Elantec EL2228CS-T13 Dual low noise amplifier Datasheet

Dual Low Noise Amplifier
Features
General Description
• Voltage noise of only 4.9nV/√Hz
• Current noise of only 1.2pA/√Hz
• Bandwidth (-3dB) of 80MHz @AV = +1
• Gain-of-1 stable
• Just 4.5mA per amplifier
• 8-pin MSOP package
• ±2.5V to ±12V operation
The EL2228C is a dual, low-noise amplifier, ideally suited to filtering
applications in ADSL and HDSLII designs. It feature low noise specification of just 4.9nV/√Hz and 1.2pA/√Hz, making it ideal for
processing low voltage waveforms.
Applications
The EL2228C is available in a space saving 8-Pin MSOP package as
well as the industry standard 8-Pin SO. It can operate over the -40°C to
+85°C temperature range.
•
•
•
•
•
•
ADSL Filters
HDSLII Filters
Ultrasound input amplifiers
Wideband Instrumentation
Communications equipment
Wideband sensors
EL2228C - Preliminary
EL2228C - Preliminary
The EL2228C has a -3dB bandwidth of 80MHz and is gain-of-1 stable. It also affords minimal power dissipation with a supply current of
just 4.5mA per amplifier. The amplifier can be powered from supplies
ranging from ±2.5V to ±12V.
Ordering Information
Temp. Range
Package
Outline #
EL2228CY
Part No.
8-Pin MSOP
-
MDP0043
EL2228CY-T13
8-Pin MSOP
13”
MDP0043
EL2228CY-T7
8-Pin MSOP
7”
MDP0043
EL2228CS
8-Pin SO
-
MDP0027
EL2228CS-T13
8-Pin SO
13”
MDP0027
EL2228CS-T7
8-Pin SO
7”
MDP0027
Connection Diagram
VOUTA 1
VINA- 2
VINA+ 3
VS- 4
8 VS+
+
7 VOUTB
+
6 VINB5 VINB+
Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a “controlled document”. Current revisions, if any, to these
specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.
© 2001 Elantec Semiconductor, Inc.
September 25, 2001
EL2228C
8-Pin SO and 8-Pin MSOP
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
Absolute Maximum Ratings (T
A
= 25°C)
Values beyond absolute maximum ratings can cause the device to be prematurely damaged. Absolute maximum ratings are stress ratings only
and functional device operation is not implied.
Supply Voltage between VS+ and VS+28V
Input Voltage
VS- - 0.3V, VS +0.3V
Maximum Continuous Output Current
40mA
Maximum Die Temperature
Storage Temperature
Operating Temperature
Lead Temperature
Power Dissipation
ESD Voltage
+125°C
-65°C to +150°C
-40°C to +85°C
260°C
See Curves
2kV
Important Note:
All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the
specified temperature and are pulsed tests, therefore: TJ = TC = TA
Electrical Characteristics
VS+= +12V, V S - = -12V, RL = 500Ω and CL = 3pF to 0V, RF = 420Ω & TA = 25°C unless otherwise specified.
Parameter
Description
Condition
Min
Typ
Max
3
Unit
Input Characteristics
VOS
Input Offset Voltage
VCM = 0V
0.2
TCVOS
Average Offset Voltage Drift
[1]
-4
IB
Input Bias Current
VCM = 0V
RIN
Input Impedance
CIN
Input Capacitance
CMIR
Common-Mode Input Range
CMRR
Common-Mode Rejection Ratio
AVOL
Open-Loop Gain
en
Voltage Noise
in
Current Noise
-9
-4.5
-1
8
µA
MΩ
1
-11.8
mV
µV/°C
pF
+10.4
V
for VIN from -11.8V to +10.4V
60
90
dB
for VIN from -10V to +10V
60
75
dB
-5V ≤ VOUT ≤ 5V
60
75
dB
f = 100kHz
4.9
nV/√Hz
f = 100kHz
1.2
pA/√Hz
RL = 500Ω
-10.3
-10
V
RL = 250Ω
-9.5
-9
V
Output Characteristics
VOL
VOH
ISC
Output Swing Low
Output Swing High
Short Circuit Current
RL = 500Ω
10
10.3
RL = 250Ω
9.5
10
V
V
RL = 10Ω
140
180
mA
Power Supply Performance
PSRR
Power Supply Rejection Ratio
VS is moved from ±10.8V to ±13.2V
65
83
IS
Supply Current (Per Amplifier)
No load
4
5
44
65
dB
6
mA
Dynamic Performance
SR
Slew Rate [2]
±2.5V square wave, measured 25%-75%
tS
Settling to +0.1% (AV = +1)
(AV = +1), VO = 2V step
BW
-3dB Bandwidth
HD2
2nd Harmonic Distortion
HD3
3rd Harmonic Distortion
V/µs
50
ns
80
MHz
f = 1MHz, VO = 2VP-P, RL = 500Ω, AV = 2
-86
dBc
f = 1MHz, VO = 2VP-P, RL = 150Ω, AV = 2
-79
dBc
f = 1MHz, VO = 2VP-P, RL = 500Ω, AV = 2
-93
dBc
f = 1MHz, VO = 2VP-P, RL = 150Ω, AV = 2
-70
dBc
1. Measured over operating temperature range
2. Slew rate is measured on rising and falling edges
2
Dual Low Noise Amplifier
Electrical Characteristics
VS+= +5V, VS - = -5V, RL = 500Ω and CL = 3pF to 0V, RF = 420Ω & TA = 25°C unless otherwise specified.
Parameter
Description
Condition
Min
Typ
Max
3
Unit
Input Characteristics
VOS
Input Offset Voltage
VCM = 0V
0.6
TCVOS
Average Offset Voltage Drift
[1]
4.9
IB
Input Bias Current
VCM = 0V
RIN
Input Impedance
CIN
Input Capacitance
CMIR
Common-Mode Input Range
CMRR
Common-Mode Rejection Ratio
AVOL
Open-Loop Gain
-2.5V ≤ VOUT ≤ 2.5V
en
Voltage Noise
in
Current Noise
-9
-4.5
-1
6
for VIN from -4.7V to +3.4V
µA
MΩ
1.2
-4.7
mV
µV/°C
pF
+3.4
V
60
90
dB
60
72
dB
f = 100kHz
4.7
nV/√Hz
f = 100kHz
1.2
pA/√Hz
RL = 500Ω
-3.8
-3.5
V
RL = 250Ω
-3.7
-3.5
V
for VIN from -2V to +2V
dB
Output Characteristics
VOL
VOH
ISC
Output Swing Low
Output Swing High
Short Circuit Current
RL = 500Ω
3.5
3.7
RL = 250Ω
3.5
3.6
V
V
RL = 10Ω
60
100
mA
Power Supply Performance
PSRR
Power Supply Rejection Ratio
VS is moved from ±4.5V to ±5.5V
65
83
IS
Supply Current (Per Amplifier)
No load
3.5
4.5
35
dB
5.5
mA
Dynamic Performance
SR
Slew Rate [2]
±2.5V square wave, measured 25%-75%
tS
Settling to +0.1% (AV = +1)
(AV = +1), VO = 2V step
BW
-3dB Bandwidth
HD2
2nd Harmonic Distortion
HD3
3rd Harmonic Distortion
50
V/µs
50
ns
75
MHz
f = 1MHz, VO = 2VP-P, RL = 500Ω, AV = 2
-90
dBc
f = 1MHz, VO = 2VP-P, RL = 150Ω, AV = 2
-71
dBc
f = 1MHz, VO = 2VP-P, RL = 500Ω, AV = 2
-99
dBc
f = 1MHz, VO = 2VP-P, RL = 150Ω, AV = 2
-69
dBc
1. Measured over operating temperature range
2. Slew rate is measured on rising and falling edges
3
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
Typical Performance Curves
Non-inverting Frequency Response for Various RF
Inverting Frequency Response for Various RF
4
4
2
RF=1kΩ
1
RF=420Ω
3
2
Normalized Gain (dB)
Normalized Gain (dB)
3
0
-1
RF=200Ω
-2
RF=0Ω
-3
-4
-5
RF=100Ω
1
-1
RF=1kΩ
-2
-3
-5
1M
10M
-6
1M
100M
VS=±12V
AV=-1
RL=500Ω
Frequency (Hz)
Non-inverting Frequency Response (Gain)
Normalized Gain (dB)
2
1
Inverting Frequency Response (Gain)
4
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
3
2
AV=1
0
Normalized Gain (dB)
3
AV=2
-1
AV=10
-2
AV=5
-3
-1
AV=-10
AV=-5
-3
-5
-6
100k
100M
AV=-2
-2
-5
10M
AV=-1
0
-4
1M
VS=±12V
RF=420Ω
1
-4
-6
100k
1M
Frequency (Hz)
Non-inverting Frequency Response (Phase)
Inverting Frequency Response (Phase)
135
90
90
45
45
AV=1
0
Phase (°)
AV=5
-90
-135
AV=-1
0
AV=2
-45
AV=10
AV=-2
-45
AV=-5
-90
-135
AV=-10
-180
-180
-270
100M
10M
Frequency (Hz)
135
-225
100M
10M
Frequency (Hz)
4
RF=420Ω
0
-4
VS=±12V
AV=+1
RL=500Ω
-6
100k
Phase (°)
EL2228C - Preliminary
EL2228C - Preliminary
-225
VS=±12V
RF=420Ω
RL=500Ω
-315
100k
-270
1M
10M
VS=±12V
RF=420Ω
RL=500Ω
-315
100k
100M
Frequency (Hz)
1M
10M
Frequency (Hz)
4
100M
Dual Low Noise Amplifier
Typical Performance Curves
Non-inverting Frequency Response for Various
Input Signal Levels
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
3
2
Normalized Gain (dB)
Non-inverting Frequency Response for Various RL
4
1
3
2
0
Normalized Gain (dB)
4
VIN=100mV PP
-1
VIN=1VPP
-2
VIN=2VPP
-3
-4
1
RL=1kΩ
0
-1
RL=50Ω
-2
RL=150Ω
-3
-4
VIN=500mVPP
-5
-6
100k
1M
VS=±12V
AV=+1
RF=420Ω
-5
10M
-6
100k
100M
RL=500Ω
1M
Frequency (Hz)
Non-inverting Frequency Response for Various CL
4
4
3
2
1
Normalized Gain (dB)
Normalized Gain (dB)
Non-inverting Frequency Response for Various
Output DC Levels
3
CL=30pF
2
0
CL=3pF
-1
-2
-3
CL=10pF
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
-4
-5
VO=-10
1
VO=0
-1
-2
-3
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
-5
1M
-6
100k
100M
10M
0
2.5
4.5
15
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
G=-2
10
G=-5
G=-10
5
G=10
6.5
-3dB Bandwidth vs ±Supply Voltage for Inverting
Gains
20
G=2
G=5
8.5
100M
10M
G=-1
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
-3dB Bandwidth (MHz)
-3dB Bandwidth (MHz)
25
40
20
VO=-5
Frequency (Hz)
-3dB Bandwidth vs ±Supply Voltage for Noninverting Gains
60
VO=+5
1M
Frequency (Hz)
G=1
VO=+10
0
-4
-6
100k
80
100M
10M
Frequency (Hz)
10.5
0
2.5
12.5
Supply Voltage (±V)
4.5
6.5
8.5
Supply Voltage (±V)
5
10.5
12.5
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
Typical Performance Curves
1
Peaking vs ±Supply Voltage for Non-inverting
Gains
Peaking vs ±Supply Voltage for Inverting Gains
0.2
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
0.8
0.6
0.4
0.2
G=-1
0.12
0.08
G=-2
0.04
G=2
0
2.5
VS=±12V
RF=420Ω
RL=500Ω
AV=+1
0.16
Peaking (dB)
G=1
Peaking (dB)
EL2228C - Preliminary
EL2228C - Preliminary
G=-10
G=10
4.5
6.5
8.5
10.5
0
2.5
12.5
Supply Voltage (±V)
4.5
6.5
8.5
10.5
Supply Voltage (±V)
Small Signal Step Response
VS=±12V
Small Signal Step Response
VS=±2.5V
RF=420Ω
AV=1
RL=500Ω
RF=420Ω
AV=1
RL=500Ω
20mV/div
20mV/div
50ns/div
50ns/div
Large Signal Step Response
VS=±12V
Large Signal Step Response
VS=±2.5V
RF=420Ω
AV=1
RL=500Ω
RF=420Ω
AV=1
RL=500Ω
0.5V/div
0.5V/div
50ns/div
50ns/div
6
12.5
Dual Low Noise Amplifier
Typical Performance Curves
Group Delay vs Frequency
20
0.2
16
VS=±12V
RF=420Ω
RL=150Ω
AV=2
0.15
AV=2
0.1
8
4
dG (%) or dP (°)
Group Delay (ns)
12
Differential Gain/Phase vs DC Input Voltage at
3.58MHz
AV=1
0
-4
-8
VS=±12V
RF=420Ω
AV=1
RL=500Ω
-12
-16
dP
dG
0.05
0
-0.05
-0.1
-20
1M
10M
-0.15
-1
100M 200M
-0.5
0.5
0
1
DC Input Voltage (V)
Frequency (Hz)
Supply Current vs Supply Voltage
Closed Loop Output Impedance vs Frequency
13.2
100
12
9.6
Output Impedance (Ω)
Supply Current (mA)
10.8
8.4
7.2
6
4.8
3.6
2.4
10
1
0.1
1.2
0
0
1.4
2.8
4.2
5.6
7
8.4
9.8 11.2 12.6
0.01
10k
14
100k
VS (±V)
CMRR
-CMRR (dB)
1M
10M
100M
Frequency (Hz)
PSRR
100
10
80
-10
60
-30
40
-50
VS-
20
0
10
VS+
-70
VS=±12
100
1k
10k
100k
1M
10M
-90
100M
Frequency (Hz)
1k
10k
100k
1M
Frequency (Hz)
7
10M
100M
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
Typical Performance Curves
-40
1MHz 2nd and 3rd Harmonic Distortion vs Output
Swing (VS=±12V)
-50
-60
3rdH
-70
-80
-90
-100
1MHz 2nd and 3rd Harmonic Distortion vs Output
Swing (VS=±2.5V)
-60
2ndH
Distortion (dB)
Distortion (dB)
-50
-70
3rdH
-80
-90
2ndH
-100
0
4
8
12
16
-110
20
0
0.5
1
Output Swing (VPP)
-50
1MHz 2nd and 3rd Harmonic Distortion vs Output
Swing (single-ended)
-50
Distortion (dBc)
Distortion (dBc)
3rd HD
2nd HD
-80
-90
-100
VS=±12V
AV=2
RF=420Ω
-110
-120
0
4
8
12
2
2.5
1MHz 2nd and 3rd Harmonic Distortion vs Output
Swing (single-ended)
VS=±2.5V
AV=2
RF=420Ω
-60
-70
1.5
Output Swing (VPP)
-60
16
2nd DUT
-70
-80
3rd DUT
-90
-100
-110
20
0
0.5
1
Output Swing (VPP)
1.5
2
2.5
Output Swing (VPP)
Voltage and Current Noise vs Frequency
Channel to Channel Isolation vs Frequency
18
0
16
-20
14
12
Gain (dB)
Voltage Noise (nV√Hz), Current Noise
EL2228C - Preliminary
EL2228C - Preliminary
10
8
EN
6
4
0
10
100
-40
B→C
-60
-80
IN
2
A→B
1k
10k
-100
100k
100k
Frequency (Hz)
1M
10M
Frequency (Hz)
8
100M
Dual Low Noise Amplifier
Typical Performance Curves
11
IS vs Tempertaure
VS=±12V
100
3dB Bandwidth vs Temperature
VS=±5V
90
IS
Bandwidth (MHz)
10
9
80
70
60
0
-50
0
50
100
50
-40
150
10
Temperature (mA)
60
110
160
Junction Temperature (°C)
IB vs Temperature
VOS vs Temperature
-2
2
1
IB (µA)
VOS (mV)
-4
0
-6
-1
-8
-50
0
50
100
-2
0.1
150
1
0.1
Temperature (°C)
Package Power Dissipation vs Ambient Temp.
JEDEC JESD51-3 Low Effective Thermal Conductivity Test Board
0.7
74
0.6 625mW
72
0.5
Power Dissipation (W)
SR (V/µs)
SR vs Temperature
76
70
68
66
SO8
160°C/W
486mW
0.4
MSOP8
206°C/W
0.3
0.2
0.1
64
62
-50
10
1
Temperature (°C)
0
50
100
0
150
0
25
50
75 85
100
Ambient Temperature (°C)
Temperature (°C)
9
125
150
EL2228C - Preliminary
EL2228C - Preliminary
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
Pin Descriptions
EL2228CY
8-Pin MSOP
EL2228CS 8Pin SO
Pin Name
Pin Function
Equivalent Circuit
10
Dual Low Noise Amplifier
Applications Information
Product Description
11
EL2228C - Preliminary
EL2228C - Preliminary
EL2228C - Preliminary
EL2228C - Preliminary
Dual Low Noise Amplifier
General Disclaimer
Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described
herein and makes no representations that they are free from patent infringement.
September 25, 2001
WARNING - Life Support Policy
Elantec, Inc. products are not authorized for and should not be used
within Life Support Systems without the specific written consent of
Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used
in accordance with instructions provided can be reasonably
expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support
Systems are requested to contact Elantec, Inc. factory headquarters
to establish suitable terms & conditions for these applications. Elantec, Inc.’s warranty is limited to replacement of defective
components and does not cover injury to persons or property or
other consequential damages.
Elantec Semiconductor, Inc.
675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC
Fax:
(408) 945-9305
European Office: +44-118-977-6020
Japan Technical Center: +81-45-682-5820
12
Printed in U.S.A.
Similar pages