ATMEL ATMEGA16HVB-TBD 8-bit microcontroller with 16k/32k bytes in-system programmable flash Datasheet

Features
• High Performance, Low Power AVR® 8-bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
•
•
•
– 124 Powerful Instructions - Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 8 MIPS Throughput at 8 MHz
High Endurance Non-volatile Memory Segments
– 16K/32K Bytes of In-System Self-Programmable Flash (ATmega16HVB/32HVB)
– 512/1K Bytes EEPROM
– 1K/2K Bytes Internal SRAM
– Write/Erase Cycles 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– Programming Lock for Software Security
Battery Management Features
– Two, three or Four Cells in Series
– High-current Protection (Charge and Discharge)
– Over-current Protection (Charge and Discharge)
– Short-circuit Protection (Discharge)
– High Voltage Outputs to Drive N-Channel Charge/Discharge FETs
– High Voltage Output to drive P-Channel Precharge FET
– Integrated Cell Balancing FETs
Peripheral Features
– Two configurable 8- or 16-bit Timers with Separate Prescaler, Optional Input
Capture (IC), Compare Mode and CTC
– SPI - Serial Programmable Interface
– 12-bit Voltage ADC, Six External and One Internal ADC Input
– High Resolution Coulomb Counter ADC for Current Measurements
– TWI Serial Interface for SM-Bus
– Programmable Watchdog Timer
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI ports
– Power-on Reset
– On-chip Voltage Regulator with Short-circuit Monitoring Interface
– External and Internal Interrupt Sources
– Sleep Modes: Idle, ADC Noise Reduction, Power-save, and Power-off
Additional Secure Authentication Features available only under NDA
Packages
– 44-lead TSSOP
Operating Voltage: 4 - 25V
Maximum Withstand Voltage (High-voltage pins): 35V
Temperature Range: -30°C to 85°C
Speed Grade: 1-8 MHz
8-bit
Microcontroller
with 16K/32K
Bytes In-System
Programmable
Flash
ATmega16HVB
ATmega32HVB
Advance
Information
Summary
8042AS–AVR–09/08
1. Pin Configurations
1.1
TSSOP
Figure 1-1.
1.2
1.2.1
TSSOP - pinout ATmega16HVB/32HVB
NI
1
44
PI
NNI
2
43
PPI
VREFGND
3
42
NV
VREF
4
41
PV1
GND
5
40
PV2
VREG
6
39
PV3
PA0(ADC0/SGND/PCINT0)
7
38
PV4
PA1(ADC1/SGND/PCINT1)
8
37
PVT
PA2(PCINT2/T0)
9
36
VCC
PA3(PCINT3/T1)
10
35
GND
NC
11
34
PC5
VFET
12
33
PC4(SCL)
BATT
13
32
PC3(INT3/SDA)
VCC
14
31
PC2(INT2)
GND
15
30
PC1(INT1)
OD
16
29
PC0(INTO/EXTPROT)
NC
17
28
PB7(MISO/PCINT11)
OC
18
27
NC
RESET/dw
19
26
PB6(MOSI/PCINT10)
PB0(PCINT4/ICP00)
20
25
PB5(SCK/PCINT9)
PB1(PCINT5/CKOUT)
21
24
PB4(SS/PCINT8)
PB2(PCINT6)
22
23
PB3(PCINT7)
Pin Descriptions
VFET
High voltage supply pin. This pin is used as supply for the internal voltage regulator, described in
”Voltage Regulator” on page 132.
1.2.2
VCC
Digital supply voltage. Normally connected to VREG.
1.2.3
VREG
Output from the internal Voltage Regulator. Used for external decoupling to ensure stable regulator operation. For details, see ”Voltage Regulator” on page 132.
2
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
1.2.4
VREF
Internal Voltage Reference for external decoupling. For details, see ”Voltage Reference and
Temperature Sensor” on page 124.
1.2.5
VREFGND
Ground for decoupling of Internal Voltage Reference. For details, see ”Voltage Reference and
Temperature Sensor” on page 124. Do not connect to GND or SGND on PCB.
1.2.6
GND
Ground
1.2.7
Port A (PA3..PA0)
Port A serves as a low-voltage 4-bit bi-directional I/O port with internal pull-up resistors (selected
for each bit). As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATmega16HVB/32HVB as
listed in ”Alternate Functions of Port A” on page 76.
1.2.8
Port B (PB7..PB0)
Port B is a low-voltage 8-bit bi-directional I/O port with internal pull-up resistors (selected for
each bit). As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega16HVB/32HVB as
listed in ”Alternate Functions of Port B” on page 77.
1.2.9
Port C (PC5)
Port C (PC5) is a high voltage Open Drain output port. Port C serves the functions of various
special features of the ATmega16HVB/32HVB as listed in ”Alternate Functions of Port C” on
page 67.
1.2.10
Port C (PC4..PC0)
Port C is a 5-bit high voltage Open Drain bi-directional I/O port. Port C serves the functions of
various special features of the ATmega16HVB/32HVB as listed in ”Alternate Functions of Port
C” on page 67.
1.2.11
OC/OD
High voltage output to drive Charge/Discharge. For details, see ”FET Driver” on page 147.
1.2.12
PI/NI
Filtered positive/negative input from external current sense resistor, used to by the Coulomb
Counter ADC to measure charge/discharge currents flowing in the battery pack. For details, see
”Coulomb Counter - Dedicated Fuel Gauging Sigma-delta ADC” on page 110.
3
8042AS–AVR–09/08
1.2.13
PPI/NNI
Unfiltered positive/negative input from external current sense resistor, used by the battery protection circuit, for over-current and short-circuit detection. For details, see ”Battery Protection” on
page 135.
1.2.14
NV/PV1/PV2/PV3/PV4
NV, PV1, PV2, PV3, and PV4 are the inputs for battery cells 1, 2, 3 and 4, used by the Voltage
ADC to measure each cell voltage. For details, see ”Voltage ADC – 7-channel General Purpose
12-bit Sigma-Delta ADC” on page 118.
1.2.15
PVT
Defines the source voltage level for the Charge FET driver. For details, see ”FET Driver” on
page 147.
1.2.16
BATT
Input for detecting when a charger is connected. Defines the source voltage level for the Discharge FET driver. For details, see ”FET Driver” on page 147.
1.2.17
RESET/dw
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 11 on page
38. Shorter pulses are not guaranteed to generate a reset. This pin is also used as debugWIRE
communication pin.
4
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
2. Overview
The ATmega16HVB/32HVB is a monitoring and protection circuit for 3 and 4-cell Li-ion applications with focus on high security/authentication, low cost and high utilization of the cell energy.
The device contains secure authentication features as well as autonomous battery protection
during charging and discharging. The External Protection Input can be used to implement other
battery protection mechanisms using external components, e.g. protection against chargers with
too high charge voltage can be easily implemented with a few low cost passive components.
The feature set makes the ATmega16HVB/32HVB a key component in any system focusing on
high security, battery protection, high system utilization and low cost.
Figure 2-1.
Block Diagram
PB7..0
PC5..0
PORTB (8)
PORTC (6)
PB0
Oscillator
Circuits /
Clock
Generation
VCC
RESET/dW
Current
Protection
Oscillator
Sampling
Interface
Watchdog
Oscillator
SPI
TWI
8/16-bit T/C0
Cell
Balancing
Program
Logic
Power
Supervision
POR &
RESET
Flash
SRAM
8/16-bit T/C1
Voltage
ADC
VFET
VREG
PPI
NNI
PV4
PV3
PV2
PV1
NV
Watchdog
Timer
VPTAT
debugWIRE
CPU
EEPROM
Security
Module
GND
BATT
OC
OD
OPC
FET
Control
Charger
Detect
Voltage
Reference
Coulumb
Counter ADC
VREF
VREFGND
PI
NI
DATA BUS
Voltage
Regulator
Voltage Regulator
Monitor Interface
PORTA (4)
PA1..0
PA3..0
ATmega16HVB/32HVB provides the necessary redundancy on-chip to make sure that the battery is protected in critical failure modes. The chip is specifically designed to provide safety for
the battery cells in case of pin shorting, loss of power (either caused by battery pack short or VCC
5
8042AS–AVR–09/08
short), illegal charger connection or software runaway. This makes ATmega16HVB/32HVB the
ideal 1-chip solution for applications with focus on high safety.
The ATmega16HVB/32HVB features an integrated voltage regulator that operates at a wide
range of input voltages, 4 - 25 volts. This voltage is regulated to a constant supply voltage of
nominally 3.3 volts for the integrated logic and analog functions. The regulator capabilities, combined with a extremely low power consumption in the power saving modes, greatly enhances the
cell energy utilization compared to existing solutions.
The chip utilizes Atmel's patented Deep Under-voltage Recovery (DUVR) mode that supports
pre-charging of deeply discharged battery cells without using a separate Pre-charge FET.
Optionally, Pre-charge FETs are supported for integration into many existing battery charging
schemes.
The battery protection monitors the charge and discharge current to detect illegal conditions and
protect the battery from these when required. A 12-bit Voltage ADC allows software to monitor
each cell voltage individually with high accuracy. The ADC also provides one internal input channel to measure on-chip temperature and two input channels intended for external thermistors.
An 18-bit ADC optimized for Coulomb Counting accumulates charge and discharge currents and
reports accumulated current with high resolution and accuracy. It can also be used to provide
instantaneous current measurements with 13 bit resolution. Integrated Cell Balancing FETs
allow cell balancing algorithms to be implemented in software.
The MCU provides the following features: 16K/32K bytes of In-System Programmable Flash with
Read-While-Write capabilities, 512/1K bytes EEPROM, 1K/2K bytes SRAM. 32 general purpose
working registers, 12 general purpose I/O lines, 5 general purpose high voltage open drain I/O
lines, one general purpose super high voltage open drain output, debugWIRE for On-chip
debugging and SPI for In-system Programming, a SM-Bus compliant TWI module, two flexible
Timer/Counters with Input Capture and compare modes.
Internal and external interrupts, a 12-bit Sigma Delta ADC for voltage and temperature measurements, a high resolution Sigma Delta ADC for Coulomb Counting and instantaneous current
measurements, integrated cell balancing FETs, Additional Secure Authentication Features, an
autonomous Battery Protection module, a programmable Watchdog Timer with internal Oscillator, and software selectable power saving modes.
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The device is manufactured using Atmel’s high voltage high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System,
through an SPI serial interface, by a conventional non-volatile memory programmer or by an Onchip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash
section will continue to run while the Application Flash section is updated, providing true ReadWhile-Write operation. By combining an 8-bit RISC CPU with In-System Self-ProgrammableFlash and highly accurate analog front-end in a monolithic chip.
The Atmel ATmega16HVB/32HVB is a powerful microcontroller that provides a highly flexible
and cost effective solution. It is part of the AVR Smart Battery family that provides secure
6
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
authentication, highly accurate monitoring and autonomous protection for Lithium-ion battery
cells.
The ATmega16HVB/32HVB AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, and Onchip Debugger.
2.1
Comparison Between ATmega16HVB and ATmega32HVB
The ATmega16HVB and ATmega32HVB differ only in memory size for Flash, EEPROM and
internal SRAM. Table 2-1 summarizes the different configuration for the two devices.
Table 2-1.
Configuration summary
Device
Flash
EEPROM
SRAM
ATmega16HVB
16K
512
1K
ATmega32HVB
32K
1K
2K
3. Disclaimer
All Min, Typ and Max values contained in this datasheet are preliminary estimates based on simulations and characterization of other AVR microcontrollers manufactured on the same process
technology. Final values will be available after the device is characterized.
4. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.n1
Note:
1.
5. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
7
8042AS–AVR–09/08
6. Register Summary
8
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xFF)
Reserved
–
–
–
–
–
–
–
–
(0xFE)
BPPLR
–
–
–
–
–
–
BPPLE
BPPL
140
(0xFD)
BPCR
–
–
EPID
SCD
DOCD
COCD
DHCD
CHCD
141
(0xFC)
BPHCTR
–
–
HCPT[5:0]
142
(0xFB)
BPOCTR
–
–
OCPT[5:0]
142
(0xFA)
BPSCTR
–
(0xF9)
BPCHCD
SCPT[6:0]
Page
142
CHCDL[7:0]
145
(0xF8)
BPDHCD
DHCDL[7:0]
144
(0xF7)
BPCOCD
COCDL[7:0]
144
(0xF6)
BPDOCD
DOCDL[7:0]
143
(0xF5)
BPSCD
SCDL[7:0]
(0xF4)
Reserved
–
–
–
–
143
–
–
–
–
(0xF3)
BPIFR
–
–
–
SCIF
DOCIF
COCIF
DHCIF
CHCIF
146
(0xF2)
BPIMSK
–
–
–
SCIE
DOCIE
COCIE
DHCIE
CHCIE
145
(0xF1)
CBCR
–
–
–
–
CBE4
CBE3
CBE2
CBE1
153
(0xF0)
FCSR
–
–
–
–
DUVRD
CPS
DFE
CFE
150
(0xEF)
Reserved
–
–
–
–
–
–
–
–
(0xEE)
Reserved
–
–
–
–
–
–
–
–
(0xED)
Reserved
–
–
–
–
–
–
–
–
(0xEC)
Reserved
–
–
–
–
–
–
–
–
(0xEB)
Reserved
–
–
–
–
–
–
–
–
(0xEA)
CADRDC
CADRDC[7:0]
(0xE9)
CADRCC
CADRCC[7:0]
(0xE8)
CADCSRC
-
(0xE7)
CADCSRB
(0xE6)
CADCSRA
(0xE5)
CADICH
–
CADACIE
CADRCIE
CADEN
CADPOL
CADUB
CADICIE
117
116
–
-
-
CADVSE
115
CADACIF
CADRCIF
CADICIF
114
CADAS[1:0]
CADSI[1:0]
CADSE
113
CADIC[15:8]
115
(0xE4)
CADICL
CADIC[7:0]
115
(0xE3)
CADAC3
CADAC[31:24]
116
(0xE2)
CADAC2
CADAC[23:16]
116
(0xE1)
CADAC1
CADAC[15:8]
116
(0xE0)
CADAC0
(0xDF)
Reserved
–
–
–
–
CADAC[7:0]
–
–
–
–
116
(0xDE)
Reserved
–
–
–
–
–
–
–
–
(0xDD)
Reserved
–
–
–
–
–
–
–
–
(0xDC)
Reserved
–
–
–
–
–
–
–
–
(0xDB)
Reserved
–
–
–
–
–
–
–
–
(0xDA)
Reserved
–
–
–
–
–
–
–
–
(0xD9)
Reserved
–
–
–
–
–
–
–
–
(0xD8)
Reserved
–
–
–
–
–
–
–
–
(0xD7)
Reserved
–
–
–
–
–
–
–
–
(0xD6)
Reserved
–
–
–
–
–
–
–
–
(0xD5)
Reserved
–
–
–
–
–
–
–
–
(0xD4)
CHGDCSR
–
–
–
BATTPVL
CHGDISC1
CHGDISC1
CHGDIF
CHGDIE
(0xD3)
Reserved
–
–
–
–
–
–
–
–
(0xD2)
BGCSR
–
–
BGD
BGSCDE
–
–
BGSCDIF
BGSCDIE
(0xD1)
BGCRR
BGCR[7:0]
131
127
126
(0xD0)
BGCCR
–
–
(0xCF)
Reserved
–
–
–
–
–
BGCC[5:0]
–
–
–
240
(0xCE)
Reserved
–
–
–
–
–
–
–
–
(0xCD)
Reserved
–
–
–
–
–
–
–
–
(0xCC)
Reserved
–
–
–
–
–
–
–
–
(0xCB)
Reserved
–
–
–
–
–
–
–
–
(0xCA)
Reserved
–
–
–
–
–
–
–
–
(0xC9)
Reserved
–
–
–
–
–
–
–
–
(0xC8)
ROCR
ROCS
–
–
ROCD
–
–
ROCWIF
ROCWIE
(0xC7)
Reserved
–
–
–
–
–
–
–
–
(0xC6)
Reserved
–
–
–
–
–
–
–
–
(0xC5)
Reserved
–
–
–
–
–
–
–
–
(0xC4)
Reserved
–
–
–
–
–
–
–
–
(0xC3)
Reserved
(0xC2)
Reserved
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
(0xC1)
Reserved
–
–
–
–
–
–
–
–
(0xC0)
Reserved
–
–
–
–
–
–
–
–
134
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xBF)
Reserved
–
–
–
–
–
–
–
–
(0xBE)
TWBCSR
TWBCIF
TWBCIE
–
–
–
TWBDT1
TWBDT0
TWBCIP
185
(0xBD)
TWAMR
–
185
TWIE
182
(0xBC)
TWCR
(0xBB)
TWDR
(0xBA)
TWAR
(0xB9)
TWSR
TWAM[6:0]
TWINT
TWEA
TWSTA
TWSTO
TWWC
TWEN
–
2–wire Serial Interface Data Register
184
TWA[6:0]
TWS[7:3]
(0xB8)
TWBR
(0xB7)
Reserved
–
(0xB6)
Reserved
–
(0xB5)
Reserved
–
(0xB4)
Reserved
(0xB3)
Page
TWGCE
184
183
–
TWPS1
TWPS0
2–wire Serial Interface Bit Rate Register
182
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
Reserved
–
–
–
–
–
–
–
–
(0xB2)
Reserved
–
–
–
–
–
–
–
–
(0xB1)
Reserved
–
–
–
–
–
–
–
–
(0xB0)
Reserved
–
–
–
–
–
–
–
–
(0xAF)
Reserved
–
–
–
–
–
–
–
–
(0xAE)
Reserved
–
–
–
–
–
–
–
–
(0xAD)
Reserved
–
–
–
–
–
–
–
–
(0xAC)
Reserved
–
–
–
–
–
–
–
–
(0xAB)
Reserved
–
–
–
–
–
–
–
–
(0xAA)
Reserved
–
–
–
–
–
–
–
–
(0xA9)
Reserved
–
–
–
–
–
–
–
–
(0xA8)
Reserved
–
–
–
–
–
–
–
–
(0xA7)
Reserved
–
–
–
–
–
–
–
–
(0xA6)
Reserved
–
–
–
–
–
–
–
–
(0xA5)
Reserved
–
–
–
–
–
–
–
–
(0xA4)
Reserved
–
–
–
–
–
–
–
–
(0xA3)
Reserved
–
–
–
–
–
–
–
–
(0xA2)
Reserved
–
–
–
–
–
–
–
–
(0xA1)
Reserved
–
–
–
–
–
–
–
–
(0xA0)
Reserved
–
–
–
–
–
–
–
–
(0x9F)
Reserved
–
–
–
–
–
–
–
–
(0x9E)
Reserved
–
–
–
–
–
–
–
–
(0x9D)
Reserved
–
–
–
–
–
–
–
–
(0x9C)
Reserved
–
–
–
–
–
–
–
–
(0x9B)
Reserved
–
–
–
–
–
–
–
–
(0x9A)
Reserved
–
–
–
–
–
–
–
–
(0x99)
Reserved
–
–
–
–
–
–
–
–
(0x98)
Reserved
–
–
–
–
–
–
–
–
(0x97)
Reserved
–
–
–
–
–
–
–
–
(0x96)
Reserved
–
–
–
–
–
–
–
–
(0x95)
Reserved
–
–
–
–
–
–
–
–
(0x94)
Reserved
–
–
–
–
–
–
–
–
(0x93)
Reserved
–
–
–
–
–
–
–
–
(0x92)
Reserved
–
–
–
–
–
–
–
–
(0x91)
Reserved
–
–
–
–
–
–
–
–
(0x90)
Reserved
–
–
–
–
–
–
–
–
(0x8F)
Reserved
–
–
–
–
–
–
–
–
(0x8E)
Reserved
–
–
–
–
–
–
–
–
(0x8D)
Reserved
–
–
–
–
–
–
–
–
(0x8C)
Reserved
–
–
–
–
–
–
–
–
(0x8B)
Reserved
–
–
–
–
–
–
–
–
(0x8A)
Reserved
–
–
–
–
–
–
–
–
(0x89)
OCR1B
Timer/Counter1 – Output Compare Register B
(0x88)
OCR1A
Timer/Counter1 – Output Compare Register A
(0x87)
Reserved
–
–
–
(0x86)
Reserved
–
–
–
(0x85)
TCNT1H
Timer/Counter1 (8 Bit) High Byte
(0x84)
TCNT1L
Timer/Counter1 (8 Bit) Low Byte
(0x83)
Reserved
–
–
–
–
–
(0x82)
Reserved
–
–
–
–
–
–
–
–
(0x81)
TCCR1B
–
–
–
–
–
CS12
CS11
CS10
83
(0x80)
TCCR1A
TCW1
ICEN1
ICNC1
ICES1
ICS1
–
–
WGM10
96
(0x7F)
Reserved
–
–
–
–
–
–
–
–
(0x7E)
DIDR0
–
–
–
–
–
–
PA1DID
PA0DID
97
97
–
–
–
–
–
–
–
–
–
–
97
97
–
–
–
123
9
8042AS–AVR–09/08
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0x7D)
Reserved
–
–
–
–
–
–
–
–
(0x7C)
VADMUX
–
–
–
–
(0x7B)
Reserved
–
–
–
–
–
–
–
–
(0x7A)
VADCSR
–
–
–
–
VADEN
VADSC
VADCCIF
VADCCIE
(0x79)
VADCH
–
–
–
–
(0x78)
VADCL
(0x77)
Reserved
–
–
–
–
–
–
–
–
(0x76)
Reserved
–
–
–
–
–
–
–
–
(0x75)
Reserved
–
–
–
–
–
–
–
–
(0x74)
Reserved
–
–
–
–
–
–
–
–
(0x73)
Reserved
–
–
–
–
–
–
–
–
(0x72)
Reserved
–
–
–
–
–
–
–
–
(0x71)
Reserved
–
–
–
–
–
–
–
–
(0x70)
Reserved
–
–
–
–
–
–
–
–
(0x6F)
TIMSK1
–
–
–
–
ICIE1
OCIE1B
OCIE1A
TOIE1
98
(0x6E)
TIMSK0
–
–
–
–
ICIE0
OCIE0B
OCIE0A
TOIE0
98
(0x6D)
Reserved
–
–
–
–
–
–
–
–
(0x6C)
PCMSK1
(0x6B)
PCMSK0
–
–
–
–
(0x6A)
Reserved
–
–
–
–
–
–
(0x69)
EICRA
ISC31
ISC30
ISC21
ISC20
ISC11
ISC10
ISC01
ISC00
60
(0x68)
PCICR
–
–
–
–
–
–
PCIE1
PCIE0
62
(0x67)
Reserved
–
–
–
–
–
–
–
–
(0x66)
FOSCCAL
(0x65)
Reserved
–
–
–
–
–
–
–
–
VADMUX[3:0]
Page
121
VADC Data Register High byte
121
122
VADC Data Register Low byte
122
PCINT[15:8]
62
PCINT[3:0]
63
–
–
Fast Oscillator Calibration Register
34
(0x64)
PRR0
–
PRTWI
PRVRM
–
PRSPI
PRTIM1
PRTIM0
PRVADC
(0x63)
Reserved
–
–
–
–
–
–
–
–
42
(0x62)
Reserved
–
–
–
–
–
–
–
–
(0x61)
CLKPR
CLKPCE
–
–
–
–
–
CLKPS1
CLKPS0
34
(0x60)
WDTCSR
WDIF
WDIE
WDP3
WDCE
WDE
WDP2
WDP1
WDP0
51
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
12
0x3E (0x5E)
SPH
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
15
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
15
0x3C (0x5C)
Reserved
–
–
–
–
–
–
–
–
0x3B (0x5B)
Reserved
–
–
–
–
–
–
–
–
0x3A (0x5A)
Reserved
–
–
–
–
–
–
–
–
0x39 (0x59)
Reserved
–
–
–
–
–
–
–
–
0x38 (0x58)
Reserved
–
–
–
–
–
–
–
–
0x37 (0x57)
SPMCSR
–
–
SIGRD
CTPB
RFLB
PGWRT
PGERS
SPMEN
0x36 (0x56)
Reserved
–
–
–
–
–
–
–
–
204
0x35 (0x55)
MCUCR
–
–
CKOE
PUD
–
–
IVSEL
IVCE
80/34
0x34 (0x54)
MCUSR
–
–
–
OCDRF
WDRF
BODRF
EXTRF
PORF
51
0x33 (0x53)
SMCR
–
–
–
–
SE
41
0x32 (0x52)
Reserved
–
–
–
–
SM[2:0]
–
–
–
–
0x31 (0x51)
DWDR
0x30 (0x50)
Reserved
–
–
–
debugWIRE Data Register
–
–
–
–
–
188
–
–
–
–
–
–
–
–
0x2F (0x4F)
Reserved
0x2E (0x4E)
SPDR
0x2D (0x4D)
SPSR
SPIF
WCOL
–
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
0x2B (0x4B)
GPIOR2
General Purpose I/O Register 2
0x2A (0x4A)
GPIOR1
General Purpose I/O Register 1
26
0x29 (0x49)
OCR0B
Timer/Counter0 Output Compare Register B
97
0x28 (0x48)
OCR0A
Timer/Counter0 Output Compare Register A
97
0x27 (0x47)
TCNT0H
Timer/Counter0 (8 Bit) High Byte
97
0x26 (0x46)
TCNT0L
Timer/Counter0 (8 Bit) Low Byte
0x25 (0x45)
TCCR0B
–
–
–
–
–
CS02
CS01
SPI Data Register
109
–
–
–
–
SPI2X
108
MSTR
CPOL
CPHA
SPR1
SPR0
107
26
97
CS00
83
96
0x24 (0x44)
TCCR0A
TCW0
ICEN0
ICNC0
ICES0
ICS0
–
–
WGM00
0x23 (0x43)
GTCCR
TSM
–
–
–
–
–
–
PSRSYNC
0x22 (0x42)
EEARH
–
–
–
–
–
–
EEPROM High byte
0x21 (0x41)
EEARL
EEPROM Address Register Low Byte
22
0x20 (0x40)
EEDR
EEPROM Data Register
22
0x1F (0x3F)
EECR
0x1E (0x3E)
GPIOR0
0x1D (0x3D)
EIMSK
–
–
–
–
INT3
INT2
INT1
INT0
61
0x1C (0x3C)
EIFR
–
–
–
–
INTF3
INTF2
INTF1
INTF0
61
10
–
–
EEPM1
EEPM0
EERIE
EEMPE
EEPE
EERE
22
General Purpose I/O Register 0
23
26
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
0x1B (0x3B)
PCIFR
–
–
–
–
–
–
PCIF1
PCIF0
62
0x1A (0x3A)
Reserved
–
–
–
–
–
–
–
–
0x19 (0x39)
Reserved
–
–
–
–
–
–
–
–
0x18 (0x38)
Reserved
–
–
–
–
–
–
–
–
0x17 (0x37)
OSICSR
–
–
–
OSISEL0
–
–
OSIST
OSIEN
35
0x16 (0x36)
TIFR1
–
–
–
–
ICF1
OCF1B
OCF1A
TOV1
98
0x15 (0x35)
TIFR0
–
–
–
–
ICF0
OCF0B
OCF0A
TOV0
98
0x14 (0x34)
Reserved
–
–
–
–
–
–
–
–
0x13 (0x33)
Reserved
–
–
–
–
–
–
–
–
0x12 (0x32)
Reserved
–
–
–
–
–
–
–
–
0x11 (0x31)
Reserved
–
–
–
–
–
–
–
–
0x10 (0x30)
Reserved
–
–
–
–
–
–
–
–
0x0F (0x2F)
Reserved
–
–
–
–
–
–
–
–
0x0E (0x2E)
Reserved
–
–
–
–
–
–
–
–
0x0D (0x2D)
Reserved
–
–
–
–
–
–
–
–
0x0C (0x2C)
Reserved
–
–
–
–
–
–
–
–
0x0B (0x2B)
Reserved
–
–
–
–
–
–
–
–
0x0A (0x2A)
Reserved
–
–
–
–
–
–
–
–
0x09 (0x29)
Reserved
–
–
–
–
–
–
–
–
0x08 (0x28)
PORTC
–
–
PORTC5
PORTC4
PORTC3
PORTC2
PORTC1
PORTC0
0x07 (0x27)
Reserved
–
–
–
–
–
–
–
–
68
0x06 (0x26)
PINC
–
–
–
PINC4
PINC3
PINC2
PINC1
PINC0
68
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
80
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
80
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
80
0x02 (0x22)
PORTA
–
–
–
–
PORTA3
PORTA2
PORTA1
PORTA0
80
0x01 (0x21)
DDRA
–
–
–
–
DDA3
DDA2
DDA1
DDA0
80
0x00 (0x20)
PINA
–
–
–
–
PINA3
PINA2
PINA1
PINA0
80
Notes:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega16HVB/32HVB is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from $60 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
11
8042AS–AVR–09/08
7. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
MUL
Rd, Rr
Multiply Unsigned
R1:R0 ← Rd x Rr
Z,C
2
MULS
Rd, Rr
Multiply Signed
R1:R0 ← Rd x Rr
Z,C
2
MULSU
Rd, Rr
Multiply Signed with Unsigned
R1:R0 ← Rd x Rr
Z,C
2
FMUL
Rd, Rr
Fractional Multiply Unsigned
R1:R0 ← (Rd x Rr) <<
1
R1:R0 ← (Rd x Rr) << 1
R1:R0 ← (Rd x Rr) << 1
Z,C
2
Z,C
2
Z,C
2
2
FMULS
Rd, Rr
Fractional Multiply Signed
FMULSU
Rd, Rr
Fractional Multiply Signed with Unsigned
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
JMP
k
Direct Jump
PC ← k
None
3
RCALL
k
Relative Subroutine Call
PC ← PC + k + 1
None
3
Indirect Call to (Z)
PC ← Z
None
3
Direct Subroutine Call
PC ← k
None
4
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
ICALL
CALL
k
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
12
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
7. Instruction Set Summary (Continued)
Mnemonics
Operands
Description
Operation
Flags
#Clocks
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
Rd, P
In Port
Rd ← P
None
1
SPM
IN
13
8042AS–AVR–09/08
7. Instruction Set Summary (Continued)
Mnemonics
Operands
Description
Operation
Flags
#Clocks
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
14
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
8. Ordering Information –TBD
8.1
ATmega16HVB
Speed (MHz)
Power Supply
Ordering Code
Package
Operation Range
1 - 8 MHz
4 - 25V
ATmega16HVB - TBD
44X1
-30°C to 85°C
Package Type
44X1
44-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)
15
8042AS–AVR–09/08
8.2
ATmega32HVB
Speed (MHz)
Power Supply
Ordering Code
Package
Operation Range
1 - 8 MHz
4 - 25V
ATmega32HVB - TBD
44X1
-30°C to 85°C
Package Type
44X1
16
44-lead, 4.4 mm Body Width, Plastic Thin Shrink Small Outline Package (TSSOP)
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
9. Packaging Information
9.1
44X1
3 2
3 2
C
C
1
1
E1
E1
E
E
End View
End View
L
L
44
44
Ø
Ø
Top View
Top View
b
b
SYMBOL
COMMON DIMENSIONS
(Unit of Measure
= mm)
COMMON
DIMENSIONS
(Unit of Measure = mm)
MIN
MAX
NOM
NOTE
SYMBOL
A
MIN
–
NOTE
A
A
e
e
D
D
Side View
Side View
A1
A1
NOM
–
MAX
1.20
A
A1
–
0.05
–
1.20
0.15
A1
b
0.05
0.17
–
0.15
0.27
b
C
0.17
0.09
–
0.27
0.20
C
D
0.09
10.90
–
11.00
0.20
11.10
D
E1
10.90
4.30
11.00
4.40
11.10
4.50
E1
E
4.30
6.20
4.40
6.40
4.50
6.60
E
e
6.20
6.40
0.50
TYP
6.60
e
L
0.50
0.50
TYP
0.60
0.70
L
Ø
0.50
0o
0.60
–
0.70
8o
Ø
0o
–
8o
Note: These drawings are for general information only. Refer to JEDEC Drawing MO-153BE.
Note: These drawings are for general information only. Refer to JEDEC Drawing MO-153BE.
R
R
2325 Orchard Parkway
San Jose,
CA Parkway
95131
2325
Orchard
San Jose, CA 95131
TITLE
44X1,
TITLE 44-lead, 4.4 mm Body Width, Plastic Thin Shrink
Small Outline
44X1,
44-lead,Package
4.4 mm (TSSOP)
Body Width, Plastic Thin Shrink
Small Outline Package (TSSOP)
5/16/07
5/16/07
DRAWING NO. REV.
DRAWING
44X1 NO. REV.
A
44X1
A
17
8042AS–AVR–09/08
10. Errata
10.1
10.1.1
ATmega16HVB
Rev. A
No known errata.
10.2
10.2.1
ATmega32HVB
Rev. A
No known errata.
18
ATmega16HVB/32HVB
8042AS–AVR–09/08
ATmega16HVB/32HVB
11. Revision history
11.1
Rev.A - 09/08
1. Initial revision
19
8042AS–AVR–09/08
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2008 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR ® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
8042AS–AVR–09/08
Similar pages