Film Capacitors EMI Suppression Capacitors (MKP) Series/Type: B32923E/F ... B32928E/F Date: May 2009 The following products presented in this data sheet are being withdrawn. Ordering Code Substitute Product B32926E3335M000 B32926C3335* B32926E3225M000 B32926C3225* B32926E3225K000 B32926C3225* Date of Withdrawal 2012-12-21 2012-12-21 2012-12-21 Deadline Last Orders 2013-03-31 2013-03-31 2013-03-31 Last Shipments 2013-06-30 2013-06-30 2013-06-30 © EPCOS AG 2009. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited. Ordering Code Substitute Product B32926E3206M000 B32928C3206 B32926E3156M000 B32926C3156M,B3 2926D3156 B32926E3156K000 B32926C3156M,B3 2926D3156 B32926E3106M000 B32926C3106* B32926E3106K000 B32926C3106* B32924F3335K000 B32924D3335K* B32924F3225K189 B32924C3225* B32924F3225K000 B32924C3225* B32924E3685M000 B32926C3685* B32924E3475M000 B32924C3475M* B32924E3565M000 B32924C3565* B32924E3335M189 B32924C3335M* B32924E3335M000 B32924C3335M* B32924E3825M000 B32926C3825* B32924E3225M189 B32924C3225* B32924E3225M000 B32924C3225* B32923E3335M000 B32924C3335M*,B3 2924D3335K* B32923E3335K000 B32924C3335M*,B3 2924D3335K* B32924F3685K000 B32926C3685* B32924F3475K000 B32924D3475K* B32923E3225M000 B32923C3225* B32924F3565K000 B32924C3565* B32928E3456M000 B32928E3406M000 B32928E3406K000 B32928E3306M000 B32928C3306M* B32928E3306K000 B32928C3306M* B32928E3256M000 B32928C3256 B32928E3256K000 B32928C3256 B32926F3206K000 B32928C3206 B32926E3685M000 B32926C3685* B32926E3685K000 B32926C3685* B32926E3475M000 B32926C3475* Date of Withdrawal 2012-12-21 2012-12-21 Deadline Last Orders 2013-03-31 2013-03-31 Last Shipments 2012-12-21 2013-03-31 2013-06-30 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2012-12-21 2013-03-31 2013-06-30 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2012-12-21 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-03-31 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 2013-06-30 For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales. EMI suppression capacitors (MKP) B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Typical applications X2 class for interference suppression "Across the line" applications Dimensional drawings Drawing 1 Climatic Max. operating temperature: 110 °C Climatic category (IEC 60068-1): 40/110/56 Construction Dielectric: polypropylene (MKP) Plastic case (UL 94 V-0) Epoxy resin sealing (UL 94 V-0) Drawing 2 Features Capacitance value up to 45 µF Very small dimensions Good self-healing properties High voltage capability Terminals Parallel wire leads, lead-free tinned Standard lead lengths: 6 1 mm Special lead lengths available on request Marking Manufacturer's logo, lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated AC voltage (IEC), series number, sub-class (X2), dielectric code (MKP), climatic category, passive flammability category, approvals. Delivery mode Bulk (untaped) Reel For taping details, refer to chapter "Taping and packing" Please read Cautions and warnings and Important notes at the end of this document. Dimensions in mm Lead spacing Lead ±0.4 diameter d1 22.5 0.8 27.5 0.8 37.5 1.0 52.5 1.2 Marking example Page 2 of 17 Type Drawing B32923E B32924E/F B32926E/F B32928E 1 1 1 2 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Approvals Approval marks 1) Standards Certificate IEC 60384-14 40021331 UL 1283 E301966 CSA C22.2 No.8 E301966 1) approved by UL Overview of available types Lead spacing 22.5 mm 27.5 mm 37.5 mm 52.5 mm Type B32924E/F B32926E/F B32928E B32923E CR (µF) 2.2 3.3 4.7 5.6 6.8 8.2 10 15 20 25 30 40 45 Please read Cautions and warnings and Important notes at the end of this document. Page 3 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Ordering codes and packing units Lead spacing CR mm 22.5 27.5 37.5 52.5 µF 2.2 3.3 2.2 2.2 3.3 3.3 4.7 4.7 5.6 5.6 6.8 6.8 8.2 2.2 3.3 4.7 6.8 10 15 20 20 25 30 40 45 Max. dimensions w×h×l mm 12.0 × 22.0 × 26.5 14.5 × 29.5 × 26.5 11.0 × 21.0 × 31.5 12.5 × 21.5 × 31.5 14.0 × 24.5 × 31.5 15.0 × 24.0 × 31.5 16.0 × 32.0 × 31.5 18.0 × 27.5 × 31.5 18.0 × 33.0 × 31.5 19.0 × 30.0 × 31.5 21.0 × 31.0 × 31.5 22.0 × 36.5 × 31.5 22.0 × 36.5 × 31.5 12.0 × 22.0 × 42.0 12.0 × 22.0 × 42.0 14.0 × 25.0 × 42.0 18.0 × 32.5 × 42.0 20.0 × 39.5 × 42.0 28.0 × 37.0 × 42.0 28.0 × 42.5 × 42.0 30.0 × 45.0 × 42.0 30.0 × 45.0 × 57.5 30.0 × 45.0 × 57.5 35.0 × 50.0 × 57.5 35.0 × 50.0 × 57.5 Ordering code (composition see below) B32923E3225M*** ◆ B32923E3335+*** B32924E3225M*** B32924F3225K*** B32924E3335M*** ◆ B32924F3335K*** B32924F3475K*** B32924E3475M*** ◆ B32924F3565K*** B32924E3565M*** B32924E3685M*** ◆ B32924F3685K*** B32924E3825M*** ◆ B32926E3225+*** B32926E3335M*** B32926E3475M*** B32926E3685+*** B32926E3106+*** ◆ B32926E3156+*** ◆ B32926E3206M*** ◆ B32926F3206K*** B32928E3256+*** ◆ B32928E3306+*** ◆ B32928E3406+*** ◆ B32928E3456M*** ◆ Reel Untaped pcs./MOQ 1400 1200 1000 pcs./MOQ 1800 1040 2352 2100 1848 1680 1064 1428 952 896 784 784 784 1620 1620 1380 720 640 440 440 200 280 280 108 108 ◆ Preferred type MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request. Composition of ordering code + = Capacitance tolerance code: M = ±20% K = ±10% Please read Cautions and warnings and Important notes at the end of this document. *** = Packaging code: 189 = Reel 000 = Untaped (lead length 6 1 mm) Page 4 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Technical data Maximum continuous DC voltage VDC 500 V Maximum continuous AC voltage VAC 310 V (50/60 Hz) Rated AC voltage ( IEC 60384-14 ) 305 V (50/60 Hz) Max. operating temperature Top,max +110 °C DC test voltage Dissipation factor tan δ (in 10-3) at 20 °C (upper limit values) Insulation resistance Rins or time constant τ = CR Rins at 100 V DC, 20 °C, rel. humidity ≤ 65% and for 60 s (minimum as-delivered values) Passive flammability category to IEC 40 (CO) 752 2121 V, 2 s at 1 kHz: 2 Capacitance tolerances (measured at 1 kHz) ±10% (K), ±20% (M) 30 000 s B Pulse handling capability "dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in V/µs. "k0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V2/µs. Note: The values of dV/dt and k0 provided below must not be exceeded in order to avoid damaging the capacitor. dV/dt and k0 values Lead spacing dV/dt in V/µs k0 in V2/µs 22.5 mm 140 120 400 Please read Cautions and warnings and Important notes at the end of this document. 27.5 mm 100 86 000 Page 5 of 17 37.5 mm 70 60 200 52.5 mm 40 34 400 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Impedance Z versus frequency f (typical values) Please read Cautions and warnings and Important notes at the end of this document. Page 6 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Mounting guidelines 1 Soldering 1.1 Solderability of leads The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1. Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur. Solder bath temperature 235 ±5 °C Soldering time 2.0 ±0.5 s Immersion depth 2.0 +0/0.5 mm from capacitor body or seating plane Evaluation criteria: Visual inspection Wetting of wire surface by new solder ≥90%, free-flowing solder 1.2 Resistance to soldering heat Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions: Series Solder bath temperature Soldering time MKT boxed (except 2.5 × 6.5 × 7.2 mm) 260 ±5 °C coated uncoated (lead spacing > 10 mm) MFP MKP (lead spacing > 7.5 mm) MKT boxed (case 2.5 × 6.5 × 7.2 mm) MKP (lead spacing ≤ 7.5 mm) MKT uncoated (lead spacing ≤ 10 mm) insulated (B32559) Please read Cautions and warnings and Important notes at the end of this document. Page 7 of 17 10 ±1 s 5 ±1 s <4s recommended soldering profile for MKT uncoated (lead spacing ≤ 10 mm) and insulated (B32559) B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Immersion depth 2.0 +0/0.5 mm from capacitor body or seating plane Shield Heat-absorbing board, (1.5 ±0.5) mm thick, between capacitor body and liquid solder Evaluation criteria: Visual inspection ∆C/C0 tan δ Please read Cautions and warnings and Important notes at the end of this document. No visible damage 2% for MKT/MKP/MFP 5% for EMI suppression capacitors As specified in sectional specification Page 8 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC 1.3 General notes on soldering Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature Tmax. Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like: Pre-heating temperature and time Forced cooling immediately after soldering Terminal characteristics: diameter, length, thermal resistance, special configurations (e.g. crimping) Height of capacitor above solder bath Shadowing by neighboring components Additional heating due to heat dissipation by neighboring components Use of solder-resist coatings The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included. EPCOS recommends the following conditions: Pre-heating with a maximum temperature of 110 °C Temperature inside the capacitor should not exceed the following limits: MKP/MFP 110 °C MKT 160 °C When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step. Leaded film capacitors are not suitable for reflow soldering. Uncoated capacitors For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended: pre-heating to not more than 110 °C in the preheater phase rapid cooling after soldering Please read Cautions and warnings and Important notes at the end of this document. Page 9 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC 2 Cleaning To determine whether the following solvents, often used to remove flux residues and other substances, are suitable for the capacitors described, refer to the table below: Type Ethanol, isopropanol, n-propanol MKT (uncoated) MKT, MKP, MFP (coated/boxed) Suitable n-propanol-water mixtures, water with surface tension-reducing tensides (neutral) Unsuitable Solvent from table A (see next page) Suitable Suitable Solvent from table B (see next page) In part suitable Unsuitable Even when suitable solvents are used, a reversible change of the electrical characteristics may occur in uncoated capacitors immediately after they are washed. Thus it is always recommended to dry the components (e.g. 4 h at 70 °C) before they are subjected to subsequent electrical testing. Table A Manufacturers' designations for trifluoro-trichloro-ethane-based cleaning solvents (selection) Trifluoro-trichloroethane Freon TF Frigen 113 TR Arklone P Kaltron 113 MDR Flugene 113 Mixtures of trifluoro-trichloro-ethane with ethanol and isopropanol Freon TE 35; Freon TP 35; Freon TES Frigen 113 TR-E; Frigen 113 TR-P; Frigen TR-E 35 Arklone A; Arklone L; Arklone K Kaltron 113 MDA; Kaltron 113 MDI; Kaltron 113 MDI 35 Flugene 113 E; Flugene 113 IPA Manufacturer Du Pont Hoechst ICI Kali-Chemie Rhone-Progil Table B (worldwide banned substances) Manufacturers' designations for unsuitable cleaning solvents (selection) Mixtures of chlorinated hydrocarbons and ketones with fluorated hydrocarbons Freon TMC; Freon TA; Freon TC Arklone E Kaltron 113 MDD; Kaltron 113 MDK Flugene 113 CM Please read Cautions and warnings and Important notes at the end of this document. Page 10 of 17 Manufacturer Du Pont ICI Kali-Chemie Rhone-Progil B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC 3 Embedding of capacitors in finished assemblies In many applications, finished circuit assemblies are embedded in plastic resins. In this case, both chemical and thermal influences of the embedding ("potting") and curing processes must be taken into account. Our experience has shown that the following potting materials can be recommended: non-flexible epoxy resins with acid-anhydride hardeners; chemically inert, non-conducting fillers; maximum curing temperature of 100 °C. Caution: Consult us first if you wish to embed uncoated types! Please read Cautions and warnings and Important notes at the end of this document. Page 11 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Cautions and warnings Do not exceed the upper category temperature (UCT). Do not apply any mechanical stress to the capacitor terminals. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after it has been soldered to the PC board. Do not pick up the PC board by the soldered capacitor. Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing. Do not exceed the specified time or temperature limits during soldering. Avoid external energy inputs, such as fire or electricity. Avoid overload of the capacitors. The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines". Topic Storage conditions Flammability Resistance to vibration Safety information Reference chapter "General technical information" Make sure that capacitors are stored within the 4.5 specified range of time, temperature and humidity "Storage conditions" conditions. Avoid external energy, such as fire or electricity 5.3 (passive flammability), avoid overload of the "Flammability" capacitors (active flammability) and consider the flammability of materials. Do not exceed the tested ability to withstand 5.2 vibration. The capacitors are tested to "Resistance to vibration" IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics". Please read Cautions and warnings and Important notes at the end of this document. Page 12 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Topic Safety information Soldering Do not exceed the specified time or temperature limits during soldering. Cleaning Use only suitable solvents for cleaning capacitors. Embedding of When embedding finished circuit assemblies in capacitors in plastic resins, chemical and thermal influences finished assemblies must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types! Please read Cautions and warnings and Important notes at the end of this document. Page 13 of 17 Reference chapter "Mounting guidelines" 1 "Soldering" 2 "Cleaning" 3 "Embedding of capacitors in finished assemblies" B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Symbols and terms Symbol α αC A βC C CR ∆C ∆C/C ∆C/CR dt ∆t ∆T ∆tan δ ∆V dV/dt ∆V/∆t E ESL ESR f f1 f2 fr FD FT i IC English Heat transfer coefficient Temperature coefficient of capacitance Capacitor surface area Humidity coefficient of capacitance Capacitance Rated capacitance Absolute capacitance change Relative capacitance change (relative deviation of actual value) Capacitance tolerance (relative deviation from rated capacitance) Time differential Time interval Absolute temperature change (self-heating) Absolute change of dissipation factor Absolute voltage change Time differential of voltage function (rate of voltage rise) Voltage change per time interval Activation energy for diffusion Self-inductance Equivalent series resistance Frequency Frequency limit for reducing permissible AC voltage due to thermal limits German Wärmeübergangszahl Temperaturkoeffizient der Kapazität Kondensatoroberfläche Feuchtekoeffizient der Kapazität Kapazität Nennkapazität Absolute Kapazitätsänderung Relative Kapazitätsänderung (relative Abweichung vom Ist-Wert) Kapazitätstoleranz (relative Abweichung vom Nennwert) Differentielle Zeit Zeitintervall Absolute Temperaturänderung (Selbsterwärmung) Absolute Änderung des Verlustfaktors Absolute Spannungsänderung Differentielle Spannungsänderung (Spannungsflankensteilheit) Spannungsänderung pro Zeitintervall Aktivierungsenergie zur Diffusion Eigeninduktivität Ersatz-Serienwiderstand Frequenz Grenzfrequenz für thermisch bedingte Reduzierung der zulässigen Wechselspannung Frequency limit for reducing permissible Grenzfrequenz für strombedingte AC voltage due to current limit Reduzierung der zulässigen Wechselspannung Resonant frequency Resonanzfrequenz Thermal acceleration factor for diffusion Therm. Beschleunigungsfaktor zur Diffusion Derating factor Deratingfaktor Current (peak) Stromspitze Category current (max. continuous Kategoriestrom (max. Dauerstrom) current) Please read Cautions and warnings and Important notes at the end of this document. Page 14 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Symbol IRMS iz k0 LS λ λ0 λtest Pdiss Pgen Q ρ R R Ri Rins RP RS S t T τ tan δ tan δD tan δP tan δS TA Tmax Tmin tOL Top TR Tref tSL VAC English (Sinusoidal) alternating current, root-mean-square value Capacitance drift Pulse characteristic Series inductance Failure rate Constant failure rate during useful service life Failure rate, determined by tests Dissipated power Generated power Heat energy Density of water vapor in air Universal molar constant for gases Ohmic resistance of discharge circuit Internal resistance Insulation resistance Parallel resistance Series resistance severity (humidity test) Time Temperature Time constant Dissipation factor Dielectric component of dissipation factor Parallel component of dissipation factor Series component of dissipation factor Ambient temperature Upper category temperature Lower category temperature Operating life at operating temperature and voltage Operating temperature Rated temperature Reference temperature Reference service life AC voltage Please read Cautions and warnings and Important notes at the end of this document. German (Sinusförmiger) Wechselstrom Inkonstanz der Kapazität Impulskennwert Serieninduktivität Ausfallrate Konstante Ausfallrate in der Nutzungsphase Experimentell ermittelte Ausfallrate Abgegebene Verlustleistung Erzeugte Verlustleistung Wärmeenergie Dichte von Wasserdampf in Luft Allg. Molarkonstante für Gas Ohmscher Widerstand des Entladekreises Innenwiderstand Isolationswiderstand Parallelwiderstand Serienwiderstand Schärfegrad (Feuchtetest) Zeit Temperatur Zeitkonstante Verlustfaktor Dielektrischer Anteil des Verlustfaktors Parallelanteil des Verlfustfaktors Serienanteil des Verlustfaktors Umgebungstemperatur Obere Kategorietemperatur Untere Kategorietemperatur Betriebszeit bei Betriebstemperatur und -spannung Beriebstemperatur Nenntemperatur Referenztemperatur Referenz-Lebensdauer Wechselspannung Page 15 of 17 B32923E/F ... B32928E/F Efficient filtering – X2 / 305 V AC Symbol VC VC,RMS English Category voltage Category AC voltage VCD Vch VDC VFB Vi Vo Vop Vp Vpp VR Corona-discharge onset voltage Charging voltage DC voltage Fly-back capacitor voltage Input voltage Output voltage Operating voltage Peak pulse voltage Peak-to-peak voltage Impedance Rated voltage Amplitude of rated AC voltage R VRMS German Kategoriespannung (Sinusförmige) Kategorie-Wechselspannung Teilentlade-Einsatzspannung Ladespannung Gleichspannung Spannung (Flyback) Eingangsspannung Ausgangssspannung Betriebsspannung Impuls-Spitzenspannung Spannungshub Nennspannung Amplitude der Nenn-Wechselspannung VSC Vsn (Sinusoidal) alternating voltage, root-mean-square value S-correction voltage Snubber capacitor voltage Z Impedance Spannung bei Anwendung "S-correction" Spannung bei Anwendung "Beschaltung" Scheinwiderstand Lead spacing Rastermaß Please read Cautions and warnings and Important notes at the end of this document. (Sinusförmige) Wechselspannung Page 16 of 17 Important notes The following applies to all products named in this publication: 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application. 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component. 3. The warnings, cautions and product-specific notes must be observed. 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices. 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products. 6. Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI). 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CSMP, CSSP, CTVS, DSSP, MiniBlue, MiniCell, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks. Page 17 of 17