Intersil CA3080A 2mhz, operational transconductance amplifier (ota) Datasheet

CA3080, CA3080A
Data Sheet
September 1998
File Number
475.4
2MHz, Operational Transconductance
Amplifier (OTA)
Features
The CA3080 and CA3080A types are Gatable-Gain Blocks
which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note
AN6668, “Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers”.
• Adjustable Power Consumption. . . . . . . . . . . . .10µW to 30µW
The CA3080 and CA3080A types have differential input and a
single-ended, push-pull, class A output. In addition, these types
have an amplifier bias input which may be used either for gating
or for linear gain control. These types also have a high output
impedance and their transconductance (gM) is directly
proportional to the amplifier bias current (IABC).
The CA3080 and CA3080A types are notable for their excellent
slew rate (50V/µs), which makes them especially useful for
multiplexer and fast unity-gain voltage followers. These types
are especially applicable for multiplexer applications because
power is consumed only when the devices are in the “ON”
channel state.
The CA3080A’s characteristics are specifically controlled for
applications such as sample-hold, gain-control, multiplexing,
etc.
Ordering Information
PART NUMBER
(BRAND)
TEMP.
RANGE (oC)
PACKAGE
PKG.
NO.
CA3080A
-55 to 125
8 Pin Metal Can
T8.C
CA3080AE
-55 to 125
8 Ld PDIP
E8.3
CA3080AM
(3080A)
-55 to 125
8 Ld SOIC
M8.15
CA3080AM96
(3080A)
• Slew Rate (Unity Gain, Compensated). . . . . . . . . . 50V/µs
• Flexible Supply Voltage Range. . . . . . . . . . . . . ±2V to ±15V
• Fully Adjustable Gain . . . . . . . . . . . . . . . . 0 to gMRL Limit
• Tight gM Spread:
- CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1
- CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6:1
• Extended gM Linearity . . . . . . . . . . . . . . . . . . . 3 Decades
Applications
• Sample and Hold
• Multiplexer
• Voltage Follower
• Multiplier
• Comparator
Pinouts
CA3080
(PDIP, SOIC)
TOP VIEW
NC
1
INV.
INPUT
2
NON-INV.
INPUT
3
V-
4
+
8
NC
7
V+
6
OUTPUT
5
AMPLIFIER
BIAS INPUT
CA3080
(METAL CAN)
TOP VIEW
TAB
-55 to 125
8 Ld SOIC Tape
and Reel
M8.15
CA3080E
0 to 70
8 Ld PDIP
E8.3
CA3080M
(3080)
0 to 70
8 Ld SOIC
M8.15
CA3080M96
(3080)
0 to 70
8 Ld SOIC Tape
and Reel
1
M8.15
8
7 V+
1
-
INV.
INPUT 2
NON-INV.
INPUT
6 OUTPUT
+
3
4
5 BIAS
V-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
CA3080, CA3080A
Absolute Maximum Ratings
Thermal Information
Supply Voltage (Between V+ and V- Terminal) . . . . . . . . . . . . . 36V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Signal Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA
Amplifier Bias Current (IABC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA
Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation
Thermal Resistance (Typical, Note 2)
θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . .
130
N/A
SOIC Package . . . . . . . . . . . . . . . . . . .
170
N/A
Metal Can Package . . . . . . . . . . . . . . .
200
120
Maximum Junction Temperature (Metal Can). . . . . . . . . . . . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range
CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Short circuit may be applied to ground or to either supply.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified
Electrical Specifications
CA3080
PARAMETER
TEST CONDITIONS
Input Offset Voltage
CA3080A
TEMP
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
IABC = 5µA
25
-
0.3
-
-
0.3
2
mV
IABC = 500µA
25
-
0.4
5
-
0.4
2
mV
Full
-
-
6
-
-
5
mV
Input Offset Voltage Change
IABC = 500µA to 5µA
25
-
0.2
-
-
0.1
3
mV
Input Offset Voltage Temp. Drift
IABC = 100µA
Full
-
-
-
-
3.0
-
µV/oC
Input Offset Voltage
Sensitivity
IABC = 500µA
25
-
-
150
-
-
150
µV/V
25
-
-
150
-
-
150
µV/V
Positive
Negative
Input Offset Current
IABC = 500µA
25
-
0.12
0.6
-
0.12
0.6
µΑ
Input Bias Current
IABC = 500µA
25
-
2
5
-
2
5
µA
Full
-
-
7
-
-
15
µA
Differential Input Current
IABC = 0, VDIFF = 4V
25
-
0.008
-
-
0.008
5
nA
Amplifier Bias Voltage
IABC = 500µA
25
-
0.71
-
-
0.71
-
V
Input Resistance
IABC = 500µA
25
10
26
-
10
26
-
kΩ
Input Capacitance
IABC = 500µA, f = 1MHz
25
-
3.6
-
-
3.6
-
pF
Input-to-Output Capacitance
IABC = 500µA, f = 1MHz
25
-
0.024
-
-
0.024
-
pF
Common-Mode Input-Voltage
Range
IABC = 500µA
25
12 to
-12
13.6 to
-14.6
-
12 to
-12
13.6 to
-14.6
-
V
Forward Transconductance
(Large Signal)
IABC = 500µA
25
6700
9600
13000
7700
9600
12000
µS
Full
5400
-
-
4000
-
-
µS
Output Capacitance
IABC = 500µA, f = 1MHz
25
-
5.6
-
-
5.6
-
pF
Output Resistance
IABC = 500µA
25
-
15
-
-
15
-
MΩ
Peak Output Current
IABC = 5µA, RL = 0Ω
25
-
5
-
3
5
7
µA
IABC = 500µA, RL = 0Ω
25
350
500
650
350
500
650
µA
Full
300
-
-
300
-
-
µA
2
CA3080, CA3080A
For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified (Continued)
Electrical Specifications
CA3080
PARAMETER
Peak Output
Voltage
TEST CONDITIONS
TEMP
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
25
-
13.8
-
12
13.8
-
V
25
-
-14.5
-
-12
-14.5
-
V
IABC = 5µA, RL = ∞
Positive
Negative
IABC = 500µA, RL = ∞
Positive
CA3080A
Negative
25
12
13.5
-
12
13.5
-
V
25
-12
-14.4
-
-12
-14.4
-
V
Amplifier Supply Current
IABC = 500µA
25
0.8
1
1.2
0.8
1
1.2
mA
Device Dissipation
IABC = 500µA
25
24
30
36
24
30
36
mW
IABC = 0, VTP = 0
25
-
0.08
-
-
0.08
5
nA
Magnitude of Leakage Current
IABC = 0, VTP = 36V
25
-
0.3
-
-
0.3
5
nA
Propagation Delay
IABC = 500µA
25
-
45
-
-
45
-
ns
Common-Mode Rejection Ratio
IABC = 500µA
25
80
110
-
80
110
-
dB
Open-Loop Bandwidth
IABC = 500µA
25
-
2
-
-
2
-
MHz
Slew Rate
Uncompensated
25
-
75
-
-
75
-
V/µs
Compensated
25
-
50
-
-
50
-
V/µs
Schematic Diagram
7
D3
D3
Q4
D2
Q6
Q5
V+
Q7
D4
Q9
INVERTING
2
INPUT
NONINVERTING 3
INPUT
AMPLIFIER 5
BIAS INPUT
Q8
Q1
OUTPUT
Q2
6
Q10
Q3
Q11
D1
D6
V4
Typical Applications
V+ = 15V
VS = ±15V
0.01µF
62kΩ
7
10kΩ
3
51Ω
390pF
300Ω
2
5
+
CA3080, A
LOAD
(SCOPE PROBE)
6
5pF
-
OUTPUT
1V/DIV.
1MΩ
4
0.01µF
10kΩ V- = -15V
INPUT
5V/DIV.
TIME (0.1µs/DIV.)
0.001µF
FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND
ASSOCIATED WAVEFORM
3
CA3080, CA3080A
Typical Applications
(Continued)
20pF
8.2kΩ
VOLTAGE-CONTROLLED
CURRENT SOURCE
7
3
0.9 - 7pF
C1
+
1kΩ
1kΩ
6
-
+7.5V
0.1µF
7
430pF
+
5
-7.5V
6
2
4.7kΩ
100kΩ
4
-7.5V
MIN FREQ. SET
+7.5V
C4
4 - 60
-7.5V
6.2kΩ
500Ω
500Ω
FREQ.
ADJUST
6
+
0.1
µF
EXTERNAL
SWEEPING INPUT
-7.5V
MAX FREQ. SET
CA3080
3
4
SYMMETRY
10kΩ
7
10kΩ
4 - 60pF CA3160
C3
2
5
+7.5V
+7.5V
30kΩ
6.8MΩ
3
10 - 80pF
C2
4
2MΩ
7.5V
-7.5V
6.2kΩ
CA3080A
2
HIGHFREQ.
SHAPE
THRESHOLD
DETECTOR
CENTERING
100kΩ
BUFFER VOLTAGE
FOLLOWER
+7.5V
+7.5V
2kΩ
10kΩ
50kΩ
2-1N914
C5
15 - 115
HIGH-FREQ.
LEVEL
ADJUST
FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz
NOTE: A Square-Wave Signal Modulates The External Sweeping
Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency
range of the function generator.
NOTE: The bottom trace is the sweeping signal and the top trace is
the actual generator output. The center trace displays the 1MHz signal
via delayed oscilloscope triggering of the upper swept output signal.
FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE
FUNCTION GENERATOR
FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR
SWEEPING TO 1MHz
FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS
4
CA3080, CA3080A
Typical Applications
(Continued)
V+ = +15V
2.0kΩ
7
0.01µF
3N138
-
2
CA3080A
INPUT
3
6
OUTPUT
220Ω
+
2.0kΩ
4
0.01µF
300pF
3kΩ
5
SLEW RATE (IN SAMPLE MODE) = 1.3V/µs
ACQUISITION TIME = 3µs (NOTE)
30kΩ
STORAGE AND PHASE
COMPENSATION NETWORK
SAMPLE 0V
HOLD -15V
V- = -15V
NOTE: Time required for output to settle within ±3mV of a 4V step.
FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION
30kΩ
STROBE
1N914
0
SAMPLE
+15V
-15
HOLD
0.1µF
1N914
+15V
5
2kΩ
INPUT
0.1µF
7
+
3
2kΩ
CA3080A
6
3
-
2
3.6kΩ
7
+
6
CA3140
4
2
4
0.1µF
2kΩ
0.1
µF
1
5
-15V
100kΩ
2kΩ
200pF
-15V
2kΩ
200pF
400Ω
0.1µF
SIMULATED LOAD
NOT REQUIRED
FIGURE 5. SAMPLE AND HOLD CIRCUIT
5
30pF
CA3080, CA3080A
Typical Applications
(Continued)
Top Trace:
Output Signal
5V/Div., 2µs/Div.
Input Signal
5V/Div., 2µs/Div.
Difference of Input and Output Signals Through
Tektronix Amplifier 7A13
5mV/Div., 2µs/Div.
Bottom Trace:
Center Trace:
FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 5
Top Trace:
Bottom Trace:
System Output; 100mV/Div., 500ns/Div.
Sampling Signal; 20V/Div., 500ns/Div.
Top Trace:
Bottom Trace:
FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN
FIGURE 5
THERMOCOUPLE
6.2K
8
+
100µF
5
3
5
6
13
G
+
CA3079
1N914
RF
8
7
10
120V AC
MT1 60Hz
4
6
4
20K
MT2
2
CA3080A
2K
LOAD
5K
4W
-
7
2
150K
6.2K
FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 5
50K
2K
Output; 50mV/Div., 200ns/Div.
Input; 50mV/Div., 200ns/Div.
9
11
1N914
NOTE: All resistors 1/2 watt,
unless otherwise specified.
FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER
6
CA3080, CA3080A
Typical Applications
(Continued)
SAMPLE
CONTROL
AMPLIFIER
SAMPLE
READ-OUT
AMPLIFIER
7
R1
+
3
INPUT
+7.5V
+7.5V
2K
CA3080A
(OTA)
6
3
0.1µF
+
2K
-
2
C3
7
R4
CA3130
4
8
1
-7.5V
5
C2
0.1µF
R2
SAMPLE 0V
HOLD
-7.5
STROBE
15K
R6
100K
C1
200pF
R3
400
OUTPUT
4
5
R2
2K
6
-
2
C5
C4
0.1
µF
156
pF
R5
2K
NULLING
STORAGE
AND PHASE
COMPENSATION
R7
2K
CL
e.g. 30pF (TYP)
C6
0.1µF
-7.5V
FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER
0
0
0
0
0
Top Trace:
Center Trace:
Bottom Trace:
Output; 5V/Div., 2µs/Div.
Differential Comparison of Input and Output
2mV/Div., 2µs/Div.
Input; 5V/Div., 2µs/Div.
FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT
SHOWN IN FIGURE 10
7
Top Trace:
Bottom Trace:
Output
20mV/Div., 100ns/Div.
Input
200mV/Div., 100ns/Div.
FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN
IN FIGURE 10
CA3080, CA3080A
Typical Applications
(Continued)
V+ = 15V
56kΩ
7
50mV
0
-50mV
IN
5
+
3
CA3080,A
51Ω
IABC = 500µA
OUT
6
-
2
0
1.2MΩ
1N914
4
V- = -15V
INPUT
tPLH
tPHL
OUTPUT
FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS
Typical Performance Curves
5
INPUT OFFSET CURRENT (nA)
INPUT OFFSET VOLTAGE (mV)
3
2
103
125oC
SUPPLY VOLTS: VS = ±15V
4
90oC
-55oC
1
70oC
0
-1
-2
-3
-55oC
90oC
25oC
25oC
70oC
-4
-5
125oC
-6
SUPPLY VOLTS: VS = ±15V
102
10
-55oC
1
25oC
0.1
125oC
-7
-8
0.1
1
10
100
0.01
0.1
1000
AMPLIFIER BIAS CURRENT (µA)
FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS
CURRENT
104
PEAK OUTPUT CURRENT (µA)
INPUT BIAS CURRENT (nA)
103
102
-55oC
25oC
1
0.1
0.1
10
100
1000
FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS
CURRENT
104 SUPPLY VOLTS: VS = ±15V
10
1
AMPLIFIER BIAS CURRENT (µA)
125oC
SUPPLY VOLTS: VS = ±15V
LOAD RESISTANCE = 0Ω
103
125oC
25oC
-55oC
102
10
1
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT
8
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS
CURRENT
CA3080, CA3080A
Typical Performance Curves
104
SUPPLY VOLTS: VS = ±15V
TA = 25oC
LOAD RESISTANCE = ∞
14.5
14
V+CMR
13.5
V+OM
13
0
-13
-13.5
-14
V-OM
-14.5
V-CMR
-15
0.1
-55oC
102
10
125oC
1
-55oC, 25oC
0.1
VS = ±15V
VS = ±6V
VS = ±3V
10
1
1
10
100
104
-55oC
25oC
103
125oC
102
10
1000
0.1
1
+36V
7
1
TEST POINT
(VTP)
2
CA3080, A
6
3
5
4
100
1000
SUPPLY VOLTS: VS = ±15V
10
V2 = V3 = V6 = 36V
1
0V
0.1
0.01
-50
FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT
9
100
FIGURE 21. TRANSCONDUCTANCE vs AMPLIFIER BIAS
CURRENT
MAGNITUDE OF LEAKAGE CURRENT (nA)
FIGURE 20. TOTAL POWER DISSIPATION vs AMPLIFIER BIAS
CURRENT
0V
10
AMPLIFIER BIAS CURRENT (µA)
AMPLIFIER BIAS CURRENT (µA)
36V
1000
105 SUPPLY VOLTS: V = ±15V
S
1
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
FIGURE 19. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER
BIAS CURRENT
FORWARD TRANSCONDUCTANCE (µS)
DEVICE POWER DISSIPATION (µW)
104
102
125oC
103
1000
TA = 25oC
103
25oC
SUPPLY VOLTS: VS = ±15V
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
FIGURE 18. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS
CURRENT
105
AMPLIFIER SUPPLY CURRENT (µA)
PEAK OUTPUT VOLTAGE (V)
COMMON MODE INPUT VOLTAGE (V)
15
(Continued)
-25
0
50
25
75
TEMPERATURE (oC)
100
FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE
125
CA3080, CA3080A
Typical Performance Curves
(Continued)
SUPPLY VOLTS: VS = ±15V
DIFFERENTIAL INPUT CURRENT (pA)
V+ = 15V
7
1
2
CA3080, A
VDIFF = ±4V
6
3
5
4
104
103
125oC
102
1
0
V- = -15V
FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT
900
AMPLIFIER BIAS VOLTAGE (mV)
INPUT RESISTANCE (MΩ)
100
10
1
0.1
0.01
1
10
100
AMPLIFIER BIAS CURRENT (µA)
6
5
CO
4
CI
3
2
7
800
-55oC
700
600
25oC
500
400
125oC
300
200
100
105
SUPPLY VOLTS: VS = ±15V
f = 1 MHz
TA = 25oC
6
1
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 27. AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS
CURRENT
OUTPUT RESISTANCE (MΩ)
INPUT AND OUTPUT CAPACITANCE (pF)
7
2
3
4
5
INPUT DIFFERENTIAL VOLTAGE (V)
SUPPLY VOLTS: VS = ±15V
0
0.1
1000
FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT
1
FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE
SUPPLY VOLTS: VS = ±15V
TA = 25oC
0.1
25oC
10
SUPPLY VOLTS: VS = ±15V
TA = 25oC
104
103
102
10
1
0
0.1
1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 28. INPUT AND OUTPUT CAPACITANCE vs AMPLIFIER
BIAS CURRENT
10
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
FIGURE 29. OUTPUT RESISTANCE vs AMPLIFIER BIAS
CURRENT
1000
CA3080, CA3080A
(Continued)
V+
0.01µF
7
2
CA3080, A
6
3
5
4
0.01µF
INPUT - TO - OUTPUT CAPACITANCE (pF)
Typical Performance Curves
f = 1 MHz
o
0.06 TA = 25 C
0.05
0.04
0.03
0.02
0.01
0
V-
FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT
2
4
6
8
10
12
14
16
POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V)
18
FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY
VOLTAGE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
11
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
Similar pages