AD ADA4938-1ACPZ-R2 Ultralow distortion differential adc driver Datasheet

Ultralow Distortion
Differential ADC Driver
ADA4938-1/ADA4938-2
Data Sheet
FUNCTIONAL BLOCK DIAGRAMS
FEATURES
ADA4938-1
Extremely low harmonic distortion (HD)
−106 dBc HD2 @ 10 MHz
−82 dBc HD2 @ 50 MHz
−109 dBc HD3 @ 10 MHz
−82 dBc HD3 @ 50 MHz
Low input voltage noise: 2.6 nV/√Hz
High speed
−3 dB bandwidth of 1000 MHz, G = +1
Slew rate: 4700 V/μs
0.1 dB gain flatness to 150 MHz
Fast overdrive recovery of 4 ns
1 mV typical offset voltage
Externally adjustable gain
Differential-to-differential or single-ended-to-differential
operation
Adjustable output common-mode voltage
Wide supply voltage range: +5 V to ±5 V
Single or dual amplifier configuration available
13 –VS
14 –VS
16 –VS
–FB 1
12 PD
+IN 2
11 –OUT
–IN 3
10 +OUT
06592-001
VOCM
+VS 8
+VS 7
+VS 6
9
+VS 5
+FB 4
Figure 1. ADA4938-1 Functional Block Diagram
ADA4938-2
19 –OUT1
21 –VS1
20 PD1
22 –VS1
24 +IN1
23 –FB1
TOP VIEW
–IN1 1
18 +OUT1
+FB1 2
17 VOCM1
+VS1 3
16 –VS2
+VS1 4
15 –VS2
–FB2 5
14 PD2
+IN2 6
+OUT2 12
+VS2 10
VOCM2 11
+VS2 9
–IN2 7
13 –OUT2
+FB2 8
ADC drivers
Single-ended-to-differential converters
IF and baseband gain blocks
Differential buffers
Line drivers
06592-202
APPLICATIONS
Figure 2. ADA4938-2 Functional Block Diagram
–50
GENERAL DESCRIPTION
G = +2,
G = +2,
G = +2,
G = +2,
–60
The ADA4938-1/ADA4938-2 are fabricated using the Analog
Devices, Inc., proprietary third generation, high voltage XFCB
process, enabling it to achieve very low levels of distortion with
an input voltage noise of only 2.6 nV/√Hz. The low dc offset and
excellent dynamic performance of the ADA4938-1/ADA4938-2
–80
–90
–100
–110
–120
–130
1
10
FREQUENCY (MHz)
100
06592-002
Full differential and single-ended-to-differential gain configurations
are easily realized with the ADA4938-1/ADA4938-2. A simple
external feedback network of four resistors determines the
closed-loop gain of the amplifier.
VO, dm = 5V p-p
VO, dm = 3.2V p-p
VO, dm = 2V p-p
VO, dm = 1V p-p
–70
SFDR (dBc)
The ADA4938-1/ADA4938-2 are low noise, ultralow distortion,
high speed differential amplifiers. It is an ideal choice for
driving high performance ADCs with resolutions up to 16 bits
from dc to 27 MHz, or up to 12 bits from dc to 74 MHz. The
output common-mode voltage is adjustable over a wide range,
allowing the ADA4938-1/ADA4938-2 to match the input of the
ADC. The internal common-mode feedback loop also provides
exceptional output balance as well as suppression of even-order
harmonic distortion products.
Rev. B
15 –VS
TOP VIEW
Figure 3. SFDR vs. Frequency and Output Voltage
makes them well-suited for a wide variety of data acquisition and
signal processing applications.
The ADA4938-1 (single amplifier) is available in a Pb-free,
3 mm × 3 mm, 16-lead LFCSP. The ADA4938-2 (dual
amplifier) is available in a Pb-free, 4 mm × 4 mm, 24-lead
LFCSP. The pinouts have been optimized to facilitate layout and
minimize distortion. The devices are specified to operate over
the extended industrial temperature range of −40°C to +85°C.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2007–2016 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADA4938-1/ADA4938-2
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 19
Applications ....................................................................................... 1
Analyzing an Application Circuit ............................................ 19
General Description ......................................................................... 1
Setting the Closed-Loop Gain .................................................. 19
Functional Block Diagrams ............................................................. 1
Estimating the Output Noise Voltage ...................................... 19
Revision History ............................................................................... 2
The Impact of Mismatches in the Feedback Networks ......... 20
Specifications..................................................................................... 3
Calculating the Input Impedance of an Application Circuit ..... 20
Dual-Supply Operation ............................................................... 3
Single-Supply Operation ............................................................. 5
Input Common-Mode Voltage Range in Single-Supply
Applications ................................................................................ 20
Absolute Maximum Ratings............................................................ 7
Terminating a Single-Ended Input .......................................... 21
Thermal Resistance ...................................................................... 7
Setting the Output Common-Mode Voltage .......................... 21
ESD Caution .................................................................................. 7
Layout, Grounding, and Bypassing .............................................. 23
Pin Configurations and Function Descriptions ........................... 8
High Performance ADC Driving ................................................. 24
Typical Performance Characteristics ............................................. 9
Outline Dimensions ....................................................................... 25
Test Circuts ...................................................................................... 17
Ordering Guide .......................................................................... 25
Terminology .................................................................................... 18
6/2016—Rev. A to Rev. B
Changed CP-16-2 to CP-16-21, CP-24-1 to CP-24-10.. Throughout
Changed ADA4938-x to ADA4938-1/ADA4938-2 .. Throughout
Changes to Figure 1 and Figure 2 ................................................... 1
Changes to Figure 5 and Figure 6 ................................................... 8
Updated Outline Dimensions ....................................................... 25
Changes to Ordering Guide .......................................................... 25
Added Settling Time Parameter, Table 3 ........................................5
Changes to Linear Output Current Parameter, Table 3 ................5
Changes to Figure 5 and Figure 6 ....................................................8
Added EP Row to Table 7 and EP Row to Table 8 ........................8
Changes to Figure 41...................................................................... 14
Added New Figure 53, Renumbered Sequentially ..................... 16
Changes to Table 9.......................................................................... 19
Added Exposed Pad Notation to Outline Dimensions ............. 25
Changes to Ordering Guide .......................................................... 25
10/2009—Rev. 0 to Rev. A
Added Settling Time Parameter, Table 1 ....................................... 3
Changes to Linear Output Current Parameter, Table 1 ............... 3
11/2007—Revision 0: Initial Version
REVISION HISTORY
Rev. B | Page 2 of 26
Data Sheet
ADA4938-1/ADA4938-2
SPECIFICATIONS
DUAL-SUPPLY OPERATION
TA = 25°C, +VS = 5 V, −VS = −5 V, VOCM = 0 V, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kΩ, unless otherwise noted.
All specifications refer to single-ended input and differential output, unless otherwise noted. For gains other than G = +1, values for RF
and RG are shown in Table 11.
±DIN to ±OUT Performance
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth
Bandwidth for 0.1 dB Flatness
Large Signal Bandwidth
Slew Rate
Settling Time
Overdrive Recovery Time
NOISE/HARMONIC PERFORMANCE
Second Harmonic
Third Harmonic
IMD
IP3
Input Voltage Noise
Noise Figure
Input Current Noise
Crosstalk (ADA4938-2)
INPUT CHARACTERISTICS
Offset Voltage
Conditions
Min
Input Capacitance
Input Common-Mode Voltage
CMRR
OUTPUT CHARACTERISTICS
Output Voltage Swing
Linear Output Current
Output Balance Error
Max
Unit
VOUT = 0.1 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VIN = 5 V to 0 V step, G = +2
1000
150
800
4700
6.5
4
MHz
MHz
MHz
V/µs
ns
ns
VOUT = 2 V p-p, 10 MHz
VOUT = 2 V p-p, 50 MHz
VOUT = 2 V p-p, 10 MHz
VOUT = 2 V p-p, 50 MHz
f1 = 30.0 MHz, f2 = 30.1 MHz
f = 30 MHz, RL, dm = 100 Ω
f = 10 MHz
G = +4, f = 10 MHz
f = 10 MHz
f = 100 MHz
−106
−82
−109
−82
89
45
2.6
15.8
4.8
−85
dBc
dBc
dBc
dBc
dBc
dBm
nV/√Hz
dB
pA/√Hz
dB
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = 0 V
TMIN to TMAX variation
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = ±1 V, f = 1 MHz
1
±4
−13
−0.01
6
3
1
−VS + 0.3 to +VS − 1.6
−75
Maximum ∆VOUT; single-ended output
Per amplifier, RL, dm = 20 Ω, f = 10 MHz
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V; f = 10 MHz
−VS + 1.2 to +VS − 1.2
±75
−60
Input Bias Current
Input Resistance
Typ
−18
TMIN to TMAX variation
Differential
Common mode
Rev. B | Page 3 of 26
4
mV
µV/°C
µA
µA/°C
MΩ
MΩ
pF
V
dB
V
mA
dB
ADA4938-1/ADA4938-2
Data Sheet
VOCM to ±OUT Performance
Table 2.
Parameter
VOCM DYNAMIC PERFORMANCE
−3 dB Bandwidth
Slew Rate
Input Voltage Noise (RTI)
VOCM INPUT CHARACTERISTICS
Input Voltage Range
Input Resistance
Input Offset Voltage
Input Bias Current
VOCM CMRR
Gain
POWER SUPPLY
Operating Range
Quiescent Current
Power Supply Rejection Ratio
POWER DOWN (PD)
PD Input Voltage
Turn-Off Time
Turn-On Time
PD Bias Current
Enabled
Disabled
Conditions
Min
VIN = −3.4 V to +3.4 V, 25% to 75%
VOS, cm = VOUT, cm; VDIN+ = VDIN− = 0 V
∆VOUT, dm/∆VOCM; ∆VOCM = ±1 V
∆VOUT, cm/∆VOCM; ∆VOCM = ±1 V
0.95
Typ
Max
Unit
230
1700
7.5
MHz
V/µs
nV/√Hz
−VS + 1.3 to +VS − 1.3
10
3
0.5
−81
1.00
V
kΩ
mV
µA
dB
V/V
4.5
1.05
11
40
V
mA
µA/°C
mA
dB
Per amplifier
TMIN to TMAX variation
Powered down
∆VOUT, dm/∆VS; ∆VS = ±1 V
37
40
2.0
−80
Powered down
Enabled
≤2.5
≥3
1
200
V
V
µs
ns
PD = 5 V
PD = −5 V
1
−760
µA
µA
OPERATING TEMPERATURE RANGE
−40
Rev. B | Page 4 of 26
3.0
+85
°C
Data Sheet
ADA4938-1/ADA4938-2
SINGLE-SUPPLY OPERATION
TA = 25°C, +VS = 5 V, −VS = 0 V, VOCM = +VS/2, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kΩ, unless otherwise noted.
All specifications refer to single-ended input and differential output, unless otherwise noted. For gains other than G = 1, values for RF and
RG are shown in Table 11.
±DIN to ±OUT Performance
Table 3.
Parameter
DYNAMIC PERFORMANCE
−3 dB Small Signal Bandwidth
Bandwidth for 0.1 dB Flatness
Large Signal Bandwidth
Slew Rate
Settling Time
Overdrive Recovery Time
NOISE/HARMONIC PERFORMANCE
Second Harmonic
Third Harmonic
Input Voltage Noise
Noise Figure
Input Current Noise
Crosstalk (ADA4938-2)
INPUT CHARACTERISTICS
Offset Voltage
Conditions
Min
Input Capacitance
Input Common-Mode Voltage
CMRR
OUTPUT CHARACTERISTICS
Output Voltage Swing
Linear Output Current
Output Balance Error
Max
Unit
VOUT = 0.1 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VOUT = 2 V p-p
VIN = 2.5 V to 0 V step, G = +2
1000
150
750
3900
6.5
4
MHz
MHz
MHz
V/µs
ns
ns
VOUT = 2 V p-p, 10 MHz
VOUT = 2 V p-p, 50 MHz
VOUT = 2 V p-p, 10 MHz
VOUT = 2 V p-p, 50 MHz
f = 10 MHz
G = +4, f = 10 MHz
f = 10 MHz
f = 100 MHz
−110
−79
−100
−79
2.6
15.8
4.8
−85
dBc
dBc
dBc
dBc
nV/√Hz
dB
pA/√Hz
dB
VOS, dm = VOUT, dm/2; VDIN+ = VDIN− = VOCM = 2.5 V
TMIN to TMAX variation
∆VOUT, dm/∆VIN, cm; ∆VIN, cm = ±1 V
1
±4
−13
−0.01
6
3
1
−VS + 0.3 to +VS − 1.6
−80
Maximum ∆VOUT; single-ended output
Per amplifier, RL, dm = 20 Ω, f = 10 MHz
∆VOUT, cm/∆VOUT, dm; ∆VOUT, dm = 1 V
−VS + 1.2 to +VS − 1.2
±65
−60
Input Bias Current
Input Resistance
Typ
−18
TMIN to TMAX variation
Differential
Common mode
Rev. B | Page 5 of 26
4
mV
µV/°C
µA
µA/°C
MΩ
MΩ
pF
V
dB
V
mA
dB
ADA4938-1/ADA4938-2
Data Sheet
VOCM to ±OUT Performance
Table 4.
Parameter
VOCM DYNAMIC PERFORMANCE
−3 dB Bandwidth
Slew Rate
Input Voltage Noise (RTI)
VOCM INPUT CHARACTERISTICS
Input Voltage Range
Input Resistance
Input Offset Voltage
Input Bias Current
VOCM CMRR
Gain
POWER SUPPLY
Operating Range
Quiescent Current
Power Supply Rejection Ratio
POWER DOWN (PD)
PD Input Voltage
Turn-Off Time
Turn-On Time
PD Bias Current
Enabled
Disabled
Conditions
Min
VIN = 1.6 V to 3.4 V, 25% to 75%
VOS, cm = VOUT, cm; VDIN+ = VDIN– = VOCM = 2.5 V
∆VOUT, dm/∆VOCM; ∆VOCM = ±1 V
∆VOUT, cm/∆VOCM; ∆VOCM = ±1 V
0.95
Typ
Unit
400
1700
7.5
MHz
V/µs
nV/√Hz
−VS + 1.3 to +VS − 1.3
10
3
0.5
−89
1.00
V
kΩ
mV
µA
dB
V/V
4.5
34
40
1.0
−80
TMIN to TMAX variation
Powered down
∆VOUT, dm/∆VS; ∆VS = ±1 V
Max
1.05
11
36.5
1.7
V
mA
µA/°C
mA
dB
Powered down
Enabled
≤2.5
≥3
1
200
V
V
µs
ns
PD = 5 V
PD = 0 V
1
−260
µA
µA
OPERATING TEMPERATURE RANGE
−40
Rev. B | Page 6 of 26
+85
°C
Data Sheet
ADA4938-1/ADA4938-2
ABSOLUTE MAXIMUM RATINGS
Parameter
Supply Voltage
Power Dissipation
Storage Temperature Range
Operating Temperature Range
Lead Temperature (Soldering, 10 sec)
Junction Temperature
Rating
12 V
See Figure 4
−65°C to +125°C
−40°C to +85°C
300°C
150°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θJA is specified for the device (including exposed pad) soldered
to a high thermal conductivity 4-layer circuit board, as described in
EIA/JESD 51-7. The exposed pad is not electrically connected to
the device. It is typically soldered to a pad on the PCB that is
thermally and electrically connected to an internal ground plane.
Table 6. Thermal Resistance
Package Type
16-Lead LFCSP (Exposed Pad)
24-Lead LFCSP (Exposed Pad)
θJA
95
65
Unit
°C/W
°C/W
The power dissipated in the package (PD) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive. The quiescent power is the voltage
between the supply pins (VS) times the quiescent current (IS).
The power dissipated due to the load drive depends upon the
particular application. The power due to load drive is calculated
by multiplying the load current by the associated voltage drop
across the device. RMS voltages and currents must be used in
these calculations.
Airflow increases heat dissipation, which effectively reduces θJA.
In addition, more metal directly in contact with the package
leads/exposed pad from metal traces, through-holes, ground,
and power planes reduces the θJA.
Figure 4 shows the maximum safe power dissipation in the
package vs. the ambient temperature for the ADA4938-1,
16-lead LFCSP (95°C/W) and the ADA4938-2, 24-lead LFCSP
(65°C/W) on a JEDEC standard 4-layer board.
3.5
MAXIMUM POWER DISSIPATION (W)
Table 5.
3.0
2.5
ADA4938-2
2.0
1.5
ADA4938-1
1.0
0.5
The maximum safe power dissipation in the ADA4938-1/
ADA4938-2 packages is limited by the associated rise in
junction temperature (TJ) on the die. At approximately 150°C,
which is the glass transition temperature, the plastic changes its
properties. Even temporarily exceeding this temperature limit
can change the stresses that the package exerts on the die,
permanently shifting the parametric performance of the
ADA4938-1/ADA4938-2. Exceeding a junction temperature of
150°C for an extended period can result in changes in the silicon
devices, potentially causing failure.
0
–40 –30 –20 –10
0
10
20
30
40
50
AMBIENT TEMPERATURE (°C)
60
70
80
90
06592-103
Maximum Power Dissipation
Figure 4. Maximum Power Dissipation vs. Temperature, 4-Layer Board
ESD CAUTION
Rev. B | Page 7 of 26
ADA4938-1/ADA4938-2
Data Sheet
10 +OUT
+VS1 3
9
+VS1 4
20 PD1
TOP VIEW
(Not to Scale)
–FB2 5
15 –VS2
14 PD2
+IN2 6
VOCM2 11
+OUT2 12
+VS2 10
06592-003
+VS2 9
13 –OUT2
–IN2 7
+VS 8
+VS 7
+VS 6
+VS 5
ADA4938-2
NOTES
1. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED
TO THE DEVICE. IT IS TYPICALLY SOLDERED TO GROUND
OR A POWER PLANE ON THE PCB THAT IS THERMALLY
CONDUCTIVE.
Figure 5. ADA4938-1 Pin Configuration
Figure 6. ADA4938-2 Pin Configuration
Table 7. ADA4938-1 Pin Function Descriptions
Table 8. ADA4938-2 Pin Function Descriptions
Pin No.
1
2
3
4
5 to 8
9
10
11
12
13 to 16
EP
Pin No.
1
2
3, 4
5
6
7
8
9, 10
11
12
13
14
15, 16
17
18
19
20
21, 22
23
24
EP
Mnemonic
−FB
+IN
−IN
+FB
+VS
VOCM
+OUT
−OUT
PD
−VS
06592-206
TOP VIEW
(Not to Scale)
NOTES
1. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED
TO THE DEVICE. IT IS TYPICALLY SOLDERED TO GROUND
OR A POWER PLANE ON THE PCB THAT IS THERMALLY
CONDUCTIVE.
19 –OUT1
18 +OUT1
17 VOCM1
16 –VS2
–IN 3
VOCM
22 –VS1
–IN1 1
+FB1 2
ADA4938-1
11 –OUT
+FB 4
21 –VS1
24 +IN1
12 PD
+IN 2
+FB2 8
–FB 1
23 –FB1
13 –VS
14 –VS
16 –VS
15 –VS
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
Description
Negative Output Feedback Pin.
Positive Input Summing Node.
Negative Input Summing Node.
Positive Output Feedback Pin.
Positive Supply Voltage.
Output Common-Mode Voltage.
Positive Output for Load Connection.
Negative Output for Load Connection.
Power-Down Pin.
Negative Supply Voltage.
Exposed Paddle. The exposed pad is not
electrically connected to the device. It is
typically soldered to ground or a
power plane on the PCB that is
thermally conductive.
Rev. B | Page 8 of 26
Mnemonic
−IN1
+FB1
+VS1
−FB2
+IN2
−IN2
+FB2
+VS2
VOCM2
+OUT2
−OUT2
PD2
−VS2
VOCM1
+OUT1
−OUT1
PD1
−VS1
−FB1
+IN1
Description
Negative Input Summing Node 1.
Positive Output Feedback Pin 1.
Positive Supply Voltage 1.
Negative Output Feedback Pin 2.
Positive Input Summing Node 2.
Negative Input Summing Node 2.
Positive Output Feedback Pin 2.
Positive Supply Voltage 2.
Output Common-Mode Voltage 2.
Positive Output 2.
Negative Output 2.
Power-Down Pin 2.
Negative Supply Voltage 2.
Output Common-Mode Voltage 1.
Positive Output 1.
Negative Output 1.
Power-Down Pin 1.
Negative Supply Voltage 1.
Negative Output Feedback Pin 1.
Positive Input Summing Node 1.
Exposed Paddle. The exposed pad is
not electrically connected to the
device. It is typically soldered to
ground or a power plane on the PCB
that is thermally conductive.
Data Sheet
ADA4938-1/ADA4938-2
TYPICAL PERFORMANCE CHARACTERISTICS
3
0
0
–3
–6
–9
G
G
G
G
–12
10
100
1000
FREQUENCY (MHz)
= +1
= +2
= +3.16
= +5
1
10
100
1000
FREQUENCY (MHz)
Figure 10. Large Signal Frequency Response for Various Gains
3
0
0
–3
–3
GAIN (dB)
3
–6
–6
–9
VS = +5V
VS = ±5V
10
100
1000
FREQUENCY (MHz)
–12
1
0
0
NORMALIZED GAIN (dB)
3
–3
–6
–3
–6
–9
–40°C
+25°C
+85°C
10
100
FREQUENCY (MHz)
Figure 9. Small Signal Frequency Response for
Various Temperatures, VOUT = 0.1 V p-p
1000
–40°C
+25°C
+85°C
–12
06592-107
1
1000
Figure 11. Large Signal Response for Various Supplies
3
–12
100
FREQUENCY (MHz)
Figure 8. Small Signal Response for Various Supplies, VOUT = 0.1 V p-p
–9
10
1
10
100
FREQUENCY (MHz)
1000
06592-110
1
06592-106
–12
VS = +5V
VS = ±5V
06592-109
–9
NORMALIZED GAIN (dB)
G
G
G
G
–12
Figure 7. Small Signal Frequency Response for Various Gains, VOUT = 0.1 V p-p
GAIN (dB)
–6
–9
= +1
= +2
= +3.16
= +5
1
–3
06592-108
NORMALIZED GAIN (dB)
3
06592-105
NORMALIZED GAIN (dB)
TA = 25°C, +VS = 5 V, −VS = −5 V, VOCM = 0 V, RT = 61.9 Ω, RG = RF = 200 Ω, G = +1, RL, dm = 1 kΩ, unless otherwise noted.
All measurements were performed with single-ended input and differential output, unless otherwise noted. For gains other than G = +1,
values for RF and RG are shown in Table 11.
Figure 12. Large Signal Frequency Response for Various Temperatures
Rev. B | Page 9 of 26
Data Sheet
3
0
0
–3
–3
–6
–9
–12
–15
RL = 1kΩ
RL = 100Ω
RL = 200Ω
1
10
100
1000
1
0
NORMALIZED GAIN (dB)
0
–3
–6
1
10
100
1000
FREQUENCY (MHz)
Figure 14. Small Signal Frequency Response for
Various Gains, VS = 5 V, VOUT = 0.1 V p-p
–6
NORMALIZED GAIN (dB)
0
–3
–6
= +1
= +2
= +3.16
= +5
FREQUENCY (MHz)
1000
–3
–6
G
G
G
G
–12
06592-113
100
1000
0
–9
10
100
Figure 17. Large Signal Frequency Response for Various Gains, VS = 5 V
3
1
10
FREQUENCY (MHz)
3
–12
= +1
= +2
= +3.16
= +5
1
6
G
G
G
G
G
G
G
G
–12
6
–9
1000
–3
–9
= +1
= +2
= +3.16
= +5
06592-112
–12
100
Figure 16. Large Signal Frequency Response for Various Loads
3
G
G
G
G
10
FREQUENCY (MHz)
3
–9
RL = 1kΩ
RL = 100Ω
RL = 200Ω
–21
Figure 13. Small Signal Frequency Response for
Various Loads, VOUT = 0.1 V p-p
NORMALIZED GAIN (dB)
–15
–18
FREQUENCY (MHz)
NORMALIZED GAIN (dB)
–12
06592-115
–21
–9
1
= +1
= +2
= +3.16
= +5
10
100
1000
FREQUENCY (MHz)
Figure 15. Small Signal Response for Various Gains, RF = 402 Ω, VOUT = 0.1 V p-p
Rev. B | Page 10 of 26
Figure 18. Large Signal Response for Various Gains, RF = 402 Ω
06592-116
–18
–6
06592-114
NORMALIZED GAIN (dB)
3
06592-111
NORMALIZED GAIN (dB)
ADA4938-1/ADA4938-2
ADA4938-1/ADA4938-2
6
3
3
0
–3
–6
G
G
G
G
–9
–12
= +1
= +2
= +3.16
= +5
1
–3
–6
G
G
G
G
–9
10
100
1000
FREQUENCY (MHz)
–12
10
100
1000
FREQUENCY (MHz)
Figure 22. Large Signal Frequency Response for Various Gains, RF = 402 Ω,
VS = 5 V
3
0
0
–3
–3
GAIN (dB)
3
–6
–6
–9
VS = +5V
VS = ±5V
10
100
1000
FREQUENCY (MHz)
1
GAIN (dB)
100
1000
FREQUENCY (MHz)
06592-119
10
1000
Figure 23. VOUT, cm Large Signal Frequency Response
RL, dm = 1kΩ
RL, dm = 100Ω
RL, dm = 200Ω
1
100
FREQUENCY (MHz)
Figure 20. VOUT, cm Small Signal Frequency Response, VOUT = 0.1 V p-p
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–0.8
–0.9
–1.0
10
Figure 21. 0.1 dB Flatness Response for Various Loads, ADA4938-1,
VOUT = 0.1 V p-p
1.5
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
–0.1
–0.2
–0.3
–0.4
–0.5
RL, dm = 1kΩ
RL, dm = 100Ω
RL, dm = 200Ω
1
10
100
1000
FREQUENCY (MHz)
Figure 24. 0.1 dB Flatness Response for Various Loads, ADA4938-2,
VOUT = 0.1 V p-p
Rev. B | Page 11 of 26
06592-122
1
VS = +5V
VS = ±5V
–12
06592-118
–12
06592-121
–9
NORMALIZED GAIN (dB)
= +1
= +2
= +3.16
= +5
1
Figure 19. Small Signal Frequency Response for Various Gains, RF = 402 Ω,
VS = 5 V, VOUT = 0.1 V p-p
GAIN (dB)
0
06592-120
NORMALIZED GAIN (dB)
6
06592-117
NORMALIZED GAIN (dB)
Data Sheet
ADA4938-1/ADA4938-2
HD2,
HD3,
HD2,
HD3,
–50
–60
–70
–80
–90
–90
–110
–110
–120
06592-123
10
100
FREQUENCY (MHz)
0
HD2,
HD3,
HD2,
HD3,
HD2,
HD3,
–50
–60
–70
G
G
G
G
G
G
–40
= +1
= +1
= +2
= +2
= +5
= +5
–60
–90
–100
4
5
6
7
8
9
RL
RL
RL
RL
RL
RL
= 1kΩ
= 1kΩ
= 200Ω
= 200Ω
= 100Ω
= 100Ω
–70
–80
–90
–110
–120
10
100
–120
FREQUENCY (MHz)
1
100
FREQUENCY (MHz)
Figure 26. Harmonic Distortion vs. Frequency and Gain
HD2,
HD3,
HD2,
HD3,
10
06592-127
1
06592-124
–130
Figure 29. Harmonic Distortion vs. Frequency for Various Loads
–40
10MHz
10MHz
70MHz
70MHz
HD2,
HD3,
HD2,
HD3,
–50
10MHz
10MHz
70MHz
70MHz
–60
DISTORTION (dBc)
–70
–80
–90
–100
–70
–80
–90
–100
–110
–110
–130
–3.3 –2.7 –2.1 –1.5 –0.9 –0.3
0.3
0.9
1.5
2.1
2.7
VOCM (V)
3.3
06592-128
–120
–120
1.7
1.9
2.1
2.3
2.5
2.7
2.9
3.1
3.3
VOCM (V)
Figure 30. Harmonic Distortion vs. VOCM and Frequency, VS = 5 V
Figure 27. Harmonic Distortion vs. VOCM and Frequency
Rev. B | Page 12 of 26
06592-125
–60
3
–100
–110
–50
HD2,
HD3,
HD2,
HD3,
HD2,
HD3,
–50
–80
–40
2
Figure 28. Harmonic Distortion vs. VOUT and Supply Voltage
DISTORTION (dBc)
–40
1
VOUT, dm (V)
Figure 25. Harmonic Distortion vs. Frequency and Supply Voltage
DISTORTION (dBc)
–80
–100
–120
DISTORTION (dBc)
–70
–100
1
HD2, +5V
HD3, +5V
HD2, ±5V
HD3, ±5V
–50
DISTORTION (dBc)
DISTORTION (dBc)
–60
–40
VS = +5V
VS = +5V
VS = ±5V
VS = ±5V
06592-126
–40
Data Sheet
Data Sheet
ADA4938-1/ADA4938-2
0
–10
–30
–40
PSRR (dB)
–50
–60
–70
–80
–90
–110
29.5
29.6
29.7
29.8
29.9
30.0
30.1
30.2
30.3
30.4
30.5
FREQUENCY (MHz)
06592-129
–100
1
10
100
1000
Figure 34. PSRR vs. Frequency
–20
0
–25
–5
–30
–10
–35
–15
RETURN LOSS (dB)
–40
–45
–50
–55
VS = ±5V
–60
–65
–25
S22
–30
–35
–40
VS = +5V
–70
–20
S11
–45
–75
–50
–80
1
10
100
1000
FREQUENCY (MHz)
–55
06592-130
–85
0.1
1
100
1000
FREQUENCY (MHz)
Figure 32. VIN CMRR vs. Frequency
Figure 35. Return Loss (S11, S22) vs. Frequency
–15
–40
RL = 1kΩ
RL = 200Ω
RL = 100Ω
RL = 200Ω
–20
10
06592-134
VIN CMRR (dB)
+PSRR
FREQUENCY (MHz)
Figure 31. Intermodulation Distortion
–50
–25
–60
–30
SFDR (dBc)
–35
–40
–45
–70
–80
–90
–50
–100
–55
–110
–60
–65
1
10
100
FREQUENCY (MHz)
1000
06592-131
OUTPUT BALANCE (dB)
–PSRR
Figure 33. Output Balance vs. Frequency
–120
1
10
100
FREQUENCY (MHz)
Figure 36. SFDR vs. Frequency for Various Loads
Rev. B | Page 13 of 26
06592-135
DISTORTION (dBc)
–20
0
–5
–10
–15
–20
–25
–30
–35
–40
–45
–50
–55
–60
–65
–70
–75
–80
–85
0.1
06592-132
10
ADA4938-1/ADA4938-2
Data Sheet
26
100
24
INPUT VOLTAGE NOISE (nV/ Hz)
G = +1
NOISE FIGURE (dB)
22
20
G = +2
18
G = +4
16
14
10
100
500
FREQUENCY (MHz)
1
10
06592-136
10
10
10k
100k
1M
10M
100M
Figure 40. Input Voltage Noise vs. Frequency
10
4.0
8
3.5
6
3.0
4
PD INPUT
VOLTAGE (V)
2.5
2
0
–2
2.0
1.5
1.0
–4
NEGATIVE OUTPUT
0.5
–6
0
5
10
15
20
25
30
35
40
45
50
55
60
TIME (5ns/DIV)
–0.5
06592-137
–10
06592-140
0
VIN × 3.16
VOUT, dm
–8
TIME (200ns/DIV)
Figure 41. Power-Down Response Time
Figure 38. Overdrive Recovery Time (Pulse Input)
45
12
10
40
8
+85°C
+25°C
–40°C
35
6
CURRENT (mA)
4
VOLTAGE (V)
1k
FREQUENCY (Hz)
Figure 37. Noise Figure vs. Frequency
VOLTAGE (V)
100
06592-039
12
2
0
–2
–4
–6
30
25
20
15
10
–8
0
50
100
150
200
250
300
TIME (50ns/DIV)
350
400
450
500
0
2.0
06592-138
–12
Figure 39. Overdrive Amplitude Characteristics (Triangle Wave Input)
2.2
2.4
2.6
2.8
3.0
3.2
VOLTAGE (V)
3.4
3.6
3.8
4.0
06592-141
5
VIN × 3.16
VOUT, dm
–10
Figure 42. Supply Current vs. Power-Down Voltage and Temperature
Rev. B | Page 14 of 26
Data Sheet
ADA4938-1/ADA4938-2
0.20
3.0
2.5
0.15
2.0
1.5
1.0
0.05
VOLTAGE (V)
0
–0.05
0.5
0
–0.5
–1.0
–0.10
–1.5
–2.0
–0.15
–3.0
TIME (1ns/DIV)
Figure 46. Large Signal Transient Response
2.5
0.08
2.0
0.06
1.5
0.04
1.0
VOLTAGE (V)
0.10
0.02
0
–0.02
0.5
0
–0.5
–0.04
–1.0
–0.06
–1.5
–0.08
–2.0
–0.10
06592-043
VOLTAGE (V)
Figure 43. Small Signal Transient Response, VOUT = 0.1 V p-p
TIME (2ns/DIV)
–2.5
Figure 44. VOCM Small Signal Transient Response, VOUT = 0.1 V p-p
CURRENT (mA)
50
3
+85°C
+25°C
–40°C
ALL CURVES ARE
NORMALIZED TO VOCM = 0V
0
40
30
20
–3
VOCM = –3.7V
VOCM = –3.5V
VOCM = –3V
VOCM = 0V
VOCM = +3V
VOCM = +3.5V
VOCM = +3.7V
–6
–9
10
2.2
2.4
2.6
2.8
3.0
3.2
VOLTAGE (V)
3.4
3.6
3.8
4.0
–12
06592-144
0
2.0
TIME (2ns/DIV)
Figure 47. VOCM Large Signal Transient Response
CLOSED-LOOP GAIN (dB)
60
06592-046
TIME (1ns/DIV)
06592-145
06592-142
–2.5
–0.20
Figure 45. Supply Current vs. Power-Down Voltage and Temperature, VS = 5 V
1
10
100
FREQUENCY (MHz)
1000
06592-048
VOLTAGE (V)
0.10
Figure 48. VOUT, dm Small Signal Frequency Response for Various VOCM,
VOUT = 0.1 V p-p
Rev. B | Page 15 of 26
ADA4938-1/ADA4938-2
Data Sheet
–40
55
–50
–60
50
CROSSTALK (dB)
IP3 100Ω
45
40
–80
–90
–100
INPUT2, OUTPUT1
–110
–120
06592-049
35
30
10
–130
–140
0.3
100
FREQUENCY (MHz)
10
100
1000
FREQUENCY (MHz)
Figure 49. IP3 vs. Frequency
3
1
06592-888
IP3 (dBm)
INPUT1, OUTPUT2
–70
Figure 52. Crosstalk vs. Frequency for ADA4938-2
2
ALL CURVES ARE
NORMALIZED TO VOCM = 0V
1.0
VIN
0
0.1
0
–0.1
VOCM = –3.7V
VOCM = –3.5V
VOCM = –3V
VOCM = 0V
VOCM = +3V
VOCM = +3.5V
VOCM = +3.7V
–12
1
–1
10
100
1000
FREQUENCY (MHz)
Figure 50. VOUT, dm Large Signal Frequency Response for Various VOCM
100
1
10
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
100M
06592-051
10
Figure 51. Input Current Noise vs. Frequency
Rev. B | Page 16 of 26
SETTLING ERROR
–2
–0.5
–1.0
TIME (1ns/DIV)
Figure 53. 0.1% Settling Time
SETTLING ERROR (%)
0.5
06592-153
VIN (V)
–6
–9
INPUT CURRENT NOISE (pA/ Hz)
1
–3
06592-50
CLOSED-LOOP GAIN (dB)
0
Data Sheet
ADA4938-1/ADA4938-2
TEST CIRCUTS
200Ω
+5V
50Ω
200Ω
VIN
VOCM
61.9Ω
ADA4938
1kΩ
200Ω
06592-246
27.5Ω
–5V
200Ω
Figure 54. Equivalent Basic Test Circuit
200Ω
+5V
50Ω
200Ω
VIN
50Ω
VOCM
61.9Ω
ADA4938
200Ω
50Ω
06592-247
27.5Ω
–5V
200Ω
Figure 55. Test Circuit for Output Balance
200Ω
+5V
VIN
FILTER
61.9Ω
0.1µF
200Ω
VOCM
412Ω
FILTER
ADA4938
0.1µF
200Ω
412Ω
27.5Ω
–5V
200Ω
Figure 56. Test Circuit for Distortion Measurements
Rev. B | Page 17 of 26
06592-248
50Ω
ADA4938-1/ADA4938-2
Data Sheet
TERMINOLOGY
Common-Mode Voltage
The common-mode voltage is the average of two node voltages.
The output common-mode voltage is defined as
–FB
RG
RF
ADA4938
+IN
–OUT
VOCM
RL, dm VOUT, dm
RF
–IN
+OUT
+FB
VOUT, cm = (V+OUT + V−OUT)/2
06592-004
RG
Figure 57. Circuit Definitions
Differential Voltage
The differential voltage is the difference between two node
voltages. For example, the output differential voltage (or
equivalently, output differential-mode voltage) is defined as
VOUT, dm = (V+OUT − V−OUT)
where V+OUT and V−OUT refer to the voltages at the +OUT and
−OUT terminals with respect to a common reference.
Balance
Balance is a measure of how well differential signals are matched in
amplitude and are exactly 180° apart in phase. Balance is most
easily determined by placing a well-matched resistor divider
between the differential voltage nodes and comparing the
magnitude of the signal at the midpoint of the divider with
the magnitude of the differential signal. By this definition,
output balance is the magnitude of the output common-mode
voltage divided by the magnitude of the output differential
mode voltage.
Output Balance Error =
Rev. B | Page 18 of 26
VOUT , cm
VOUT , dm
Data Sheet
ADA4938-1/ADA4938-2
THEORY OF OPERATION
The ADA4938-1/ADA4938-2 differ from conventional op amps
in that they have two outputs whose voltages move in opposite
directions. Like an op amp, it relies on open-loop gain and
negative feedback to force these outputs to the desired voltages.
The ADA4938-1/ADA4938-2 behave much like a standard
voltage feedback op amp and makes it easier to perform singleended-to-differential conversions, common-mode level shifting,
and amplifications of differential signals. Also like an op amp,
the ADA4938-1/ADA4938-2 have high input impedance and
low output impedance.
Two feedback loops are employed to control the differential and
common-mode output voltages. The differential feedback, set
with external resistors, controls only the differential output
voltage. The common-mode feedback controls only the commonmode output voltage. This architecture makes it easy to set the
output common-mode level to any arbitrary value. It is forced,
by internal common-mode feedback, to be equal to the voltage
applied to the VOCM input, without affecting the differential
output voltage.
The ADA4938-1/ADA4938-2 architecture results in outputs
that are highly balanced over a wide frequency range without
requiring tightly matched external components. The commonmode feedback loop forces the signal component of the output
common-mode voltage to zero, which results in nearly perfectly
balanced differential outputs that are identical in amplitude and
are exactly 180° apart in phase.
SETTING THE CLOSED-LOOP GAIN
The differential-mode gain of the circuit in Figure 57 can be
determined by
VOUT , dm
VIN , dm
=
RF
RG
This assumes the input resistors (RG) and feedback resistors (RF)
on each side are equal.
ESTIMATING THE OUTPUT NOISE VOLTAGE
The differential output noise of the ADA4938-1/ADA4938-2
can be estimated using the noise model in Figure 58. The inputreferred noise voltage density, vnIN, is modeled as a differential
input, and the noise currents, inIN− and inIN+, appear between
each input and ground. The noise currents are assumed to be
equal and produce a voltage across the parallel combination of
the gain and feedback resistances. vn, cm is the noise voltage
density at the VOCM pin. Each of the four resistors contributes
(4kTR)1/2. Table 9 summarizes the input noise sources, the
multiplication factors, and the output-referred noise density terms.
VnRG1
RG1
VnRF1
RF1
inIN+
+
inIN–
VnIN
ADA4938
ANALYZING AN APPLICATION CIRCUIT
VnOD
The ADA4938-1/ADA4938-2 use open-loop gain and negative
feedback to force its differential and common-mode output
voltages in such a way as to minimize the differential and
common-mode error voltages. The differential error voltage is
defined as the voltage between the differential inputs labeled
+IN and −IN (see Figure 57). For most purposes, this voltage
can be assumed to be zero. Similarly, the difference between the
actual output common-mode voltage and the voltage applied to
VOCM can also be assumed to be zero. Starting from these two
assumptions, any application circuit can be analyzed.
VnRG2
RG2
RF2
VnCM
VnRF2
06592-005
VOCM
Figure 58. ADA4938-1/ADA4938-2 Noise Model
Table 9. Output Noise Voltage Density Calculations
Input Noise Contribution
Differential Input
Inverting Input
Noninverting Input
VOCM Input
Gain Resistor, RG1
Gain Resistor, RG2
Feedback Resistor, RF1
Feedback Resistor, RF2
Input Noise Term
vnIN
inIN−
inIN+
vn, cm
vnRG1
vnRG2
vnRF1
vnRF2
Input Noise
Voltage Density
vnIN
inIN− × (RG2||RF2)
inIN+ × (RG1||RF1)
vn, cm
(4kTRG1)1/2
(4kTRG2)1/2
(4kTRF1)1/2
(4kTRF2)1/2
Rev. B | Page 19 of 26
Output
Multiplication Factor
GN
GN
GN
GN(β1 − β2)
GN(1 − β1)
GN(1 − β2)
1
1
Output Noise
Voltage Density Term
vnO1 = GN(vnIN)
vnO2 = GN[inIN− × (RG2||RF2)]
vnO3 = GN[inIN+ × (RG1||RF1)]
vnO4 = GN(β1 − β2)(vnCM)
vnO5 = GN(1 − β1)(4kTRG1)1/2
vnO6 = GN(1 − β2)(4kTRG2)1/2
vnO7 = (4kTRF1)1/2
vnO8 = (4kTRF2)1/2
ADA4938-1/ADA4938-2
Data Sheet
Similar to the case of a conventional op amp, the output noise
voltage densities can be estimated by multiplying the inputreferred terms at +IN and −IN by the appropriate output factor,
where:
2
GN 
is the circuit noise gain.
β1  β2 
RG1
RG2
β1 
and β2 
are the feedback factors.
RF1  RG1
RF2  RG2
CALCULATING THE INPUT IMPEDANCE OF AN
APPLICATION CIRCUIT
The effective input impedance of a circuit depends on whether
the amplifier is being driven by a single-ended or differential
signal source. For balanced differential input signals, as shown
in Figure 59, the input impedance (RIN, dm) between the inputs
(+DIN and −DIN) is simply RIN, dm = 2 × RG.
RF
ADA4938
When RF1/RG1 = RF2/RG2, β1 = β2 = β, and the noise gain
becomes
+DIN
1
R
1 F
β
RG
–DIN
Note that the output noise from VOCM goes to zero in this case.
The total differential output noise density, vnOD, is the root-sumsquare of the individual output noise terms.
VOCM
RG
VOUT, dm
–IN
RF
Figure 59. ADA4938-1/ADA4938-2 Configured for Balanced (Differential) Inputs
For an unbalanced, single-ended input signal (see Figure 60),
the input impedance is
8
2
 vnOi
i 1
THE IMPACT OF MISMATCHES IN THE FEEDBACK
NETWORKS
RIN , cm
As previously mentioned, even if the external feedback networks
(RF/RG) are mismatched, the internal common-mode feedback
loop still forces the outputs to remain balanced. The amplitudes
of the signals at each output remain equal and 180° out of phase.
The input-to-output, differential mode gain varies proportionately
to the feedback mismatch, but the output balance is unaffected.
RF
+VS
RG
RS
VOCM
RT
ADA4938
VOUT, dm
RG
As well as causing a noise contribution from VOCM, ratio matching
errors in the external resistors result in a degradation of the
ability of the circuit to reject input common-mode signals, much
the same as for a four-resistor difference amplifier made from a
conventional op amp.
In addition, if the dc levels of the input and output commonmode voltages are different, matching errors result in a small
differential-mode output offset voltage. When G = +1, with a
ground referenced input signal and the output common-mode
level set to 2.5 V, an output offset of as much as 25 mV (1% of
the difference in common-mode levels) can result if 1% tolerance
resistors are used. Resistors of 1% tolerance result in a worst-case
input CMRR of about 40 dB, a worst-case differential-mode
output offset of 25 mV due to 2.5 V level-shift, and no significant
degradation in output balance error.




R
G


RF
1





2
R
R


F 
G

RS
RT
RF
06592-007
v nOD 
+IN
06592-006
GN 
+VS
RG
Figure 60. ADA4938-1/ADA4938-2 Configured for Unbalanced
(Single-Ended) Input
The input impedance of the circuit is effectively higher than it
would be for a conventional op amp connected as an inverter
because a fraction of the differential output voltage appears at
the inputs as a common-mode signal, partially bootstrapping
the voltage across the Input Gain Resistor RG.
INPUT COMMON-MODE VOLTAGE RANGE IN
SINGLE-SUPPLY APPLICATIONS
The ADA4938-1/ADA4938-2 is optimized for level-shifting,
ground-referenced input signals. As such, the center of the input
common-mode range is shifted approximately 1 V down from
midsupply. The input common-mode range at the summing
nodes of the amplifier is from 0.3 V above −VS to 1.6 V below
+VS. To avoid clipping at the outputs, the voltage swing at the
+IN and −IN terminals must be confined to these ranges.
Rev. B | Page 20 of 26
Data Sheet
ADA4938-1/ADA4938-2
RF
TERMINATING A SINGLE-ENDED INPUT
200Ω
+VS
Using an example with an input source of 2 V, a source
resistance of 50 Ω, and an overall gain of 1 V/V, four simple
steps must be followed to terminate a single-ended input to the
ADA4938-1/ADA4938-2.
VTH
1.1V
RTH
RG
27.4Ω
200Ω
VOCM
1. The input impedance is calculated using the formula
RF
RTS
27.4Ω
VS
2V
+VS
200Ω
Figure 64. Balancing Gain Resistor RG
To make the output voltage VO = 1 V, RF is calculated
using
a.
RG
50Ω
200Ω
VOCM
ADA4938
RL
VO
 V  (RG  RTS )   1 (200  27.4) 

RF   O
  207 Ω
 
VTH
1.1



RG
200Ω
200Ω
To return the overall gain to 1 V/V (VO = VS = 2 V), RF
should be
b.
06592-081
–VS
RF
 V  (RG  RTS )   2  (200  27.4) 

RF   O
  414 Ω
 
VTH
1.1



Figure 61. Single-Ended Input Impedance
2. To provide a 50 Ω termination for the source, the Resistor RT
is calculated such that RT || RIN = 50 Ω, or RT = 61.9 Ω.
RF
RF
RS
VS
2V
+VS
200Ω
+VS
50Ω
RS
RG
50Ω
RT
61.9Ω
VS
2V
200Ω
VOCM
ADA4938
RL
RTS
27.4Ω
200Ω
VOCM
ADA4938
RL
–VS
06592-082
RF
200Ω
3. To compensate for the imbalance of the gain resistors, a correction resistor (RTS) is added in series with the inverting Input
Gain Resistor RG. RTS is equal to the Thevenin equivalent of
the source resistance (RS||RT).
RTH
The VOCM pin of the ADA4938-1/ADA4938-2 is internally
biased at a voltage approximately equal to the midsupply point
(average value of the voltages on V+ and V−). Relying on this
internal bias results in an output common-mode voltage that is
within about 100 mV of the expected value.
In cases where more accurate control of the output commonmode level is required, it is recommended that an external
source or resistor divider (10 kΩ or greater resistors) be used.
27.4Ω
06592-083
VTH
1.1V
Figure 65. Complete Single-Ended-to-Differential System
SETTING THE OUTPUT COMMON-MODE VOLTAGE
Figure 62. Adding Termination Resistor RT
RS
VO
200Ω
RF
–VS
VS
2V
RG
RT
61.9Ω
RG
200Ω
RT
61.9Ω
50Ω
VO
RG
50Ω
06592-084
–VS
RF
4. Finally, the feedback resistor is recalculated to adjust the
output voltage to the desired level.
200Ω
RS
200Ω
06592-085
RIN
267Ω
VO
RL 0.97V
RG

 


 

R
200
G


  267 Ω



200
RF

 

 1  2  R  R    1  2  (200  200) 

F  
G

R IN
ADA4938
Figure 63. Calculating Thevenin Equivalent
RTS = RTH = RS || RT = 27.4 Ω. Note that VTH is not equal to
VS/2, which would be the case if the amplifier circuit did
not affect the termination.
It is also possible to connect the VOCM input to a common-mode
level (CML) output of an ADC. However, care must be taken to
ensure that the output has sufficient drive capability. The input
impedance of the VOCM pin is approximately 10 kΩ. If multiple
ADA4938-1/ADA4938-2 devices share one reference output, it is
recommended that a buffer be used.
Rev. B | Page 21 of 26
ADA4938-1/ADA4938-2
Data Sheet
Table 10 and Table 11 list several common gain settings, associated
resistor values, input impedances, and output noise densities for
both balanced and unbalanced input configurations. Also shown
are the input common-mode voltages under the given conditions
for different VOCM settings for both a 10 V single supply and
±5 V dual supplies.
Table 10. Differential Ground-Referenced Input, DC-Coupled; See Figure 59
Nominal
Gain (V/V)
1
2
3.16
5
RF (Ω)
200
402
402
402
RG (Ω)
200
200
127
80.6
RIN, dm (Ω)
400
400
254
161
Differential
Output
Noise Density
(nV/√Hz)
6.5
10.4
13.4
18.2
Common-Mode Level at +IN, −IN (V)
+VS = 10 V, −VS = 0 V
+VS = 5 V, −VS = −5 V
VOUT, dm = 2.0 V p-p
VOUT, dm = 2.0 V p-p
VOCM = 2.5 V
VOCM = 3.5 V
VOCM = 1.0 V
VOCM = 3.2 V
1.25
1.75
0.50
1.60
0.83
1.16
0.33
1.06
0.60
0.84
0.24
0.77
0.42
0.58
0.17
0.53
Table 11. Single-Ended Ground-Referenced Input, DC-Coupled, RS = 50 Ω; See Figure 60
Nominal
Gain (V/V)
1
2
3.16
5
1
2
RF (Ω)
200
402
402
402
RG1 (Ω)
200
200
127
80.6
RT (Ω)
60.4
60.4
66.5
76.8
RIN,se (Ω)
267
300
205
138
RG2 (Ω) 1
226
226
158
110
Overall
Gain (V/V) 2
0.9
1.8
2.5
3.6
Differential
Output
Noise
Density
(nV/√Hz)
6.2
9.8
11.8
14.7
RG2 = RG1 + RTS.
Includes effects of termination match.
Rev. B | Page 22 of 26
Common-Mode Swing at +IN, −IN (V)
+VS = 10 V, −VS = 0 V
VOUT, dm = 2.0 V p-p
VOCM = 2.5 V
VOCM = 3.5 V
1.00 to 1.50
1.50 to 2.00
0.66 to 1.00
1.00 to 1.33
0.48 to 0.72
0.72 to 0.96
0.33 to 0.50
0.50 to 0.67
+VS = 5 V, −VS = −5 V
VOUT, dm = 2.0 V p-p
VOCM = 0 V
VOCM = 2.0 V
−0.25 to +0.25
0.75 to 1.25
−0.17 to +0.17
0.50 to 0.83
−0.12 to +0.12
0.36 to 0.60
−0.08 to +0.08
0.25 to 0.42
Data Sheet
ADA4938-1/ADA4938-2
LAYOUT, GROUNDING, AND BYPASSING
As high speed devices, the ADA4938-1/ADA4938-2 are
sensitive to the PCB environment in which it operates.
Realizing its superior performance requires attention to the
details of high speed PCB design.
Bypass the power supply pins as close to the device as possible
and directly to a nearby ground plane. Use high frequency ceramic
chip capacitors. It is recommended that two parallel bypass capacitors (1000 pF and 0.1 μF) be used for each supply with the
1000 pF capacitor placed closer to the device; if further away,
provide low frequency bypassing using 10 μF tantalum capacitors
from each supply to ground.
The first requirement is a solid ground plane that covers as much of
the board area around the ADA4938-1/ADA4938-2 as possible.
However, the area near the feedback resistors (RF), input gain
resistors (RG), and the input summing nodes should be cleared
of all ground and power planes (see Figure 66). Clearing the
ground and power planes minimizes any stray capacitance at
these nodes and prevents peaking of the response of the
amplifier at high frequencies.
Signal routing should be short and direct to avoid parasitic
effects. Wherever complementary signals exist, provide a
symmetrical layout to maximize balanced performance.
When routing differential signals over a long distance, keep
PCB traces close together and twist any differential wiring to
minimize loop area. Doing this reduces radiated energy and
makes the circuit less susceptible to interference.
The thermal resistance, θJA, is specified for the device, including
the exposed pad, soldered to a high thermal conductivity 4-layer
circuit board, as described in EIA/JESD 51-7. The exposed pad
is electrically isolated from the device; therefore, it can be connected to a ground plane using vias. Examples of the thermal
attach pad and via structure for the ADA4938-1 are shown in
Figure 67 and Figure 68.
1.30
0.80
06592-060
1.30 0.80
06592-008
Figure 67. Recommended PCB Thermal Attach Pad (ADA4938-1)
(Dimensions in mm)
Figure 66. Ground and Power Plane Voiding in Vicinity of RF and RG
1.30
TOP METAL
GROUND PLANE
0.30
PLATED
VIA HOLE
06592-061
POWER PLANE
BOTTOM METAL
Figure 68. Cross-Section of a 4-Layer PCB (ADA4938-1) Showing a Thermal Via Connection to the Buried Ground Plane (Dimensions in mm)
Rev. B | Page 23 of 26
ADA4938-1/ADA4938-2
Data Sheet
HIGH PERFORMANCE ADC DRIVING
The circuit in Figure 70 shows a simplified front-end connection
for an ADA4938-1/ADA4938-2 driving an AD9246, 14-bit,
125 MSPS ADC. The AD9246 achieves its optimum
performance when it is driven differentially. The ADA4938-1/
ADA4938-2 eliminate the need for a transformer to drive the
ADC, performs a single-ended-to-differential conversion,
buffers the driving signal, and provides appropriate level
shifting for dc coupling.
The ADA4938-1/ADA4938-2 are configured with dual ±5 V
supplies and a gain of ~2 V/V for a single-ended input to
differential output. The 76.8 Ω termination resistor, in parallel
with the single-ended input impedance of 137 Ω, provides a 50 Ω
dc termination for the source. The additional 30.1 Ω (120 Ω total)
at the inverting input balances the parallel dc impedance of the
50 Ω source and the termination resistor driving the
noninverting input.
The signal generator has a symmetric, ground-referenced
bipolar output. The VOCM pin of the ADA4938-1/ADA4938-2 is
connected to the CML pin of the AD9246 to set the output
common-mode level at the appropriate point. A portion of this
is fed back to the summing nodes, biasing −IN and +IN at 0.55 V.
For a common-mode voltage of 0.9 V, each ADA4938-1/
ADA4938-2 output swings between 0.4 V and 1.4 V, providing a
2 V p-p differential output.
The output is dc-coupled to a single-pole, low-pass filter. The filter
reduces the noise bandwidth of the amplifier and provides some
level of isolation from the switched capacitor inputs of the ADC.
The AD9246 is set for a 2 V p-p full-scale input by connecting the
SENSE pin to AGND. The inputs of the AD9246 are biased at
1 V by connecting the CML output, as shown in Figure 70.
The ADA4938-1/ADA4938-2 are ideally suited for dc-coupled
baseband applications. The circuit in Figure 69 shows a front-end
connection for an ADA4938-1/ADA4938-2 driving an AD9446,
16-bit, 80 MSPS ADC. The AD9446 achieves its optimum
performance when it is driven differentially. The ADA4938-1/
ADA4938-2 eliminate the need for a transformer to drive the
ADC, performs a single-ended-to-differential conversion,
buffers the driving signal, and provides appropriate level
shifting for dc coupling.
The ADA4938-1/ADA4938-2 are configured with a single 10 V
supply and unity gain for a single-ended input to differential
output. The 61.9 Ω termination resistor, in parallel with the
single-ended input impedance of 267 Ω, provides a 50 Ω
termination for the source. The additional 26 Ω (226 Ω total) at the
inverting input balances the parallel impedance of the 50 Ω
source and the termination resistor driving the noninverting
input.
The signal generator has a symmetric, ground-referenced bipolar
output. The VOCM pin of the ADA4938-1/ADA4938-2 is biased
with an external resistor divider to obtain the desired 3.5 V output
common-mode. One-half of the common-mode voltage is fed
back to the summing nodes, biasing −IN and +IN at 1.75 V. For a
common-mode voltage of 3.5 V, each ADA4938-1/ADA4938-2
output swings between 2.7 V and 4.3 V, providing a 3.2 V p-p
differential output.
The output of the amplifier is dc-coupled to the ADC through a
second-order, low-pass filter with a −3 dB frequency of 50 MHz.
The filter reduces the noise bandwidth of the amplifier and
isolates the driver outputs from the ADC inputs.
The AD9446 is configured for a 4.0 V p-p full-scale input by
setting R1 = R2 = 1 kΩ between the VREF pin and SENSE pin
in Figure 69.
10V
200Ω
5V (A) 3.3V (A) 3.3V (D)
10V
61.9Ω
SIGNAL
GENERATOR
VOCM
30nH
+
ADA4938
AVDD2 AVDD1 DRVDD
VIN+
BUFFER T/H
24.3Ω
47pF
ADC
24.3Ω
30nH
226Ω
AD9446
16
VIN–
CLOCK/
TIMING
200Ω
AGND
REF
SENSE
R1
VREF
06592-054
200Ω
50Ω
R2
Figure 69. ADA4938-1/ADA4938-2 Driving an AD9446, 16-Bit, 80 MSPS ADC
200Ω
VIN
90Ω
VOCM
90Ω
33Ω
+
ADA4938
DRVDD
AD9246
VIN+
33Ω
0.1µF
AVDD
VIN–
10pF
D13 TO
D0
AGND SENSE CML
30.1Ω
–5V
200Ω
06592-056
50Ω
1.8V
+5V
76.8Ω
Figure 70. ADA4938-1/ADA4938-2 Driving an AD9246, a 14-Bit, 125 MSPS ADC
Rev. B | Page 24 of 26
Data Sheet
ADA4938-1/ADA4938-2
OUTLINE DIMENSIONS
3.10
3.00 SQ
2.90
PIN 1
INDICATOR
0.30
0.23
0.18
13
0.50
BSC
PIN 1
INDICATOR
16
1
12
EXPOSED
PAD
1.45
1.30 SQ
1.15
4
9
0.80
0.75
0.70
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
SEATING
PLANE
0.25 MIN
BOTTOM VIEW
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
111808-A
TOP VIEW
5
8
0.50
0.40
0.30
COMPLIANT TO JEDEC STANDARDS MO-220-WEED.
Figure 71. 16-Lead Lead Frame Chip Scale Package [LFCSP]
3 mm × 3 mm Body and 0.75 mm Package Height
(CP-16-21)
Dimensions shown in millimeters
0.30
0.25
0.20
0.50
BSC
PIN 1
INDICATOR
24
19
18
1
EXPOSED
PAD
TOP VIEW
0.80
0.75
0.70
0.50
0.40
0.30
13
12
2.20
2.10 SQ
2.00
6
7
0.25 MIN
BOTTOM VIEW
0.05 MAX
0.02 NOM
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COPLANARITY
0.08
0.20 REF
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD-8.
06-11-2012-A
PIN 1
INDICATOR
4.10
4.00 SQ
3.90
Figure 72. 24-Lead Lead Frame Chip Scale Package [LFCSP]
4 mm × 4 mm Body, and 0.75 mm Package Height
(CP-24-10)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADA4938-1ACPZ-R2
ADA4938-1ACPZ-RL
ADA4938-1ACPZ-R7
ADA4938-2ACPZ-R2
ADA4938-2ACPZ-RL
ADA4938-2ACPZ-R7
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
16-Lead LFCSP
16-Lead LFCSP
16-Lead LFCSP
24-Lead LFCSP
24-Lead LFCSP
24-Lead LFCSP
Z = RoHS Compliant Part
Rev. B | Page 25 of 26
Package Option
CP-16-21
CP-16-21
CP-16-21
CP-24-10
CP-24-10
CP-24-10
Ordering Quantity
250
5,000
1,500
250
5,000
1,500
Branding
H11
H11
H11
ADA4938-1/ADA4938-2
Data Sheet
NOTES
©2007–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective
owners. D06592-0-6/16(B)
Rev. B | Page 26 of 26
Similar pages