MITSUBISHI IGBT MODULES CM75RL-12NF HIGH POWER SWITCHING USE CM75RL-12NF ¡IC ..................................................................... 75A ¡VCES ............................................................ 600V ¡Insulated Type ¡7-elements in a pack APPLICATION AC drive inverters & Servo controls, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm L A B E L 11 120 106 ±0.5 7 40.78 17 2-φ5.5 MOUNTING HOLES 17 12 13.62 UP VP 1 1 CN 55 35 WP N 12 23 12 23 32 12 23 23.2 12 22 11.75 (13.5) 12 12 (SCREWING DEPTH) +1 W 10.75 (19.75) 22 –0.5 B V 16 8 U 3 1 6-M5 NUTS 1 P A B Housing Type of A and B (J.S.T.Mfg.Co.Ltd) A = B8P-VH-FB-B, B = B2P-VH-FB-B P UP-1 UP-2 B CN-7 CN-8 VP-1 VP-2 U CN-5 CN-6 WP-1 WP-2 W V CN-3 CN-4 CN-1 CN-2 N CIRCUIT DIAGRAM Jun. 2004 MITSUBISHI IGBT MODULES CM75RL-12NF HIGH POWER SWITCHING USE ABSOLUTE MAXIMUM RATINGS (Tj = 25°C) INVERTER PART Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) Parameter Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Conditions G-E Short C-E Short DC, TC = 102°C*1 Pulse (Note 2) Pulse TC = 25°C (Note 2) Ratings 600 ±20 75 150 75 150 430 Unit V V A A A A W Ratings 600 ±20 50 100 320 600 50 Unit V V A A W V A Ratings –40 ~ +150 –40 ~ +125 2500 2.5 ~ 3.5 2.5 ~ 3.5 350 Unit °C °C V N•m N•m g BRAKE PART Symbol VCES VGES IC ICM PC (Note 3) VRRM IFM Parameter Collector-emitter voltage Gate-emitter voltage Collector current Maximum collector dissipation Repetitive peak reverse voltage Forward current Conditions G-E Short C-E Short DC, TC = 107°C*1 Pulse TC = 25°C Clamp diode part Clamp diode part (Note 2) (COMMON RATING) Symbol Tj Tstg Viso — — — Parameter Junction temperature Storage temperature Isolation voltage Torque strength Weight Conditions Main Terminal to base plate, AC 1 min. Main Terminal M5 Mounting holes M5 Typical value Jun. 2004 MITSUBISHI IGBT MODULES CM75RL-12NF HIGH POWER SWITCHING USE ELECTRICAL CHARACTERISTICS (Tj = 25°C) INVERTER PART Parameter Symbol Test conditions Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 7.5mA, VCE = 10V 6 7 8 V IGES Gate leakage current VGE = VGES, VCE = 0V — — — — — — — — — — — — — — — — — 8.3 — 1.7 1.7 — — — 300 — — — — — 1.2 — — — 0.085 — 0.5 2.2 — 11.3 1.4 0.45 — 120 100 300 300 100 — 2.8 0.29 0.51 µA Min. — Limits Typ. — VCE(sat) Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) VEC(Note 1) Rth(j-c)Q Rth(j-c)R Rth(c-f) RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge Emitter-collector voltage Thermal resistance Contact thermal resistance External gate resistance IC = 75A, VGE = 15V Tj = 25°C Tj = 125°C VCE = 10V VGE = 0V VCC = 300V, IC = 75A, VGE = 15V VCC = 300V, IC = 75A VGE1 = VGE2 = 15V RG = 8.3Ω, Inductive load switching operation IE = 75A IE = 75A, VGE = 0V IGBT part (1/6 module)*1 FWDi part (1/6 module)*1 Case to fin, Thermal compound Applied (1/6 module)*2 — 83 mA V nF nF nF nC ns ns ns ns ns µC V °C/W °C/W °C/W Ω BRAKE PART Symbol ICES Parameter Collector cutoff current Test conditions VCE = VCES, VGE = 0V VGE(th) Gate-emitter threshold voltage IC = 5.0mA IGES Gate leakage current VGE = VGES, VCE = 0V VCE(sat) Collector-emitter saturation voltage IC = 50A, VGE = 15V Cies Coes Cres QG VFM Rth(j-c)Q Rth(j-c)R RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Forward voltage drop Thermal resistance Tj = 25°C Tj = 125°C VCE = 10V VGE = 0V VCC = 300V, IC = 50A, VGE = 15V IF = 50A IGBT part*1 Clamp diode part*1 External gate resistance Max. 1 Unit mA 6 7 8 V — — — — — — — — — — 13 — 1.7 1.7 — — — 200 — — — — 0.5 2.2 — 7.5 1.0 0.3 — 2.8 0.39 0.70 130 µA V nF nF nF nC V °C/W °C/W Ω *1 : Tc measured point is just under the chips. If you use this value, Rth(f-a) should be measured just under the chips. *2 : Typical value is measured by using Shin-etsu Silicone “G-746”. Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temp. (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. Pulse width and repetition rate should be such as to cause neglible temperature rise. Jun. 2004 MITSUBISHI IGBT MODULES CM75RL-12NF HIGH POWER SWITCHING USE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) 12 100 11 50 10 8 0 2 4 6 9 8 4 VGE = 15V 3 2 1 Tj = 25°C Tj = 125°C 0 10 0 50 100 150 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) 10 103 Tj = 25°C 7 8 6 4 IC = 75A IC = 150A 2 EMITTER CURRENT IE (A) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) Tj = 25°C 15 13 0 CAPACITANCE Cies, Coes, Cres (nF) VGE = 20V 5 3 2 102 7 5 3 2 Tj = 25°C Tj = 125°C IC = 30A 0 6 8 10 12 14 16 18 101 20 1 2 3 4 5 EMITTER-COLLECTOR VOLTAGE VEC (V) CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) 102 103 7 5 7 5 3 2 3 2 Cies 101 7 5 3 2 100 Coes 7 5 3 2 0 GATE-EMITTER VOLTAGE VGE (V) Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 COLLECTOR-EMITTER VOLTAGE VCE (V) SWITCHING TIME (ns) COLLECTOR CURRENT IC (A) 150 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) td(off) tf 102 7 5 3 2 td(on) 101 tr 7 5 3 2 100 0 10 2 3 5 7 101 Conditions: VCC = 300V VGE = ±15V RG = 8.3Ω Tj = 125°C Inductive load 2 3 5 7 102 COLLECTOR CURRENT IC (A) Jun. 2004 MITSUBISHI IGBT MODULES CM75RL-12NF REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 7 Conditions: 5 VCC = 300V VGE = ±15V 3 RG = 8.3Ω 2 Tj = 25°C Inductive load 102 7 5 trr 3 Irr 2 101 0 10 2 3 5 7 101 2 3 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part & FWDi part) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) (ratio) REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HIGH POWER SWITCHING USE 5 7 102 SWITCHING LOSS (mJ/pulse) 3 Esw(on) 2 7 5 2 Esw(on) 2 3 5 7 101 2 3 100 0 10 5 7 102 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) GATE RESISTANCE RG (Ω) RECOVERY LOSS vs. IE (TYPICAL) RECOVERY LOSS vs. GATE RESISTANCE (TYPICAL) 100 7 5 3 2 10–2 0 10 Esw(off) 3 7 2 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 Conditions: VCC = 300V 5 VGE = ±15V 3 IC = 75A Tj = 125°C 2 Inductive load C snubber at bus 101 100 3 7 5 3 2 7 Esw(off) 5 5 10–2 102 RECOVERY LOSS (mJ/pulse) SWITCHING LOSS (mJ/pulse) IGBT part: 10–2 Per unit base = 7 5 Rth(j–c) = 0.29°C/W FWDi part: 3 Per unit base = 2 Rth(j–c) = 0.51°C/W 10–3 SWITCHING LOSS vs. GATE RESISTANCE (TYPICAL) 7 7 7 5 3 2 SWITCHING LOSS vs. COLLECTOR CURRENT (TYPICAL) Conditions: VCC = 300V 5 VGE = ±15V 3 RG = 8.3Ω Tj = 125°C 2 Inductive load C snubber at bus 100 10–1 10–1 7 5 3 2 TIME (s) 7 RECOVERY LOSS (mJ/pulse) 2 10–1 EMITTER CURRENT IE (A) 101 10–1 0 10 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 Single Pulse, 7 5 TC = 25°C 3 Under the chip Err Conditions: VCC = 300V VGE = ±15V RG = 8.3Ω Tj = 125°C Inductive load C snubber at bus 2 3 5 7 101 2 3 5 7 102 EMITTER CURRENT IE (A) Err 5 3 2 10–1 7 5 3 2 10–2 0 10 Conditions: VCC = 300V VGE = ±15V IE = 75A Tj = 125°C Inductive load C snubber at bus 2 3 5 7 101 2 3 5 7 102 GATE RESISTANCE RG (Ω) Jun. 2004 MITSUBISHI IGBT MODULES CM75RL-12NF HIGH POWER SWITCHING USE GATE CHARGE CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE VGE (V) 20 IC = 75A VCC = 200V 16 VCC = 300V 12 8 4 0 0 100 200 300 400 500 GATE CHARGE QG (nC) Jun. 2004