Fairchild FDMS0312AS N-channel powertrenchâ® syncfettm Datasheet

FDMS0312AS
N-Channel PowerTrench® SyncFETTM
30 V, 22 A, 5.0 mΩ
Features
General Description
The FDMS0312AS has been designed to minimize losses in
power conversion application. Advancements in both silicon and
package technologies have been combined to offer the lowest
rDS(on) while maintaining excellent switching performance.This
device has the added benefit of an efficient monolithic Schottky
body diode.
„ Max rDS(on) = 5.0 mΩ at VGS = 10 V, ID = 18 A
„ Max rDS(on) = 6.2 mΩ at VGS = 4.5 V, ID = 16 A
„ Advanced Package and Silicon combination for low rDS(on)
and high efficiency
„ SyncFET Schottky Body Diode
„ MSL1 robust package design
Applications
„ 100% UIL tested
„ Synchronous Rectifier for DC/DC Converters
„ RoHS Compliant
„ Notebook Vcore/GPU low side switch
„ Networking Point of Load low side switch
„ Telecom secondary side rectification
Bottom
Top
Pin 1
S
D
D
D
S
S
G
D
5
4 G
D
6
3
D
7
2 S
D
8
1
S
S
D
Power 56
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol
VDS
Drain to Source Voltage
Parameter
VGS
Gate to Source Voltage
(Note 4)
Drain Current -Continuous (Package limited)
ID
TC = 25°C
-Continuous (Silicon limited)
TC = 25°C
-Continuous
TA = 25°C
PD
TJ, TSTG
Units
V
±20
V
22
70
(Note 1a)
-Pulsed
18
A
100
Single Pulse Avalanche Energy
EAS
Ratings
30
(Note 3)
Power Dissipation
TC = 25°C
Power Dissipation
TA = 25°C
33
36
(Note 1a)
Operating and Storage Junction Temperature Range
2.5
-55 to +150
mJ
W
°C
Thermal Characteristics
RθJC
Thermal Resistance, Junction to Case
RθJA
Thermal Resistance, Junction to Ambient
3.4
(Note 1a)
50
°C/W
Package Marking and Ordering Information
Device Marking
FDMS0312AS
Device
FDMS0312AS
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
Package
Power 56
1
Reel Size
13 ’’
Tape Width
12 mm
Quantity
3000 units
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
August 2010
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
ID = 1 mA, VGS = 0 V
ΔBVDSS
ΔTJ
Breakdown Voltage Temperature
Coefficient
30
V
ID = 10 mA, referenced to 25°C
IDSS
Zero Gate Voltage Drain Current
VDS = 24 V, VGS = 0 V
500
μA
IGSS
Gate to Source Leakage Current, Forward
VGS = 20 V, VDS = 0 V
100
nA
3.0
V
18
mV/°C
On Characteristics
VGS(th)
Gate to Source Threshold Voltage
VGS = VDS, ID = 1 mA
ΔVGS(th)
ΔTJ
Gate to Source Threshold Voltage
Temperature Coefficient
ID = 10 mA, referenced to 25°C
rDS(on)
Static Drain to Source On Resistance
gFS
Forward Transconductance
1.2
1.5
-4
mV/°C
VGS = 10 V, ID = 18 A
4.2
5.0
VGS = 4.5 V, ID = 16 A
5.4
6.2
VGS = 10 V, ID = 18 A, TJ = 125°C
5.3
6.8
VDS = 5 V, ID = 18 A
92
mΩ
S
Dynamic Characteristics
Ciss
Input Capacitance
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate Resistance
VDS = 15 V, VGS = 0 V,
f = 1MHz
1365
1815
pF
550
730
pF
70
105
pF
0.5
2.5
Ω
ns
Switching Characteristics
td(on)
Turn-On Delay Time
tr
Rise Time
td(off)
Turn-Off Delay Time
10
19
VDD = 15 V, ID = 18 A,
VGS = 10 V, RGEN = 6 Ω
2.3
10
ns
25
40
ns
tf
Fall Time
6
12
ns
Qg
Total Gate Charge
VGS = 0 V to 10 V
23
31
nC
VGS = 0 V to 4.5 V VDD = 15 V,
ID = 18 A
11
16
3.3
nC
3.7
nC
Qg
Total Gate Charge
Qgs
Gate to Source Charge
Qgd
Gate to Drain “Miller” Charge
nC
Drain-Source Diode Characteristics
VSD
Source-Drain Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
VGS = 0 V, IS = 2 A
(Note 2)
0.63
0.8
VGS = 0 V, IS = 18 A
(Note 2)
0.8
1.2
IF = 18 A, di/dt = 300 A/μs
V
23
36
ns
20
32
nC
Notes:
1. RθJA is determined with the device mounted on a 1 in2 pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. RθJC is guaranteed by design while RθCA is determined by
the user's board design.
a. 50 °C/W when mounted on a
1 in2 pad of 2 oz copper.
b. 125 °C/W when mounted on a
minimum pad of 2 oz copper.
2. Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
3. EAS of 33 mJ is based on starting TJ = 25 °C, L = 0.3 mH, IAS = 15 A, VDD = 27 V, VGS = 10 V.
4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
2
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Electrical Characteristics TJ = 25°C unless otherwise noted
100
VGS = 3.5 V
60
NORMALIZED
DRAIN TO SOURCE ON-RESISTANCE
ID, DRAIN CURRENT (A)
80
5
VGS = 10 V
VGS = 6 V
VGS = 4.5 V
VGS = 4 V
VGS = 3 V
40
20
PULSE DURATION = 80 μs
DUTY CYCLE = 0.5% MAX
0
0.0
0.5
1.0
1.5
2.0
2.5
VGS = 3 V
4
3
VGS = 3.5 V
2
VGS = 4 V
1
VGS = 4.5 V
0
20
40
60
80
100
ID, DRAIN CURRENT (A)
Figure 1. On Region Characteristics
Figure 2. Normalized On-Resistance
vs Drain Current and Gate Voltage
1.6
24
ID = 18 A
VGS = 10 V
rDS(on), DRAIN TO
1.4
1.2
1.0
0.8
0.6
-75
SOURCE ON-RESISTANCE (mΩ)
NORMALIZED
DRAIN TO SOURCE ON-RESISTANCE
VGS = 10 V
VGS = 6 V
0
3.0
VDS, DRAIN TO SOURCE VOLTAGE (V)
PULSE DURATION = 80 μs
DUTY CYCLE = 0.5% MAX
ID = 18 A
18
12
TJ = 125 oC
6
TJ = 25 oC
0
-50
-25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (oC)
2
4
6
8
10
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 4. On-Resistance vs Gate to
Source Voltage
Figure 3. Normalized On Resistance
vs Junction Temperature
100
100
IS, REVERSE DRAIN CURRENT (A)
PULSE DURATION = 80 μs
DUTY CYCLE = 0.5% MAX
80
ID, DRAIN CURRENT (A)
PULSE DURATION = 80 μs
DUTY CYCLE = 0.5% MAX
VDS = 5 V
TJ = 125 oC
60
TJ = 25 oC
40
TJ = -55 oC
20
0
1
2
3
VGS = 0 V
10
TJ = 125 oC
1
TJ = 25 oC
0.1
TJ = -55 oC
0.01
0.001
0.0
4
0.2
0.4
0.6
0.8
1.0
VGS, GATE TO SOURCE VOLTAGE (V)
VSD, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics
Figure 6. Source to Drain Diode
Forward Voltage vs Source Current
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
3
1.2
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Typical Characteristics TJ = 25°C unless otherwise noted
3000
ID = 18 A
8
VDD = 15 V
CAPACITANCE (pF)
VGS, GATE TO SOURCE VOLTAGE (V)
10
6
VDD = 10 V
VDD = 20 V
4
Ciss
1000
Coss
Crss
100
2
f = 1 MHz
VGS = 0 V
0
0
5
10
15
20
40
0.1
25
1
Figure 7. Gate Charge Characteristics
Figure 8. Capacitance vs Drain
to Source Voltage
80
ID, DRAIN CURRENT (A)
IAS, AVALANCHE CURRENT (A)
40
TJ = 25 oC
10
TJ = 100 oC
TJ = 125 oC
60
VGS = 10 V
VGS = 4.5 V
40
20
1
0.001
0.01
0.1
1
10
0
25
40
50
P(PK), PEAK TRANSIENT POWER (W)
100 μs
10
1 ms
0.1
10 ms
100 ms
1s
10 s
RθJA = 125 oC/W
DC
TA = 25 oC
0.01
0.01
0.1
1
10
100
150
2000
1000
SINGLE PULSE
RθJA = 125 oC/W
TA = 25 oC
100
10
1
0.5
-4
10
-3
10
-2
10
-1
10
1
10
100
1000
t, PULSE WIDTH (sec)
VDS, DRAIN to SOURCE VOLTAGE (V)
Figure 11. Forward Bias Safe
Operating Area
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
125
Figure 10. Maximum Continuous Drain
Current vs Case Temperature
200
100
SINGLE PULSE
TJ = MAX RATED
100
o
Figure 9. Unclamped Inductive
Switching Capability
THIS AREA IS
LIMITED BY rDS(on)
75
TC, CASE TEMPERATURE ( C)
tAV, TIME IN AVALANCHE (ms)
ID, DRAIN CURRENT (A)
o
RθJC = 3.4 C/W
Limited by Package
1
30
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
Figure 12. Single Pulse Maximum
Power Dissipation
4
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Typical Characteristics TJ = 25°C unless otherwise noted
NORMALIZED THERMAL
IMPEDANCE, ZθJA
2
1
0.1
0.01
DUTY CYCLE-DESCENDING ORDER
D = 0.5
0.2
0.1
0.05
0.02
0.01
PDM
t1
t2
SINGLE PULSE
0.001
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJA x RθJA + TA
o
RθJA = 125 C/W
(Note 1b)
0.0001
-4
10
-3
10
-2
10
-1
10
1
10
100
1000
t, RECTANGULAR PULSE DURATION (sec)
Figure 13. Junction-to-Ambient Transient Thermal Response Curve
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
5
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Typical Characteristics TJ = 25°C unless otherwise noted
SyncFET Schottky body diode
Characteristics
Schottky barrier diodes exhibit significant leakage at high
temperature and high reverse voltage. This will increase the
power in the device.
Fairchild’s SyncFET process embeds a Schottky diode in parallel
with PowerTrench MOSFET. This diode exhibits similar
characteristics to a discrete external Schottky diode in parallel
with a MOSFET. Figure 14 shows the reverse recovery
characteristic of the FDMS0312AS.
-2
IDSS, REVERSE LEAKAGE CURRENT (A)
25
CURRENT (A)
20
15
di/dt = 300 A/μs
10
5
0
-5
10
20
30
40
50
TIME (ns)
TJ = 125 oC
-3
10
TJ = 100 oC
-4
10
-5
10
TJ = 25 oC
-6
10
0
5
10
15
20
25
30
VDS, REVERSE VOLTAGE (V)
Figure 15. SyncFET body diode reverse
leakage versus drain-source voltage
Figure 14. FDMS0312AS SyncFET body
diode reverse recovery characteristic
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
10
6
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Typical Characteristics (continued)
FDMS0312AS N-Channel PowerTrench® SyncFETTM
Dimensional Outline and Pad Layout
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
7
www.fairchildsemi.com
tm
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2.
A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative / In Design
Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary
First Production
Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconductor reserves the right to make changes at any time without
notice to improve design.
No Identification Needed
Full Production
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve the design.
Obsolete
Not In Production
Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
Rev. I48
©2010 Fairchild Semiconductor Corporation
FDMS0312AS Rev.C1
8
www.fairchildsemi.com
FDMS0312AS N-Channel PowerTrench® SyncFETTM
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
F-PFS™
Power-SPM™
AccuPower™
®*
FRFET®
PowerTrench®
Auto-SPM™
SM
Global Power Resource
PowerXS™
Build it Now™
The Power Franchise®
®
Green FPS™
Programmable Active Droop™
CorePLUS™
Green FPS™ e-Series™
QFET®
CorePOWER™
Gmax™
QS™
CROSSVOLT™
TinyBoost™
GTO™
Quiet Series™
CTL™
TinyBuck™
IntelliMAX™
RapidConfigure™
Current Transfer Logic™
TinyCalc™
™
ISOPLANAR™
DEUXPEED®
TinyLogic®
MegaBuck™
Dual Cool™
TINYOPTO™
®
MICROCOUPLER™
Saving our world, 1mW/W/kW at a time™
EcoSPARK
TinyPower™
EfficentMax™
MicroFET™
SignalWise™
TinyPWM™
ESBC™
MicroPak™
SmartMax™
TinyWire™
MicroPak2™
SMART START™
®
TriFault Detect™
MillerDrive™
SPM®
TRUECURRENT™*
MotionMax™
STEALTH™
Fairchild®
μSerDes™
Motion-SPM™
SuperFET™
Fairchild Semiconductor®
OptiHiT™
SuperSOT™-3
FACT Quiet Series™
OPTOLOGIC®
SuperSOT™-6
FACT®
UHC®
OPTOPLANAR®
SuperSOT™-8
FAST®
®
Ultra FRFET™
SupreMOS™
FastvCore™
UniFET™
SyncFET™
FETBench™
VCX™
Sync-Lock™
FlashWriter® *
PDP SPM™
VisualMax™
FPS™
XS™
Similar pages