ON BDX53BG Plastic medium-power complementary silicon transistor Datasheet

BDX53B, BDX53C (NPN),
BDX54B, BDX54C (PNP)
Plastic Medium-Power
Complementary Silicon
Transistors
These devices are designed for general−purpose amplifier and
low−speed switching applications.
Features
• High DC Current Gain −
hFE = 2500 (Typ) @ IC = 4.0 Adc
• Collector Emitter Sustaining Voltage − @ 100 mAdc
•
•
•
VCEO(sus) = 80 Vdc (Min) − BDX53B, 54B
VCEO(sus) = 100 Vdc (Min) − BDX53C, 54C
Low Collector−Emitter Saturation Voltage −
VCE(sat) = 2.0 Vdc (Max) @ IC = 3.0 Adc
VCE(sat) = 4.0 Vdc (Max) @ IC = 5.0 Adc
Monolithic Construction with Built−In Base−Emitter Shunt Resistors
These Devices are Pb−Free and are RoHS Compliant*
www.onsemi.com
DARLINGTON
8 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
80−100 VOLTS, 65 WATTS
4
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Rating
Symbol
Collector−Emitter Voltage
BDX53B, BDX54B
BDX53C, BDX54C
VCEO
Collector−Base Voltage
BDX53B, BDX54B
BDX53C, BDX54C
VCB
Emitter−Base Voltage
VEB
5.0
Vdc
IC
8.0
12
Adc
Base Current
IB
0.2
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
65
0.48
W
W/°C
TJ, Tstg
−65 to +150
°C
Collector Current
− Continuous
− Peak
Operating and Storage Junction
Temperature Range
Value
1
Unit
Vdc
Vdc
80
100
MARKING DIAGRAM
& PIN ASSIGNMENT
4
Collector
BDX5xyG
AY WW
Stresses exceeding those listed in the Maximum Ratings table may damage the
device. If any of these limits are exceeded, device functionality should not be
assumed, damage may occur and reliability may be affected.
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction−to−Ambient
RqJA
70
°C/W
Thermal Resistance, Junction−to−Case
RqJC
1.92
°C/W
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2014
November, 2014 − Rev. 15
1
3
TO−220
CASE 221A
STYLE 1
80
100
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
2
1
Base
BDX5xy =
A
Y
WW
G
=
=
=
=
3
Emitter
2
Collector
Device Code
x = 3 or 4
y = B or C
Assembly Location
Year
Work Week
Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
Publication Order Number:
BDX53B/D
PD, POWER DISSIPATION (WATTS)
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
TA
4.0
TC
80
3.0
60
TC
2.0
40
1.0
20
TA
0
0
20
40
60
80
100
120
140
160
T, TEMPERATURE (°C)
Figure 1. Power Derating
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol
Min
Max
80
100
−
−
−
−
0.5
0.5
−
−
0.2
0.2
hFE
750
−
−
Collector−Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 12 mAdc)
VCE(sat)
−
−
2.0
4.0
Vdc
Base−Emitter Saturation Voltage
(IC = 3.0 Adc, IC = 12 mA)
VBE(sat)
−
2.5
Vdc
hfe
4.0
−
−
−
−
300
200
Characteristic
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage (Note 1)
(IC = 100 mAdc, IB = 0)
VCEO(sus)
BDX53B, BDX54B
BDX53C, BDX54C
Collector Cutoff Current
(VCE = 40 Vdc, IB = 0)
(VCE = 50 Vdc, IB = 0)
BDX53B, BDX54B
BDX53C, BDX54C
Collector Cutoff Current
(VCB = 80 Vdc, IE = 0)
(VCB = 100 Vdc, IE = 0)
BDX53B, BDX54B
BDX53C, BDX54C
Vdc
ICEO
mAdc
ICBO
mAdc
ON CHARACTERISTICS (Note 1)
DC Current Gain
(IC = 3.0 Adc, VCE = 3.0 Vdc)
DYNAMIC CHARACTERISTICS
Small−Signal Current Gain
(IC = 3.0 Adc, VCE = 4.0 Vdc, f = 1.0 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 0.1 MHz)
Cob
BDX53B, 53C
BDX54B, 54C
pF
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
1. Pulse Test: Pulse Width ≤ 300 ms, Duty Cycle ≤ 2%.
www.onsemi.com
2
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
5.0
VCC
- 30 V
RB AND RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
D1 MUST BE FAST RECOVERY TYPES, e.g.:
1N5825 USED ABOVE IB [ 100 mA
MSD6100 USED BELOW IB [ 100 mA
TUT
RB
V2
2.0
SCOPE
t, TIME (s)
μ
RC
APPROX
+ 8.0 V
0
51
V1
D1
[ 8.0 k
[ 120
tf
1.0
0.7
0.5
0.3
tr
0.2
+ 4.0 V
25 ms
-12 V
tr, tf v 10 ns
DUTY CYCLE = 1.0%
ts
3.0
APPROX
for td and tr, D1 is disconnected
and V2 = 0
For NPN test circuit reverse all polarities
0.1
0.07
0.05
0.1
VCC = 30 V
IC/IB = 250
IB1 = IB2
TJ = 25°C
0.2
Figure 2. Switching Time Test Circuit
td @ VBE(off) = 0 V
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
5.0 7.0 10
r(t) EFFECTIVE TRANSIENT
THERMAL RESISTANCE (NORMALIZED)
Figure 3. Switching Times
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
P(pk)
0.05
0.1
0.07
0.05
RqJC(t) = r(t) RqJC
RqJC = 1.92°C/W
0.02
t1
0.03
0.01
0.02
SINGLE
PULSE
t2
SINGLE PULSE
DUTY CYCLE, D = t1/t2
0.01
0.01
0.02 0.03
0.05
0.1
0.2 0.3
0.5
1.0
2.0 3.0 5.0
10
t, TIME OR PULSE WIDTH (ms)
20
30
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
50
100
200 300
500
1000
Figure 4. Thermal Response
IC, COLLECTOR CURRENT (AMP)
20
5.0
2.0
1.0
0.5
0.2
0.1
0.05
0.02
1.0
There are two limitations on the power handling ability of
a transistor average junction temperature and second
breakdown. Safe operating area curves indicate IC −VCE
limits of the transistor that must be observed for reliable
operation, i.e., the transistor must not be subjected to greater
dissipation than the curves indicate.
The data of Figure 5 is based on TJ(pk) = 150°C; TC is
variable depending on conditions. Second breakdown pulse
limits are valid for duty cycles to 10% provided
TJ(pk) t 150°C. TJ(pk) may be calculated from the data in
Figure 4. At high case temperatures, thermal limitations will
reduce the power that can be handled to values less than the
limitations imposed by second breakdown.
100 ms
500 ms
10
5.0 ms
1.0 ms
dc
TJ = 150°C
BONDING WIRE LIMITED
THERMALLY LIMITED @ TC = 25°C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO
BDX53B, BDX54B
BDX53C, BDX54C
20 30
2.0 3.0
5.0 7.0 10
50
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
70 100
Figure 5. Active−Region Safe Operating Area
www.onsemi.com
3
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
300
TJ = + 25°C
5000
3000
2000
200
C, CAPACITANCE (pF)
hFE, SMALL-SIGNAL CURRENT GAIN
10,000
1000
500
300
200
TJ = 25°C
VCE = 3.0 V
IC = 3.0 A
100
50
30
20
10
1.0
Cob
100
Cib
70
50
PNP
NPN
2.0
5.0
PNP
NPN
10
20
50 100
f, FREQUENCY (kHz)
200
500
30
0.1
1000
0.2
0.5
1.0 2.0
5.0 10
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 6. Small-Signal Current Gain
PNP
BDX54B, 54C
20,000
20,000
VCE = 4.0 V
VCE = 4.0 V
10,000
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
10,000
3000
2000
100
Figure 7. Capacitance
NPN
BDX53B, 53C
5000
50
TJ = 150°C
25°C
1000
-55°C
5000
TJ = 150°C
3000
2000
25°C
1000
-55°C
500
500
300
200
0.1
300
200
0.1
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
5.0 7.0 10
0.2
0.3
0.5 0.7 1.0
2.0 3.0
IC, COLLECTOR CURRENT (AMP)
5.0 7.0
10
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 8. DC Current Gain
3.0
TJ = 25°C
2.6
IC = 2.0 A
4.0 A
6.0 A
2.2
1.8
1.4
1.0
0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
IB, BASE CURRENT (mA)
20
30
3.0
TJ = 25°C
2.6
IC = 2.0 A
6.0 A
2.2
1.8
1.4
1.0
0.3
0.5 0.7 1.0
Figure 9. Collector Saturation Region
www.onsemi.com
4
4.0 A
2.0 3.0
5.0 7.0
IB, BASE CURRENT (mA)
10
20
30
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
3.0
3.0
TJ = 25°C
2.5
V, VOLTAGE (VOLTS)
V, VOLTAGE (VOLTS)
TJ = 25°C
2.0
VBE(sat) @ IC/IB = 250
1.5
VBE @ VCE = 4.0 V
1.0
VCE(sat) @ IC/IB = 250
2.5
2.0
1.5
VBE @ VCE = 4.0 V
1.0
VBE(sat) @ IC/IB = 250
VCE(sat) @ IC/IB = 250
0.5
0.1
0.2 0.3
0.5 0.7
1.0
2.0 3.0
5.0 7.0
0.5
10
0.1
0.2 0.3
IC, COLLECTOR CURRENT (AMP)
0.5 0.7
1.0
2.0 3.0
5.0 7.0
10
IC, COLLECTOR CURRENT (AMP)
Figure 10. “On” Voltages
PNP
BDX54B, BDX54C
+5.0
+4.0
θV, TEMPERATURE COEFFICIENT (mV/ °C)
θV, TEMPERATURE COEFFICIENT (mV/ °C)
NPN
BDX53B, BDX53C
*IC/IB v hFE/3
+3.0
25°C to 150°C
+2.0
+1.0
-55°C to 25°C
0
*qVC for VCE(sat)
-1.0
-2.0
25°C to 150°C
-3.0
qVB for VBE
-55 to 150°C
-4.0
-5.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
+5.0
+4.0
25°C to 150°C
+2.0
+1.0
-55°C to 25°C
0
*qVC for VCE(sat)
-1.0
-2.0
25°C to 150°C
-3.0
qVB for VBE
-55 to 150°C
-4.0
-5.0
7.0 10
*IC/IB v hFE/3
+3.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0
7.0 10
IC, COLLECTOR CURRENT (AMP)
IC, COLLECTOR CURRENT (AMP)
Figure 11. Temperature Coefficients
104
103
105
REVERSE
FORWARD
IC, COLLECTOR CURRENT (A)
μ
IC, COLLECTOR CURRENT (A)
μ
105
VCE = 30 V
102
TJ = 150°C
101
100
10-1
100°C
25°C
-0.6 -0.4 -0.2
0
+0.2 +0.4 +0.6 +0.8
104
103
VCE = 30 V
102
101
TJ = 150°C
100°C
100
25°C
10-1
+0.6 +0.4 +0.2
+1.0 +1.2 + 1.4
FORWARD
REVERSE
VBE, BASE‐EMITTER VOLTAGE (VOLTS)
0
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4
VBE, BASE‐EMITTER VOLTAGE (VOLTS)
Figure 12. Collector Cut−Off Region
www.onsemi.com
5
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
NPN
BDX53B
BDX53C
COLLECTOR
PNP
BDX54B
BDX54C
BASE
COLLECTOR
BASE
[ 8.0 k
[ 120
[ 8.0 k
[ 120
EMITTER
EMITTER
Figure 13. Darlington Schematic
ORDERING INFORMATION
Package
Shipping†
BDX53BG
TO−220
(Pb−Free)
50 Units / Rail
BDX53CG
TO−220
(Pb−Free)
50 Units / Rail
BDX54BG
TO−220
(Pb−Free)
50 Units / Rail
BDX54CG
TO−220
(Pb−Free)
50 Units / Rail
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
www.onsemi.com
6
BDX53B, BDX53C (NPN), BDX54B, BDX54C (PNP)
PACKAGE DIMENSIONS
TO−220
CASE 221A−09
ISSUE AH
−T−
B
SEATING
PLANE
C
F
T
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
1 2 3
U
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
INCHES
MIN
MAX
0.570
0.620
0.380
0.415
0.160
0.190
0.025
0.038
0.142
0.161
0.095
0.105
0.110
0.161
0.014
0.024
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.53
4.07
4.83
0.64
0.96
3.61
4.09
2.42
2.66
2.80
4.10
0.36
0.61
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
N
STYLE 1:
PIN 1.
2.
3.
4.
BASE
COLLECTOR
EMITTER
COLLECTOR
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
BDX53B/D
Similar pages