C3D06065I VRRM Silicon Carbide Schottky Diode Z-Rec Rectifier Qc Features = 6A 15 nC Package 650-Volt Schottky Rectifier Ceramic Package Provides 2.5kV Isolation Zero Reverse Recovery Current High-Frequency Operation Temperature-Independent Switching Behavior Positive Temperature Coefficient on VF TO-220 Isolated Benefits • • • • • 650 V IF (TC=135˚C) = ® • • • • • • = Electrically Isolated Package Essentially No Switching Losses Higher Efficiency Reduction of Heat Sink Requirements Parallel Devices Without Thermal Runaway PIN 1 CASE PIN 2 Applications • • • • Switch Mode Power Supplies (SMPS) Boost diodes in PFC or DC/DC stages Free Wheeling Diodes in Inverter Stages AC/DC converters Part Number Package Marking C3D06065I Isolated TO-220-2 C3D06065I Maximum Ratings (TC = 25˚C unless otherwise specified) Symbol Parameter Unit Test Conditions Note VRRM Repetitive Peak Reverse Voltage 650 V VRSM Surge Peak Reverse Voltage 650 V VDC DC Blocking Voltage 650 V Continuous Forward Current 13 6 A TC=25˚C IFRM Repetitive Peak Forward Surge Current 24 16 A TC=25˚C, tP = 10 ms, Half Sine Wave TC=110˚C, tP = 10 ms, Half Sine Wave IFSM Non-Repetitive Peak Forward Surge Current 63 49 A TC=25˚C, tp = 10 ms, Half Sine Wave TC=110˚C, tp = 10 ms, Half Sine Wave Fig. 8 IF,Max Non-Repetitive Peak Forward Surge Current 540 460 A TC=25˚C, tP = 10 µs, Pulse TC=110˚C, tP = 10 µs, Pulse Fig. 8 Power Dissipation 45.5 19.5 W TC=25˚C TC=110˚C Fig. 4 -55 to +175 ˚C 1 8.8 Nm lbf-in IF Ptot TJ , Tstg Operating Junction and Storage Temperature TO-220 Mounting Torque 1 Value C3D06065I Rev. B, 01-2016 TC=135˚C M3 Screw 6-32 Screw Fig. 3 Electrical Characteristics Symbol Parameter Typ. Max. Unit Test Conditions Note VF Forward Voltage 1.5 2.0 1.7 2.4 V IF = 6 A TJ=25°C IF = 6 A TJ=175°C Fig. 1 IR Reverse Current 8 15.5 40 160 μA VR = 650 V TJ=25°C VR = 650 V TJ=175°C Fig. 2 QC Total Capacitive Charge 15 nC VR = 400 V, IF = 6 A di/dt = 500 A/μs TJ = 25°C Fig. 5 C Total Capacitance 295 28.5 25.5 pF VR = 0 V, TJ = 25°C, f = 1 MHz VR = 200 V, TJ = 25˚C, f = 1 MHz VR = 400 V, TJ = 25˚C, f = 1 MHz Fig. 6 EC Capacitance Stored Energy 2.3 μJ VR = 400 V Fig. 7 Note: This is a majority carrier diode, so there is no reverse recovery charge. Thermal Characteristics Symbol RθJC Parameter Thermal Resistance from Junction to Case Typ. Unit Note 3.3 °C/W Fig. 9 Typical Performance 20 14 6 TJ = 25 °C TJ = 75 °C TJ = 125 °C IR (mA) 8 TJ = -55 °C Reverse Leakage Current, IRR (mA) 10 F Foward I Current, (A) IF (A) 12 TJ = 175 °C 4 2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 200 400 600 800 1000 1200 FowardVVoltage, (V) VF (V) F Figure 1. Forward Characteristics 2 C3D06065I Rev. B, 01-2016 16 TJ = 175 °C 12 TJ = 125 °C TJ = 75 °C 8 TJ = 25 °C TJ = -55 °C 4 0 0 100 200 300 400 500 600 700 800 900 1000 ReverseVVoltage, (V) VR (V) R Figure 2. Reverse Characteristics Typical Performance 45 50 10% Duty 20% Duty 30% Duty 50% Duty 70% Duty DC 40 35 40 35 25 (W) PP Tot(W) TOT IF(peak) (A) IF (A) 30 45 20 15 30 25 20 15 10 10 5 5 0 25 50 75 100 125 150 0 175 25 50 75 T ˚C TCC(°C) 150 175 C Figure 4. Power Derating 350 Conditions: TJ = 25 °C Conditions: TJ = 25 °C Ftest = 1 MHz Vtest = 25 mV 300 20 250 Capacitance C (pF) (pF) CapacitiveQCharge, (nC) QC (nC) C 125 ˚C TTC (°C) Figure 3. Current Derating 25 100 15 10 200 150 100 5 50 0 0 100 200 300 400 500 600 700 ReverseVVoltage, (V) VR (V) R Figure 5. Total Capacitance Charge vs. Reverse Voltage 3 C3D06065I Rev. B, 01-2016 0 0 1 10 100 (V) VR (V) ReverseVVoltage, R Figure 6. Capacitance vs. Reverse Voltage 1000 Typical Performance 1,000 6 IIFSM (A) (A) 4 FSM 3 C Capacitance StoredE Energy, µJ) (mJ) EC (µ 5 100 TJ_initial = 25 °C TJ_initial = 110 °C 2 1 0 0 100 200 300 400 500 600 10 10E-6 700 100E-6 ReverseVVoltage, (V) VR (V) Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform) Figure 7. Capacitance Stored Energy 0.5 1 0.3 0.1 100E-3 0.05 0.02 SinglePulse 0.01 10E-3 1E-3 1E-6 10E-6 100E-6 1E-3 10E-3 Time, tp (s) T (Sec) 100E-3 Figure 9. Transient Thermal Impedance 4 C3D06065I Rev. B, 01-2016 10E-3 tp (s) Time, tp (s) R Thermal Resistance (oC/W) Thermal Resistance (˚C/W) 1E-3 1 10 Package Dimensions Package TO-220-2 Recommended Solder Pad Layout TO-220-2 Part Number Package Marking C3D06065I Isolated TO-220-2 C3D06065I Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering 5 C3D06065I Rev. B, 01-2016 Diode Model Diode Model CSD04060 Vf T = VT + If*RT VT= 0.965 + (Tj * -1.3*10-3) RT= 0.096 + (Tj * 1.06*10-3) VfT = VT + If * RT VT = 0.96 + (TJ * -1.1*10-3) RT = 0.07 + (TJ * 7.4*10-4) VT RT Note: Tj = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C Notes • RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Ecology section of our website at http:// www.wolfspeed.com/power/tools-and-support/product-ecology. • REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. • This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems. Related Links • • • Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2 SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i Copyright © 2016 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 6 C3D06065I Rev. B, 01-2016 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power