Sony CXD3500R Timing generator for lcd panel Datasheet

CXD3500R
Timing Generator for LCD Panels
Description
The CXD3500R is a timing signal generator for
driving the LCD panels of Sony data projectors. This
chip has a built-in serial interface circuit which
supports various SXGA (skip scan display), XGA,
SVGA and VGA signals, and (double speed) NTSC
and PAL signals through external control from a
microcomputer, etc.
Direct drive of LCD panels is possible using 5V
drive.
64 pin LQFP (Plastic)
Absolute Maximum Ratings (Ta = 25°C, Vss = 0V)
• Supply voltage
VDD
Vss – 0.5 to +7.0
V
• Input voltage
VI Vss – 0.5 to VDD + 0.5
V
• Output voltage
VO Vss – 0.5 to VDD + 0.5
V
• Operating temperature
Topr
–20 to +75
°C
• Storage temperature
Tstg
–55 to +150
°C
Features
• Generates the drive pulses for the LCD panels of
Sony high-temperature polycrystalline silicon TFT
data projectors.
• Supports various SXGA, XGA, SVGA and VGA signals.
• Programmable output signals allow the optimal
pulse output settings for each panel.
• Programmable skip scan display allows skip scan
display of various signals (SXGA → XGA, XGA →
SVGA, Macintosh16 → SVGA, etc.)
• Supports NTSC and PAL signals with line doublespeed display using a built-in double-speed
controller. (clock frequency: 36MHz or less)
(Line memory: µPD485505: NEC)
• Allows control of sample-and-hold position of
CXA2112R sample-and-hold driver.
• Supports up/down inversion and/or right/left
inversion.
• Supports line inversion and field inversion.
• AC drive of LCD panels during no signal
Recommended Operating Conditions
• Supply voltage
VDD
4.5 to 5.5
• Operating temperature
Topr
–20 to +75
V
°C
Applications
LCD projectors, etc.
Structure
Silicon gate CMOS IC
Note) "Macintosh" is a registered trademark of Apple Computer Inc.
"PC98" is a registered trademark of NEC Corp.
"VGA" is a registered trademark of IBM Corp.
Other company names and product names, etc. contained in these materials are trademarks or registered trademarks of the
respective companies.
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
–1–
E99112-PS
CXD3500R
XCLR
CKI2
CKLIM
CKI1
CKI3
Block Diagram
19
3
4
64
17
SYSTEM CLEAR
SYNC DETECTOR
HD 31
1
HSYNC
2
VSYNC
IRACT 52
50 XVS
RSTR 54
PLL
COUNTER & DECODER
RCK 57
AUX. PLL
COUNTER & DECODER
51 XHS
53 ORACT
RSTW 58
MASTER
CLOCK
WCK 59
24
HDN 63
56
H-POSITION
COUNTER & DECODER
HST 27
HCK1 28
VDD
PULSE ELIMINATOR
8
HCK2 29
23
BLK 30
40
ENB1 32
55
PCG 36
VSS
V-POSITION
COUNTER & DECODER
ENB2 38
H-TIMING PULSE
GENERATOR
CLP 39
PRG 42
RGTCNT 10
FRPCNT 11
V-TIMING PULSE
GENERATOR
SCTR 60
SCLK 61
5
VD
6
FLD
33 VCK
34 VST
43 FRP
SERIAL DATA I/F
44 XFRP
SDAT 62
7
INV
SHP2B
SHP2A
SHP1B
SHP1A
DWN
XRGT
RGT
MODE1
MODE2
MODE3
20 21 22 25 26 37 45 46 47 48 49
9 12 13 14 15 16 18 35 41
TEST
–2–
CXD3500R
Pin Description
Pin
No.
Symbol
I/O
Description
Input pin for
open status
1
HSYNC
I
Horizontal sync signal input
—
2
VSYNC
I
Vertical sync signal input
—
3
CKI2
Clock 2 input (Small signal: Vth = VDD/2, min. Vp-p = 0.5V)
—
4
CKLIM
I
Clock input selector (CKI1 selected when open.)
H
5
VD
O
VD pulse output
—
6
FLD
I/O
FLD pulse I/O
—
7
TEST0
—
Test (Not connected.)
—
8
VSS0
—
GND
—
9
TEST1
—
Test (Not connected.)
—
10
RGTCNT
I
Right/left inversion external control
—
11
FRPCNT
I
FRP pulse inversion external control
H
12
TEST2
—
Test (Not connected.)
—
13
TEST3
—
Test (Not connected.)
—
14
TEST4
—
Test (Not connected.)
—
15
TEST5
—
Test (Not connected.)
—
16
TEST6
—
Test (Connect to GND.)
—
17
CKI3
I
Clock 3 input (for LAP)
—
18
TEST7
—
Test (Not connected.)
H
19
XCLR
I
System clear (L: set to SVGA 60Hz)
H
20
MODE3
O
Parallel Out 3 output (Panel mode switching 3 output)
—
21
MODE2
O
Parallel Out 2 output (Panel mode switching 2 output)
—
22
MODE1
O
Parallel Out 1 output (Panel mode switching 1 output)
—
23
VSS1
—
GND
—
24
VDD0
—
VDD
—
25
RGT
O
Right/left inversion discrimination signal output (H: Normal, L: Reverse)
—
26
XRGT
O
Right/left inversion discrimination signal output (reverse polarity of RGT)
—
27
HST
O
Horizontal display start pulse output
—
28
HCK1
O
Horizontal display clock pulse output
—
29
HCK2
O
Horizontal display clock pulse output
—
30
BLK
O
BLK pulse output
—
31
HD
O
HD pulse output
—
32
ENB1
O
ENB1 pulse output
—
33
VCK
O
Vertical display clock pulse output
—
I/O
∗ H: Pull up
–3–
CXD3500R
Pin
No.
Symbol
I/O
Description
Input pin for
open status
34
VST
O
Vertical display start pulse output
—
35
TEST8
—
Test (Not connected.)
—
36
PCG
O
Precharge timing pulse output
—
37
DWN
O
Up/down inversion discrimination signal output (H: Down, L: Up)
—
38
ENB2
O
ENB2 pulse output
—
39
CLP
O
Pedestal clamp pulse output for CXA2112R
—
40
VSS2
—
GND
—
41
TEST9
—
Test (Not connected.)
—
42
PRG
O
Precharge signal pulse output
—
43
FRP
O
AC drive inversion timing output
—
44
XFRP
O
AC drive inversion timing output (reverse polarity of FRP)
—
45
SHP1A
O
External sample-and-hold driver control signal (for CXA2112R)
—
46
SHP1B
O
External sample-and-hold driver control signal (for CXA2112R)
—
47
SHP2A
O
External sample-and-hold driver control signal (for CXA2112R)
—
48
SHP2B
O
External sample-and-hold driver control signal (for CXA2112R)
—
49
INV
O
External sample-and-hold driver control signal (for CXA2112R)
—
50
XVS
O
Vertical auxiliary pulse output
—
51
XHS
O
Horizontal auxiliary pulse output
—
52
IRACT
O
LAP control pulse output
—
53
ORACT
O
LAP control pulse output
—
54
RSTR
O
Reset read output (for high-speed line buffer)
—
55
VSS3
—
GND
—
56
VDD1
—
VDD
—
57
RCK
O
Read clock output (for high-speed line buffer)
—
58
RSTW
O
Reset write output (for high-speed line buffer)
—
59
WCK
O
Write clock output (for high-speed line buffer)
—
60
SCTR
I
Chip select input (serial transfer block)
—
61
SCLK
I
Serial clock input (serial transfer block)
—
62
SDAT
I
Serial data input (serial transfer block)
—
63
HDN
O
Phase comparator pulse output
—
64
CKI1
I
Clock 1 input (TTL)
—
∗ H: Pull up
–4–
CXD3500R
Electrical Characteristics
(VDD = 5.0 ± 0.5V, VSS = 0V, Topr = –20 to +75°C)
1. DC characteristics
Item
Symbol
Conditions
Typ.
Max.
5.0
5.5
V
VDD
V
Supply voltage
VDD
4.5
Input, output voltages
VI, VO
VSS
VIH
Input voltage 1
Logical threshold value
Input voltage 2
VIL
2.2
TTL input
0.8
Small amplitude input
0.3VDD
VIL
VIN
50MHz sine wave
0.5
Feedback resistor
RFB
VIN = Vss or VDD
250k
VIH
VIL
VT–
Output voltage 2
Output voltage 3
1M
2.5M
0.3VDD
0.8
VOH
IOH = –2mA
VOL
IOL = 4mA
VOH
IOH = –6mA
VOL
IOL = 4mA
VOH
IOH = –8mA
VOL
IOL = 8mA
VDD – 0.8
0.4
VDD – 0.8
0.4
VDD – 0.8
0.4
∗5
–10
IIL
∗7
–40
II
∗9
–40
40
IOZ
∗10
–40
40
Current consumption IDD
∗11
Output leak
current
∗1
∗2
∗3
∗4
∗5
∗6
∗7
∗8
∗9
∗10
∗11
V
∗1
V
HSYNC,
VSYNC,
SCTR, SCLK,
SDAT
V
∗2
V
∗3
V
∗4
0.4
II
Input leak current
Ω
2.2
TTL Schmitt trigger
input
VT+ – VT–
Output voltage 1
CKI2
Vp-p
0.7VDD
CMOS input
VT+
Input voltage 4
CKI1
V
0.7VDD
Input amplitude
Input voltage 3
V
VDD/2
Vth
VIH
Unit Applicable pins
Min.
∗6
10
–100
58
–240
∗8
µA
FLD
µA
SHP1A,
SHP2A
mA
At a 30pF load
CKLIM, RGTCNT, FRPCNT, CKI3, TEST7, XCLR
MODE1, MODE2, MODE3, RGT, XRGT, DWN, SHP1B, SHP2B, INV
VD, BLK, HD, ENB1, ENB2, VCK, VST, PCG, CLP, PRG, FRP, XFRP, XVS, XHS, IRACT, ORACT, HDN
HST, HCK1, HCK2, RSTR, RCK, RSTW, WCK
Normal input pins (VIN = Vss or VDD)
HSYNC, VSYNC, RGTCNT, CKI3, SCTR, SCLK, SDAT, CKI1
Pins with pull-up resistors (VIN = Vss)
CKLIM, FRPCNT, TEST7, XCLR
Bidirectional pins (VIN = Vss or VDD)
Tri-state (at high impedance, VIN = Vss or VDD)
VDD = 5.0V, 55MHz input (actual measurement)
–5–
CXD3500R
2. AC characteristics
(VDD = 5.0 ± 0.5V, VSS = 0V, Topr = –20 to +75°C)
Item
Symbol
Clock input cycle
tr
tf
∆t
tH/(tH + tL)
tL/(tH + tL)
Output rise time
Output fall time
Cross-point time difference
HCK1 Duty
HCK2 Duty
Applicable pins
Min.
CKI1
18.2
CKI2
18.2
Typ.
Max. Conditions Unit
All outputs
20
All outputs
20
HCK1, 2
–10
10
HCK1
48
52
HCK2
48
52
ns
CL = 30pF
%
Note) The minimum value for the clock input cycle (CKI1) when using the built-in double-speed controller is 27ns.
(VDD = 5.0 ± 0.5V, VSS = 0V, Topr = –20 to +75°C)
3. Serial transfer AC characteristics
Item
Symbol
Min.
ts0
ts1
SCTR setup time with respect to rise of SCLK
4Tns
SDAT setup time with respect to rise of SCLK
2Tns
th0
th1
tW1L
tW1H
tW2
tW3
SCTR hold time with respect to rise of SCLK
4Tns
SDAT hold time with respect to rise of SCLK
2Tns
SCLK L level pulse width
2Tns
SCLK H level pulse width
2Tns
Typ.
Max.
5Tns
5Tns
T: Input clock cycle
Note) Consider the frequency at free running (no signal). When the above characteristic specification is not
satisfied at free running, IC operation including serial transfer is not guaranteed.
4. External clock input AC characteristics
Symbol
ts0
th0
ts0
th0
tWL/tWH
ts0
th0
ts0
th0
tWL/tWH
(VDD = 5.0 ± 0.5V, VSS = 0V, Topr = –20 to +75°C)
Item
Conditions
HSYNC setup time with respect to rise of CKI1
HSYNC hold time with respect to rise of CKI1
HSYNC setup time with respect to rise of CKI2
HSYNC hold time with respect to rise of CKI2
Min.
SLCK∗1: H
CKPOL∗2: H
SLRS∗3: L
7
2
9
6
HSYNC setup time with respect to rise of CKI1
0
HSYNC setup time with respect to rise of CKI2
Max. Unit
4
CKI1,2 L/H level pulse width
HSYNC hold time with respect to rise of CKI1
Typ.
SLCK∗1: L
CKPOL∗2: H
T/2
ns
6
0
HSYNC hold time with respect to rise of CKI2
8
CKI1,2 L/H level pulse width
40
50
60
%
∗1, 2, 3: Serial data Add. 0A
T: Input clock cycle
Note) During external clock input, set serial data HR to L. The pulse synchronized to the horizontal sync signal is
generated by detecting the front edge of the horizontal sync signal and then resetting the internal PLL counter.
–6–
CXD3500R
5. Timing definitions
AC characteristics
VDD
100%
CKI1/2
0V
tpr
Output
VDD
90%
10%
0V
tr
tf
90%
tpf
Output
VDD
10%
0V
VDD
HCK1
50%
50%
0V
VDD
50%
HCK2
50%
0V
∆t
∆t
50%
HCK1
50%
50%
tH
tL
Note) HCK2 is the reverse phase of HCK1.
Serial transfer AC characteristics
th0
ts0
SCTR
50%
50%
tw1L
SCLK
tw1H
tw2
50%
50%
ts1
SDAT
tw3
50%
th1
D15
ts1
th1
D8
D14 D9
D7
D0
D15
Note) See "Serial transfer timing" on page 11 for the timing relationship between D15 to D0 and each pulse.
External clock input AC characteristics
th0
HSYNC
(negative polarity)
ts0
50%
50%
twL
CKI1, 2
th0
ts0
twH
50%
50%
–7–
50%
50%
CXD3500R
Input Signal Protocol
1. Horizontal sync signal
a) A standard signal (HSYNC) should be input for each mode.
However, since the CXD3500R requires a double-speed signal as input during NTSC/PAL double-speed
display when not using the built-in double-speed controller, the input specifications at that time are
similar to those for normal data type sync signals, and there should not be a 1/2 offset with respect to
the vertical sync signal.
b) The input sync signal polarity is not fixed, and is set by the serial data (HPOL).
2. Vertical sync signal
a) A sync-separated, normal-speed VSYNC should be input as the vertical sync signal.
b) The input sync signal polarity is not fixed, and is set by the serial data (VPOL).
c) The phase relationship between HSYNC and VSYNC is specified as follows for the CXD3500R.
(1) XGA, Macintosh16, SVGA, VGA, PC-98
HSYNC
VSYNC
Sync signal
phase reference
(2) Double-speed NTSC
Double-speed HSYNC
VSYNC
Sync signal
phase reference
(3) Double-speed PAL
Double-speed HSYNC
VSYNC
Sync signal
phase reference
(4) NTSC
Sync signal phase reference
VSYNC
ODD FIELD
HSYNC
EVEN FIELD
H/2
–8–
CXD3500R
(5) PAL
Sync signal phase reference
VSYNC
ODD FIELD
HSYNC
EVEN FIELD
H/2
Notes) (2) and (3) show the timing when supporting input of double-speed signals.
(4) and (5) show the timing when using the built-in double-speed controller (CXD3500R) and a line
memory (µPD485505: NEC)
–9–
CXD3500R
Description of Operation
Sync signal input
The HSYNC and VSYNC input pins support separate SYNC only. When using a composite SYNC input,
perform sync separation using a separate sync separation IC, etc.
Clock input
(1) CKI1 and 2 pins
CKI1 and 2 are the clock input pins from an external PLL IC. CKI1 is TTL level input, and CKI2 is small
amplitude clock input. Internal operation is performed at 1/2 clock, so the CXD3500R has a built-in
frequency divider which halves the input master clock, and can select this halved clock or a 1/2 clock input
from an external source by the serial interface setting. However, the input clock should be 55MHz or less,
so when using a master clock of more than 55MHz, input the 1/2 clock.
The 1/N frequency divider output for the PLL IC is output from the HDN pin. The HDN polarity at this time
is set by serial data HDNPOL.
(2) CKI3 pin
CKI3 is the clock input pin when using a scan converter that operates with the input sync signals and an
asynchronous clock in the system. Since two types of clock are input in this case, the circuits that basically
operate with the respective clocks of CKI1 and CKI2 are asynchronous. The input clock should be 55MHz
or less. For details, see the explanation of pulse setting for the scan converter in this data sheet (starting
on page 34).
AC driving of LCD panels for no signal
The following measures have been adopted to allow AC driving of LCD panels even when there is no signal.
However, master clock CKI1 or CKI2 must be input even during free running.
Note that the recommended PLL IC CXA3106(A)Q does not output the clock when there is no HSYNC input.
Horizontal direction pulse
The PLL is set to free running status. Therefore, the frequency of the horizontal direction pulse is
dependent on the PLL free-running frequency.
Vertical direction pulse
The number of lines is counted by an internal counter and the vertical direction pulses (VST, FRP)
are output at a specified cycle. For the CXD3500R, no signal (free running) status is judged if there is
no VSYNC input for longer than the following periods (free running detection timing).
PLSSL2, 1, 0
V cycle for no signal
Free running detection
L L L or L L H
701H
700H
L H L to H L L
1001H
1000H
H L H to H H H
1301H
1300H
– 10 –
CXD3500R
XCLR pin
The CXD3500R should be forcibly reset during power on in order to initialize the serial transfer block and other
internal circuits. At this time, the serial interface circuit is reset to the initial status (preset status). See page 38
for the preset settings.
Serial transfer operation
1. Control method
The CXD3500R operation timing is controlled by serial data.
The control data is comprised of an 8-bit address and 8-bit data, and the individual data is loaded at the rise of
SCLK. This loading operation starts from the fall of SCTR and is completed at the next rise of SCTR.
Serial transfer timing
SCTR
SCLK
SDAT
D15
D14
D13
D12
D11
D10
D9
D8
Address
D7
D6
D5
D4
Data
– 11 –
D3
D2
D1
D0
CXD3500R
2. Control data
When using the CXD3500R, set the control data corresponding to each LCD panel and video signal according
to the formats in the table below.
Address
Data
D15 D14 D13 D12 D11 D10 D9 D8
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
PLLP11 PLLP10 PLLP9
PLLP8
PLLP7
PLLP6
PLLP5
PLLP4
0
0
0
0
0
0
0
1
PLLP3
PLLP2
PLLP1
PLLP0
HP11
HP10
HP9
HP8
0
0
0
0
0
0
1
0
HP7
HP6
HP5
HP4
HP3
HP2
HP1
HP0
0
0
0
0
0
0
1
1
VP7
VP6
VP5
VP4
VP3
VP2
VP1
VP0
0
0
0
0
0
1
0
0
HSTW1 HSTW0 HSTP5 HSTP4 HSTP3 HSTP2 HSTP1 HSTP0
0
0
0
0
0
1
0
1
PCGU2 PCGU1 PCGU0 PCGD4 PCGD3 PCGD2 PCGD1 PCGD0
0
0
0
0
0
1
1
0
—
—
—
0
0
0
0
0
1
1
1
set 0
PCG
FRP1
0
0
0
0
1
0
0
0
0
0
0
0
1
0
0
1 VSTPOL HCKPOL VPOL
0
0
0
0
1
0
1
0
SLCNT SLFLD
0
0
0
0
1
0
1
1
BLKON BLKPOL FMBK
0
0
0
0
1
1
0
0
MBKZ3 MBKZ2 MBKZ1 MBKZ0 MBKB3 MBKB2 MBKB1 MBKB0
0
0
0
0
1
1
0
1
VGAV
0
0
0
0
1
1
1
0
XGBK
0
0
0
0
1
1
1
1
—
—
0
0
0
1
0
0
0
0
SLLAP
LPCK
0
0
0
1
0
0
0
1
IRD11
IRD10
IRD9
IRD8
IRD7
IRD6
IRD5
IRD4
0
0
0
1
0
0
1
0
IRD3
IRD2
IRD1
IRD0
IRU11
IRU10
IRU9
IRU8
0
0
0
1
0
0
1
1
IRU7
IRU6
IRU5
IRU4
IRU3
IRU2
IRU1
IRU0
0
0
0
1
0
1
0
0
VRSP3 VRSP2 VRSP1 VRSP0 ORP11 ORP10
ORP9
ORP8
0
0
0
1
0
1
0
1
ORP7
0
0
0
1
0
1
1
0
0
0
0
1
0
1
1
0
0
0
1
1
0
0
0
0
1
1
0
0
0
1
0
0
0
0
0
0
0
VSTFX HCKFX HCKM
HR
SLRS
DWN
PRGD4 PRGD3 PRGD2 PRGD1 PRGD0
FRP0
FRPP3 FRPP2 FRPP1 FRPP0
INV
SHP3
SHP1
SHP0
HPOL HDNPOL CLPPOL CLPW
CLPP
CKPOL
SLCK PLSSL2 PLSSL1 PLSSL0
MBKA4 MBKA3 MBKA2 MBKA1 MBKA0
DSP
RGT
HDON HAXON VAXON
—
SHP2
—
PO/MODE3 PO/MODE2 PO/MODE1
set 0
set 0
set 0
SPON
—
—
set 0
set 0
SLCKL ORRS4 ORRS3 ORRS2 ORRS1 ORRS0
ORP5
ORP4
ORP3
ORP2
ORP1
ORP0
ORD11 ORD10
ORD9
ORD8
ORD7
ORD6
ORD5
ORD4
1
ORD3
ORD2
ORD1
ORD0
ORU11 ORU10
ORU9
ORU8
0
0
ORU7
ORU6
ORU5
ORU4
ORU3
ORU2
ORU1
ORU0
0
0
1 HAXD11 HAXD10 HAXD9 HAXD8 HAXD7 HAXD6 HAXD5 HAXD4
1
0
1
0
HAXD3 HAXD2 HAXD1 HAXD0 HAXU11 HAXU10 HAXU9 HAXU8
1
1
0
1
1
HAXU7 HAXU6 HAXU5 HAXU4 HAXU3 HAXU2 HAXU1 HAXU0
0
1
1
1
0
0 VAXD11 VAXD10 VAXD9 VAXD8 VAXD7 VAXD6 VAXD5 VAXD4
0
0
1
1
1
0
1
VAXD3 VAXD2 VAXD1 VAXD0 VAXU11 VAXU10 VAXU9 VAXU8
0
0
1
1
1
1
0
VAXU7 VAXU6 VAXU5 VAXU4 VAXU3 VAXU2 VAXU1 VAXU0
ORP6
— or
: Setting invalid.
Note) PLLP0, HP0, VP0, HSTW0, HSTP0, PCGU0, PCGD0, PRGD0, FRPP0, SHP0, MBKA0, MBKB0,
MBKZ0, IRD0, IRU0, ORRS0, ORP0, ORD0, ORU0, HAXD0, HAXU0, VAXD0, VAXU0: LSB.
Shaded bits (PLLP0, IRU0, ORPU, ORU0 and HAXU0) are indicated for reference, and actual data
setting to these bits is invalid.
– 12 –
CXD3500R
Each control data is described in detail below.
The following descriptions define the width of one dot clock as "clk".
PLLP11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
These bits set the frequency division ratio (master clock) of the internal 1/N frequency divider for the PLL. The
data is 12 bits and the frequency division ratio can be set up to 4096. However, the internal logic circuits of this
TG operate at 1/2 clock, so the PLLP0 setting is invalid. When N is an odd number, use an external frequency
divider.
The actual frequency division ratio should be set as follows.
Number of clk for the horizontal period – 2 = Actual number of dots set
Examples of settings for major modes are shown below.
Note) When using an external frequency divider (serial data HR is L), these settings are not necessary. (They
can also be set to all L.)
1) Macintosh16 (832 × 624)
PLLP setting value = 1152 (horizontal period) – 2
→
1150 (LHLLLHHHHHHL: LSB)
PLLP
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
H
L
L
L
H
H
H
H
H
H
L
2) SVGA (800 × 600)
PLLP setting value = 1056 (horizontal period) – 2
→
1054 (LHLLLLLHHHHL: LSB)
PLLP
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
H
L
L
L
L
L
L
H
H
H
L
3) VGA (640 × 480)
PLLP setting value = 800 (horizontal period) – 2
→
798 (LLHHLLLHHHHL: LSB)
PLLP
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
L
H
H
L
L
L
H
H
H
H
L
4) PC98 (640 × 400)
PLLP setting value = 848 (horizontal period) – 2
→
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
L
H
H
L
H
L
L
H
H
H
L
→
1558 (LHHLLLLHLHHL: LSB)
PLLP
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
H
H
L
L
L
L
H
L
H
H
L
6) PAL double speed (762 × 572)
PLLP setting value = 1880 (horizontal period) – 2
∗ VGA60
846 (LLHHLHLLHHHL: LSB)
PLLP
5) NTSC double speed (640 × 480)
PLLP setting value = 1560 (horizontal period) – 2
∗ VESA SVGA60
→
1878 (LHHHLHLHLHHL: LSB)
PLLP
11
10
9
8
7
6
5
4
3
2
1
0
Setting data
L
H
H
H
L
H
L
H
L
H
H
L
– 13 –
CXD3500R
HP11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
These bits set the horizontal display start position. The minimum adjustment width is 1 dot, and adjustment of with
12 bits is possible using the front edge of HSYNC as the reference. The HP setting range is from 0 to (N – 1).
However, do not set HP to the number of frequency divisions N or higher, as the various pulses will not be
output.
The horizontal direction timing is interlinked using the falling edges of ENB1 and 2 as the reference. The
following pulses are interlinked according to the HP11 to 0 setting.
HST, HCK1, HCK2, ENB1, ENB2, PCG, PRG, CLP, BLK, VD, VCK transition point, FRP transition point,
XFRP transition point, BLK transition point and VD transition point
Thp
Image display period
HSYNC
HST
HDN
Thp: Timing from the front edge of HSYNC to the HST pulse
HSTP5 to 0: LLLLL, HDNPOL: H
Minimum Thp setting values for each mode
PLSSL2, 1, 0
Thp
L
L
L
72 clk
L
L
H
92 clk
L
H
L
118 clk
L
H
H
146 clk
H
L
L
178 clk
H
L
H
188 clk
H
H
L
204 clk
H
H
H
232 clk
∗ HSTP5, 4, 3, 2, 1, 0: All L
Note) The time from HST until image display starts differs for each panel and its display area switching mode.
In modes which apply a reset at the front edge of HSYNC (HR: L), the HDN pulse transition point is
delayed by several dots relative to HSYNC. In these modes, Thp in the table above indicates the value
using the HDN pulse transition point as the reference.
6 to 10 clk
HSYNC
HDN
Reference: HDN transition point
– 14 –
HDNPOL: H
CXD3500R
VP7, 6, 5, 4, 3, 2, 1, 0
These bits set the vertical display start position. The minimum adjustment width is 1H of the output signal, and
adjustment of up to 256H with 8 bits is possible using the front edge of VSYNC as the reference.
In interlace signal double-speed mode, the vertical display start position can be set within a width of 1H relative
to the double-speed converted signal.
a) Non-interlace
Minimum adjustment width
Tvp
VSYNC
HSYNC
VST
VCK
b) When using an interlace double-speed controller
ODD field
Tvp
VSYNC
HSYNC
Minimum adjustment width
VST
VCK
EVEN field
Tvp
VSYNC
HSYNC
VST
VCK
Minimum and maximum Tvp setting values
VP
7
6
5
4
3
2
1
0
Min.
L
L
L
L
L
L
L
L
Max.
H H H H H H H H
4H
259H
Note) The time from VST until image display starts differs for each panel.
Also see the data sheets of the used panels.
– 15 –
CXD3500R
VP
The vertical display start position setting VP sets the value used to decode the internal counter. This internal
counter is reset at the ENB1 and 2 pulse fall position when VSYNC is input, and counts up at each ENB1 and
2 pulse fall position thereafter.
Therefore, when VSYNC is delayed relative to HSYNC and serial data HP is all L or a similar value, or when
the HP11 to 0 setting is large and the ENB pulses fall near the end of the horizontal period, the vertical display
start position is offset by 1H.
VSYNC
HSYNC
ENB1, 2
The counter is reset at this timing.
ENB1, 2
The counter is reset at this timing.
When the HP11 to 0 setting is large.
– 16 –
CXD3500R
Horizontal direction pulses
The horizontal direction timing pulses for driving LCD panels are advanced and delayed interlinked with serial
data HP11 to 0. The reference at this time is the falling edge of the ENB1 and 2 pulses.
Except for during skip scan, the ENB1 and 2 pulse width is fixed by serial data PLSSL, and the pulse position
is determined by serial data HP11 to 0. (See the Timing Charts.) The horizontal direction pulse position for
other panels is generated by the internal counter that is reset at the ENB1 and 2 pulse fall position.
HSTW1, 0
These bits set the HST pulse width. Normally set HSTW1 and 0 to LL for 6-dot simultaneous sampling panels
(VGA, SVGA), and to HL for 12-dot simultaneous sampling panels (XGA).
HSTW1, 0
HST pulse width
L
L
12 clk
L
H
18 clk
H
L
24 clk
H
H
48 clk
HSTP5, 4
This sets the HST pulse rise position. The HST pulse rise position from the falling edge of the ENB1 and 2
pulses is as shown in the table below according to the PLSSL2, 1, 0 setting.
However, note that the HSTP5 setting is invalid when PLSSL2 to 0 (described hereafter) is set from LLL to
HLL.
Thst
ENB1, 2
HST
Thst rise position
PLSSL2, 1, 0
HSTP5, 4
L
L
L
H
H
L
H
H
L
L
L
70 clk
82 clk
70 clk
82 clk
L
L
H
90 clk
102 clk
90 clk
102 clk
L
H
L
116 clk
128 clk
116 clk
128 clk
L
H
H
144 clk
156 clk
144 clk
156 clk
H
L
L
176 clk
188 clk
176 clk
188 clk
H
L
H
186 clk
198 clk
210 clk
222 clk
H
H
L
202 clk
214 clk
226 clk
238 clk
H
H
H
230 clk
242 clk
254 clk
266 clk
Note) HST3, 2, 1, 0: LLLL
– 17 –
CXD3500R
HSTP3, 2, 1, 0
These bits adjust the HST pulse start phase relative to HCK in 1-dot units.
Set these bits as follows using HSTP5 to 0: LLLLLL (LSB) as the reference.
Serial setting HCKM: L (6-dot simultaneous sampling)
Reference
Reference
HST
HCK1
HSTP5 to 0: LLLLHH (LSB)
HSTP5 to 0: LLLLLL (LSB)
3 clk
Reference
Reference
HST
HCK1
HSTP5 to 0: LLLHHL (LSB)
11 clk
6 clk
Reference
HSTP5 to 0: LLHLHH (LSB)
to LLHHHH (LSB)
Same hereafter using this point as the reference.
HST
HCK1
HSTP5 to 0: LHLLLL (LSB)
Note) HCK2 is the reverse polarity of HCK1. The timings shown above are for RGT: H, HCKPOL: H and
HCKFX: L.
Serial setting HCKM: H (12-dot simultaneous sampling)
Reference
Reference
HST
HCK1
HSTP5 to 0: LLLLLL (LSB)
12 clk
HSTP5 to 0: LLLHHL (LSB)
6 clk
Reference
Reference
Same hereafter using this point as the reference.
HST
HCK1
11 clk
HSTP5 to 0: LLHLHH (LSB)
to LLHHHH (LSB)
HSTP5 to 0: LHLLLL (LSB)
Note) HCK2 is the reverse polarity of HCK1. The timings shown above are for RGT: H, HCKPOL: H and
HCKFX: L.
– 18 –
CXD3500R
PCGU2, 1, 0
These bits adjust the PCG pulse rise position in 2-dot units. (However, serial data PCG: H)
When serial data PCG is L, the PCGU2 to 0 setting is invalid and the PCG pulse rises at the same position as
the FRP pulse transition point regardless of this setting. (interlinked with FRPP3, 2, 1, 0)
PCGD4, 3, 2, 1, 0
These bits adjust the PCG pulse fall position in 2-dot units.
However, the PCGD4 setting is invalid when PLSSL2, 1, 0 is set from LLL to HLL.
The PCGU2, 1, 0 and PCGD4, 3, 2, 1, 0 setting ranges are shown in the table below.
Tpcd
Tpcu
ENB1, 2
PCG
PCG: H
Tpcu
PLSSL2, 1, 0
PCGU2, 1, 0
Tpcd
PCGD4∗, 3, 2, 1, 0
LLL
HHH
LLLLL
HHHHH
L
L
L
12 clk
28 clk
56 clk
86 clk
L
L
H
18 clk
32 clk
74 clk
104 clk
L
H
L
26 clk
40 clk
98 clk
128 clk
L
H
H
36 clk
50 clk
124 clk
154 clk
H
L
L
46 clk
60 clk
152 clk
182 clk
H
L
H
48 clk
62 clk
150 clk
212 clk
H
H
L
52 clk
66 clk
164 clk
226 clk
H
H
H
58 clk
72 clk
190 clk
252 clk
∗: The PCGD4 setting is invalid when PLSSL2, 1, 0 is set from LLL to HLL.
Adjust the PCG pulse width to match the specifications for each LCD panel with the PCGU2 to 0 and PCGD4
to 0 settings. See the data sheets of the used panel for the PCG pulse width.
– 19 –
CXD3500R
PRGD4, 3, 2, 1, 0
These bits adjust the PRG pulse fall position in 2-dot units.
However, the PRGD4 setting is invalid when PLSSL2, 1, 0 is set from LLL to HLL.
The PRG pulse rise position is the same as the FRP pulse transition point. (interlinked with FRPP3, 2, 1, 0)
The PRGD4, 3, 2, 1, 0 setting range is shown in the table below.
Tprd
ENB1, 2
PRG
FRP
Tpru setting range
PLSSL2, 1, 0
PCGD4∗, 3, 2, 1, 0
PCGD4∗, 3, 2, 1, 0
LLLLL
LHHHH
HLLLL
HHHHH
L
L
L
62 clk
92 clk
62 clk
92 clk
L
L
H
82 clk
112 clk
82 clk
112 clk
L
H
L
108 clk
138 clk
108 clk
138 clk
L
H
H
136 clk
166 clk
136 clk
166 clk
H
L
L
168 clk
198 clk
168 clk
198 clk
H
L
H
136 clk
166 clk
182 clk
212 clk
H
H
L
142 clk
172 clk
196 clk
226 clk
H
H
H
162 clk
192 clk
222 clk
252 clk
∗: The PRGD4 setting is invalid when PLSSL2, 1, 0 is set from LLL to HLL.
PCG
This bit selects the new and old PCG pulse timing.
When PCG is H, the PCGU2 to 0 setting shown on the previous page is selected. (new timing)
When PCG is L, the PCG pulse rise position is interlinked with the FRP pulse transition point. (old timing)
Set to match the timing specifications of the LCD panel.
Set PCG to H for SVGA panels that support two-step precharge, and to L for other panels.
FRP
PCG: H
PCG: L
– 20 –
CXD3500R
FRP1, 0
These bits are the data for switching the LCD AC conversion signal FRP pulse cycle. Normally set FRP1, 0 to
LL.
FRP0 can also be controlled externally. → See SLCNT.
1H
FRP1, 0: LL
(1F/1H inversion)
FRP1, 0: HL
(2F/1H inversion)
FRP1, 0: LH
(1F inversion)
FRP1, 0: HH
(2F inversion)
1F
FRPP3, 2, 1, 0
These bits adjust the FRP pulse transition point in 2-dot units.
The PRG pulse rise position is the same as the FRP pulse transition point, and is interlinked with FRPP3 to 0.
Tfrp
ENB1, 2
FRP
PCG
Tfrp setting range
PLSSL2, 1, 0
FRPP3, 2, 1, 0
LLLL
HHHH
L
L
L
16 clk
46 clk
L
L
H
24 clk
54 clk
L
H
L
36 clk
66 clk
L
H
H
52 clk
82 clk
H
L
L
68 clk
98 clk
H
L
H
58 clk
88 clk
H
H
L
62 clk
92 clk
H
H
H
72 clk
102 clk
– 21 –
CXD3500R
VSTFX, VSTPOL
These bits set the VST pulse polarity. When VSTFX is H, the polarity of the VST pulse is positive regardless of
other settings. Normally set VSTPOL to H. See the table below for details.
Panel
VSTFX
VSTPOL
DWN
XGA
H
—
—
L
L
L
L
L
H
L
H
L
L
H
H
VST pulse polarity
SVGA
∗ —: don't care
HCKFX, HCKPOL
These bits set the HCK1 and 2 pulse polarity. When HCKFX is H, the HCK1 and 2 pulse polarity is fixed
regardless of the right/left inversion control setting RGT. However, the polarity is inverted by HCKPOL.
See the table and figures below for details.
HCKFX
RGT
HCKPOL
HCK polarity
H
—
L
B
H
—
H
A
L
L
L
A
L
L
H
B
L
H
L
B
L
H
H
A
∗ —: don't care
HST
HST
HCK1
HCK1
HCK2
HCK2
A in the table above
B in the table above
HSTW1, 0: LL, HSTP5 to 0: LLLLHH, HCKM: L
HCKM
This bit sets the HCK1 and 2 pulse width. When HCKM is L, the HCK1 and 2 pulse for 6-dot simultaneous
sampling is output. When HCKM is H, the HCK1 and 2 pulse for 12-dot simultaneous sampling is output. Set
the width to match the panel specifications.
SVGA panel → 6-dot simultaneous sampling → HCKM: L
XGA panel → 12-dot simultaneous sampling → HCKM: H
– 22 –
CXD3500R
INV, SHP3, 2, 1, 0
This IC does not have a sample-and-hold pulse output, but instead allows control of the sample-and-hold
position of the CXA2112R sample-and-hold driver and control of master clock inversion by setting the
CXD3500R serial data and connecting the control pins.
INV set by serial data is output as is from the INV (Pin 49). Connect this INV to INV_CNT (Pin 52) of the
CXA2112R to allow CXA2112R dot clock phase inversion control from the TG.
In addition, data set with SHP3, 2, 1, 0 is reflected to the SHP1A, SHP1B, SHP2A and SHP2B outputs (Pins
45, 46, 47 and 48) as shown in the table below.
SHP3, 2, 1, 0
SHP2A, 2B, 1A, 1B
SHP3, 2, 1, 0
SHP2A, 2B, 1A, 1B
L
L
L
L
L
L
L
L
H
L
L
L
Z
H
L
L
L
L
L
H
L
L
Z
L
H
L
L
H
Z
H
Z
L
L
L
H
L
L
L
Z
H
H
L
H
L
Z
H
Z
H
L
L
H
H
L
L
H
H
H
L
H
H
Z
H
H
H
L
H
L
L
Z
L
L
L
H
H
L
L
H
H
L
L
L
H
L
H
Z
L
Z
L
H
H
L
H
H
H
Z
L
L
H
H
L
Z
L
Z
H
H
H
H
L
H
H
Z
H
L
H
H
H
Z
L
H
H
H
H
H
H
H
H
H
H
∗ Z: High Impedance State
The sample-and-hold position of the CXA2112R can be set by connecting SHP1A, 1B, 2A and 2B as shown in
the figure below. See the CXA2112R data sheet for further details.
CXA2112R
,
,
CXD3500R
SHP1A (Pin 45)
(SHP2A (Pin 47))
45
(47)
SHP1B (Pin 46)
(SHP2B (Pin 48))
46
(48)
R
1
(2)
POS_CNT1 (Pin 1)
(POS_CNT2 (Pin 2))
Note) The value of resistor R in the figure above differs according to the number of connected CXA2112R.
– 23 –
CXD3500R
VPOL, HPOL
These bits are the data for switching the input vertical and horizontal sync signal polarity. Since signal
processing is performed with the sync signal polarity fixed to positive by the internal logic, the data must be
switched according to the polarity of the input sync signal.
Therefore, individually set VPOL and HPOL to H when the polarity of the input sync signal is positive, and to L
when the polarity is negative.
VSYNC may not be detected if the opposite polarity is set, so be sure to set the correct polarity.
HDNPOL
HDN (H return pulse) is the 1/N frequency divider output pulse for the PLL IC. The width of the HDN pulse is
calculated according to the setting of PLLP11 to 1 for the value of frequency division N, and that value is N/2.
HDNPOL is the data for setting the output polarity of this HDN pulse, and the relationship between its setting
and the pulse polarity is shown in the figure below.
HPOL: L
N clk
HSYNC
HDNPOL: H
HDN
HDNPOL: L
N/2 clk
CLPPOL
This bit sets the output polarity of pedestal clamp pulse CLP. When CLPPOL is H, the polarity of the CLP
pulse is positive, and when CLPPOL is L, the polarity of the CLP pulse is negative.
CLPW, CLPP
These bits set the CLP pulse output width and output phase. Both the width and the phase can be set to two
positions using 1 bit.
The CLP pulse center position is fixed regardless of the CLPW setting.
CLP pulse center
Tclp
ENB1, 2
CLP
Wclp
PLSSL2, 1, 0
Wclp
Tclp
CLPW: L
CLPW: H
CLPP: L
CLPP: H
L
L
L
32 clk
48 clk
48 clk
32 clk
L
L
H
40 clk
60 clk
60 clk
40 clk
L
H
L
50 clk
74 clk
77 clk
53 clk
L
H
H
64 clk
96 clk
100 clk
68 clk
H
L
L
80 clk
120 clk
124 clk
84 clk
H
L
H
80 clk
120 clk
124 clk
84 clk
H
H
L
86 clk
130 clk
133 clk
89 clk
H
H
H
96 clk
144 clk
148 clk
100 clk
– 24 –
CXD3500R
SLCNT
Setting via the external control pins can be selected by setting SLCNT to H.
The settings that can be made using the external pins are the right/left inversion discrimination settings RGT
and XRGT, and the setting for switching the LCD panel AC conversion signal FRP and XFRP pulse cycle.
SLCNT: L
SLCNT: H
Address: 0C
Data 4
RGT
External pin RGTCNT (Pin 10)
Address: 07
Data 4
FRP0
External pin FRPCNT (Pin 11)
SLFLD
This bit selects FLD (Pin 6) IN/OUT pin input and output. The CXD3500R performs field identification
internally. When SLFLD is L, the internally generated FLD pulse is selected and used for the internal circuit
logic.
The external FLD pulse is selected by setting SLFLD to H.
For normal data type signals, the field identification pulse FLD is inverted every vertical period. The polarity at
this time is not specified.
Note) When inputting the FLD pulse from an external source, make sure that the FLD pulse transition point is
2H or more before the rising edge of VST.
SLRS
This bit switches the HSYNC edge-based 1/2 frequency divider reset on/off when generating the 1/2 clock
using the internal frequency divider.
When SLRS is H, reset is not applied; when SLRS is low, reset is applied every 1H.
There is no need to set this bit when inputting a 1/2 clock from an external source.
CKPOL
This bit performs the input clock polarity switching settings. CLK1 and 2 pass through this clock polarity
switching setting immediately after input. When CKPOL is L, the internal circuits operate according to the input
clock and the reverse polarity clock.
When setup and hold cannot be maintained because the phases of the HSYNC input and the master clock
input to the TG are offset due to the set system, set CKPOL to a value that provides sufficient margin.
SLCK
This bit switches the clock between the internal 1/2 frequency division and external 1/2 clock input.
When inputting an external 1/1 clock, set SLCK to H to 1/2 frequency divide the clock internally. When
inputting an external 1/2 clock, set SLCK to L.
When the master clock is 55MHz or more, input an external 1/2 frequency-divided clock and set SLCK to L.
Note) Pulses with positions that can be set in 1-dot units (HST, HCK1, HCK2, ENB1, ENB2, PCG, PRG, CLP,
BLK, VCK transition point, FRP transition point and XFRP transition point) use the internally inverted
clock, so when inputting a 1/2 clock using an external frequency divider, these pulses may be offset if
the 1/2 clock duty deviates from 50%. Therefore, set the duty of the input 1/2 clock as close to 50% as
possible.
– 25 –
CXD3500R
PLSSL2, 1, 0
These bits set the output timing mode. Switch the setting according to the dot clock frequency and blanking
width of the input signal. When using a Sony SVGA panel, select one of the 5 modes from PLSSL2 to 0: LLL to
HLL. When using a XGA panel, select one of the 3 modes from PLSSL2 to 0: HLH to HHH. The setting
reference is shown in the table below.
PLSSL2, 1, 0
LCD panel
Setting reference
L
L
L
Dot clock: 20 to 30MHz
L
L
H
Dot clock: 25 to 40MHz
L
H
L
L
H
H
Dot clock: 45 to 63MHz
H
L
L
Dot clock: 55 to 75MHz
H
L
H
Dot clock: 65 to 80MHz
H
H
L
H
H
H
SVGA
XGA
Dot clock: 35 to 50MHz
Dot clock: 75 to 85MHz
Dot clock: 80 to 96MHz
Note) When the horizontal blanking width is sufficient, use the mode one higher than the setting that results in
the maximum value for that mode.
Example) SVGA 60Hz: Dot clock 40MHz
PLSSL2, 1, 0 can be set to LLH, but should be set to LHL instead in order to ensure
sufficient margin.
BLKON, BLKPOL
These bits are switch the black frame display pulse BLK on/off and set the BLK polarity, respectively. When
BLKON is H, the BLK pulse is output. In addition, the polarity of the BLK pulse is positive when BLKPOL is H,
and negative when BLKPOL is L.
Set BLKPOL to H for Sony SVGA panels, and to L for XGA panels.
VST
BLKON: H, BLKPOL: H
BLK
BLKON: L, BLKPOL: H
BLK
BLKON: H, BLKPOL: L
BLK
BLKON: L, BLKPOL: L
BLK
– 26 –
CXD3500R
FMBK
This bit sets the FRP-related skip scan timing. When this bit is set, the FRP pulse transition point phase is
offset by 1H relative to the VCK pulse. In this case, the skip scan position does not change when FMBK is
either H or L.
See the figure below.
VST
VCK
FRP
HST/PCG
ENB
FMBK: H (MAIN)
FMBK: L (SUB)
Note) Precautions when using skip scan
When configuring a system by combining the Sony CXA2112R sample-and-hold driver and this TG,
input the ENB2 pulse to Pin 12 (ENB) of the CXA2112R instead of the ENB1 pulse that is connected to
the panel.
If the ENB1 pulse is input to the CXA2112R and FMBK is L (SUB), the CXA2112R internal sample-andhold circuit may not be reset, causing the characteristics of the CXA2112R to deteriorate.
When not using skip scan, either ENB1 or 2 may be input to Pin 12 (ENB) of the CXA2112R.
MBKA4, 3, 2, 1, 0 MBKB3, 2, 1, 0 MBKZ3, 2, 1, 0
These bits set the skip scan display related settings. When not performing skip scan display, set all bits to L.
See the setting examples on the next page.
MBKA4, 3, 2, 1, 0
These bits set the skip scan main cycle. The setting range is from 2 to 31 cycles.
When MBKA4 to 0 is LLLLL or LLLLH, skip scan is not performed.
MBKB3, 2, 1, 0
These bits set the sub skip scan position. The setting range is from 2 to 15. See the figures on the next page.
When MBKB3 to 0 is LLLL or LLLH, or when MBKB > MBKA, sub skip scan is not performed.
– 27 –
CXD3500R
Example) MBKA4, 3, 2, 1, 0: LHLHL (10), MBKB3, 2, 1, 0: LHLH (5)
Sub skip scan position specified by MBKB
, ,
,,
VST
VCK
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17
FRP
ENB
HST/PCG
Cycle set by MBKA
Note) Odd skip scan continuously skips only pulses of the same polarity. Depending on the system, this may
cause DC to be applied to the panel. Therefore, set skip scan so that pulses of the same polarity are
not continuously skipped.
This can be accomplished during odd skip scan by doubling the setting to make it an even number, and
then setting skip scan for the odd lines.
Example) 1/9 skip scan → MBKA4 to 0: LHLLH, MBKB3 to 0: LLLL X
VCK
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
FRP
Same polarity skip scan continues.
To set 2/18 skip scan and odd line skip scan → MBKA4 to 0: HLLHL, MBKB3 to 0: HLLH O
VCK
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 1
FRP
– 28 –
2
3
4
5
6
7
8
9
CXD3500R
MBKZ3, 2, 1, 0
These bits change the skip scan timing for each V cycle.
These bits determine the skip scan timing for the next 1V period using the skip scan timing when the field
identification pulse (FLD) is L as the reference. The optimal skip scan position can be set by setting a skip scan
interval of 0 to 14H.
(When MBKZ3 to 0 is LLLL or HHHH, the same line is skipped each field.)
Example) MBKZ3, 2, 1, 0: LLHH (3)
,, , ,
Skip scan reference position
VST
VCK
FRP
ENB
HST/PCG
FLD
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17
MBKA: 10, MBKB: 5, FLD: L
VST
VCK
FRP
ENB
HST/PCG
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17
FLD
MBKA: 10, MBKB: 5, FLD: H
Note) Observe the following points when setting MBKZ3 to 0.
1. When MBKB is 0 or 1, set the MBKZ value to MBKA or less.
2. In all other cases, set the MBKZ value to MBKB or less.
– 29 –
CXD3500R
VGAV
This bit switches the supported input signal between AV interlaced signals or data signals.
Set VGAV to H for data signal input, and to L for AV signal input.
When VGAV is L, the FLD pulse is generated by phase comparison using the value calculated from the serial
setting PLLP11 to 0 value. Therefore, when using the FLD pulse generated by this TG, be sure to set PLLP11
to 0 regardless of the HR setting below (offset due to skip scan fields, etc.).
HR
This bit controls the input horizontal sync signal (HSYNC)-based PLL counter reset operation, and supports
external clock input. (Reset operation is enabled when HR is L.)
Resetting the internal PLL counter at the front edge of the input HSYNC generates an output pulse
synchronized to HSYNC. When HR is L, there is no need to set PLLP11 to 0.
This function should be used with systems which do not use a PLL.
In addition, the master clock is loaded and reset is applied at the front edge of HSYNC in this mode, so be sure
to input the input signal in a manner that ensures sufficient setup and hold times.
Input horizontal sync signal
(HSYNC)
Reset the internal PLL counter at these timings.
Note) Since H-POSITION specifications described in this data sheet are not satisfied due to the configuration
of the internal logic, the picture center must be adjusted each time.
DWN, RGT
These bits set the up/down and/or right/left inversion discrimination data. These settings allow display to be
performed in accordance with each display system.
The serial setting DWN is reflected to the DWN (Pin 37). In addition, RGT is valid only when SLCNT is L. At
this time the setting value is reflected to the RGT (Pin 25).
See page 22 of this data sheet for the relationship between the DWN and VST pulses and the RGT and HCK
pulses.
– 30 –
CXD3500R
DSP
This bit performs the double-speed display mode switching settings. Operation shifts to double-speed display
mode when DSP is L. However, DSP should be set H for other modes.
This function is only supported when the built-in double-speed controller is used. This controller is designed to
use the µPD485505 (NEC/high-speed line buffer) as the system line memory IC, and generates the doublespeed processing pulses RSTW (reset write), WCK (write clock), RSTR (reset read) and RCK (read clock).
The operation of the µPD485505 is as follows. Write operation is started at the RSTW timing, and this memory
information is read at double speed at the RSTR timing which is delayed by 1/2H from the RSTW timing.
Labeling the master clock frequency (MCK) as f, the write and read clock frequencies at this time are
expressed as f/2 and f, respectively.
However, the master clock should have a frequency of 36MHz or less when using this mode.
See the data sheet for a detailed description of the µPD485505 operation.
Note) This function cannot be used in modes which input the 1/2 clock from an external source.
The RSTR position is calculated from the serial data PLLP11 to 0 setting value. Therefore, set serial
data PLLP11 to 0 to the correct value when using this mode, regardless of the serial data HR setting.
ADC
LINE Mem.
µPD485505
R, G, B IN
RSTW
WCK
HSYNC
VSYNC
DAC
RSTR
RCK
CXD3500R
MCK: f
Double-speed display system diagram
HSYNC
RSTW
WCK
f/2
RSTR
f
RCK
HSYNC
RSTW
RSTR
Double-speed display timing
– 31 –
CXD3500R
PO/MODE3, 2, 1
These bits set the Parallel Out output. The values set by PO/MODE3, 2, 1 are output as is to MODE3 (Pin 20),
MODE2 (Pin 21) and MODE1 (Pin 22).
These outputs are normally connected to the pins for the LCD panel display area switching, so they should be
used to set the panel display area, etc. via the serial settings to the TG.
Examples) SVGA panels
LCX016, LCX026, LCX031: Input the MODE1, 2 and 3 outputs to the panel inputs of the same name.
LCX021: Input the MODE1 output to the MODE panel input pin.
XGA panels
LCX017, LCX023, LCX029: Input HB to MODE1 and VB to MODE2.
SPON
This bit switches on/off the special setting mode. The special setting mode is valid when this bit is H.
When SPON is L, the data at addresses 0E and 0F (HEX) is L regardless of the settings.
When SPON is L, the XGBK, HDON, HAXON and VAXON settings are all invalid, and the operation is in the
mode where these settings are all L.
XGBK
This bit sets the timing output for black frame display on Sony XGA panels. When using the XGA panel black
frame display mode, set XGBK to H. The output pulse timing is shown in the figure below. When not using
black frame display, set XGBK to L.
When using SVGA panels, BLKON: H, BLKPOL: H, SPON: L
BLK
PCG
PRG
When using XGA panels, BLKON: H, BLKPOL: L, SPON: H, XGBK: H
BLK
PCG
PRG
– 32 –
CXD3500R
HDON
This bit performs the HD (Pin 31) pulse output switching settings.
When HDON is L, the horizontal direction reference pulse is output. (See the Timing Charts.) When HDON is
H, HD outputs a programmable pulse that is interlinked with HP11 to 0. The fall position of this pulse can be
set by serial data HAXD9 to 1, and the rise position can be set by serial data HAXU9 to 1.
A pulse of arbitrary position, width and polarity can be output at this position up to 700 clk from the ENB1 and 2
pulse fall position (reference).
Example) HAXD9 to 1: LLHHLLLLL, HAXU9 to 1: LLLHLLLLL
Arbitrary pulse output possible within the range of 700 clk
ENB1, 2
64 clk
HD
192 clk
SPON: H, HDON: H
HAXON
This bit performs the XHS (Pin 51) pulse output switching settings.
When HAXON is L, the normal XHS pulse is output. (See the Timing Charts.) When HAXON is H, a pulse
synchronized to HSYNC can be output at an arbitrary position (1-dot units) and width (2-dot units).
Set the pulse fall position in HAXD11 to 0, and the pulse rise position in HAXU11 to 0. However, the HAXU0
setting is invalid. When HAXD0 is H, the XHS pulse rise position also shifts backwards by 1 dot.
The setting range is from 0 to (N – 1), but do not set HAXD11 to 1 and HAXU11 to 1 to the same value.
VAXON
This bit performs the XVS (Pin 50) pulse output switching settings.
When VAXON is L, the normal XVS pulse is output. (See the Timing Charts.) When VAXON is H, a pulse
synchronized to VSYNC can be output at an arbitrary position (1H units) and width (1H units).
Set the pulse fall position in VAXD11 to 0, and the pulse rise position in VAXU11 to 0. The XVS pulse
transition point at this time is the ENB1 and 2 pulse fall position.
The reference position is the front edge of the ENB1 and 2 pulse that is 1H from the front edge of VSYNC.
Labeling this position as 0, the pulse can be set to an arbitrary position.
VSYNC
ENB
XVS
Reference
VAXON: H, VAXD11 to 0: LLLLLLLLLHHH, VAXU11 to 0: LLLLLLLLLLLL
– 33 –
CXD3500R
Scan converter pulse settings
Of the serial data below, set SLLAP to L when not using a scan converter that requires the control pulses
output from this TG. In this case, other settings are not required.
SLLAP
SLLAP is used when converting the number of pixels using the scan converter, when the clock differs between
input signals and output signals, etc.
When SLLAP is L, the normal operating mode is used.
When SLLAP is H, only the serial interface, PLL counter and phase comparator operate by the CKI1 or CKI2
synchronized to the input signal, and other internal blocks operate by CKI3.
LPCK
This setting is valid only when serial data SLLAP is H.
When LPCK is L, the CKI1 or CKI2 synchronized to the input HSYNC is selected; when LPCK is H, the
external asynchronous clock CKI3 is selected, and an output pulse that is asynchronous with the input HSYNC
is output according to the number of frequency divisions set by serial data ORP11 to 0.
SLCKL
This setting is valid only when serial data SLLAP is H.
This bit switches the clock between the internally 1/2 frequency-divided clock and the external 1/2 clock input.
When inputting an external 1/1 clock, set SLCKL to H to 1/2 frequency divide the clock internally. When
inputting an external 1/2 clock, set SLCKL to L.
ORRS4, 3, 2, 1, 0
This setting is valid only when serial data SLLAP is H.
When serial data SLLAP is L, an arbitrary ORACT pulse can be output synchronized to the input HSYNC.
When SLLAP is H, this pulse is generated from a dedicated counter (loop counter similar to the PLL counter,
and referred to as AUX. PLL COUNTER = OR counter in the Block Diagram) that operates by CKI3, an
independent clock that is asynchronous to the input signal. In addition, pulses for LCD panel driving pulses are
also generated at this time based on the output of this counter, enabling the LCD panel to be driven with a
horizontal cycle and clock that differ from the input signal.
The above OR counter applies a reset once every vertical period and at a specified input HSYNC cycle in
order to synchronize to the input HSYNC. ORRS4 to 0 set the number of H cycles at which this HSYNC-based
reset is performed. Reset is not applied at the H cycle when ORRS4 to 0 (LSB) is LLLLL, and applied at the
set number of cycles for other settings. Reset can be applied from 1H to a maximum of 31H cycles.
4H
V-SYNC
IRACT
ORACT
Timing at which reset is applied to OR counter
SLLAP: H, ORRS4 to 0: LLHLL, VRSP3 to 0: LLLH
– 34 –
CXD3500R
IRD11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, IRU11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
IRACT (Pin 52) is an output pulse synchronized to the input HSYNC that can be output at an arbitrary position
(1-dot units) and width (2-dot units).
Set the pulse fall position in IRD11 to 0, and the pulse rise position in IRU11 to 0. However, the IRU0 setting is
invalid. When IRD0 is H, the IRACT pulse rise position also shifts backwards by 1 dot.
The setting range is from 0 to (N – 1), but do not set IRD11 to 1 and IRU11 to 1 to the same value.
H-SYNC
128 clk
IRACT
IRD11 to 0: LLLLLLLLLLLL, IRU11 to 0: LLLLHLLLLLLL, HR: H
When IRD0 is H, the pulse is shifted backwards by one dot without changing the pulse width.
H-SYNC
128 clk
IRACT
1 dot
IRD11 to 0: LLLLLLLLLLLH, IRU11 to 0: LLLLHLLLLLLL, HR: H
VRSP3, 2, 1, 0
The above-mentioned OR counter applies a reset once every vertical period and at a specified input HSYNC
cycle. VRSP3, 2, 1, 0 sets the number of H after VSYNC input at which this one reset every vertical period is
applied. Reset is not applied when VRSP3 to 0 (LSB) is LLLL or HHHH, and applied at the set position from
1H to a maximum of 14H after VSYNC for other settings.
V-SYNC
IRACT
ORACT
SLLAP: H, VRSP3 to 0: LLLH
V-SYNC
IRACT
ORACT
SLLAP: H, VRSP3 to 0: LHLH
Timing at which reset is applied to OR counter
– 35 –
CXD3500R
ORP11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
This setting is valid only when serial data SLLAP is H.
ORP sets the number of frequency divisions for the above-mentioned OR counter. Like PLLP11 to 0, ORP is
12-bit data and the number of frequency divisions can be set in 2-dot units up to 4096. Set the actual
frequency division ratio M as follows.
M – 2 = Actual number of clk set
However, the ORP0 setting is invalid.
The number of frequency divisions set by ORP becomes the actual frequency division value of the horizontal
direction timing pulses. Each pulse is asynchronous to the input HSYNC and output in sync with the OR
counter.
ORD11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, ORU11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
When serial data SLLAP is H, the ORACT (Pin 53) pulse is output synchronized to the OR counter that
operates by the CKI3 clock that is asynchronous to the input HSYNC. This pulse can be output at an arbitrary
position (1-dot units) and width (2-dot units).
Set the pulse fall position in ORD11 to 0, and the pulse rise position in ORU11 to 0. However, the ORU0
setting is invalid. When IRD0 is H, the ORACT pulse rise position also shifts backwards by 1 dot.
The setting range is from 0 to (M – 1), but do not set ORD11 to 1 and ORU11 to 1 to the same value.
When serial data SLLAP is L, ORACT outputs the same pulse as the IRACT pulse synchronized to the input
HSYNC according to the serial data ORU11 to 0 and ORD11 to 0 settings. The IRACT and ORACT pulses can
be set independently.
SLLAP: H (asynchronous to HSYNC)
HSYNC
IRACT
ORACT
SLLAP: L (synchronous to HSYNC)
HSYNC
IRACT
ORACT
IRD11 to 0: LLLLLLLLLLLL, IRU11 to 0: LLLLHLLLLLLL
ORD11 to 0: LLLLLLLLLLLL, ORU11 to 0: LLLLHLLLLLLL
– 36 –
CXD3500R
Auxiliary pulse settings
HAXD11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, HAXU11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
These settings are valid only when serial data SPON and HDON are H, or when SPON and HAXON are H.
(See page 33.)
These bits are the setting data for the programmable pulses. When the above settings are made, the former
switches the HD (Pin 31) output from the normal horizontal direction reference pulse to programmable pulse
output, the latter switches the XHS (Pin 51) output to programmable pulse output, and this setting data is
reflected.
The HD pulse is output synchronized to serial data HP11 to 0. In addition, the XHS pulse is synchronized to
the internal PLL counter, and can be output at an arbitrary position within one horizontal period.
This setting is the same for both HDON and HAXON, so when both HDON and HAXON are H, the HD pulse
and the XHS pulse cannot be adjusted independently.
VAXD11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, VAXU11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
These settings are valid only when serial data SPON and VAXON are H.
These bits are the setting data for the programmable pulses. When the above settings are made, the XVS (Pin
50) output switches to programmable pulse output, and this setting data is reflected.
The XVS pulse is synchronized to the internal vertical counter, and can be output at an arbitrary position within
one vertical period. (See page 33.)
– 37 –
CXD3500R
Preset settings during power on
Set Pin 19 (XCLR, system clear) to L during power on to reset the system. At this time the serial data is set to
the preset setting status. Set XCLR to H level and then make all the necessary settings.
The preset setting values are shown in the table below.
Address
Data
D15 D14 D13 D12 D11 D10 D9 D8
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
L
H
L
L
L
L
L
L
0
0
0
0
0
0
0
1
H
H
H
—
L
L
L
L
0
0
0
0
0
0
1
0
L
H
L
L
L
H
H
L
0
0
0
0
0
0
1
1
L
L
L
H
L
H
L
H
0
0
0
0
0
1
0
0
L
L
L
L
L
L
H
H
0
0
0
0
0
1
0
1
H
L
L
L
L
H
L
L
0
0
0
0
0
1
1
0
—
—
—
L
L
H
L
L
0
0
0
0
0
1
1
1
L
H
L
L
H
L
L
L
0
0
0
0
1
0
0
0
L
L
L
L
L
L
L
L
0
0
0
0
1
0
0
1
H
L
L
L
L
H
L
L
0
0
0
0
1
0
1
0
L
L
L
H
H
L
H
L
0
0
0
0
1
0
1
1
L
H
L
L
L
L
L
L
0
0
0
0
1
1
0
0
L
L
L
L
L
L
L
L
0
0
0
0
1
1
0
1
H
L
L
H
H
H
L
L
0
0
0
0
1
1
1
0
L
L
L
L
L
L
L
L
0
0
0
0
1
1
1
1
—
—
—
—
—
—
L
L
0
0
0
1
0
0
0
0
L
L
H
L
L
L
L
L
0
0
0
1
0
0
0
1
L
L
L
L
L
L
L
L
0
0
0
1
0
0
1
0
L
L
L
L
L
L
L
L
0
0
0
1
0
0
1
1
H
L
L
L
L
L
L
—
0
0
0
1
0
1
0
0
L
L
L
L
L
H
L
L
0
0
0
1
0
1
0
1
L
L
L
L
H
H
H
—
0
0
0
1
0
1
1
0
L
L
L
L
L
L
L
L
0
0
0
1
0
1
1
1
L
L
L
L
L
L
L
L
0
0
0
1
1
0
0
0
H
L
L
L
L
L
L
—
0
0
0
1
1
0
0
1
L
L
L
L
L
L
L
L
0
0
0
1
1
0
1
0
L
L
L
L
L
L
L
L
0
0
0
1
1
0
1
1
H
L
L
L
L
L
L
—
0
0
0
1
1
1
0
0
L
L
L
L
L
L
L
L
0
0
0
1
1
1
0
1
L
L
L
L
L
L
L
L
0
0
0
1
1
1
1
0
H
L
L
L
L
L
L
L
—: Setting invalid
– 38 –
CXD3500R
XHS and XVS pulse output timing
XHS pulses
XHS pulses are output with negative polarity in 96-clock widths 34 clocks after the fall of the ORACT pulse
when serial data HAXON is L. Therefore, in order to output XHS pulses correctly, set serial data ORD11 to 0
and ORU11 to 0, respectively. The preset timing is shown in the figure below.
In addition, programmable pulses are output when serial data HAXON is H.
HSYNC
128 clk
ORACT
96 clk
XHS
34 clk
ORD11 to 0: LLLLLLLLLLLL, ORU11 to 0: LLLLHLLLLLLL
XVS pulses
XVS pulses are output with the VSYNC pulse that is latched by the XHS pulse when serial data VAXON is L.
In addition, like XHS, programmable pulses are output when serial data VAXON is H.
VSYNC
HSYNC
2 clk
XHS
XHS
XVS
XVS
– 39 –
– 40 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
470
480
1
10
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
460
PLSSL2/1/0: L/L/L DWN: H VP: LLLHHHHL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/H/L
VGA (IBM: fv 59.94Hz) 640 × 480
20
30
40
45
CXD3500R
– 41 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
802
812
16 clk
822
0
10
20
30
40
96 clk
50
70
128 clk
128 clk
120 clk
60
96 clk
62 clk
62 clk
80
42 clk
90
32 clk
38 clk
100
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
792
110
48 clk
120
PLSSL2/1/0: L/L/L PLLP: LLHHLLLHHHHL (LSB) HP: LLLLLLHHLLHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/H/L (SVGA panel, VGA mode)
VGA (IBM: fv 59.94Hz) 640 × 480
130
140
150
160
170
180
Loop Counter: 800 clk
MCK f: 25.18MHz (39.72ns)
CXD3500R
– 42 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
470
480
1
10
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
460
20
PLSSL2/1/0: L/L/H DWN: H VP: LLLHHLHL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/H/L
VGA (VESA72: fv 72.809Hz) 640 × 480
30
40
49
CXD3500R
– 43 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1850
1860
24 clk
1870
0
10
40 clk
20
30
40
50
70
128 clk
128 clk
120 clk
60
96 clk
80
74 clk
110
50 clk
120
40 clk
54 clk
128 clk
100
74 clk
90
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1840
PLSSL2/1/0: L/L/H PLLP: LLHHLLHHHHHL (LSB) HP: LLLLLLHHLHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/H/L (SVGA panel, VGA mode)
VGA (VESA72: fv 72.809Hz) 640 × 480
130
140
150
160
170
Loop Counter: 832 clk
MCK f: 31.50MHz (31.74ns)
179
CXD3500R
– 44 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
580
590
600
1
10
20
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
571
PLSSL2/1/0: L/H/L DWN: H VP: LLLHLHHL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/L/L
SVGA (VESA60: fv 60.32Hz) 800 × 600
30
40
50
53
CXD3500R
– 45 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
926
936
946
956
966
976
986
996
1006
1016
1026
40 clk
1036
1046
0
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
916
10
34 clk
20
PLSSL2/1/0: L/H/L PLLP: LHLLLLLHHHHL (LSB) HP: LLLLLHLHLLLL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: L HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/L/L (SVGA panel, SVGA mode)
SVGA (VESA60: fv 60.32Hz) 800 × 600
40
128 clk
128 clk
120 clk
128 clk
30
50
96 clk
60
70
79
Loop Counter: 1056 clk
MCK f: 40.00MHz (25.00ns)
CXD3500R
– 46 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
90
100
110
120
92 clk
92 clk
130
140
88 clk
170
64 clk
160
50 clk
66 clk
150
180
190
200
210
220
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
80
230
240
PLSSL2/1/0: L/H/L PLLP: LHLLLLLHHHHL (LSB) HP: LLLLLHLHLLLL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: L HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/L/L (SVGA panel, SVGA mode)
SVGA (VESA60: fv 60.32Hz) 800 × 600
250
260
270
280
290
Loop Counter: 1056 clk
MCK f: 40.00MHz (25.00ns)
299
CXD3500R
– 47 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
600
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
588
1
PLSSL2/1/0: L/H/H DWN: H VP: LLLHHLLL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/L/L
SVGA (VESA72: fv 72.188Hz) 800 × 600
10
20
31
CXD3500R
– 48 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
910
920
930
940
950
960
970
980
990
1000
1020
56 clk
1010
1030
0
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
900
10
34 clk
20
PLSSL2/1/0: L/H/H PLLP: LHLLLLLLHHHL (LSB) HP: LLLLLLLHHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHL (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: L HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/L/L (SVGA panel, SVGA mode)
SVGA (VESA72: fv 72.188Hz) 800 × 600
40
128 clk
128 clk
120 clk
120 clk
30
50
96 clk
60
70
79
Loop Counter: 1040 clk
MCK f: 50.00MHz (20.00ns)
CXD3500R
– 49 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
90
100
120
32 clk
84 clk
120 clk
120 clk
110
76 clk
130
140
64 clk
150
160
170
180
190
200
210
220
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
80
230
240
PLSSL2/1/0: L/H/H PLLP: LHLLLLLLHHHL (LSB) HP: LLLLLLLHHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHL (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: L HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: H/L/L (SVGA panel, SVGA mode)
SVGA (VESA72: fv 72.188Hz) 800 × 600
250
260
270
280
290
299
Loop Counter: 1040 clk
MCK f: 50.00MHz (20.00ns)
CXD3500R
– 50 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
600
610
620
624
1
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
596
10
PLSSL2/1/0: H/L/L DWN: H VP: LLHLLHLH (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/L/L
Macintosh16 (fv 74.55Hz) 832 × 624
20
30
38
CXD3500R
– 51 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1032
1042
1052
1062
1072
1082
1092
1102
1112
1122
1142
32 clk
1132
0
10
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1022
34 clk
20
64 clk
30
PLSSL2/1/0: H/L/L PLLP: LHLLLHHHHHHL (LSB) HP: LLLLLHLHHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/L/L (Mac16 panel, Mac16 mode)
Macintosh16 (fv 74.55Hz) 832 × 624
50
120 clk
40
96 clk
128 clk
128 clk
60
70
80
89
Loop Counter: 1152 clk
MCK f: 57.28MHz (17.46ns)
CXD3500R
– 52 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
100
110
120
130
140
150
170
144 clk
144 clk
160
190
224 clk
180
100 clk
200
210
230
80 clk
92 clk
220
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
90
240
250
PLSSL2/1/0: H/L/L PLLP: LHLLLHHHHHHL (LSB) HP: LLLLLHLHHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/L/L (Mac16 panel, Mac16 mode)
Macintosh16 (fv 74.55Hz) 832 × 624
260
270
280
290
300
309
Loop Counter: 1152 clk
MCK f: 57.28MHz (17.46ns)
CXD3500R
– 53 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
750
760
768
1
10
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
742
PLSSL2/1/0: H/L/H DWN: H VP: LLLHHHHL (LSB) FRP1/0: L/L VSTFX: H VSTPOL: H VPOL: L VGAV: H BLKON: L BLKPOL: L
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/H/H
XGA (VESA60: fv 60.00Hz) 1024 × 768
20
30
40
45
CXD3500R
– 54 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1304
1314
1324
24 clk
1334
0
10
34 clk
20
30
40
50
136 clk
70
128 clk
128 clk
120 clk
60
96 clk
80
90
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1294
100
110
PLSSL2/1/0: H/L/H PLLP: LHLHLLHHHHHL (LSB) HP: LLLLLHLHLLLL (LSB) HSTW1/0: H/L HSTP: LLLHHL (LSB) PCGU: HLL (LSB)
PCGD: LHHLH (LSB) PCG: L PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, XGA mode)
XGA (VESA60: fv 60.00Hz) 1024 × 768
120
130
140
150
160
169
Loop Counter: 1344 clk
MCK f: 65.00MHz (15.38ns)
CXD3500R
– 55 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
180
200
80 clk
78 clk
110 clk
150 clk
150 clk
190
210
220
160 clk
230
240
250
260
270
280
290
300
310
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
170
320
330
PLSSL2/1/0: H/L/H PLLP: LHLHLLHHHHHL (LSB) HP: LLLLLHLHLLLL (LSB) HSTW1/0: H/L HSTP: LLLHHL (LSB) PCGU: HLL (LSB)
PCGD: LHHLH (LSB) PCG: L PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, XGA mode)
XGA (VESA60: fv 60.00Hz) 1024 × 768
340
350
360
370
380
389
Loop Counter: 1344 clk
MCK f: 65.00MHz (15.38ns)
CXD3500R
– 56 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
940
950
960
1
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
932
10
PLSSL2/1/0: H/H/L DWN: H VP: LLHLLLHL (LSB) FRP1/0: L/L VSTFX: H VSTPOL: H VPOL: L VGAV: H BLKON: L BLKPOL: L
FMBK: H MBKA: LHLHL (LSB) MBKB: LHLH (LSB) MBKZ: LLHH (LSB) DWN: H PO/MODE3/2/1: L/H/H
(VESA60: fv 60.00Hz) 1280 × 960
20
30
40
CXD3500R
– 57 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1370
1380
1390
76 clk
1400
1410
1420
1430
0
10
34 clk
20
30
50
90 clk
40
70
128 clk
128 clk
120 clk
60
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1360
90
96 clk
80
PLSSL2/1/0: H/H/L PLLP: LHLHHLLHHHHL (LSB) HP: LLLLLHLHLHLL (LSB) HSTW1/0: H/L HSTP: HLLHHL (LSB) PCGU: HLL (LSB)
PCGD: LHLHH (LSB) PCG: L PRGD: LHHHH (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, skip scan mode)
(VESA60: fv 60.00Hz) 1280 × 960
100
110
120
130
139
Loop Counter: 1440 clk
MCK f: 86.4MHz (11.57ns)
CXD3500R
– 58 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
150
160
170
180
164 clk
164 clk
190
210
102 clk
250 clk
200
230
86 clk
148 clk
220
240
250
260
270
280
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
140
290
300
PLSSL2/1/0: H/H/L PLLP: LHLHHLLHHHHL (LSB) HP: LLLLLHLHLHLL (LSB) HSTW1/0: H/L HSTP: HLLHHL (LSB) PCGU: HLL (LSB)
PCGD: LHLHH (LSB) PCG: L PRGD: LHHHH (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, skip scan mode)
(VESA60: fv 60.00Hz) 1280 × 960
310
320
330
340
350
360
Loop Counter: 1440 clk
MCK f: 86.4MHz (11.57ns)
CXD3500R
– 59 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
750
760
768
1
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
740
10
PLSSL2/1/0: H/H/H DWN: H VP: LLHLLLHL (LSB) FRP1/0: L/L VSTFX: H VSTPOL: H VPOL: L VGAV: H BLKON: L BLKPOL: L
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/H/H
XGA (VESA85: fv 84.99Hz) 1024 × 768
20
30
40
CXD3500R
– 60 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1370
1380
1390
1400
1410
48 clk
1420
1430
0
10
34 clk
20
30
40
96 clk
50
70
128 clk
128 clk
120 clk
60
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1360
96 clk
80
PLSSL2/1/0: H/H/H PLLP: LHLHLHLHHHHL (LSB) HP: LLLLLLHLHHLL (LSB) HSTW1/0: H/L HSTP: LLLHHL (LSB) PCGU: HLL (LSB)
PCGD: HHLLH (LSB) PCG: L PRGD: LHHHH (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, XGA mode)
XGA (VESA85: fv 84.99Hz) 1024 × 768
90
100
110
120
130
139
Loop Counter: 1376 clk
MCK f: 94.50MHz (10.58ns)
CXD3500R
– 61 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
150
160
170
190
112 clk
160 clk
164 clk
164 clk
180
208 clk
200
210
86 clk
220
230
240
250
260
270
280
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
140
290
300
PLSSL2/1/0: H/H/H PLLP: LHLHLHLHHHHL (LSB) HP: LLLLLLHLHHLL (LSB) HSTW1/0: H/L HSTP: LLLHHL (LSB) PCGU: HLL (LSB)
PCGD: HHLLH (LSB) PCG: L PRGD: LHHHH (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: H HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/H/H (XGA panel, XGA mode)
XGA (VESA85: fv 84.99Hz) 1024 × 768
310
320
330
340
350
360
Loop Counter: 1376 clk
MCK f: 94.50MHz (10.58ns)
CXD3500R
– 62 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
390
400
1
10
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
380
20
PLSSL2/1/0: L/L/L DWN: H VP: LLLHHHLL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: H BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/L/H
PC98 (PC98: fv 56.40Hz) 640 × 400
30
40
47
CXD3500R
– 63 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
788
798
808
64 clk
818
828
838
0
10
20
64 clk
30
40
50
70
128 clk
128 clk
120 clk
60
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
778
96 clk
64 clk
64 clk
80
38 clk
90
PLSSL2/1/0: L/L/L PLLP: LLHHLHLLHHHL (LSB) HP: LLLLLLHHLLHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: L HR: H RGT: H DSP: H SPON: L PO/MODE3/2/1: L/L/H (SVGA panel, PC98 mode)
PC98 (PC98: fv 56.40Hz) 640 × 400
110
32 clk
38 clk
80 clk
100
120
130
140
149
Loop Counter: 848 clk
MCK f: 21.05MHz (47.50ns)
CXD3500R
– 64 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
480
485
1
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
474
10
PLSSL2/1/0: L/L/L DWN: H VP: LLHLLLLL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: L BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/H/L
NTSC (ODD) 640 × 480
20
23
CXD3500R
– 65 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
240
243
244
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
231
250
PLSSL2/1/0: L/L/L DWN: H VP: LLHLLLLL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: L BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: H/H/L
NTSC (EVEN) 640 × 480
260
266
CXD3500R
– 66 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1530
37 clk
1540
1550
0
10
20
30
40
60
128 clk
128 clk
32 clk
62 clk
80
90
38 clk
96 clk
42 clk
70
62 clk
120 clk
115 clk
50
100
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1520
110
120
PLSSL2/1/0: L/L/L PLLP: LHHLLLLHLHHL (LSB) HP: LLLLLLHLLLLL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: H HR: H RGT: H DSP: L SPON: L PO/MODE3/2/1: H/H/L (SVGA panel, VGA mode)
NTSC_1 640 × 480
130
140
115 clk
150
160
170
179
Loop Counter: 1560 clk
MCK f: 24.54MHz (40.75ns)
CXD3500R
– 67 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
190
200
210
220
230
240
250
260
270
280
290
300
310
320
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
180
330
340
PLSSL2/1/0: L/L/L PLLP: LHHLLLLHLHHL (LSB) HP: LLLLLLHLLLLL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLHH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: H HR: H RGT: H DSP: L SPON: L PO/MODE3/2/1: H/H/L (SVGA panel, VGA mode)
NTSC_2 640 × 480
350
360
370
380
780
789
Loop Counter: 1560 clk
MCK f: 24.54MHz (40.75ns)
CXD3500R
– 68 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
280
288
289
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
276
PLSSL2/1/0: L/L/H DWN: H VP: LLHLHLHL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: L BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/H/L
PAL (ODD) 762 × 572
300
306
CXD3500R
– 69 –
XVS
XHS
ORACT
IRACT
VD
BLK
FLDO
FRP
CLP
PRG
PCG
ENB2
ENB1
HST
FRP
VCK
VST
(BLK)
HDN
HD
HSYNC
VSYNC
570
576
1
Note) The fifth row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
564
PLSSL2/1/0: L/L/H DWN: H VP: LLHLHLHL (LSB) FRP1/0: L/L VSTFX: L VSTPOL: H VPOL: L VGAV: L BLKON: H BLKPOL: H
FMBK: L MBKA: LLLLL (LSB) MBKB: LLLL (LSB) MBKZ: LLLL (LSB) DWN: H PO/MODE3/2/1: L/H/L
PAL (EVEN) 762 × 572
10
18
CXD3500R
– 70 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
1850
37 clk
1860
1870
0
10
20
30
40
50
70
128 clk
128 clk
120 clk
138 clk
60
90
40 clk
74 clk
74 clk
96 clk
80
50 clk
100
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
1840
50 clk
110
120
PLSSL2/1/0: L/L/H PLLP: LHHHLHLHLHHL (LSB) HP: LLLLLLHLHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: H HR: H RGT: H DSP: L SPON: L PO/MODE3/2/1: L/H/L (SVGA panel, PAL mode)
PAL_1 762 × 572
130
140
150
170 clk
160
170
179
Loop Counter: 1880 clk
MCK f: 29.38MHz (34.04ns)
CXD3500R
– 71 –
XHS
ORACT
IRACT
WCK
RSTW
RCK
RSTR
BLK
CLP
FRP
VCK
PRG
PCG
ENB2
ENB1
HCK2
HCK1
HST
HDN
HD
(BLK)
HSYNC
MCK
190
200
210
220
230
240
250
260
270
280
290
300
310
320
Note) The third row of the timing chart (BLK) is a pulse indicated as a reference and is not a pulse output from pins.
180
330
340
PLSSL2/1/0: L/L/H PLLP: LHHHLHLHLHHL (LSB) HP: LLLLLLHLHHHL (LSB) HSTW1/0: L/L HSTP: LLLLHH (LSB) PCGU: HLL (LSB)
PCGD: LLLLH (LSB) PCG: H PRGD: LLHLL (LSB) FRPP: HLLL (LSB) HCKFX: L HCKM: L HCKPOL: H HPOL: L HDNPOL: H
CLPPOL: H CLPW: L CLPP: H HR: H RGT: H DSP: L SPON: L PO/MODE3/2/1: L/H/L (SVGA panel, PAL mode)
PAL_2 762 × 572
350
360
370
380
940
950
Loop Counter: 1880 clk
MCK f: 29.38MHz (34.04ns)
CXD3500R
CXD3500R
Application Circuit
This IC allows direct drive of LCD panels. However, in this case insert resistor of several Ω to several tens of Ω
in series.
LCD signal processing IC
CXA2111R
S/H driver IC
CXA2112R
LCD panel
VST
VCK
PCG
TEST8
DWN
CLP
ENB2
VSS2
TEST9
FRP
PRG
XFRP
SHP1A
49 INV
SHP1B
SHP2B
SHP2A
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
ENB1 32
50 XVS
HD 31
51 XHS
BLK 30
52 IRACT
HCK2 29
53 ORACT
HCK1 28
54 RSTR
Line buffer
µPD485505
HST 27
55 VSS3
XRGT 26
RGT 25
56 VDD1
CXD3500R
57 RCK
VDD0 24
58 RSTW
MODE1 22
60 SCTR
MODE2 21
61 SCLK
MODE3 20
TEST7 18
VSS0
TEST1
5
6
7
8
9 10 11 12 13 14 15 16
TEST6
TEST0
4
TEST5
FLD
3
TEST4
VD
2
TEST3
CKLIM
1
TEST2
CKI2
TTL
CLK/2
VSYNC
64 CKI1
FRPCNT
XCLR 19
63 HDN
RGTCNT
62 SDAT
HSYNC
Serial interface
VSS1 23
59 WCK
10k
CKI3 17
1µ
/16V
DSYNC
0.1µ
VSYNC
Sync signal
input
24
21
HSYNC
+5V
9
47µ
/16V
∗ PLL IC
∗ PLL IC: Sony CXA3106(A)Q (built-in phase comparator, frequency divider)
is recommended.
31 32
CLKL
CLKH
When not using skip scan, ENB1 and 2 are interchangeable.
CXD2112R
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.
– 72 –
CXD3500R
Package Outline
Unit: mm
64PIN LQFP (PLASTIC)
12.0 ± 0.2
∗
10.0 ± 0.1
48
33
32
64
17
(0.22)
0.5 ± 0.2
(11.0)
49
A
1
0.5
+ 0.08
0.18 – 0.03
16
0.13 M
+ 0.2
1.5 – 0.1
+ 0.05
0.127 – 0.02
0.1
0° to 10°
0.5 ± 0.2
0.1 ± 0.1
NOTE: Dimension “∗” does not include mold protrusion.
DETAIL A
PACKAGE STRUCTURE
PACKAGE MATERIAL
EPOXY RESIN
SONY CODE
LQFP-64P-L01
LEAD TREATMENT
SOLDER/PALLADIUM
PLATING
EIAJ CODE
LQFP064-P-1010
LEAD MATERIAL
42/COPPER ALLOY
PACKAGE MASS
0.3g
JEDEC CODE
– 73 –
Similar pages