
8,1
8
5.0 V
7,9
3.0 V
7,8
1.8 V
7,7
-40
-20
0
20
40
60
80
100
120
140
Temperature
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
28
Figure 2-44. Frequency of Calibrated 8.0 MHz Oscillator vs. OSCCAL Value
16
-40 °C
25 °C
85 °C
125 °C
14
12
FRC (MHz)
10
8
6
4
2
0
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
OSCCAL (X1)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
29
3. Ordering Information
Notes:
Speed (MHz)
Power Supply
Ordering Code (1)
20
1.8 – 5.5V
ATtiny261A-MN
ATtiny261A-MNR(2)
Package (1)
32M1-A
Operational Range
Industrial
(-40C to +105C)
1. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
halide-free and fully green.
2. Tape & Reel.
Package Type
32M1-A
32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
30
4. Revision History
Revision No.
History
8197A–Appendix A–AVR–06/2010
Initial revision
8197C–Appendix A–AVR–08/2011
Updated contact information
8197D–Appendix A–AVR–02/2013
Updated ordering codes
Updated contact information at the last page.
ATtiny261A [DATASHEET APPENDIX A]
8197D–AVR–02/2013
31
Atmel Corporation
1600 Technology Drive
Atmel Asia Limited
Unit 01-5 & 16, 19F
Atmel Munich GmbH
Business Campus
Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg
San Jose, CA 95110
BEA Tower, Millennium City 5
Parkring 4
1-6-4 Osaki, Shinagawa-ku
USA
418 Kwun Tong Roa
D-85748 Garching b. Munich
Tokyo 141-0032
Tel: (+1) (408) 441-0311
Kwun Tong, Kowloon
GERMANY
JAPAN
Fax: (+1) (408) 487-2600
HONG KONG
Tel: (+49) 89-31970-0
Tel: (+81) (3) 6417-0300
www.atmel.com
Tel: (+852) 2245-6100
Fax: (+49) 89-3194621
Fax: (+81) (3) 6417-0370
Fax: (+852) 2722-1369
© 2013 Atmel Corporation. All rights reserved. / Rev.: 8197D–AVR–02/2013
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, tinyAVR® and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
Similar pages