CET CEP20N06 N-channel enhancement mode field effect transistor Datasheet

CEP20N06/CEB20N06
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
60V, 25A, RDS(ON) =55mΩ @VGS = 10V.
RDS(ON) =75mΩ @VGS = 4.5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-220 & TO-263 package.
D
G
G
S
CEB SERIES
TO-263(DD-PAK)
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
Tc = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
Drain Current-Pulsed
Maximum Power Dissipation @ TC = 25 C
- Derate above 25 C
Operating and Store Temperature Range
60
Units
V
±20
V
ID
25
A
IDM
70
83
W
Drain Current-Continuous
a
S
PD
A
0.56
W/ C
TJ,Tstg
-55 to 175
C
Symbol
Limit
Units
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
1.8
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
62.5
C/W
2004.June
http://www.cetsemi.com
4 - 58
CEP20N06/CEB20N06
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
60
Zero Gate Voltage Drain Current
IDSS
Gate Body Leakage Current, Forward
Gate Body Leakage Current, Reverse
Typ
Max
Units
VDS = 55V, VGS = 0V
1
µA
IGSSF
VGS = 20V, VDS = 0V
100
nA
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
VGS(th)
Static Drain-Source
RDS(on)
On-Resistance
Forwand Transconductance
Dynamic Characteristics
gFS
VGS = VDS, ID = 250µA
3
V
VGS = 10 V, ID = 20A
1
42
55
mΩ
VGS = 4.5V, ID = 15A
55
75
mΩ
VDS = 10 V, ID = 20A
9
S
890
pF
173
pF
21
pF
c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 25V, VGS = 0V,
f = 1.0 MHz
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 30V, ID = 1A,
VGS = 10V, RGEN =6Ω
12
25
ns
7
20
ns
34
65
ns
Turn-Off Fall Time
tf
9
30
ns
Total Gate Charge
Qg
19
25
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 30V, ID = 15A,
VGS = 10V
2.8
nC
3.6
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 15A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
4 - 59
25
A
1.3
V
4
CEP20N06/CEB20N06
50
VGS=10,8,6,5V
25 C
VGS=3V
20
ID, Drain Current (A)
ID, Drain Current (A)
25
15
10
5
0
VGS=4V
0
1
2
3
4
0
1
2
3
4
5
6
VGS, Gate-to-Source Voltage (V)
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
C, Capacitance (pF)
-55 C
VDS, Drain-to-Source Voltage (V)
1000
750
500
Coss
250
Crss
0
0
5
10
15
20
25
2.2
1.9
ID=20A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
10
VDS=VGS
IS, Source-drain current (A)
VTH, Normalized
Gate-Source Threshold Voltage
10
0
Ciss
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
20
5
1250
1.2
30
TJ=125 C
1500
1.3
40
10
10
-25
0
25
50
75
100
125
150
2
VGS=0V
1
0
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
4 - 60
10
VDS=30V
ID=15A
8
ID, Drain Current (A)
VGS, Gate to Source Voltage (V)
CEP20N06/CEB20N06
6
4
2
0
10
100µs
10
10
0
5
10
15
20
4
RDS(ON)Limit
2
1ms
10ms
100ms
DC
1
TC=25 C
TJ=175 C
Single Pulse
0
10
0
10
1
10
Qg, Total Gate Charge (nC)
VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
td(off)
tf
90%
90%
VOUT
VOUT
VGS
RGEN
toff
tr
td(on)
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
0.1
-1
PDM
t1
0.05
t2
0.02
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
0.01
Single Pulse
10
-2
10
-2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4 - 61
10
3
10
4
2
Similar pages