E-CMOS EC5420 High slew rate rail-to-rail quad operational amplifier Datasheet

High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
„ FEATURES
• Wide supply voltage range 4.5V ~
16V
• Input range 500mV beyond the rails
• Unity-gain stable
• Rail-to-rail output swing
• High slew rate 20V/μs
• GBWP 8 MHz
• 12 MHz -3dB Bandwidth
• Ultra-small Package TSSOP-14
„ APPLICATIONS
• TFT-LCD Reference Driver
• Touch-Screen Display
• Wireless LANs
• Personal Communication Devices
• Direct Access Arrangement
• Personal Digital Assistant (PDA)
• Active Filter
• Sampling ADC Amplifier
• ADC/DAC Buffer
• Electronic Notebook
• Office Automation
EC5420
With features of 20V/μs high slew rate and
200ns of fast settling time, as well as 30mA
(sink and source) of high output driving
capability, the EC5420 is ideal for the
requirements of flat panel Thin Film Transistor
Liquid Crystal Displays (TFT-LCD) panel
reference buffers application. Due to
insensitive to power supply variation, EC5420
offers flexibility of use in multitude of
applications such as battery power, portable
devices and anywhere low power consumption
is concerned. With standard operational
amplifier pin assignment, the EC5420 is
offered in space saving 14-Pin TSSOP package
and specified over the -40°C to +85°C
temperature range.
„ PIN ASSIGNMENT
V IN A -
2
V IN A+
3
V s+
4
V IN B +
5
V IN B-
6
V OUTB
7
-
+
+
+
+
The EC5420 is a 30mA output current
rail-to-rail quad channels operational amplifier
with wide supply range from 4.5V to 18V while
consumes only 750uA per channel. It provides
0.5V beyond the supply rails of common mode
input range and capability of rail-to-rail output
swing as well. This enables the amplifier to
offer maximum dynamic range at any supply
voltage among many applications. A 8MHz gain
bandwidth product allows EC5420 to perform
more stable than other devices in Internet
applications.
P 1 / 9
V OUTD
13
V IN D -
12
V IN D +
11
V S-
10
V IN C +
9
V IN C -
8
V OUTC
C
B
„ GENERAL DESCRIPTION
14
D
1
A
V OUTA
-
-
TSSOP-14
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
„ ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)
Values beyond absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only; functional device operation is not implied. Exposure to AMR conditions for extended periods may affect
device reliability.
Supply Voltage between VS+ and VS+16V
Storage Temperature
-65°C to +150°C
Operating Temperature
-40°C to +85°C
Input Voltage
VS--0.5V, VS ++0.5V
Lead Temperature
260°C
Maximum Continuous Output Current
30mA
ESD Voltage
2kV
Maximum Die Temperature
+125°C
Important Note:
All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all
tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA
„ ELECTRICAL CHARACTERISTICS
VS+= +5V, VS - = -5V, RL = 10kΩ and CL = 10pF to 0V, TA = 25°C unless otherwise specified.
Parameter
Description
Input Characteristics
VOS
Input Offset Voltage
TCVOS
Average Offset Voltage Drift
IB
Input Bias Current
RIN
Input Impedance
CIN
Input Capacitance
CMIR
Common-Mode Input Range
CMRR
Common-Mode Rejection Ratio
B
AVOL
Open-Loop Gain
Output Characteristics
VOL
Output Swing Low
VOH
Output Swing High
ISC
Short Circuit Current
IOUT
Output Current
Power Supply Performance
PSRR
Power Supply Rejection Ratio
IS
Supply Current (Per Amplifier)
Dynamic Performance
SR
Slew Rate [2]
tS
Settling to +0.1% (AV = +1)
BW
-3dB Bandwidth
GBWP
Gain-Bandwidth Product
PM
Phase Margin
CS
Channel Separation
1. Measured over operating temperature range
2. Slew rate is measured on rising and falling edges
Condition
Min
Typ
VCM= 0V
[1]
VCM= 0V
for VIN from -0.5V to
5.5V
0.5V ≤ VOUT ≤ 4.5V
IL=-5mA
IL=5mA
2
5
2
1
1.35
Units
-0.5
50
70
mV
µV/°C
nA
GΩ
pF
V
dB
75
90
dB
4.85
VS is moved from
±2.25V to ±7.75V
No Load
60
-4.0V ≤ VOUT ≤ 4.0V,
20% to 80%
(AV = +1), VO=2V Step
RL = 10kΩ, CL=10pF
RL = 10kΩ, CL=10pF
RL = 10kΩ, CL = 10 pF
f = 5 MHz
13
P 2 / 9
Max
12
50
+5.5
-4.92
4.92
±150
±30
-4.85
80
750
mV
V
mA
mA
dB
1000
uA
20
V/µs
200
12
8
50
75
ns
MHz
MHz
Degrees
dB
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
„ TYPICAL PERFORMANCE CURVES
Quantity(Amplifiers)
1750
1500
1250
1000
750
500
250
0
-15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15
Input Offset(mV)
Figure (a) Input Offset Voltage Distribution
Figure (b) Rail to Rail Capability
Figure (c) Input Beyond the Rails Signal
Figure (d) Large Signal Transient Response
Figure (e) Large Signal Transient Response
P 3 / 9
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
„
EC5420
TYPICAL PERFORMANCE CURVES
RL=10KΩ
Av = 1
Vs = ±5V
Figure (f) Open Loop Gain & Phase vs. Frequency
Figure (g) Frequency Response for Various CL
CL=10 pF
Av = 1
Vs = ±5V
Figure (h) Frequency Response for Various RL
P 4 / 9
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
„ APPLICATIONS INFORMATION
Product Description
The EC5420 rail-to-rail quad channels amplifier is built
on an advanced high voltage CMOS process. It’s beyond
rails input capability and full swing of output range made
itself an ideal amplifier for use in a wide range of
general-purpose applications. The features of 20V/µS
high slew rate, fast settling time, 8MHz of GBWP as
well as high output driving capability have proven the
EC5420 a good voltage reference buffer for TFT-LCD
for applications. High phase margin make the EC5420
ideal for Connected in voltage follower mode for high
drive applications
Supply Voltage, Input Range and Output Swing
The EC5420 can be operated with a single nominal wide
supply voltage ranging from 4.5V to 16V with stable
performance over operating temperatures of -40 °C to
+85 °C.
With 500mV greater than rail-to-rail input common
mode voltage range and 80dB of Common Mode
Rejection Ratio, the EC5420 allows a wide range sensing
among many applications without having any concerns
over exceeding the range and no compromise in accuracy.
The output swings of the EC5420 typically extend to
within 80mV of positive and negative supply rails with
load currents of 5mA. The output voltage swing can be
even closer to the supply rails by merely decreasing the
load current. Figure 1 shows the input and output
waveforms for the device in the unity-gain configuration.
The amplifier is operated under ±5V supply with a
10kΩ load connected to GND. The input is a 10Vp-p
sinusoid. An approximately 9.985 Vp-p of output voltage
swing can be easily achieved.
continuous current from exceeding +/-30 mA such that
the maximum reliability can be well maintained.
Output Phase Reversal
The EC5420 is designed to prevent its output from being
phase reversal as long as the input voltage is limited
from VS--0.5V to VS+ +0.5V. Figure 2 shows a photo
of the device output with its input voltage driven beyond
the supply rails. Although the phase of the device's
output will not be reversed, the input's over-voltage
should be avoided. An improper input voltage exceeds
supply range by more than 0.6V may result in an over
stress damage.
Figure 2. Operation with Beyond-the Rails Input
Power Dissipation
The EC5420 is designed for maximum output current
capability. Even though momentary output shorted to
ground causes little damage to the device.
For the high drive amplifier EC5420, it is possible to
exceed the 'absolute-maximum junction temperature'
under certain load current conditions. Therefore, it is
important to calculate the maximum junction
temperature for the application to determine if load
conditions need to be modified for the amplifier to
remain in the safe operating area. The maximum power
dissipation allowed in a package is determined according
to:
PDmax =
TJmax - TAmax
ΘJA
Where:
Figure 1. Operation with Rail-to-Rail Input and
Output
Output Short Circuit Current Limit
A +/-150mA short circuit current will be limited by the
EC5420 if the output is directly shorted to the positive or
the negative supply. For an indefinitely output short
circuit, the power dissipation could easily increase such
that the device may be damaged. The internal metal
interconnections are well designed to prevent the output
TJmax = Maximum Junction Temperature
TAmax= Maximum Ambient Temperature
ΘJA = Thermal Resistance of the Package
PDmax = Maximum Power Dissipation in the Package.
The maximum power dissipation actually produced by an
IC is the total quiescent supply current times the total
power supply voltage, plus the power in the IC due to the
P 5 / 9
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
loads, or:
PDmax =∑i[VS * ISmax + (VS+ – VO) * IL]
When sourcing, and
PDmax = ∑i[VS * ISmax + (VO – VS-) * IL]
When sinking.
Where:
i = 1 to 4
VS = Total Supply Voltage
SEMI G42-88 Single Layer Test Board
ISmax = Maximum Supply Current Per Amplifier
Figure 4. Package Power Dissipation vs.
Ambient Temperature
VO = Maximum Output Voltage of the Application
IL= Load current
RL= Load Resistance = (VS+ – VO)/IL = (VO – VS-)/ IL
A calculation for RL to prevent device from overheat can
be easily solved by setting the two PDmax equations equal
to each other. Figure 3 and Figure 4 show the
relationship between package power dissipation and
ambient temperature under the JEDEC JESD 51-7 high
effective thermal conductivity test board and SEMI
G42-88 single layer test board respectively. From these
charts, conditions of the device overheat then can be
easily found. The maximum safe power dissipation can
be found graphically, based on the package type and the
ambient temperature. By using the previous equation, it
is a simple matter to see if PDMAX exceeds the device's
power de-rating curves. To ensure proper operation, it is
important to observe the recommended de-rating curves
shown in Figure 3 and Figure 4.
JEDEC JESD 51-7 High Effective Thermal Conductivity Test Board
1V
Figure 3. Package Power Dissipation vs.
Ambient Temperature
Driving Capacitive Loads
The EC5420 is designed to drive a wide range of
capacitive loads. In addition, the output current handling
capability of the device allows for good slewing
characteristics even with large capacitive loads. The
combination of these features make the EC5420 ideally
for applications such as TFT LCD panel buffers, ADC
input amplifiers, etc.
As load capacitance increases, however, the -3dB
bandwidth of the device will decrease and the peaking
increase. The amplifiers drive 10pF loads in parallel with
10 kΩ with just 1.5dB of peaking, and 100pF with
6.4dB of peaking. If less peaking is desired in these
applications, a small series resistor (usually between 5
Ω and 50 Ω) can be placed in series with the output.
However, this will obviously reduce the gain slightly.
Another method of reducing peaking is to add a
"snubber" circuit at the output. A snubber is a shunt load
consisting of a resistor in series with a capacitor. Values
of 150Ω and 10nF are typical. The advantage of a
snubber is that it improves the settling and overshooting
performance while does not draw any DC load current or
reduce the gain.
Power Supply Bypassing and Printed Circuit Board
Layout
With high phase margin, the EC5420 performs stable
gain at high frequency. Like any high-frequency device,
good layout of the printed circuit board usually comes
with optimum performance. Ground plane construction is
highly recommended, lead lengths should be as short as
possible and the power supply pins must be well
bypassed to reduce the risk of oscillation. For normal
single supply operation, where the VS- pin is connected
to ground, a 0.1 µF ceramic capacitor should be placed
from VS+ pin to VS- pin as a bypassing capacitor. A
4.7µF tantalum capacitor should then be connected in
parallel, placed in the region of the amplifier. One 4.7µF
capacitor may be used for multiple devices. This same
capacitor combination should be placed at each supply
pin to ground if split supplies are to be used.
P 6 / 9
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
„ OUTLINE DIMENSIONS (Dimensions shown in millimeters)
TSSOP (Thin-Shrink Small Outline Package)
5.0 ± 0.10
0.09 - 0. 20
4.4 ± 0.10
6.4 ± 0.10
0.65 Typ
0.9 Typ
0° - 8°
0.6 ± 0.10
0.10 ± 0.05
0.19 -0.30 Typ
P 7 / 9
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
„ PACKAGE MARKING INDICATION
TSSOP 14
EC5420-F
Date code
Lot
No.
„ ORDERING INFORMATION
PART NUMBER
EC5420I-F
EC5420I-G
TOP MARK
EC5420-F
EC5420-G
P 8 / 9
PACKAGE
Lead free 14-pin TSSOP
Green mode TSSOP-14
Rev 0.1
15/5/2006
High Slew Rate Rail-to-Rail
Quad Operational Amplifiers
EC5420
General Disclaimer:
1. Product information and specifications furnished by E-CMOS in this data sheets are in effect as of the publication date
shown and are believed to be accurate and reliable. However, no responsibility is assumed by E-CMOS for the use of
any information shown herein, nor for any patent or other rights infringement.
2. No license is granted by implication or otherwise under any patent or industrial properties owned by E-CMOS or any
third party through this document.
3.
The information herein is subject to change at any time without notice.
4.
Neither reproduction nor duplication of this document, in any form, the whole or part is allowed without the prior
written approval from E-CMOS.
5. Products of E-CMOS Corp., unless otherwise specified, are not authorized for use as critical components of any device
or equipment in applications that demand extremely high reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aircraft, vehicles, nuclear power, radiation resistant
system, transportation, disaster prevention equipment, gas related equipment, physical exercise equipment, safety
equipment and medical equipment for life support, etc.
6. Although E-CMOS makes every attempt to ensure that its products are of high quality and reliability, thorough
consideration of safety design and operating within the ranges guaranteed are strongly recommended to prevent any
accident and damage that may ensue. E-CMOS bares no responsibility for failure or damage when abused or used
beyond the guaranteed ranges.
7. Products applied to life support devices and systems are strongly requested to contact E-CMOS Corporation
headquarter for the written approval to establish suitable terms & conditions. E-CMOS’ warranty is limited to
replacement of defective components. Any personal injury or death or any other consequential damages of property are
not covered.
Copyright © 2002 by E-CMOS Corporation.
E-CMOS CORPORATION IC DATASHEET
ADDRESS: NO.1, CREATION RD. 2ND, SCIENCE-BASED INDUSTRIAL PARK,
HSIN-CHU 300, TAIWAN, R.O.C.
WEBSITE: http://www.ecmos.com.tw
E-MAIL: mailto:[email protected]
TEL: 886-3-5785888
FAX: 886-3-5783630
P 9 / 9
Rev 0.1
15/5/2006
Similar pages