APT100GT60B2R(G) APT100GT60LR(G) 600V, 100A, VCE(ON) = 2.1V Typical Thunderbolt IGBT® The Thunderbolt IGBT® is a new generation of high voltage power IGBTs. Using Non-Punch-Through Technology, the Thunderbolt IGBT® offers superior ruggedness and ultrafast switching speed. Features • Low Forward Voltage Drop • RBSOA and SCSOA Rated • Low Tail Current • High Frequency Switching to 50KHz • Integrated Gate Resistor • Ultra Low Leakage Current G C E G C E C Low EMI, High Reliability • RoHS Compliant G E All Ratings: TC = 25°C unless otherwise specified. Maximum Ratings Symbol Parameter Ratings VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 IC1 Continuous Collector Current @ TC = 25°C 148 IC2 Continuous Collector Current @ TC = 100°C 80 ICM Pulsed Collector Current 1 300 SSOA PD TJ, TSTG Unit Volts Switching Safe Operating Area @ TJ = 150°C Amps 300A @ 600V Total Power Dissipation Operating and Storage Junction Temperature Range 500 Watts -55 to 150 °C Static Electrical Characteristics Min Typ Max V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, IC = 4mA) 600 - - VGE(TH) Gate Threshold Voltage (VCE = VGE, IC = 1.5mA, Tj = 25°C) 3 4 5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 25°C) 1.7 2.1 2.5 Collector Emitter On Voltage (VGE = 15V, IC = 100A, Tj = 125°C) - 2.5 - Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 - - 25 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) 2 - - 1000 Gate-Emitter Leakage Current (VGE = ±30V) - - 300 VCE(ON) ICES IGES Volts μA CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. Microsemi Website - http://www.microsemi.com Unit nA 052-6297 Rev A 7 - 2008 Symbol Characteristic / Test Conditions Dynamic Characteristic Symbol APT100GT60B2R_LR(G) Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Min Typ Max - 5150 - - 475 - - 295 - - 8.0 - VGE = 15V - 460 - VGE = 0V, VCE = 25V f = 1MHz Gate Charge Qg Total Gate Charge Qge Gate-Emitter Charge VCE= 300V - 40 - Gate-Collector Charge IC = 100A - 210 - TJ = 150°C, RG = 4.3Ω , VGE = 15V, 300 Qgc SSOA td(on) tr td(off) tf 3 Switching Safe Operating Area L = 100μH, VCE= 600V Current Rise Time Turn-Off Delay Time 40 - Inductive Switching (25°C) - 75 - VCC = 400V - 320 - - 100 - RG = 4.3Ω - 3250 - TJ = +25°C - 3525 - VGE = 15V Current Fall Time IC = 100A Eon1 Turn-On Switching Energy 4 Eon2 Turn-On Switching Energy 5 Eoff Turn-Off Switching Energy 6 - 3125 - td(on) Turn-On Delay Time - 40 - Inductive Switching (125°C) - 75 - Turn-Off Delay Time VCC = 400V - 350 - Current Fall Time VGE = 15V - 100 - Turn-On Switching Energy 4 IC = 100A 3275 - Eon2 Turn-On Switching Energy RG = 4.3Ω - 5 - 4650 - Eoff Turn-Off Switching Energy 6 - 3750 - tr td(off) tf Eon1 Current Rise Time TJ = +125°C pF V nC A - Turn-On Delay Time Unit ns μJ ns μJ Thermal and Mechanical Characteristics Symbol Characteristic / Test Conditions Min Typ Max RθJC Junction to Case (IGBT) - - 0.25 RθJC Junction to Case (DIODE) - - N/A WT Package Weight - 29.2 - g - - 10 in·lbf - - 1.1 N·m Torque Unit °C/W Terminals and Mounting Screws 052-6297 Rev A 7 - 2008 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages. 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to z a the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 RG is external gate resistance not including gate driver impedance. Microsemi reserves the right to change, without notice, the specifications and information contained herein. Typical Performance Curves APT100GT60B2R_LR(G) 300 200 V GE 12, 13, &15V = 15V 10V IC, COLLECTOR CURRENT (A) 160 140 TC = 25°C 120 TC = 125°C 100 80 TC = -55°C 60 40 250 9V 200 8V 150 100 7V 50 6V 20 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 250µs PULSE TEST<0.5 % DUTY CYCLE IC, COLLECTOR CURRENT (A) 180 TJ = -55°C 160 140 120 100 80 TC = 25°C 60 TC = 125°C 40 20 0 0 FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 200 0 5 10 15 20 25 30 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 100A C T = 25°C 14 0 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.5 3.0 IC = 100A 2.5 2.0 1.5 IC = 50A 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 3 2.5 1.5 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature IC, DC COLLECTOR CURRENT(A) 0.85 IC = 50A 1 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0.5 0 25 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 180 0.90 IC = 100A 2 1.10 0.95 IC = 200A 3.5 200 1.00 500 4 1.15 1.05 200 300 400 GATE CHARGE (nC) FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) IC = 200A 4.0 (NORMALIZED) VGS(TH), THRESHOLD VOLTAGE VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.5 100 0 160 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 052-6297 Rev A 7 - 2008 IC, COLLECTOR CURRENT (A) 180 Typical Performance Curves APT100GT60B2R_LR(G) 450 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 35 VGE = 15V 30 25 20 15 10 VCE = 400V 5 TJ = 25°C, or 125°C RG = 4.3Ω L = 100µH 0 350 300 VGE =15V,TJ=25°C 250 VGE =15V,TJ=125°C 200 150 100 VCE = 400V RG = 4.3Ω L = 100µH 50 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 250 400 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 200 RG = 4.3Ω, L = 100µH, VCE = 400V RG = 4.3Ω, L = 100µH, VCE = 400V 180 160 tf, FALL TIME (ns) tr, RISE TIME (ns) 200 150 100 TJ = 25 or 125°C,VGE = 15V 16000 60 TJ = 25°C, VGE = 15V 12000 V = 400V CE V = +15V GE R = 4.3Ω 14000 G 12000 TJ = 125°C 10000 8000 6000 4000 2000 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 80 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current TJ = 25°C 0 Eon2,200A J 25000 20000 15000 Eoff,200A 10000 Eon2,100A Eoff,100A 5000 Eoff,50A Eon2,50A 0 TJ = 125°C 8000 6000 4000 2000 TJ = 25°C 16000 V = 400V CE = +15V V GE T = 125°C 30000 G 10000 0 25 50 70 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) 35000 V = 400V CE V = +15V GE R = 4.3Ω 0 0 25 50 75 100 125 150 175 200 225 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current SWITCHING ENERGY LOSSES (µJ) 100 20 0 052-6297 Rev A 7 - 2008 120 40 50 0 TJ = 125°C, VGE = 15V 140 Eon2,200A V = 400V CE V = +15V GE R = 4.3Ω 14000 G 12000 Eoff,200A 10000 8000 6000 4000 Eon2,100A Eoff,100A 2000 Eoff,50A 0 Eon2,50A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature Typical Performance Curves APT100GT60B2R_LR(G) 10,000 IC, COLLECTOR CURRENT (A) 350 Cies P C, CAPACITANCE ( F) 5,000 1,000 500 C0es 300 250 200 150 100 50 Cres 0 100 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area 0.25 0.9 0.20 0.7 0.15 0.5 0.10 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 0.3 t1 t2 0.05 t 0.1 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 0 10 -5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 TC (°C) 0.0587 0.132 0.0587 Dissipated Power (Watts) 0.0120 0.420 4.48 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 100 50 T = 75°C C F 10 T = 100°C C 5 T = 125°C J D = 50 % V = 400V CE R = 4.3Ω 1 = min (f max, f max2) 0.05 f max1 = t d(on) + tr + td(off) + tf max f max2 = Pdiss - P cond E on2 + E off Pdiss = TJ - T C R θJC G FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL 30 40 50 60 70 80 90 100 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 052-6297 Rev A 7 - 2008 10 20 APT100GT60B2R_LR(G) Gate Voltage APT100DQ60 10% TJ = 125°C td(on) tr V CE IC V CC 90% 5% Collector Current 5% 10% A CollectorVoltage D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% Gate Voltage TJ = 125°C td(off) CollectorVoltage 90% tf 10% 0 Collector Current Switching Energy Figure 23, Turn-off Switching Waveforms and Definitions T-MAXTM (B2) Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) TO-264 (L) Package Outline 4.60 (.181) 5.21 (.205) 1.80 (.071) 2.01 (.079) 15.49 (.610) 16.26 (.640) 19.51 (.768) 20.50 (.807) 3.10 (.122) 3.48 (.137) Collector 5.38 (.212) 6.20 (.244) 5.79 (.228) 6.20 (.244) Collector 20.80 (.819) 21.46 (.845) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 19.81 (.780) 20.32 (.800) 25.48 (1.003) 26.49 (1.043) 2.87 (.113) 3.12 (.123) 2.29 (.090) 2.69 (.106) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) 19.81 (.780) 21.39 (.842) Gate Collector 052-6297 Rev A 7 - 2008 5.45 (.215) BSC 2-Plcs. These dimensions are equal to the TO-247 without the mounting hole. Gate Collector Emitter Emitter 2.21 (.087) 2.59 (.102) 2.29 (.090) 2.69 (.106) 0.48 (.019) 0.84 (.033) 2.59 (.102) 3.00 (.118) 0.76 (.030) 1.30 (.051) 2.79 (.110) 3.18 (.125) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) Dimensions in Millimeters and (Inches) Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262 and foreign patents. US and Foreign patents pending. All Rights Reserved.