BFP620F Low Noise SiGe:C Bipolar RF Transistor • High gain low noise RF transistor 3 • Based on Infineon's reliable high volume 2 4 1 Silicon Germanium technology • Outstanding noise figure NFmin = 0.7 dB at 1.8 GHz Outstanding noise figure NF min = 1.3 dB at 6 GHz • Maximum stable gain Gms = 21 dB at 1.8 GHz Top View 4 Gma = 10 dB at 6 GHz 3 XYs • Pb-free (RoHS compliant) and halogen-free thin small 1 flat package (1.4 x 0.8 x 0.59 mm) with visible leads 2 Direction of Unreeling • Qualification report according to AEC-Q101 available ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP620F Marking R2s 1=B Pin Configuration 2=E 3=C 4=E - Package - TSFP-4 Maximum Ratings at TA = 25 °C, unless otherwise specified Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA = 25 °C 2.3 TA = -55 °C 2.1 Collector-emitter voltage VCES 7.5 Collector-base voltage VCBO 7.5 Emitter-base voltage VEBO 1.2 Collector current IC 80 Base current IB 3 Total power dissipation1) Ptot 185 mW Junction temperature TJ 150 °C Storage temperature TStg mA TS ≤ 96°C 1T S is -55 ... 150 measured on the emitter lead at the soldering point to the pcb 1 2013-09-09 BFP620F Thermal Resistance Parameter Symbol Junction - soldering point1) RthJS Value Unit 290 K/W Values Unit Electrical Characteristics at T A = 25 °C, unless otherwise specified Parameter Symbol min. typ. max. 2.3 2.8 - V ICES - - 10 µA ICBO - - 100 nA IEBO - - 3 µA hFE 110 180 270 DC Characteristics Collector-emitter breakdown voltage V(BR)CEO IC = 1 mA, I B = 0 Collector-emitter cutoff current VCE = 7.5 V, VBE = 0 Collector-base cutoff current VCB = 5 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain - IC = 50 mA, VCE = 1.5 V, pulse measured 1For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation) 2 2013-09-09 BFP620F Electrical Characteristics at TA = 25 °C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. fT - 65 - Ccb - 0.12 0.2 Cce - 0.2 - Ceb - 0.45 - AC Characteristics (verified by random sampling) Transition frequency GHz IC = 50 mA, VCE = 1.5 V, f = 1 GHz Collector-base capacitance pF VCB = 2 V, f = 1 MHz, VBE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, VBE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Minimum noise figure dB NFmin IC = 5 mA, VCE = 1.5 V, f = 1.8 GHz, ZS = ZSopt - 0.7 - IC = 5 mA, VCE = 1.5 V, f = 6 GHz, ZS = ZSopt - 1.3 - Gms - 21 - dB Gma - 10 - dB Power gain, maximum stable1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt , f = 1.8 GHz Power gain, maximum available1) IC = 50 mA, VCE = 1.5 V, ZS = ZSopt, ZL = ZLopt, f = 6 GHz |S21e|2 Transducer gain dB IC = 50 mA, VCE = 1.5 V, ZS = ZL = 50 Ω, f = 1.8 GHz - 19.5 - f = 6 GHz - 9.5 - IP3 - 25 - P-1dB - 14 - Third order intercept point at output2) dBm VCE = 2 V, IC = 50 mA, ZS =ZL =50 Ω, f = 1.8 GHz 1dB compression point at output IC = 50 mA, VCE = 2 V, ZS =ZL =50 Ω, f = 1.8 GHz 1G 1/2 ma = |S21e / S12e| (k-(k²-1) ), Gms 2IP3 value depends on termination of = |S21e / S12e| all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 3 2013-09-09 BFP620F Total power dissipation P tot = ƒ(TS) Permissible Pulse Load RthJS = ƒ(tp) 10 3 200 mW 160 K/W RthJS Ptot 140 120 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 2 100 80 60 40 20 0 0 15 30 45 60 75 90 105 120 °C 10 1 -7 10 150 10 -6 10 -5 10 -4 10 -3 10 -2 TS s 10 tp Permissible Pulse Load Collector-base capacitance Ccb = ƒ(VCB ) Ptotmax/PtotDC = ƒ(tp ) f = 1MHz 10 1 0.4 P totmax/ PtotDC pF CCB 0.3 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 0.25 0.2 0.15 0.1 0.05 10 0 -7 10 10 -6 10 -5 10 -4 10 -3 10 -2 s 10 0 0 0 tp 1 2 3 4 5 6 V 8 VCB 4 2013-09-09 0 BFP620F Third order Intercept Point IP3=ƒ(IC) Transition frequency fT= ƒ(IC) (Output, ZS=ZL=50Ω) f = 1GHz VCE = parameter, f =1.8GHz VCE = Parameter in V 30 70 GHz 2.3V dBm 60 1.7V 1 to 2.3 55 20 50 fT IP3 1.4V 15 45 0.8 40 0.8V 10 35 1.1V 30 25 5 20 15 0 10 0.3 0.5 5 -5 0 10 20 30 40 50 60 70 mA 0 0 90 10 20 30 40 50 60 70 80 mA IC 100 IC Power gain Gma, Gms = ƒ(IC ) Power Gain Gma, Gms = ƒ(f), VCE = 1.5V |S21|² = f (f) f = Parameter in GHz VCE = 1.5V, IC = 50mA 50 30 dB dB 0.9 26 40 24 35 1.8 G G 22 20 30 18 2.4 16 3 14 4 12 5 10 6 25 20 |S21|² Gma 15 10 8 6 0 Gms 10 20 30 40 50 60 70 mA 5 0 90 IC 1 2 3 4 GHz 6 f 5 2013-09-09 BFP620F Power gain Gma, Gms = ƒ (VCE ) Noise figure F = ƒ(IC ) IC = 50mA VCE = 1.5V, ZS = ZSopt f = Parameter in GHz 30 dB 3 0.9 24 2.5 1.8 G 20 2.4 2 3 16 4 F [dB] 5 12 1.5 6 8 1 4 f = 6GHz f = 5GHz f = 4GHz f = 3GHz f = 2.4GHz f = 1.8GHz f = 0.9GHz 0.5 0 -4 0.2 0.6 1 1.4 V 1.8 2.6 0 0 VCE Noise figure F = ƒ(IC ) VCE = 1.5V, f = 1.8 GHz 10 20 30 40 50 60 70 80 I [mA] c Noise figure F = ƒ(f) VCE = 1.5V, ZS = ZSopt 3 2.5 2.5 2 2 IC = 50mA F [dB] F [dB] 1.5 1.5 IC = 5.0mA 1 1 Z = 50Ω S Z =Z S Sopt 0.5 0.5 0 0 0 10 20 30 40 50 60 70 80 1 Ic [mA] 2 3 4 5 6 7 f [GHz] 6 2013-09-09 BFP620F Source impedance for min. noise figure vs. frequency VCE = 1.5V, IC = 5.0mA/50.0mA 1 1.5 2 0.5 0.4 3 0.3 4 0.2 2.4GHz 5 1.8GHz 3GHz 10 0.1 0.1 0 0.2 0.3 0.4 0.5 1 1.5 4GHz −0.1 2 3 4 5 5GHz −10 6GHz −0.2 Ic = 5.0mA −0.3 −5 −4 −3 I = 50mA −0.4 c −2 −0.5 −1.5 −1 7 2013-09-09 Package TSFP-4 8 BFP620F 2013-09-09 BFP620F Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 9 2013-09-09