ADPOW APT45GP120B Power mos 7 igbt Datasheet

APT45GP120B
1200V
®
POWER MOS 7 IGBT
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 800V, 16A
• Low Gate Charge
• 50 kHz operation @ 800V, 28A
• Ultrafast Tail Current shutoff
• RBSOA rated
G
C
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT45GP120B
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
7
IC1
Continuous Collector Current
IC2
Continuous Collector Current @ TC = 110°C
ICM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
100
@ TC = 25°C
Amps
54
170
@ TC = 25°C
170A @ 960V
Reverse Bias Safe Operating Area @ TJ = 150°C
Watts
625
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
1200
VGE(TH)
Gate Threshold Voltage
VCE(ON)
ICES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 25°C)
3.3
3.9
Collector-Emitter On Voltage (VGE = 15V, I C = 45A, Tj = 125°C)
3.0
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
6-2003
MIN
Rev C
Characteristic / Test Conditions
050-7429
Symbol
1
APT45GP120B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
3935
VGE = 0V, VCE = 25V
300
Reverse Transfer Capacitance
f = 1 MHz
55
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
185
VCE = 600V
25
I C = 45A
80
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
170
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
102
I C = 45A
38
µJ
904
Inductive Switching (125°C)
VCC = 600V
18
VGE = 15V
151
I C = 45A
79
Turn-off Delay Time
Current Fall Time
Turn-off Switching Energy
1869
6
29
R G = 5Ω
44
Turn-on Switching Energy (Diode)
ns
900
TJ = +25°C
5
Current Rise Time
Turn-on Switching Energy
29
R G = 5Ω
4
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
18
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 600V
55
ns
900
TJ = +125°C
3078
66
µJ
2254
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.20
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.9
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
050-7429
Rev C
6-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
90
70
60
50
TC=25°C
40
TC=125°C
30
20
10
50
TC=25°C
40
TC=125°C
30
20
0
FIGURE 1, Output Characteristics(VGE = 15V)
160
FIGURE 2, Output Characteristics (VGE = 10V)
16
80
TJ = 25°C
60
TJ = 125°C
40
20
0
5
IC = 90A
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
IC = 45A
3
IC = 22.5A
2
1
0
12
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
8
VCE=960V
6
4
2
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC = 45A
3
IC = 22.5A
2.5
2.0
1.5
1.0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0.05
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.9
60 80 100 120 140 160 180 200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
3.5
140
0.95
40
IC = 90A
4
1.15
1.0
20
4.5
160
1.05
0
5
1.2
1.10
VCE=600V
10
0
1
2
3
4 5
6 7
8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE=240V
0
120
100
80
60
6-2003
100
IC = 45A
TJ = 25°C
40
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C
TJ = -55°C
14
050-7429
120
VGE, GATE-TO-EMITTER VOLTAGE (V)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
140
IC, COLLECTOR CURRENT (A)
60
0 0.5
1
1.5
2
2.5
3
3.5
4
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
70
10
0
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
80
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
80
APT45GP120B
90
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT45GP120B
TYPICAL PERFORMANCE CURVES
180
30
25
VGE= 10V
20
VGE= 15V
15
10
VCE = 600V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
0
160
VGE =15V,TJ=125°C
VGE =10V,TJ=125°C
140
VGE =15V,TJ=25°C
120
100
80
VGE =10V,TJ=25°C
60
40
VCE = 600V
RG = 5Ω
L = 100 µH
20
0
0 10 20 30 40 50 60 70 80 90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
0 10 20 30 40 50 60 70 80 90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
80
100
TJ = 25 or 125°C,VGE = 10V
TJ = 125°C, VGE = 10V or 15V
90
70
80
tf, FALL TIME (ns)
tr, RISE TIME (ns)
60
50
40
30
TJ = 25 or 125°C,VGE = 15V
20
70
60
50
40
30
TJ = 25°C, VGE = 10V or 15V
20
10
10
RG =5Ω, L = 100µH, VCE = 600V
6000
VCE = 600V
L = 100 µH
RG = 5 Ω
7000
6000
10 20
30
40
50
60 70
80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ =125°C, VGE=15V
TJ =125°C,VGE=10V
5000
4000
3000
2000
TJ = 25°C, VGE=15V
1000
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
8000
TJ = 25°C, VGE=10V
TJ = 125°C, VGE = 10V or 15V
4000
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
20
30
40
50
60 70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eoff 90A
6000
Eon2 45A
4000
Eoff 45A
Eon2 22.5A
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
6-2003
Rev C
050-7429
Eon2 90A
8000
2000
5000
8000
VCE = 600V
VGE = +15V
TJ = 125°C
10000
VCE = 600V
L = 100 µH
RG = 5 Ω
0
0
10 20
30
40 50
60
70
80 90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
12000
RG =5Ω, L = 100µH, VCE = 600V
0
0
10 20
30
40 50
60
70 80
90
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
VCE = 600V
VGE = +15V
RG = 5 Ω
7000
6000
5000
4000
Eoff 90A
3000
Eon2 45A
2000
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
Eoff 45A
Eon2 22.5A
1000
Eoff 22.5A
Eoff 22.5A
0
Eon2 90A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
10,000
P
C, CAPACITANCE ( F)
IC, COLLECTOR CURRENT (A)
Cies
5,000
1,000
500
Coes
100
Cres
50
APT45GP120B
180
160
140
120
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.20
0.9
0.7
0.15
0.5
0.10
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
0.3
t1
t2
0.05
Duty Factor D = t1/t2
0.1
0.05
10
-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
-4
-3
10
10
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-2
1.0
RC MODEL
170
0.0838
0.0150
0.185
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
10
5
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
1
10
20
30 40
50
60 70
80
90
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
6-2003
0.0870
Rev C
Power
(Watts)
50
050-7429
Junction
temp. ( ”C)
0.00782
FMAX, OPERATING FREQUENCY (kHz)
100
0.0296
APT45GP120B
APT30DF120
10%
T J = 125 C
Gate Voltage
IC
V CC
Collector Voltage
V CE
td(on)
tr
90%
A
D.U.T.
10%
Collector Current
5%
5%
Figure 21, Inductive Switching Test Circuit
Switching Energy
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
*DRIVER SAME TYPE AS D.U.T.
Gate Voltage
t d(off)
T J = 125 C
tf
A
Collector Voltage
90%
V CE
IC
100uH
V CLAMP
0
10%
Switching
Energy
A
Collector Current
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
6-2003
0.40 (.016)
0.79 (.031)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
Rev C
Emitter
050-7429
B
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages