IRF CPU165MU Igbt sip module ultra-fast igbt Datasheet

Previous Datasheet
Index
Next Data Sheet
PD - 5.029
CPU165MU
Ultra-Fast IGBT
IGBT SIP MODULE
Features
•
•
•
•
1,2
Fully isolated printed circuit board mount package
Switching-loss rating includes all "tail" losses
TM
HEXFRED soft ultrafast diodes
Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
4
5
Q1
D1
6,7
9
Product Summary
Output Current in a Typical 20 kHz Motor Drive
10 ARMS with T C = 90°C, T J = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
Q2
D2
11,12
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-1
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
IF @ T C = 100°C
IFM
VGE
VISOL
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
33
17
100
100
15
100
±20
2500
83
33
-40 to +150
V
A
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink,flat,greased surface
Weight of module
C-733
To Order
Typ.
Max.
—
—
0.1
20 (0.7)
1.5
2.0
—
—
Units
°C/W
g (oz)
Revision 1
Previous Datasheet
Index
Next Data Sheet
CPU165MU
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, I C = 250µA
— 0.60 —
V/°C VGE = 0V, IC = 1.0mA
—
1.8 2.3
IC = 17A
V GE = 15V
—
2.2
—
V
IC = 33A
See Fig. 2, 5
—
1.6
—
IC = 17A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-13
— mV/°C VCE = VGE, IC = 250µA
16
24
—
S
VCE = 100V, I C = 27A
—
—
250
µA
VGE = 0V, V CE = 600V
—
— 6500
VGE = 0V, V CE = 600V, T J = 150°C
—
1.3 1.7
V
IC = 25A
See Fig. 13
—
1.2 1.5
IC = 25A, T J = 150°C
—
— ±500 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During t b
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
108
17
52
23
28
100
45
0.76
0.26
1.0
24
27
180
130
3.7
2900
330
41
50
105
4.5
8.0
112
420
250
160
Max. Units
Conditions
140
IC = 27A
21
nC
VCC = 400V
70
See Fig. 8
—
TJ = 25°C
—
ns
IC = 27A, V CC = 480V
200
VGE = 15V, R G = 5.0Ω
140
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ
See Fig. 9, 10, 11, 18
2.0
—
TJ = 150°C,
See Fig. 9, 10, 11, 18
—
ns
IC = 27A, V CC = 480V
—
VGE = 15V, R G = 5.0Ω
—
Energy losses include "tail" and
—
mJ
diode reverse recovery.
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
75
ns
TJ = 25°C See Fig.
160
TJ = 125°C
14
I F = 25A
10
A
TJ = 25°C See Fig.
15
TJ = 125°C
15
V R = 200V
375
nC
TJ = 25°C See Fig.
1200
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 5.0Ω, ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-734
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
24
7.4
16
5.0
8
2.5
TC = 90°C
TJ = 125°C
Power Factor = 0.8
Modulation Depth = 0.8
VC C = 60% of Rated Voltage
Total O utpu t P ow e r (kW )
Lo ad C urrent (A )
CPU165MU
0
0
0.1
1
10
100
f, F re quency (kH z)
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
1000
IC , Collector-to-Emitter Current (A)
I C , Collector-to-E m itter C urrent (A)
1000
TJ = 2 5°C
100
TJ = 1 50 °C
10
V G E = 15 V
20 µs P UL S E W ID TH
1
0.1
1
100
TJ = 150°C
TJ = 25°C
10
VCC = 100V
5µs PULSE WIDTH
1
5
10
10
15
VGE, Gate-to-Emitter Voltage (V)
V C E , C o llector-to-Em itter V oltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-735
To Order
20
S
Previous Datasheet
Index
Next Data Sheet
CPU165MU
3.0
V G E = 15 V
VC E , Co lle ctor-to-E m itter V oltage (V )
M aximum D C Collector Current (A )
60
50
40
30
20
10
0
V G E = 15 V
80 µs P UL S E W ID TH
I C = 5 4A
2.5
2.0
I C = 27 A
1.5
I C = 14 A
1.0
25
50
75
100
125
150
-60
T C , C ase Tem perature (°C )
-40
-20
0
20
40
60
80
100 120 140 160
TC , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T herm al Response (Z th JC )
1
D = 0 .5 0
0.2 0
0.1
0.1 0
PD M
0 .05
0.0 2
t
SIN G LE P UL SE
(TH ER MA L R E SP O NS E )
t2
N o te s:
1 . D u ty fa c to r D = t
0.0 1
0.01
0.00001
1
1
/ t
2
2 . P e a k TJ = P D M x Z thJ C + T C
0.0001
0.001
0.01
0.1
1
t 1 , R ectangular Pulse D uration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
C-736
To Order
10
Previous Datasheet
Index
Next Data Sheet
CPU165MU
7000
VG E , G ate-to-E m itter V oltage (V )
6000
C , C apacitance (pF )
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
V C E = 4 80 V
I C = 2 7A
16
5000
12
4000
Cies
3000
Coes
2000
1000
8
4
Cres
0
0
1
10
1 00
0
30
V C E , C ollector-to-E m itter V oltage (V )
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
VC C
VG E
TC
IC
90
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
= 48 0 V
= 15 V
= 25 °C
= 2 7A
To ta l S w itc hing Lo sse s (m J)
Total S w itching Losses (m J)
2 .5 0
60
Q g , Total G ate C harge (nC )
2 .2 5
2 .0 0
1 .7 5
1 .5 0
R G = 2 .0 Ω
V GE = 1 5V
V CC = 48 0V
I C = 54A
I C = 27 A
1
I C = 14 A
0.1
0
10
20
30
40
50
-60
R G , G ate R esistance ( Ω )
-40
-20
0
20
40
60
80
100 120 140 16 0
TC , C ase Tem perature (°C )
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-737
To Order
Previous Datasheet
Index
Next Data Sheet
CPU165MU
5.0
1000
= 2 .0 Ω
= 150°C
= 4 80 V
= 15 V
I C , C ollec tor-to -E m itter C u rre nt (A )
RG
TC
V CC
VGE
4.0
3.0
2.0
1.0
VGGE E= 20 V
T J = 12 5°C
S A FE O P E R A TIN G A R E A
100
10
0.0
1
0
10
20
30
40
50
60
1
10
I C , C ollecto r-to-E m itter C urrent (A )
100
V C E , C o lle cto r-to-E m itte r V olta g e (V )
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Sw itching Losses (m J )
6.0
TJ = 150°C
TJ = 125°C
10
1
0.6
TJ = 25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-738
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPU165MU
100
140
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
IF = 50A
80
I F = 50A
I IRRM - (A)
t rr - (ns)
100
I F = 25A
I F = 25A
10
I F = 10A
IF = 10A
60
40
20
100
1
100
1000
di f /dt - (A/µs)
1000
di f /dt - (A/µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
10000
1500
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
1200
900
IF = 50A
600
IF = 25A
1000
IF = 10A
I F = 25A
300
IF = 50A
I F = 10A
0
100
1000
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
C-739
To Order
1000
Previous Datasheet
Index
Next Data Sheet
CPU165MU
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
430µF
80%
of Vce
5% Ic
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig.18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode) , trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
trr
GATE VOLTAGE D.U.T.
10% +Vg
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
t1
5% Vce
∫
t2
Eon = Vce ie dt
t1
DIODE REVERSE
RECOVERY ENERGY
t2
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining E rec, trr, Qrr, Irr
Defining E on, td(on), tr
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
Package Outline 4 - IMS-1 Package (10 pins)
C-740
To Order
Section D - page D-13
Similar pages