Microsemi APT68GA60S High speed pt igbt Datasheet

APT68GA60B
APT68GA60S
600V
High Speed PT IGBT
APT68GA60S
TO
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
-2
47
through leading technology silicon design and lifetime control processes. A reduced Eoff D3PAK
VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT68GA60B
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
Single die IGBT
®
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Collector Emitter Voltage
Ratings
Unit
600
V
IC1
Continuous Collector Current @ TC = 25°C
IC2
Continuous Collector Current @ TC = 100°C
68
ICM
Pulsed Collector Current
202
VGE
Gate-Emitter Voltage
PD
Total Power Dissipation @ TC = 25°C
1
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TL
A
±30
V
520
W
202A @ 600V
-55 to 150
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
Symbol
121
7
°C
300
TJ = 25°C unless otherwise specified
Parameter
Test Conditions
Min
VBR(CES)
Collector-Emitter Breakdown Voltage
VGE = 0V, IC = 1.0mA
600
VCE(on)
Collector-Emitter On Voltage
VGE(th)
Gate Emitter Threshold Voltage
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
2.5
VGE = 15V,
TJ = 25°C
2.0
IC = 40A
TJ = 125°C
1.9
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 600V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
2500
VGS = ±30V
Unit
μA
±100
nA
Thermal and Mechanical Characteristics
Symbol
Characteristic
Min
Typ
Max
Unit
RθJC
Junction to Case Thermal Resistance
-
-
0.24
°C/W
WT
Package Weight
-
5.9
-
g
10
in·lbf
Torque
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
6 - 2009
Vces
Parameter
052-6326 Rev C
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg
Total Gate Charge 3
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT68GA60B_S
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
5230
VGE = 0V, VCE = 25V
526
f = 1MHz
59
Gate Charge
198
VGE = 15V
32
VCE= 300V
L= 100uH, VCE = 600V
Inductive Switching (25°C)
202
VCC = 400V
27
Turn-Off Delay Time
VGE = 15V
133
IC = 40A
88
Turn-On Switching Energy
RG = 4.7Ω4
715
Eoff
Turn-Off Switching Energy 6
TJ = +25°C
607
td(on
Turn-On Delay Time
Inductive Switching (125°C)
20
tr
Current Rise Time
VCC = 400V
26
Turn-Off Delay Time
VGE = 15V
175
IC = 40A
129
Eon2
Turn-On Switching Energy
RG = 4.7Ω4
1117
Eoff
Turn-Off Switching Energy 6
TJ = +125°C
1025
tf
Current Fall Time
nC
21
Eon2
td(off)
pF
A
Current Rise Time
Current Fall Time
Unit
66
IC = 40A
TJ = 150°C, RG = 4.7Ω4, VGE = 15V,
Max
ns
μJ
ns
μJ
052-6326 Rev C
6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
7 Continuous current limited by package lead temperature.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
120
V
= 15V
TJ= 125°C
TJ= 25°C
60
40
20
1
2
3
4
5
120
80
TJ= 25°C
40
TJ= -55°C
TJ= 125°C
2
4
6
8
10
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
3
IC = 80A
IC = 40A
2
IC = 20A
1
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
1.15
6V
5V
0
4
8
12 16
20 24 28
32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
I = 40A
C
T = 25°C
J
15
VCE = 120V
VCE = 300V
10
VCE = 480V
5
0
40
80
120
160
GATE CHARGE (nC)
FIGURE 4, Gate charge
200
5
4
3
IC = 80A
IC = 40A
2
IC = 20A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
0
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.10
120
IC, DC COLLECTOR CURRENT (A)
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
7V
50
0
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
1.05
1.00
0.95
0.90
0.85
0.80
0.75
0.70
100
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
100
80
60
6 - 2009
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
8V
150
20
250μs PULSE
TEST<0.5 % DUTY
CYCLE
160
0
9V
200
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
200
0
250
0
6
10V
40
20
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6326 Rev C
240
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
0
IC, COLLECTOR CURRENT (A)
TJ= 150°C
TJ= 55°C
80
15V
13V
300
IC, COLLECTOR CURRENT (A)
100
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
APT68GA60B_S
350
Typical Performance Curves
25
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
VCE = 400V
TJ = 25°C, or 125°C
RG = 4.7Ω
L = 100μH
VGE = 15V
20
15
10
5
0
0
20
40
60
VCE = 400V
RG = 4.7Ω
L = 100μH
0
10
20
30
40
50
60
70
80
60
140
120
TJ = 125°C, VGE = 15V
100
tr, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =15V,TJ=25°C
50
0
40
30
20
TJ = 25 or 125°C,VGE = 15V
0
10
20
30
40
50
60
70
TJ = 125°C
1000
TJ = 25°C
10
J
5000
Eoff,80A
4000
3000
Eon2,40A
2000
Eoff,40A
Eon2,20A
2500
50
60
70
80
2000
TJ = 125°C
1500
1000
500
TJ = 25°C
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
2500
Eon2,80A
G
Eoff,80A
2000
1500
Eon2,40A
1000
Eoff,40A
Eon2,20A
500
Eoff,20A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
40
G
Eoff,20A
0
30
0
10 20
30 40 50 60
70
80
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (μJ)
Eon2,80A
20
V
= 400V
CE
V
= +15V
GE
R = 4.7Ω
3000
V
= 400V
CE
V
= +15V
GE
T = 125°C
6000
0
0
0
0
10 20 30
40 50 60
70 80
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
1000
RG = 4.7Ω, L = 100μH, VCE = 400V
3000
0
7000
40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (μJ)
G
8000
TJ = 25°C, VGE = 15V
60
0
80
V
= 400V
CE
V
= +15V
GE
R =4.7Ω
2000
80
20
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
Eon2, TURN ON ENERGY LOSS (μJ)
100
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
160
0
SWITCHING ENERGY LOSSES (μJ)
VGE =15V,TJ=125°C
150
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
70
RG = 4.7Ω, L = 100μH, VCE = 400V
10
6 - 2009
200
80
50
052-6326 Rev C
APT68GA60B_S
250
30
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT68GA60B_S
1000
Cies
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
10000
1000
Coes
100
Cres
10
100
10
1
0.1
1
10
100
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0
100
200
300
400
500
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
0.25
D = 0.9
0.20
0.7
0.15
0.5
0.10
Note:
PDM
0.3
t1
t2
0.05
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
0.1
SINGLE PULSE
0.05
0
10
-5
10-4
10-3
10-2
0.1
1
6 - 2009
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
052-6326 Rev C
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
APT68GA60B_S
10%
Gate Voltage
TJ = 125°C
td(on)
90%
APT30DQ60
tr
V CE
IC
V CC
5%
Collector Current
10%
5%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 12, Inductive Switching Test Circuit
Figure 13, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
Gate Voltage
td(off)
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 14, Turn-off Switching Waveforms and Definitions
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
(Heat Sink)
e3 100% Sn Plated
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
4.50 (.177) Max.
6 - 2009
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
052-6326 Rev C
13.41 (.528)
13.51(.532)
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages