Allegro A1212LLHLT-T Continuous-time latch family Datasheet

A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
The Allegro® A1210-A1214 Hall-effect latches are next generation replacements
for the popular Allegro 317x and 318x lines of latching switches. The A121x
family, produced with BiCMOS technology, consists of devices that feature fast
power-on time and low-noise operation. Device programming is performed after
packaging, to ensure increased switchpoint accuracy by eliminating offsets that
can be induced by package stress. Unique Hall element geometries and low-offset
amplifiers help to minimize noise and to reduce the residual offset voltage normally caused by device overmolding, temperature excursions, and thermal stress.
GND
Package LH, 3-pin Surface Mount
3
1
3
2
2
VCC
VOUT
1
The A1210-A1214 Hall-effect latches include the following on a single silicon
chip: voltage regulator, Hall-voltage generator, small-signal amplifier, Schmitt
trigger, and NMOS output transistor. The integrated voltage regulator permits
operation from 3.8 to 24 V. The extensive on-board protection circuitry makes
possible a ±30 V absolute maximum voltage rating for superior protection in
automotive and industrial motor commutation applications, without adding
external components. All devices in the family are identical except for magnetic
switchpoint levels.
The small geometries of the BiCMOS process allow these devices to be provided in ultrasmall packages. The package styles available provide magnetically
optimized solutions for most applications. Package LH is an SOT23W, a miniature
low-profile surface-mount package, while package UA is a three-lead ultramini
SIP for through-hole mounting. Each package is lead (Pb) free, with 100% matte
tin plated leadframes.
Package UA, 3-pin SIP
2
3
VCC
GND
VOUT
Features and Benefits
1
Continuous-time operation
– Fast power-on time
1 2
3
– Low noise
Stable operation over full operating temperature range
Reverse battery protection
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VCC .......................................... 30 V
Reverse-Supply Voltage, VRCC ........................ –30 V
Output Off Voltage, VOUT .................................. 30 V
Reverse-Output Voltage, VROUT ..................... –0.5 V
Output Current, IOUTSINK ............................... 25 mA
Magnetic Flux Density, B .........................Unlimited
Operating Temperature
Ambient, TA, Range E.................. –40ºC to 85ºC
Ambient, TA, Range L................ –40ºC to 150ºC
Maximum Junction, TJ(max)........................165ºC
Storage Temperature, TS .................. –65ºC to 170ºC
A1210-DS
Solid-state reliability
Factory-programmed at end-of-line for optimum performance
Robust EMC performance
High ESD rating
Regulator stability without a bypass capacitor
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Product Selection Guide
Part Number
Packing*
Mounting
Ambient, TA
A1210ELHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1210EUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1210LLHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1210LUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1211ELHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1211EUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1211LLHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1211LUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1212ELHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1212EUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1212LLHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1212LUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1213ELHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1213EUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1213LLHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1213LUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1214ELHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1214EUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
A1214LLHLT-T
7-in. reel, 3000 pieces/reel
3-pin SOT23W surface mount
A1214LUA-T
Bulk, 500 pieces/bag
3-pin SIP through hole
BRP (Min)
BOP (Max)
–150
150
–180
180
–175
175
–200
200
–300
300
–40ºC to 85ºC
–40ºC to 150ºC
–40ºC to 85ºC
–40ºC to 150ºC
–40ºC to 85ºC
–40ºC to 150ºC
–40ºC to 85ºC
–40ºC to 150ºC
–40ºC to 85ºC
–40ºC to 150ºC
*Contact Allegro for additional packing options.
Functional Block Diagram
VCC
To all subcircuits
Regulator
VOUT
Amp
Gain
Offset
Trim
Control
GND
Terminal List
Name
VCC
VOUT
GND
Description
Connects power supply to chip
Output from circuit
Ground
Number
Package LH Package UA
1
1
2
3
3
2
2
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
OPERATING CHARACTERISTICS over full operating voltage and ambient temperature ranges, unless otherwise noted
Characteristic
Symbol
Test Conditions
Min.
Typ.
Max.
Units
Electrical Characteristics
Supply Voltage1
Output Leakage Current
Output On Voltage
Power-On Time2
Output Rise Time3
Output Fall
Time3
Supply Current
Reverse Battery Current
VCC
Operating, TJ < 165°C
3.8
–
24
V
IOUTOFF
VOUT = 24 V, B < BRP
–
–
10
µA
VOUT(SAT)
IOUT = 20 mA, B > BOP
–
215
400
mV
Slew rate (dVCC/dt) < 2.5 V/µs, B > BOP + 5 G or
B < BRP – 5 G
–
–
4
µs
tr
VCC = 12 V, RLOAD = 820 Ω, CS = 12 pF
–
–
400
ns
tf
tPO
VCC = 12 V, RLOAD = 820 Ω, CS = 12 pF
–
–
400
ns
ICCON
B > BOP
–
4.1
7.5
mA
ICCOFF
B < BRP
–
3.8
7.5
mA
VRCC = –30 V
–
–
–10
mA
IRCC
Supply Zener Clamp Voltage
VZ
ICC = 10.5 mA; TA = 25°C
32
–
–
V
Supply Zener Current4
IZ
VZ = 32 V; TA = 25°C
–
–
10.5
mA
25
78
150
G
15
87
180
G
50
107
175
G
80
–
200
G
140
–
300
G
Magnetic
Characteristics5
A1210
A1211
Operate Point
BOP
A1212
A1213
South pole adjacent to branded face
of device
A1214
Release Point
BRP
A1210
–150
–78
–25
G
A1211
–180
–95
–15
G
–175
–117
–50
G
A1212
A1213
Hysteresis
BHYS
North pole adjacent to branded face
of device
–200
–
–80
G
A1214
–300
–
–140
G
A1210
50
155
–
G
A1211
80
180
–
G
100
225
350
G
A1213
160
–
400
G
A1214
280
–
600
G
A1212
BOP – BRP
1
Maximum voltage must be adjusted for power dissipation and junction temperature, see Power Derating section.
2 For V
CC slew rates greater than 250 V/µs, and TA = 150°C, the Power-On Time can reach its maximum value.
3 C =oscilloscope probe capacitance.
S
4 Maximum current limit is equal to the maximum I
CC(max) + 3 mA.
5 Magnetic flux density, B, is indicated as a negative value for north-polarity magnetic fields, and as a positive value for south-polarity magnetic fields.
This so-called algebraic convention supports arithmetic comparison of north and south polarity values, where the relative strength of the field is indicated
by the absolute value of B, and the sign indicates the polarity of the field (for example, a –100 G field and a 100 G field have equivalent strength, but
opposite polarity).
DEVICE QUALIFICATION PROGRAM
Contact Allegro for information.
EMC (Electromagnetic Compatibility) REQUIREMENTS
Contact Allegro for information.
3
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
THERMAL CHARACTERISTICS may require derating at maximum conditions, see application information
Characteristic
Symbol
Test Conditions
Package LH, minimum-K PCB (single layer, single-sided with
copper limited to solder pads)
Package LH, low-K PCB (single layer, double-sided with
0.926 in2 copper area)
Package UA, minimum-K PCB (single layer, single-sided with
copper limited to solder pads)
RθJA
Maximum Allowable VCC (V)
Package Thermal Resistance
Value Units
110
ºC/W
228
ºC/W
165
ºC/W
Power Derating Curve
TJ(max) = 165ºC; ICC = ICC(max)
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
VCC(max)
Low-K PCB, Package LH
(RθJA = 110 ºC/W)
Minimum-K PCB, Package UA
(RθJA = 165 ºC/W)
Minimum-K PCB, Package LH
(RθJA = 228 ºC/W)
20
40
60
80
100
120
VCC(min)
140
160
180
Power Dissipation, PD (m W)
Power Dissipation versus Ambient Temperature
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
Lo
(R w-K
PC
θJ
A =
11 B, P
0 º ac
Min
C/ ka
W ge
(R imum
)
LH
KP
θJA =
165 CB
ºC/ , Pac
W)
kag
eU
A
Min
imu
m-K
(R
P
θJA =
228 CB, Pa
ºC/W
ckag
e LH
)
20
40
60
80
100
120
Temperature (°C)
140
160
180
4
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Characteristic Data
Supply Current (On) versus Ambient Temperature
Supply Current (On) versus Supply Voltage
(A1210/11/12/13/14)
8.0
7.0
7.0
VCC (V)
5.0
24
3.8
4.0
3.0
ICCON (mA)
8.0
6.0
ICCON (mA)
(A1210/11/12/13/14)
6.0
TA (°C)
5.0
–40
25
150
4.0
3.0
2.0
2.0
1.0
1.0
0
0
–50
0
50
TA (°C)
100
150
0
15
20
25
Supply Current (Off) versus Supply Voltage
(A1210/11/12/13/14)
(A1210/11/12/13/14)
8.0
8.0
7.0
7.0
6.0
VCC (V)
5.0
24
3.8
4.0
3.0
ICCOFF (mA)
ICCOFF (mA)
10
VCC (V)
Supply Current (Off) versus Ambient Temperature
6.0
TA (°C)
5.0
–40
25
150
4.0
3.0
2.0
2.0
1.0
1.0
0
0
–50
0
50
TA (°C)
100
0
150
10
15
20
25
Output Voltage (On) versus Supply Voltage
(A1210/11/12/13/14)
400
5
VCC (V)
Output Voltage (On) versus Ambient Temperature
(A1210/11/12/13/14)
400
350
350
300
300
250
VCC (V)
200
24
3.8
150
100
50
VOUT(SAT) (mV)
VOUT(SAT) (mV)
5
TA (°C)
250
–40
25
150
200
150
100
50
0
0
–50
0
50
TA (°C)
100
150
0
5
10
15
20
25
VCC (V)
5
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Operate Point versus Ambient Temperature
Operate Point versus Supply Voltage
(A1210)
(A1210)
150
150
125
125
TA (°C)
100
24
3.8
75
BOP (G)
BOP (G)
VCC (V)
–40
25
150
100
75
50
50
25
25
–50
0
50
TA (°C)
100
150
0
5
10
15
20
25
VCC (V)
Release Point versus Ambient Temperature
Release Point versus Supply Voltage
(A1210)
(A1210)
-25
-25
-50
-50
TA (°C)
-75
24
3.8
-100
BRP (G)
BRP (G)
VCC (V)
–40
25
150
-75
-100
-125
-125
-150
-150
–50
0
50
TA (°C)
100
0
150
5
10
Hysteresis versus Ambient Temperature
20
25
Hysteresis versus Supply Voltage
(A1210)
(A1210)
225
225
200
200
175
VCC (V)
150
24
3.8
125
TA (°C)
BHYS (G)
175
BHYS (G)
15
VCC (V)
150
–40
25
150
125
100
100
75
75
50
50
–50
0
50
TA (°C)
100
150
0
5
10
15
20
25
VCC (V)
6
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Operate Point versus Ambient Temperature
Operate Point versus Ambient Temperature
(A1211)
(A1212)
175
165
150
VCC (V)
BOP (G)
115
24
3.8
90
BOP (G)
125
140
100
VCC (V)
75
24
3.8
50
25
65
0
40
-25
-50
15
–50
0
50
TA (°C)
100
–50
150
Release Point versus Ambient Temperature
50
TA (°C)
100
150
Release Point versus Ambient Temperature
(A1211)
(A1212)
-50
-30
-55
-75
VCC (V)
-80
24
3.8
-105
-130
BRP (G)
BRP (G)
0
VCC (V)
-100
24
3.8
-125
-150
-155
-175
-180
–50
0
50
TA (°C)
100
–50
150
Hysteresis versus Ambient Temperature
50
TA (°C)
100
150
Hysteresis versus Ambient Temperature
(A1211)
240
0
(A1212)
350
220
300
180
VCC (V)
160
24
3.8
140
120
BHYS (G)
BHYS (G)
200
VCC (V)
250
24
3.8
200
150
100
100
80
–50
0
50
TA (°C)
100
150
–50
0
50
100
150
TA (°C)
7
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Functional Description
OPERATION
The output of these devices switches low (turns on) when a
magnetic field perpendicular to the Hall sensor exceeds the
operate point threshold, BOP. After turn-on, the output is capable
of sinking 25 mA and the output voltage is VOUT(SAT). Notice
that the device latches; that is, a south pole of sufficient strength
towards the branded surface of the device turns the device on,
and the device remains on with removal of the south pole. When
the magnetic field is reduced below the release point, BRP ,
the device output goes high (turns off). The difference in the
magnetic operate and release points is the hysteresis, Bhys, of
the device. This built-in hysteresis allows clean switching of the
output, even in the presence of external mechanical vibration and
electrical noise.
Powering-on the device in the hysteresis range, less than BOP
and higher than BRP, allows an indeterminate output state. The
correct state is attained after the first excursion beyond BOP or
BRP.
Due to offsets generated during the IC packaging process,
continuous-time devices typically require programming after
packaging to tighten magnetic parameter distributions. In contrast, chopper-stabilized switches employ an offset cancellation
technique on the chip that eliminates these offsets without the
need for after-packaging programming. The tradeoff is a longer
settling time and reduced frequency response as a result of the
chopper-stabilization offset cancellation algorithm.
The choice between continuous-time and chopper-stabilized
designs is solely determined by the application. Battery management is an example where continuous-time is often required. In
these applications, VCC is chopped with a very small duty cycle
in order to conserve power (refer to figure 2). The duty cycle
is controlled by the power-on time, tPO, of the device. Because
continuous-time devices have the shorter power-on time, they
are the clear choice for such applications.
Continuous-time devices, such as the A121x family, offer the
fastest available power-on settling time and frequency response.
For more information on the chopper stabilization technique,
refer to Technical Paper STP 97-10, Monolithic Magnetic Hall
Sensor Using Dynamic Quadrature Offset Cancellation and
Technical Paper STP 99-1, Chopper-Stabilized Amplifiers with a
Track-and-Hold Signal Demodulator.
(A)
(B)
CONTINUOUS-TIME BENEFITS
VS
V+
VOUT
VCC
Switch to Low
Switch to High
VCC
A121x
VOUT(SAT)
0
BOP
B–
BRP
0
RL
VOUT
Sensor Output
GND
B+
BHYS
Figure 1. Switching Behavior of Latches. On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength, and the
B– direction indicates decreasing south polarity field strength (including the case of increasing north polarity). This behavior can be exhibited when
using a circuit such as that shown in Panel B.
8
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
ADDITIONAL APPLICATIONS INFORMATION
Extensive applications information for Hall-effect sensors is
available in:
• Hall-Effect IC Applications Guide, Application Note 27701
• Hall-Effect Devices: Gluing, Potting, Encapsulating, Lead
Welding and Lead Forming, Application Note 27703.1
• Soldering Methods for Allegro’s Products – SMT and ThroughHole, Application Note 26009
All are provided in Allegro Electronic Data Book, AMS-702,
and the Allegro Web site, www.allegromicro.com.
1
2
3
4
5
VCC
t
VOUT
t
tPO(max)
Output Sampled
Figure 2. Continuous-Time Application, B < BRP.. This figure illustrates the use of a quick cycle for chopping VCC in order to conserve battery power.
Position 1, power is applied to the device. Position 2, the output assumes the correct state at a time prior to the maximum Power-On Time, tPO(max).
The case shown is where the correct output state is HIGH . Position 3, tPO(max) has elapsed. The device output is valid. Position 4, after the output is
valid, a control unit reads the output. Position 5, power is removed from the device.
9
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Power Derating
Power Derating
The device must be operated below the maximum junction
temperature of the device, TJ(max). Under certain combinations of
peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the
application. This section presents a procedure for correlating
factors affecting operating TJ. (Thermal data is also available on
the Allegro MicroSystems Web site.)
The Package Thermal Resistance, RθJA, is a figure of merit summarizing the ability of the application and the device to dissipate
heat from the junction (die), through all paths to the ambient air.
Its primary component is the Effective Thermal Conductivity,
K, of the printed circuit board, including adjacent devices and
traces. Radiation from the die through the device case, RθJC, is
relatively small component of RθJA. Ambient air temperature,
TA, and air motion are significant external factors, damped by
overmolding.
The effect of varying power levels (Power Dissipation, PD), can
be estimated. The following formulas represent the fundamental
relationships used to estimate TJ, at PD.
PD = VIN × IIN
(1)
∆T = PD × RθJA
(2)
TJ = TA + ∆T
(3)
Example: Reliability for VCC at TA = 150°C, package UA, using
minimum-K PCB.
Observe the worst-case ratings for the device, specifically:
RθJA = 165°C/W, TJ(max) = 165°C, VCC(max) = 24 V, and
ICC(max) = 7.5 mA.
Calculate the maximum allowable power level, PD(max). First,
invert equation 3:
∆Tmax = TJ(max) – TA = 165 °C – 150 °C = 15 °C
This provides the allowable increase to TJ resulting from internal
power dissipation. Then, invert equation 2:
PD(max) = ∆Tmax ÷ RθJA = 15°C ÷ 165 °C/W = 91 mW
Finally, invert equation 1 with respect to voltage:
VCC(est) = PD(max) ÷ ICC(max) = 91 mW ÷ 7.5 mA = 12.1 V
The result indicates that, at TA, the application and device can
dissipate adequate amounts of heat at voltages ≤VCC(est).
Compare VCC(est) to VCC(max). If VCC(est) ≤ VCC(max), then reliable operation between VCC(est) and VCC(max) requires enhanced
RθJA. If VCC(est) ≥ VCC(max), then operation between VCC(est) and
VCC(max) is reliable under these conditions.
For example, given common conditions such as: TA= 25°C,
VCC = 12 V, ICC = 4 mA, and RθJA = 140 °C/W, then:
PD = VCC × ICC = 12 V × 4 mA = 48 mW
∆T = PD × RθJA = 48 mW × 140 °C/W = 7°C
TJ = TA + ∆T = 25°C + 7°C = 32°C
A worst-case estimate, PD(max), represents the maximum allowable power level (VCC(max), ICC(max)), without exceeding TJ(max),
at a selected RθJA and TA.
10
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
Package LH, 3-Pin (SOT-23W)
Package UA, 3-Pin
11
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
A1210, A1211, A1212, A1213, and A1214
Continuous-Time Latch Family
The products described herein are manufactured under one or more of
the following U.S. patents: 5,045,920; 5,264,783; 5,442,283; 5,389,889;
5,581,179; 5,517,112; 5,619,137; 5,621,319; 5,650,719; 5,686,894;
5,694,038; 5,729,130; 5,917,320; and other patents pending.
Allegro MicroSystems, Inc. reserves the right to make, from time to
time, such departures from the detail specifications as may be required
to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to
verify that the information being relied upon is current.
Allegro products are not authorized for use as critical components in
life-support devices or systems without express written approval.
The information included herein is believed to be accurate and reliable.
However, Allegro MicroSystems, Inc. assumes no responsibility for its
use; nor for any infringement of patents or other rights of third parties
which may result from its use.
Copyright © 2005, Allegro MicroSystems, Inc.
12
A1210-DS
Allegro MicroSystems, Inc.
115 Northeast Cutoff, Box 15036
Worcester, Massachusetts 01615-0036 (508) 853-5000
www.allegromicro.com
Similar pages