[AK4122A] AK4122A 24-Bit 96kHz SRC with DIR GENERAL DESCRIPTION The AK4122A is a digital sample rate converter (SRC) with the digital audio receiver (DIR). The input sample rate ranges from 8kHz to 96kHz. The output sample rate is 32kHz, 44.1kHz, 48kHz or 96kHz. By using the AK4122A, the system can take very simple configuration because the AK4122A has an internal PLL and does not need any master clock at slave mode. Then the AK4122A is suitable for the application interfacing to different sample rates like Car Audio, DVD recorder, etc. FEATURES 1. SRC • Asynchronous Sample Rate Converter • Input Sample Rate Range (fsi) : 8kHz ∼ 96kHz • Output Sample Rate (fso) : 32kHz, 44.1kHz, 48kHz, 96kHz • Input to Output Sample Rate Ratio : 0.33 to 6 • THD+N : −113dB • I/F format : MSB justified, LSB justified (16/24bit) and I2S compatible • Clock for Master mode : 256/384/512/768fs • SRC Bypass mode • Soft Mute Function 2. DIR 3. 4. 5. 6. • 4-Channel Inputs Selector & 1-Channel Through Output • AES3, IEC60958, S/PDIF, EIAJ CP1201 Compatible • Low Jitter Analog PLL • PLL Lock Range : 32kHz ∼ 96kHz • Auto detection - Non-PCM Bit Stream - DTS-CD Bit Stream - Validity Flag - Sampling Frequency (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz) - Unlock & Parity Error - DAT Start ID • 40-bit Channel Status Buffer • Burst Preamble bit Pc, Pd Buffer for Non-PCM bit streams • Q-subcode Buffer for CD bit streams 4-wire Serial μP Interface Power Supply • AVDD: 3.0 ∼ 3.6V (typ. 3.3V) • DVDD: 3.0 ∼ 3.6V (typ. 3.3V) Ta = −10 ∼ 70°C Package : 48pin LQFP MS1076-E-01 2010/05 -1- [AK4122A] ■ Block Diagram INT0 INT1 INT2 R FILT RX1 RX1 RX2 RX3 RX4 RX2 OPS1-0 TX RX3 TX RX4 PDN IPS1-0 DIR SMUTE PORT3 PORT1 BICK1 LRCK1 SDTI BICK1 BICK2 LRCK2 SDTIO BICK2 LRCK1 SDTI Serial Audio I/F ISEL1-0 De-em Filter PORT2 LRCK2 SDTIO OSEL SRC BYPS Serial Audio I/F LRCK BICK SDTO LRCK BICK SDTO OMCLK PLL Serial Audio I/F M/S2 M/S3 Control Register MCLK2 AVDD AVSS DVDD DVSS CDTO CDTI CCLK CSN Block diagram MS1076-E-01 2010/05 -2- [AK4122A] ■ Ordering Guide AK4122AVQ AKD4122A −10 ∼ +70°C 48pin LQFP (0.5mm pitch) Evaluation Board for AK4122A R AVSS PDN LRCK1 BICK1 SDTI DVSS DVDD MCLK2 LRCK2 BICK2 SDTIO ■ Pin Layout 36 35 34 33 32 31 30 29 28 27 26 25 INT0 37 24 TST11 INT1 38 23 TST10 TX 39 22 RX4 SDTO 40 21 TST9 BICK 41 20 RX3 19 TST8 18 RX2 LRCK AK4122AVQ 42 Top View BVSS 46 15 TST6 CSN 47 14 AVDD CCLK 48 1 13 AVSS 4 5 6 7 8 9 10 11 12 MS1076-E-01 FILT 3 TST5 2 TST4 RX1 SMUTE 16 M/S3 45 M/S2 DVDD TST3 TST7 TST2 17 INT2 44 TST1 DVSS CDTO 43 CDTI OMCLK 2010/05 -3- [AK4122A] PIN/FUNCTION No. 1 2 3 4 5 Pin Name CDTI CDTO TST1 INT2 TST2 I/O Function I O O O O Control Data Input Pin Control Data Output Pin Test 1 Pin Interrupt 2 Pin Test 2 Pin Test 3 Pin 6 TST3 I This pin should be connected to DVSS. Master / Slave Mode Pin for PORT2 7 M/S2 I “H” : Master mode, “L” : Slave Mode Master / Slave Mode Pin for PORT3 8 M/S3 I “H” : Master mode, “L” : Slave Mode Soft Mute Pin 9 SMUTE I “H” : Soft Mute, “L” : Normal Operation Test 4 Pin 10 TST4 I This pin should be connected to AVSS. Test 5 Pin 11 TST5 I This pin should be connected to AVSS. PLL Loop Filter Pin 12 FILT O 470Ω±5% resistor and 2.2μF±50% ceramic capacitor in parallel with a 2.2nF±50% ceramic capacitor should be connected to AVSS externally. 13 AVSS Analog Ground Pin 14 AVDD Analog Power Supply Pin, 3.0 ∼ 3.6V Test 6 Pin 15 TST6 I This pin should be connected to AVSS. 16 RX1 I Receiver Input 1 Pin with Amp for 0.2Vpp (Internal Biased Pin) Test 7 Pin 17 TST7 I This pin should be connected to AVSS. 18 RX2 I Receiver Input 2 Pin with Amp for 0.2Vpp (Internal Biased Pin) Test 8 Pin 19 TST8 I This pin should be connected to AVSS. 20 RX3 I Receiver Input 3 Pin with Amp for 0.2Vpp (Internal Biased Pin) Test 9 Pin 21 TST9 I This pin should be connected to AVSS. 22 RX4 I Receiver Input 4 Pin with Amp for 0.2Vpp (Internal Biased Pin) Test 10 Pin 23 TST10 I This pin should be connected to AVSS. 24 TST11 O Test 11 Pin Note: All input pins except internal biased pins should not be left floating. MS1076-E-01 2010/05 -4- [AK4122A] External Resistor Pin 12kΩ±5% resistor should be connected to AVSS externally. 26 AVSS Analog Ground Pin Power-Down Mode Pin 27 PDN I “H”: Power up, “L”: Power down reset and initializes the control register. 28 LRCK1 I Input Channel Clock Pin 29 BICK1 I Audio Serial Data Clock Pin 30 SDTI I Audio Serial Data Input Pin 31 DVSS Digital Ground Pin 32 DVDD Digital Power Supply Pin, 3.0 ∼ 3.6V 33 MCLK2 I Master Clock Input Pin 34 LRCK2 I/O Input / Output Channel Clock Pin 35 BICK2 I/O Audio Serial Data Clock Pin 36 SDTIO I/O Audio Serial Data Input / Output Pin 37 INT0 O Interrupt 0 Pin 38 INT1 O Interrupt 1 Pin 39 TX O Transmitter Output Pin 40 SDTO O Audio Serial Data Output Pin 41 BICK I/O Audio Serial Data Clock Pin 42 LRCK I/O Output Channel Clock Pin 43 OMCLK I Master Clock Input Pin 44 DVSS Digital Ground Pin 45 DVDD Digital Power Supply Pin, 3.0 ∼ 3.6V Substrate Ground Pin 46 BVSS This pin should be connected to AVSS. 47 CSN I Chip Select Pin 48 CCLK I Control Data Clock Pin Note: All input pins except internal biased pins should not be left floating. 25 R - MS1076-E-01 2010/05 -5- [AK4122A] ■ Handling of Unused pins The unused digital I/O pins should be processed appropriately as below. Classification PORT1 PORT2 Pin Name BICK1, LRCK1, SDTI MCLK2 BICK2, LRCK2 SDTIO M/S2 OMCLK PORT3 DIR Control PORT Other TEST BICK, LRCK SDTO M/S3 RX1, RX2, RX3, RX4 INT0, INT1, INT2, TX CCLK, CDTI, CSN CDTO SMUTE TST1, TST2, TST11 TST3 TST4, TST5, TST6, TST7, TST8, TST9, TST10 Setting These pins should be connected to DVSS. This pin should be connected to DVSS. These pins should be connected to DVSS in slave mode or open in master mode. This pin should be connected to DVSS. This pin should be connected to DVDD or DVSS. This pin should be connected to DVSS. These pins should be connected to DVSS in slave mode or open in master mode. This pin should be open. This pin should be connected to DVDD or DVSS. These pins should be open. These pins should be open. These pins should be connected to DVSS. This pin should be open. This pin should be connected to DVSS. These pins should be open. This pin should be connected to DVSS. These pins should be connected to AVSS. MS1076-E-01 2010/05 -6- [AK4122A] ABSOLUTE MAXIMUM RATINGS (AVSS=BVSS=DVSS=0V; Note 1) Parameter Symbol Power Supplies: Analog AVDD Digital DVDD |BVSS − DVSS| (Note 2) ΔGND Input Current, Any Pin Except Supplies IIN Digital Input Voltage 1 (Except RX1-4 pins) VIND1 Digital Input Voltage 2 (RX1-4 pins) VIND2 Ambient Temperature (Power applied) Ta Storage Temperature Tstg Note 1. All voltages with respect to ground. Note 2. AVSS, BVSS and DVSS must be connected to the same ground. min max Units −0.3 −0.3 −0.3 −0.3 −10 −65 4.6 4.6 0.3 ±10 DVDD+0.3 AVDD+0.3 70 150 V V V mA V V °C °C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (AVSS=BVSS=DVSS=0V; Note 1) Parameter Symbol min typ Power Supplies Analog AVDD 3.0 3.3 (Note 3) Digital DVDD 3.0 3.3 Note 1. All voltages with respect to ground. Note 3. The power up sequence between AVDD and DVDD is not critical. max 3.6 AVDD Units V V WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS1076-E-01 2010/05 -7- [AK4122A] SRC CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.3V; AVSS=BVSS=DVSS=0V; data = 24bit; measurement bandwidth = 20Hz ~ FSO/2; unless otherwise specified.) Parameter Symbol min typ max Units SRC Characteristics: Resolution (Note 4) 24 Bits Input Sample Rate FSI 8 96 kHz Output Sample Rate FSO 32 96 kHz THD+N (Input = 1kHz, 0dBFS, Note 5) FSO/FSI = 44.1kHz/48kHz −113 dB FSO/FSI = 48kHz/44.1kHz −113 dB FSO/FSI = 32kHz/48kHz −114 dB FSO/FSI = 96kHz/32kHz −111 dB Worst Case (FSO/FSI = 48kHz/8kHz) −103 dB Dynamic Range (Input = 1kHz, −60dBFS, Note 5) FSO/FSI = 44.1kHz/48kHz 114 dB FSO/FSI = 48kHz/44.1kHz 115 dB FSO/FSI = 32kHz/48kHz 115 dB FSO/FSI = 96kHz/32kHz 116 dB Worst Case (FSO/FSI = 32kHz/44.1kHz) 112 dB Dynamic Range (Input = 1kHz, −60dBFS, A-weighted, Note 5) FSO/FSI = 44.1kHz/48kHz 117 dB Ratio between Input and Output Sample Rate (Note 6) FSO/FSI 0.33 6 Note 4. Input data for SRC corresponds to 24bit data. When LSB 4bit data is input, the AK4122A calculates the data as “0” because SRC is 20bit calculation. Therefore, SRC outputs “0” data. Note 5. Measured by ROHDE & SCHWARZ UPD04, Rejection Filter = wide, 8192point FFT. Note 6. The “0.33” is the ratio of FSO/FSI when FSI is 96kHz and FSO is 32kHz. The “6” is the ratio of FSO/FSI when FSI is 8kHz and FSO is 48kHz. S/PDIF RECEIVER CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V) Parameter Symbol min typ Input Resistance Zin 10 Input Voltage VTH 200 Input Sample Frequency fs 32 - MS1076-E-01 max 96 Units kΩ mVpp kHz 2010/05 -8- [AK4122A] FILTER CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V; DEM=OFF) Parameter Symbol min typ max Units Digital Filter Passband −0.001dB 0.985 ≤ FSO/FSI ≤ 6.000 PB 0 0.4583FSI kHz 0.905 ≤ FSO/FSI < 0.985 PB 0 0.4167FSI kHz 0.714 ≤ FSO/FSI < 0.905 PB 0 0.3195FSI kHz 0.656 ≤ FSO/FSI < 0.714 PB 0 0.2852FSI kHz 0.536 ≤ FSO/FSI < 0.656 PB 0 0.2245FSI kHz 0.492 ≤ FSO/FSI < 0.536 PB 0 0.2003FSI kHz 0.452 ≤ FSO/FSI < 0.492 PB 0 0.1781FSI kHz 0.333 ≤ FSO/FSI < 0.452 PB 0 0.1092FSI kHz Stopband 0.985 ≤ FSO/FSI ≤ 6.000 SB 0.5417FSI kHz 0.905 ≤ FSO/FSI < 0.985 SB 0.5021FSI kHz 0.714 ≤ FSO/FSI < 0.905 SB 0.3965FSI kHz 0.656 ≤ FSO/FSI < 0.714 SB 0.3643FSI kHz 0.536 ≤ FSO/FSI < 0.656 SB 0.2974FSI kHz 0.492 ≤ FSO/FSI < 0.536 SB 0.2732FSI kHz 0.452 ≤ FSO/FSI < 0.492 SB 0.2510FSI kHz 0.333 ≤ FSO/FSI < 0.452 SB 0.1822FSI kHz Passband Ripple PR ±0.01 dB Stopband Attenuation SA 96 dB Group Delay (Note 7) GD 58.5 1/fs Note 7. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is output, when LRCK for Output data corresponds with LRCK for Input. DC CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V) Parameter Symbol min High-Level Input Voltage VIH 70%DVDD Low-Level Input Voltage VIL High-Level Output Voltage (Iout=−400μA) VOH DVDD−0.4 Low-Level Output Voltage (Iout=400μA) VOL Input Leakage Current Iin - typ - max 30%DVDD 0.4 ±10 Parameter min typ max Power Supply Current Normal operation (PDN pin = “H”) (Note 8) 15 FSI=FSO=48kHz at Slave Mode: AVDD=DVDD=3.3V 29 FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.3V 45 FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.6V Power down (PDN pin = “L”) (Note 9) 100 10 AVDD+DVDD Note 8. Typ and max values are the value of AVDD+DVDD in each power supply voltage. Power supply current of each path@Slave Mode, AVDD=DVDD=3.3V, FSI=FSO=48kHz 1. PORT1 → SRC → PORT3: AVDD=5mA(typ), DVDD=10mA(typ) 2. PORT2 → SRC → PORT3: AVDD=5mA(typ), DVDD=10mA(typ) 3. DIR → SRC → PORT3: AVDD=6mA(typ), DVDD=9mA(typ) Note 9. All digital input pins are held DVSS. MS1076-E-01 Units V V V V μA Units mA mA mA μA 2010/05 -9- [AK4122A] SWITCHING CHARACTERISTICS (Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V; CL=20pF) Parameter Symbol min Master Clock Timing 8.192 fCLK Frequency 0.4/fCLK tCLKL Pulse Width Low 0.4/fCLK tCLKH Pulse Width High LRCK for Input data (LRCK1, LRCK2) Frequency fs 8 Duty Cycle Duty 48 LRCK for Output data (LRCK, LRCK2) Frequency (Note 10) 32 fs Duty Cycle Slave Mode 48 Duty Master Mode Duty S/PDIF Clock Recover Frequency fPLL 32 Audio Interface Timing Input for PORT1 1/64fs tBCK BICK1 Period 65 tBCKL BICK1 Pulse Width Low 65 tBCKH Pulse Width High 30 tLRB LRCK1 Edge to BICK1 “↑” (Note 11) 30 tBLR BICK1 “↑” to LRCK1 Edge (Note 11) 30 tSDH SDTI Hold Time from BICK1 “↑” 30 tSDS SDTI Setup Time to BICK1 “↑” Input for PORT2 (Slave mode) 1/64fs tBCK BICK2 Period 65 tBCKL BICK2 Pulse Width Low 65 tBCKH Pulse Width High 30 tLRB LRCK2 Edge to BICK2 “↑” (Note 11) 30 tBLR BICK2 “↑” to LRCK2 Edge (Note 11) 30 tSDH SDTIO Hold Time from BICK2 “↑” 30 tSDS SDTIO Setup Time to BICK2 “↑” Output for PORT2 (Slave mode) 1/64fs tBCK BICK2 Period 65 tBCKL BICK2 Pulse Width Low 65 tBCKH Pulse Width High 30 tLRB LRCK2 Edge to BICK2 “↑” (Note 11) 30 tBLR BICK2 “↑” to LRCK2 Edge (Note 11) tLRS LRCK2 to SDTIO (MSB) (Except I2S mode) tBSD BICK2 “↓” to SDTIO Note 10. Min value is 8kHz at BYPASS mode. Note 11. BICK1 rising edge must not occur at the same time as LRCK1 edge. BICK2 rising edge must not occur at the same time as LRCK2 edge. MS1076-E-01 typ 50 50 50 max Units 36.864 MHz ns ns 96 52 kHz % 96 52 kHz % % 96 kHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns 30 30 ns ns ns ns ns ns ns 2010/05 - 10 - [AK4122A] Parameter Output for PORT3 (Slave mode) BICK Period BICK Pulse Width Low Pulse Width High LRCK Edge to BICK “↑” (Note 11) BICK “↑” to LRCK Edge (Note 11) 2 LRCK to SDTO (MSB) (Except I S mode) BICK “↓” to SDTO Output for PORT2 (Master mode) BICK2 Frequency BICK2 Duty BICK2 “↓” to LRCK2 BICK2 “↓” to SDTIO Output for PORT3 (Master mode) BICK Frequency BICK Duty BICK “↓” to LRCK BICK “↓” to SDTO Control Interface Timing CCLK Period CCLK Pulse Width Low Pulse Width High CDTI Setup Time CDTI Hold Time CSN “H” Time CSN “↓” to CCLK “↑” CCLK “↑” to CSN “↑” CDTO Delay CSN “↑” to CDTO Hi-Z (Note 12) Symbol min tBCK tBCKL tBCKH tLRB tBLR tLRS tBSD 1/64fs 65 65 30 30 fBCK dBCK tMBLR tBSD fBCK dBCK tMBLR tBSD tCCK tCCKL tCCKH tCDS tCDH tCSW tCSS tCSH tDCD tCCZ typ max Units 30 30 ns ns ns ns ns ns ns 20 30 Hz % ns ns −20 −20 20 30 Hz % ns ns 200 80 80 40 40 150 50 50 1000 64fs 50 −20 −20 64fs 50 Reset Timing PDN Pulse Width (Note 13) tPD 150 Note 11. BICK rising edge must not occur at the same time as LRCK edge. Note 12. In case of using INT2. When INT2 is not used, the max value is not limited. Note 13. The AK4122A can be reset by bringing the PDN pin = “L”. MS1076-E-01 45 70 ns ns ns ns ns ns ns ns ns ns ns 2010/05 - 11 - [AK4122A] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fs VIH LRCK VIL tBCK VIH BICK VIL tBCKH tBCKL Clock Timing VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%DVDD tSDS tSDH VIH SDTI VIL Audio Interface Timing (Slave mode) Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1, LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port. MS1076-E-01 2010/05 - 12 - [AK4122A] LRCK 50%DVDD tMBLR dBCK BICK 50%DVDD tBSD SDTO 50%DVDD tSDH tSDS VIH SDTI VIL Audio Interface Timing (Master mode) Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1, LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port. VIH CSN VIL tCSS tCCKL tCCKH VIH CCLK VIL tCDH tCDS VIH CDTI C1 C0 R/W VIL CDTO Hi-Z WRITE/READ Command Input Timing MS1076-E-01 2010/05 - 13 - [AK4122A] tCSW VIH CSN VIL tCSH VIH CCLK VIL VIH CDTI D2 D1 D0 VIL Hi-Z CDTO WRITE Data Input Timing VIH CSN VIL VIH CCLK VIL VIH CDTI A1 A0 VIL tDCD CDTO Hi-Z D7 D6 50%DVDD READ Data Output Timing 1 MS1076-E-01 2010/05 - 14 - [AK4122A] tCSW VIH CSN VIL tCSH VIH CCLK VIL VIH CDTI VIL tCCZ CDTO D2 D1 D0 Hi-Z 50%DVDD READ Data Output Timing 2 tPD PDN VIL Power Down & Reset Timing MS1076-E-01 2010/05 - 15 - [AK4122A] OPERATION OVERVIEW ■ Internal Signal Path The input source of the SRC can be switched between the outputs of the DIR, PORT1 or PORT2. The input source of the PORT2 and PORT3 can be switched between the outputs of the SRC or BYPASS. When PORT2 is used as an input port, PORT2 cannot be used as an output port. The signal path should be controlled during PWN bit = “0”. The Switch Names (ISEL1-0, BYPS and OSEL) in Figure 1 correspond to the register bits that control the switch function. Refer to Table 1. DIR PORT3 PORT1 Serial Audio I/F ISEL1-0 OSEL De-em Filter SRC BYPS Serial Audio I/F PLL PORT2 Serial Audio I/F Figure 1. Connection Input Source & Output Source Mode 0 1 2 3 4 5 6 7 8 9 Input PORT ISEL1-0 bit 00: PORT1 01: PORT2 10: DIR 00: PORT1 01: PORT2 10: DIR 00: PORT1 10: DIR 00: PORT1 10: DIR SRC / Bypass BYPS bit Output PORT OSEL bit 0: SRC 0: PORT3 (Note 14) 1: Bypass 0: SRC 1: PORT2 (Note 15) 1: Bypass Path PORT1 → SRC → PORT3 PORT2 → SRC → PORT3 DIR → SRC → PORT3 PORT1 → PORT3 PORT2 → PORT3 DIR → PORT3 PORT1 → SRC → PORT2 DIR → SRC → PORT2 PORT1 → PORT2 DIR → PORT2 Table 1. Path Select Default is Mode 0. (Path : PORT1 → SRC → PORT3) After PDN pin = “L” → “H”, SDTIO pin of PORT2 is the input pin. The DIF1-0 bits of the PORT1 should be set a value except “10” (I2S Compatible) when the DIR is selected as an input port. Refer to Table 6 and Table 7 for Master/Slave mode setting. MS1076-E-01 2010/05 - 16 - [AK4122A] Note 14. In this case, PORT2 is input port. If PORT2 is unused, the digital I/O pins should be processed appropriately as shown in Table 2. M/S2 pin Mode L Slave H Master Unused pin Pin I/O Setting MCLK2 I This pin should be connected to DVSS. BICK2 I This pin should be connected to DVSS. LRCK2 I This pin should be connected to DVSS. SDTIO I This pin should be connected to DVSS. MCLK2 I This pin should be connected to DVSS. BICK2 O This pin should be open. LRCK2 O This pin should be open. SDTIO I This pin should be connected to DVSS. Table 2. Pin Setting for PORT2 Note 15. In this case, PORT3 is output port. If PORT3 is unused, the digital I/O pins should be processed appropriately as shown in Table 3. M/S3 pin Mode L Slave H Master Unused pin Pin I/O Setting OMCLK I This pin should be connected to DVSS. BICK I This pin should be connected to DVSS. LRCK I This pin should be connected to DVSS. SDTO O This pin should be open. OMCLK I This pin should be connected to DVSS. BICK O This pin should be open. LRCK O This pin should be open. SDTO O This pin should be open. Table 3. Pin Setting for PORT3 ■ System Clock PORT1 can be operated in slave mode only. PORT2 and PORT3 work in master mode and slave mode. Internal system clock is created by internal PLL using LRCK1, LRCK2 or LRCK of DIR. The MCLK is not needed when PORT2 and PORT3 are in slave mode. Set the MCLK2 pin and OMCLK pin to DVSS. When PORT2 and PORT3 are used in master mode, the MCLK2 pin and OMCLK pin should be supplied MCLK. The M/S2 pin and M/S3 pin control master and slave mode switching. Table 4 and Table 5 show setting of MCLK frequency when PORT2 and PORT3 are master mode. In case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output port (PORT2 or PORT3) should be input. ICKS1 0 0 1 1 OCKS1 0 0 1 1 MCLK2 32kHz ≤ fs ≤ 48kHz 48kHz < fs ≤ 96kHz 0 256fs 256fs 1 384fs 384fs 0 512fs N/A 1 768fs N/A Table 4. MCLK2 frequency select for Master mode ICKS0 OMCLK 32kHz ≤ fs ≤ 48kHz 48kHz < fs ≤ 96kHz 0 256fs 256fs 1 384fs 384fs 0 512fs N/A 1 768fs N/A Table 5. OMCLK frequency select for Master mode (default) OCKS0 MS1076-E-01 (default) 2010/05 - 17 - [AK4122A] ■ Master Mode and Slave Mode When PORT2 and PORT3 are used as output port, the M/S2 pin and M/S3 pin select either master or slave mode for each port. “H” is for master mode, and “L” is for slave mode. MCLK should be supplied to the port which is in master mode, and the AK4122A outputs BICK and LRCK. BICK and LRCK should be supplied externally to the port which is in slave mode, and MCLK is not needed fro this ports. When PORT2 is used as an input port, the M/S2 pin should be set “H” or “L”. M/S2 pin L L H H M/S3 pin L L H H BYPS bit 0 Data I/O Mode BICK, LRCK I/O Slave, SRC Input Input Slave, Bypass 1 Output Not Available 0 I/O Master, SRC Output 1 I/O Master, Bypass Table 6. Master mode/Slave mode for PORT2 BYPS bit Data I/O Mode BICK, LRCK 0 Output Slave, SRC Input 1 Output Not Available 0 Output Master, SRC Output 1 Output Master, Bypass Table 7. Master mode/Slave mode for PORT3 ■ Audio Interface Format The audio interface should be controlled during PWN bit = “0”. When in BYPASS mode, BICK1, BICK2 and BICK are fixed to 64fs. (1) PORT1 Four types of data formats are available and are selected by setting the DIF1-0 bits. (Table 8) In all modes, the serial data is in MSB first, 2’s compliment format. The SDTI is latched on the rising edge of BICK1. PORT1 corresponds to slave mode only. Mode 0 1 2 3 DIF1 0 0 1 1 DIF0 Input Format LRCK BICK 0 16bit, LSB justified H/L ≥ 32fs 1 24bit, MSB justified H/L ≥ 48fs 0 24bit, I2S Compatible L/H ≥ 48fs 1 24bit, LSB justified H/L ≥ 48fs Table 8. Audio Interface Format for PORT1 (default) Note: The DIF1-0 bits of the PORT1 must not be set “10” (I2S Compatible) when the DIR is selected as an input port. MS1076-E-01 2010/05 - 18 - [AK4122A] LRCK 0 1 2 3 9 10 11 12 13 14 15 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTI(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 0 1 2 3 17 18 19 20 31 0 1 2 3 7 6 5 4 3 2 1 0 15 17 18 19 20 31 0 1 BICK(64fs) SDTI(i) Don't Care 15 14 13 12 1 0 Don't Care 15 14 13 12 2 1 0 SDTI-15:MSB, 0:LSB Lch Data Rch Data Figure 2. Mode 0 Timing LRCK 0 1 2 20 21 22 23 24 31 0 1 2 20 21 22 23 24 31 0 1 BICK(64fs) SDTI(i) 23 22 4 3 2 1 0 Don't Care 23 22 Don't Care 23 4 3 2 1 0 23:MSB, 0:LSB Lch Data Rch Data Figure 3. Mode 1 Timing LRCK 0 1 2 3 21 22 23 24 25 0 1 2 21 22 23 24 25 0 1 BICK(64fs) SDTI(i) 23 22 4 3 2 1 0 Don't Care 23 22 4 3 2 1 0 Don't Care 23:MSB, 0:LSB Lch Data Rch Data Figure 4. Mode 2 Timing LRCK 0 1 2 8 9 24 31 0 1 2 8 9 24 31 0 1 BICK(64fs) SDTI(i) Don't Care 23 8 1 0 Don't Care 23 8 1 0 23:MSB, 0:LSB Lch Data Rch Data Figure 5. Mode 3 Timing MS1076-E-01 2010/05 - 19 - [AK4122A] (2) PORT2 Four kinds of data formats are available and are selected by setting IDIF1-0 bits (Table 9). In all modes, the serial data is in MSB first, 2’s compliment format. If PORT2 is selected as an output port, the SDTIO is clocked out on the falling edge of BICK2, and if PORT2 is selected as an input port, the SDTIO is latched on the rising edge of BICK2. The audio interface supports both master and slave modes. In master mode, BICK2 output is fixed to 64fs and the LRCK2 output fixed to 1fs. Mode 0 1 2 3 IDIF1 0 0 1 1 IDIF0 0 1 0 1 Output Format Input Format 24bit, MSB justified 16bit, LSB justified 24bit, MSB justified 24bit, MSB justified 24bit, I2S Compatible 24bit, I2S Compatible 24bit, MSB justified 24bit, LSB justified Table 9. Audio Interface Format for PORT2 LRCK H/L H/L L/H H/L BICK ≥ 32fs ≥ 48fs ≥ 48fs ≥ 48fs (default) LRCK 9 10 11 12 13 14 15 0 1 2 3 0 1 2 3 9 10 11 12 13 14 15 0 1 BICK(32fs) SDTIO(o) 23 22 21 15 14 13 12 11 10 9 8 23 22 21 15 14 13 12 11 10 9 8 23 SDTIO(i) 15 14 13 7 6 5 4 3 2 1 0 15 14 13 7 6 5 4 3 2 1 0 15 0 1 2 3 17 18 19 20 31 0 1 2 3 23 22 21 7 6 5 4 3 17 18 19 20 31 0 1 BICK(64fs) SDTIO(o) SDTIO(i) Don't Care 15 14 13 12 23 22 21 1 0 Don't Care 7 6 5 4 3 15 14 13 12 23 2 1 0 SDTIO-23:MSB, 0:LSB SDTIO-15:MSB, 0:LSB Lch Data Rch Data Figure 6. Mode 0 Timing LRCK 0 1 2 20 21 22 23 24 31 0 1 2 20 21 22 23 24 31 0 1 BICK(64fs) SDTIO(o) 23 22 4 3 2 1 0 23 22 4 3 2 1 0 23 SDTIO(i) 23 22 4 3 2 1 0 Don't Care 23 22 4 3 2 1 0 Don't Care 23 23:MSB, 0:LSB Lch Data Rch Data Figure 7. Mode 1 Timing MS1076-E-01 2010/05 - 20 - [AK4122A] LRCK 0 1 2 3 21 22 23 24 25 0 1 2 21 22 23 24 25 0 1 BICK(64fs) SDTIO(o) 23 22 4 3 2 1 0 23 22 4 3 2 1 0 SDTIO(i) 23 22 4 3 2 1 0 Don't Care 23 22 4 3 2 1 0 Don't Care 23:MSB, 0:LSB Lch Data Rch Data Figure 8. Mode 2 Timing LRCK 0 1 2 8 9 24 31 0 1 2 8 9 24 31 0 1 BICK(64fs) SDTIO(o) SDTIO(i) 23 22 16 15 Don't Care 0 23 23 22 8 1 0 16 15 Don't Care 0 23 8 23 1 0 23:MSB, 0:LSB Lch Data Rch Data Figure 9. Mode 3 Timing (3) PORT3 Two kinds of data formats are available and are selected by setting the ODIF bit (Table 10). In both modes, the serial data is in MSB first, 2’s compliment format. The SDTO is clocked out on the falling edge of BICK. The audio interface supports both master and slave modes. In master mode, BICK output is fixed to 64fs and LRCK output is fixed to 1fs. Mode 0 1 ODIF Output Format LRCK BICK 0 24bit, MSB justified H/L ≥ 48fs 1 24bit, I2S Compatible L/H ≥ 48fs Table 10. Audio Interface Format for PORT3 (default) LRCK 0 1 2 3 17 18 19 20 23 22 21 7 6 5 4 3 31 0 1 2 3 17 18 19 20 31 0 1 BICK(64fs) SDTO(o) 23 22 21 7 6 5 4 3 23 SDTO-23:MSB, 0:LSB Lch Data Rch Data Figure 10. Mode 0 Timing LRCK 0 1 2 3 21 22 23 24 25 0 1 2 21 22 23 24 25 0 1 BICK(64fs) SDTO(o) 23 22 4 3 2 1 0 23 22 4 3 2 1 0 23:MSB, 0:LSB Lch Data Rch Data Figure 11. Mode 1 Timing MS1076-E-01 2010/05 - 21 - [AK4122A] ■ Soft Mute Operation Soft mute operation is performed in the digital domain of the SRC output. Soft mute can be controlled by SMUTE bit or SMUTE pin. The SMUTE bit setting is logically ORed with the SMUTE pin setting. When SMUTE bit goes “1” or SMUTE pin goes “H”, the SRC output data is attenuated by −∞ within 1024 LRCK cycles. When the SMUTE bit returned “0” and SMUTE pin goes “L” the mute is cancelled and the output attenuation gradually changes to 0dB during 1024 LRCK cycles. If the soft mute is cancelled before mute state, the attenuation is discontinued and returned to 0dB in the same cycles. The soft mute is effective for changing the signal source without stopping the signal transmission. S MU TE DAT T L eve l (1 ) (1 ) (2 ) A tten u a tion -∞ S DT IO / S D T O Figure 12. Soft Mute Function (1) The output data is attenuated by −∞ during 1024 LRCK cycles (1024/fs). (2) If the soft mute is cancelled before attenuating to −∞, the attenuation is discontinued and returned to 0dB in the same clock cycles. MS1076-E-01 2010/05 - 22 - [AK4122A] ■ De-emphasis Filter Control The AK4122A includes a digital de-emphasis filter (tc=50/15μs) by IIR filter corresponding to three sampling frequencies (32kHz, 44.1kHz and 48kHz). (1) When input port is DIR When the input port is DIR and DEAU bit = “1”, the de-emphasis filter is enabled automatically by sampling frequency (FS3-0 bit) and pre-emphasis information in the channel status. DEM1-0 bits can control the de-emphasis filter when DEAU bit = “0”. When the de-emphasis filter is OFF, the internal de-emphasis filter is bypassed. When PEM bit = “0”, the internal de-emphasis filter is always bypassed. PEM 1 1 1 1 0 FS3 0 0 0 x PEM 1 1 1 1 FS2 0 0 0 FS1 0 1 1 FS0 0 0 1 (Others) x x x Table 11. De-emphasis Auto Control (DEAU bit = “1”) Mode 44.1kHz 48kHz 32kHz OFF OFF DEM1 DEM0 Mode 0 0 44.1kHz 0 1 OFF (default) 1 0 48kHz 1 1 32kHz Table 12. De-emphasis Manual Control (DEAU bit = “0”) (2) When input port is PORT1 or PORT2 When PORT1 or PORT2 is selected as an input port, DEM1-0 bits can control the de-emphasis filter regardless of the DEAU bit setting. In this case, the de-emphasis filter can not be enabled automatically. When the de-emphasis setting is OFF, the internal de-emphasis filter is bypassed. DEM1 DEM0 Mode 0 0 44.1kHz 0 1 OFF (default) 1 0 48kHz 1 1 32kHz Table 13. De-emphasis Manual Control ■ System Reset and Power-Down The AK4122A has a full power-down mode for all circuits that is activated by the PDN pin, and a partial power-down mode activated by the PWN bit. The AK4122A should be reset once at power-up by bringing the PDN pin = “L”. PDN pin: All analog and digital circuits are placed in power-down and reset modes by bringing the PDN pin = “L”. All the registers are initialized and clocks are stopped. Read/Write operations to the registers are disabled. PWN bit (Address 00H; D0): Unlike the PDN pin operation described above, internal registers and mode settings are not initialized. Read/Write operations to the registers are enabled. MS1076-E-01 2010/05 - 23 - [AK4122A] ■ System Reset Bringing the PDN pin = “L” sets the AK4122A in power-down mode and initializes digital filters. When the PDN pin = “L”, the SDTO output is “L”. The AK4122A should be reset once by bringing the PDN pin = “L” upon power-up. The SDTO becomes valid in less than 100ms from the rising edge of PDN after a reset release by clock supply. Until the SDTO becomes valid, it outputs “L”. After the rising of PDN pin, the SDTIO pin is an input pin. External clocks (input / output port) (stable) don’t care don’t care PDN < 100msec (internal state) Power-down PLL locktime & fs detection SDTO normal operation Power-down normal data “0” data “0” data Figure 13. System Reset ■ Sequence of Changing Clocks A clock change sequence is shown in Figure 14. An internal reset is executed when the input or the output clocks are changed. The SDTO data is placed “0” during the reset. Within 100ms, the SDTO outputs normal data after the reset. When the frequency transition occurs gradually without phase change or when the output clock is changed while fso/fsi > 4, the output data may have large distortion for several seconds. A reset should be made by bringing the PDN pin = “L” or PWN bit = “0” to obtain normal data within 100ms when clocks are changed. External clocks (Input port or Output port) Clocks 1 Don’t care Clocks 2 PDN pin < 100ms (Internal state) Normal operation Power-down PLL lock & fs detection SDTIO/SDTO Normal data SMUTE (recommended) Att.Level Note16 Note17 Normal operation Normal data 1024/fso 1024/fso 0dB - ∞dB Figure 14. Sequence of Changing Clocks Note 16. The data on SDTO may cause a clicking noise. To prevent this, set SDTI or SDTIO to “0” from GD before the PDN pin changes to “L”, which will cause the data on SDTO to remain “0”. SMUTE can also remove this clicking noise. Note 17. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to “0” for 1024/fso+100ms or more from the timing when the PDN pin changes to “H” while the SMUTE pin = “H”. Note 18. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to “0” for 1024/fso+100ms or more from the timing when the PDN pin changes to “H” while the SMUTE pin = “H”. MS1076-E-01 2010/05 - 24 - [AK4122A] ■ 96kHz Clock Recovery An integrated low jitter PLL of the DIR has a wide lock range of 32kHz to 96kHz and its lock time is less than 20ms. The AK4122A has a sampling frequency detect function (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz) that uses either clock comparison against the MCLK2 or OMCLK frequency or the channel status information. The PLL loses synchronization when receiving preambles in incorrect interval. ■ Biphase Input Four inputs (RX1-4) are available for DIR. Each input includes an amplifier for unbalance loads that can accept 200mVpp or greater signal. The IPS1-0 bits select the receiver channel (Table 14). IPS1 0 0 1 1 IPS0 Input Data 0 RX1 1 RX2 0 RX3 1 RX4 Table 14. Recovery Data Select (default) ■ Biphase Output The AK4122A can output through data from the digital receiver inputs (RX1-4) to the TX pin. The OPS1-0 bits can select the source of the TX pin output. TX output can be stopped by TXE bit. The AK4122A does not have a TX output buffer (Line Driver), therefore the TX pin cannot drive the 75Ω coaxial cable directly. OPS1 0 0 1 1 OPS0 Output Data 0 RX1 1 RX2 0 RX3 1 RX4 Table 15. Output Data Select for TX MS1076-E-01 (default) 2010/05 - 25 - [AK4122A] ■ Biphase Signal Input Circuit 0.1uF RX 75Ω Coax 75Ω AK4122A Figure 15. Consumer Input Circuit (Coaxial Input) Note 19. Coaxial input only : if a coupling level to this input by the next RX input line pattern exceeds 50mV, an malfunction may occur. In this case, it is possible to lower the coupling level by adding this decoupling capacitor. Note 20. Ground of the RCA connector and terminator should be connected to AVSS of the AK4122A with low impedance on PC board. 3.3V Optical Fiber 470 O/E RX Optical Receiver AK4122A Figure 16. Consumer Input Circuit (Optical Input, Using 3.3V Optical Receiver) When using coaxial input, the input level of the RX line is small. Care must be taken to reduce, crosstalk among RX input lines by inserting a shield pattern between them. MS1076-E-01 2010/05 - 26 - [AK4122A] ■ Sampling Frequency and Pre-emphasis Detection for DIR The AK4122A has two methods for detecting sampling frequency for DIR. The sampling frequency is detected by comparing the recovered clock to the MCLK2 or OMCLK frequency, and the detected frequency is reported on FS3-0 bits. XTL1-0 bits , ICKS1-0 bits and OCKS1-0 bits must be set according to the FSO and MCLK frequencies for the detection. (Table 16) When XTL1-0 bits = “11”, the sampling frequency is detected by the channel status sampling frequency information. The detected frequency is reported on FS3-0 bits. The default values of FS3-0 bits are “0001”. In case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output port (PORT2 or PORT3) should be input. FSO XTL1 MCLK2 or OMCLK ICKS1 / OCKS1 ICKS0 / OCKS0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 Table 16. Reference MCLK Frequency XTL0 44.1kHz 0 0 48kHz 0 1 96kHz 1 0 - 1 1 Except XTL1-0 bit = “11” Register Output fs FS3 FS2 FS1 FS0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 Clock comparison (Note 21) 44.1kHz Reserved 48kHz 32kHz 88.2kHz 96kHz ± 3% ± 3% ± 3% ± 3% ± 3% Table 17. fs Information MCLK Frequency 11.2896MHz 16.9344MHz 22.5792MHz 33.8688MHz 12.288MHz 18.432MHz 24.576MHz 36.864MHz 24.576MHz 36.864MHz N/A N/A Use channel status (default) XTL1-0 bit = “11” Consumer Mode Professional Mode (Note 22) Byte3 Byte0 Byte4 Bit3,2,1,0 Bit7,6 Bit6,5,4,3 0000 01 0000 0001 (others) 0000 0010 10 0000 0011 11 0000 (1000) 00 1010 (1010) 00 0010 Note 21. Frequencies in a range of ± 3% are identified as shown in the Table 17. Intermediate frequencies between these frequencies shown in Table 17 are identified as nearer vale and are shown on FS3-0 bits. FS3-0 bits indicate “1100”, “1110” or “0001” for the frequencies beyond the range of 32~ 96kHz. Note 22. In consumer mode, Byte3 Bit3-0 are copied to FS3-0. The pre-emphasis information is detected and reported on the PEM bit. This information is extracted from channel 1 by default (CS12 bit = “0”). It can be switched to channel 2 by changing the CS12 bit in the control register. PEM bit 0 1 Consumer mode Professional mode Byte0 Byte0 Bit3,4,5 Bit2,3,4 OFF ≠ 0X100 ≠ 100 ON 0X100 100 Table 18. PEM Information Pre-emphasis MS1076-E-01 2010/05 - 27 - [AK4122A] ■ Interrupt Handling for DIR Following nine events cause that the INT2-0 pins go to “H”. 1. UNLCK: PLL unlock state detection UNLCK bit =“1” when the PLL loses lock. The AK4122A loses synchronization when the interval of two preambles is not correct or when those preambles are not correct. 2. PAR: Parity error or biphase coding error detection PAR bit =“1” when parity error or biphase coding error is detected. It is updated every sub-frame cycle. 3. AUTO: Non-PCM or DTS-CD Bit Stream detection The ORed result of NPCM and DTSCD bits is output to the AUTO bit. 4. V: Validity flag detection V bit =“1” when validity flag is detected. It is updated every sub-frame cycle. 5. AUDN: Non-audio detection AUDN bit= “1” when the recovered channel status indicates “1”. It is updated every block cycle. 6. STC: Sampling frequency or pre-emphasis information change detection STC bit= “1” when FS3-0 or PEM bit is changed. Reading 07H register resets it. 7. CINT: Channel status sync flag CITN bit=“1” when received C bits differ from old ones, and stays “1” until this register is read. Updated every block cycle. Reading 07H register resets it. 8. QINT: U bit (Q-subcode) sync flag QINT bit =“1” when the Q-subcode differs from old one, and stays “1” until this register is read. Updated every sync code cycle for Q-subcode. Reading 07H register resets it. 9. DAT: DAT Start ID detection When the category code shows DAT, this bit becomes “1” if the Start ID of DAT is detected as “1”. Reading 08H register resets it. INT1-0 pins output an OR’ed signal based on the above nine interrupt events. When these registers are masked, the interrupt event does not affect the operation of the INT1-0 pins (the masks do not affect the registers (UNLCK, PAR, etc.) themselves). Once INT0 pin goes to “H”, it maintains “H” for 1024 cycles (this value can be changed by the EFH1-0 bits) after all events which is not masked by mask bits are cleared. The INT1 pin immediately returns to “L” when those events are cleared. The INT2 pin outputs “H” by detecting a status change of events 1~5 and ORed results of the events 6~9. It stays “H” until 07H and 08H registers are read. Mask bits are shared with INT0. UNLCK, PAR, AUTO, V and AUDN bits indicate the interrupt status events above in real time. STC, QINT and CINT bits at address 07H and DAT bit at 08H are changed to “1” by these events. Once STC, QINT or CINT and DAT bit goes to “1”, it stays “1” until the register is read (07H, 08H (DAT bit)). When the AK4122A loses lock, the channel status bits are initialized. In this initial state, the INT0 and INT2 pins output an OR’ed signal between UNLCK and PAR bits. The INT1 pin outputs an OR’ed signal between AUTO, V and AUDN. INT2-0 pins are “L” when the DIR is not selected. When DIR is used as input port and the PLL loses lock (unlock state), the output data is muted automatically. When AMUTE bit = “1”, SDTIO and SDTO are muted automatically when the AK4122A detects unlock, Non-Audio or Non-PCM/DTS-CD. After the interrupt events are cleared, mute is cancelled automatically. When AMUTE bit = “0”, SDTIO and SDTO outputs “L” when the PLL loses lock (unlock state), and outputs “H” when other errors (PAR, AUTO and etc.) are occured. MS1076-E-01 2010/05 - 28 - [AK4122A] (1) UNLCK, PAR, AUTO, V and AUDN bits Interrupt (UNLCK, PAR, AUTO, V, AUDN) INT0 pin Hold Time (max:4096/fs) INT1 pin Hold Time = 0 INT2 pin Register 07H “0” Hold “1” “0” Read 07H BICK, LRCK (UNLCK) Free Run fs : around 20kHz BICK, LRCK (except UNLCK) SDTIO / SDTO (AMUTE = “1”) (UNLCK, AUTO, V, AUDN) Mute SDTIO / SDTO (AMUTE = “0”) (UNLCK) “L” Output SDTIO / SDTO (AMUTE = “0”) (AUTO, V, AUDN) SDTIO / SDTO (PAR error) Previous Data : Normal Operation Figure 17. INT2-0 Timing (UNLCK, PAR, AUTO, V, AUDN bits) MS1076-E-01 2010/05 - 29 - [AK4122A] (2) STC, CINT and QINT bits Interrupt (FS3-0, PEM, C-bit, Q-sub) Interrupt (STC, CINT, QINT) INT0 pin (1) (1) (2) INT1 pin (2) INT2 pin Register 07H “0” Hold “1” “0” Hold “1” “0” Read 07H BICK, LRCK SDTIO / SDTO : Normal Operation Figure 18. INT2-0 Timing (STC, CINT, QINT bits) (1) Hold Time : max. 4096/fs (2) Hold Time = 0 MS1076-E-01 2010/05 - 30 - [AK4122A] (3) DAT bit Interrupt (DAT) INT0 pin (1) (1) (2) INT1 pin (2) INT2 pin Register 08H “0” Hold “1” “0” Hold “1” “0” Read 08H BICK, LRCK SDTIO / SDTO : Normal Operation Figure 19. INT2-0 Timing (DAT bit) (1) Hold Time: max. 4096/fs (2) Hold Time = 0 MS1076-E-01 2010/05 - 31 - [AK4122A] PD pin ="L" to "H" Initialize Read 07H, 08H INT0/1 pin ="H" No Yes Release Muting Mute SDTIO / SDTO Read 07H, 08H (Each Error Handling) Read 07H, 08H (Resets registers) No INT0/1 pin ="H" Yes Figure 20. Interrupt Handling Sequence Example 1 MS1076-E-01 2010/05 - 32 - [AK4122A] PD pin ="L" to "H" Initialize Read 07H No INT1 pin ="H" Yes Read 07H and Detect QSUB= “1” (Read Q-buffer) QCRC = “0” No New data is invalid Yes INT1 pin ="L" No Yes New data is valid Figure 21. Interrupt Handling Sequence Example 2 MS1076-E-01 2010/05 - 33 - [AK4122A] ■ Q-subcode buffers The DIR of the AK4122A has a Q-subcode buffer for CD applications. The AK4122A takes Q-subcode into registers under the following conditions: 1) 2) 3) 4) The sync word (S0, S1) consists of at least 16 “0”s. The start bit is “1”. Those 7-bits Q-W follow the start bit. The distance between two start bits is 8-16 bits. QINT bit should be valid and “0” while Q-subcode is read from the register. S0 S1 S2 S3 : S97 S0 S1 S2 S3 : Q2 Q3 Q4 CTRL Q5 Q6 Q7 Q8 ADRS 1 0 0 1 1 : 1 0 0 1 1 : 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q2 R2 S2 T2 U2 V2 W2 Q3 R3 S3 T3 U3 V3 W3 : : : : : : : Q97 R97 S97 T97 U97 V97 W97 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q2 R2 S2 T2 U2 V2 W2 Q3 R3 S3 T3 U3 V3 W3 : : : : : : : (*) number of “0” : min=0; max=8. ↑ Q Figure 22. Configuration of U-bit(CD) Q9 * 0… 0… 0… 0… : 0… 0… 0… 0… 0… : Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 TRACK NUMBER INDEX Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 MINUTE SECOND FRAME Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 Q72 Q73 ZERO ABSOLUTE MINUTE ABSOLUTE SECOND Q74 Q75 Q76 Q77 Q78 Q79 Q80 Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90 Q91 Q92 Q93 Q94 Q95 Q96 Q97 ABSOLUTE FRAME CRC G(x)=x16+x12+x5+1 Figure 23. Q-subcode Addr Register Name 13H Q-subcode Address / Control 14H Q-subcode Track 15H Q-subcode Index 16H Q-subcode Minute 17H Q-subcode Second 18H Q-subcode Frame 19H Q-subcode Zero 1AH Q-subcode ABS Minute 1BH Q-subcode ABS Second 1CH Q-subcode ABS Frame D7 D6 D5 D4 Q9 Q8 ··· ··· Q17 Q16 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· Q81 Q80 ··· ··· Figure 24. Q-subcode register map MS1076-E-01 D3 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D2 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D1 Q3 Q11 ··· ··· ··· ··· ··· ··· ··· Q75 D0 Q2 Q10 ··· ··· ··· ··· ··· ··· ··· Q74 2010/05 - 34 - [AK4122A] ■ Non-PCM (AC-3, MPEG, etc.) and DTS-CD Bitstream Detection The DIR of the AK4122A has a Non-PCM steam auto-detection function. In the 32-bit mode when Non-PCM preamble based on Dolby “AC-3 Data Stream in IEC60958 Interface” is detected, the NPCM bit goes to “1”. The 96-bit sync code consists of 0x0000, 0x0000, 0x0000, 0x0000, 0xF872 and 0x4E1F. Detection of this pattern will set the NPCM bit to “1”. Once the NPCM bit is set to “1”, it will remain “1” until 4096 frames pass through the chip without an additional sync pattern being detected (Timing diagram: Figure 27and Figure 28). When those preambles are detected, the burst preambles Pc and Pd (Pc: burst information, Pd: length code; Refer to Table 22, Table 23) that follow those sync codes are stored to registers. The AK4122A also has a DTS-CD bitstream auto-detection function. When AK4122A detects DTS-CD bitstream, the DTSCD bit goes to “1”. If the next sync code does not occur within 4096 frames, the DTSCD bit returns to “0” until either the AK4122A detects the stream again. OR’ed value of the NPCM and DTSCD bits are output to the AUTO bit. The AK4122A detects 14-bit sync word and 16-bit sync word of a DTS-CD bitstream, and these detection can be ON/OFF by DTS14 and DTS16 bits. ■ Serial Control Interface The internal registers may be either written or read by the 4-wire μP interface pins: CSN, CCLK, CDTI and CDTO. The data on this interface consists of Chip address (2bits, C1/0 are fixed to “00”), Read/Write (1bit), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after the 16th rising edge of CCLK, after a high-to-low transition of CSN. For read operations, the CDTO output goes to high impedance after a low-to-high transition of CSN. The maximum speed of CCLK is 5MHz. The chip address is fixed to “00”. Accessing to the chip address except for “00” is invalid. The PDN pin = “L” resets the registers to their default values. Read/Write operation can be made without MCLK, BICK and LRCK clocks. CSN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 CCLK CDTI Write Hi-Z CDTO CDTI C1 C0 R/W A4 A3 A2 A1 A0 Read CDTO Hi-Z Hi-Z C1 - C0 : Chip Address (Fixed to "00") R/W : READ / WRITE ("1" : WRITE, "0" : READ) A4 - A0 : Register Address D7 - D0 : Control Data Figure 25. Control I/F Timing MS1076-E-01 2010/05 - 35 - [AK4122A] ■ Register Map Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH Register Name PDN & Mode Control Selector & Clock Control Audio Interface Format DIR Control INT0 Mask INT1 Mask DAT Mask & DTS Detect Receiver Status 0 Receiver Status 1 Receiver Status 2 RX Channel Status Byte 0 RX Channel Status Byte 1 RX Channel Status Byte 2 RX Channel Status Byte 3 RX Channel Status Byte 4 Burst Preamble Pc Byte 0 Burst Preamble Pc Byte 1 Burst Preamble Pd Byte 0 Burst Preamble Pd Byte 1 Q-subcode Address / Control Q-subcode Track Q-subcode Index Q-subcode Minute Q-subcode Second Q-subcode Frame Q-subcode Zero Q-subcode ABS Minute Q-subcode ABS Second Q-subcode ABS Frame D7 XTL1 BYPS 0 CS12 MULK0 MULK1 0 UNLCK DAT 0 CR7 CR15 CR23 CR31 CR39 PC7 PC15 PD7 PD15 Q9 Q17 Q25 Q33 Q41 Q49 Q57 Q65 Q73 Q81 D6 XTL0 OSEL 0 AMUTE MPAR0 MPAR1 0 PAR DTSCD 0 CR6 CR14 CR22 CR30 CR38 PC6 PC14 PD6 PD14 Q8 Q16 Q24 Q32 Q40 Q48 Q56 Q64 Q72 Q80 D5 TXE ISEL1 0 EFH1 MAUT0 MAUT1 0 AUTO NPCM 0 CR5 CR13 CR21 CR29 CR37 PC5 PC13 PD5 PD13 Q7 Q15 Q23 Q31 Q39 Q47 Q55 Q63 Q71 Q79 D4 SMUTE ISEL0 ODIF EFH0 MV0 MV1 0 V PEM 0 CR4 CR12 CR20 CR28 CR36 PC4 PC12 PD4 PD12 Q6 Q14 Q22 Q30 Q38 Q46 Q54 Q62 Q70 Q78 D3 DEAU ICKS1 IDIF1 IPS1 MAUD0 MAUD1 DTS16 AUDN FS3 0 CR3 CR11 CR19 CR27 CR35 PC3 PC11 PD3 PD11 Q5 Q13 Q21 Q29 Q37 Q45 Q53 Q61 Q69 Q77 D2 DEM1 ICKS0 IDIF0 IPS0 MSTC0 MSTC1 DTS14 STC FS2 0 CR2 CR10 CR18 CR26 CR34 PC2 PC10 PD2 PD10 Q4 Q12 Q20 Q28 Q36 Q44 Q52 Q60 Q68 Q76 D1 DEM0 OCKS1 DIF1 OPS1 MCIT0 MCIT1 MDAT1 CINT FS1 CCRC CR1 CR9 CR17 CR25 CR33 PC1 PC9 PD1 PD9 Q3 Q11 Q19 Q27 Q35 Q43 Q51 Q59 Q67 Q75 D0 PWN OCKS0 DIF0 OPS0 MQIT0 MQIT1 MDAT0 QINT FS0 QCRC CR0 CR8 CR16 CR24 CR32 PC0 PC8 PD0 PD8 Q2 Q10 Q18 Q26 Q34 Q42 Q50 Q58 Q66 Q74 When th ODN pin is “L”, the registers are initialized to their defoult value. When PORT1 or PORT2 are selected as input port, the status registers (07H ∼ 1CH) are initialized. Note 23. The bits defined as 0 must contain a “0” value. Note 24. For addresses from 1DH ∼ 1FH, data must not be written. MS1076-E-01 2010/05 - 36 - [AK4122A] ■ Register Definitions Addr Register Name 00H PDN & Mode Control R/W Default D7 XTL1 R/W 1 D6 XTL0 R/W 1 D5 TXE R/W 1 D4 SMUTE R/W 0 D3 DEAU R/W 0 D2 DEM1 R/W 0 D1 DEM0 R/W 1 D0 PWN R/W 1 PWN: Power Down Control 0: Power down 1: Normal operation (default) “0” powers down all sections. The contents of all register are not initialized and enabled to write to the registers. The internal registers (00H ∼ 06H) are not initialized, however, the status registers (07H ∼ 1CH) are initialized. Read/Write operations to the registers are enabled. DEM1-0: De-emphasis Control (Table 12, Table 13) Initial values are “01”. DEAU: De-emphasis Auto Control 0: Disable (default) 1: Enable When DEAU bit = “1”, the de-emphasis filter is enabled automatically by sampling frequency and pre-emphasis information in the channel status. SMUTE: Soft Mute Control 0: Normal operation (default) 1: SDTIO and SDTO soft mute When SMUTE bit = “1”, SDTO and SDTIO outputs “L”. TXE: TX Output enable 0: Disable, TX outputs “L”. 1: Enable (default) XTL1-0: Reference MCLK Frequency Select (Table 16) Initial values are “11”. MS1076-E-01 2010/05 - 37 - [AK4122A] Addr Register Name 01H Selector & Clock Control R/W Default D7 BYPS R/W 0 D6 OSEL R/W 0 D5 ISEL1 R/W 0 D4 ISEL0 R/W 0 D3 ICKS1 R/W 1 D2 ICKS0 R/W 0 D1 OCKS1 R/W 1 D0 OCKS0 R/W 0 OCKS1-0: OMCLK Frequency Select for Master mode (Table 5) Initial values are “10”. ICKS1-0: MCLK2 Frequency Select for Master mode (Table 4) Initial values are “10”. ISEL1-0: Input Port Select Initial values are “00”. ISEL1 0 0 1 1 ISEL0 Input PORT (default) 0 PORT1 1 PORT2 0 DIR 1 N/A Table 19. Input PORT Select OSEL: Output Port Select Initial values are “0”. OSEL Output PORT (default) 0 PORT3 1 PORT2 Table 20. Output PORT Select BYPS: Select Bypass mode 0: SRC mode (default) 1: Bypass mode When BYPS bit = “1”, the AK4122A outputs the clocks (BICK, LRCK) and data that is input by input port without SRC. MS1076-E-01 2010/05 - 38 - [AK4122A] Addr Register Name 02H Audio Interface Format R/W Default DIF1-0: D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 ODIF R/W 0 D3 IDIF1 R/W 0 D2 IDIF0 R/W 1 D1 DIF1 R/W 0 D0 DIF0 R/W 1 D5 EFH1 R/W 0 D4 EFH0 R/W 1 D3 IPS1 R/W 0 D2 IPS0 R/W 0 D1 OPS1 R/W 0 D0 OPS0 R/W 0 Audio Interface Format for PORT1 (Table 8) Initial values are “01”. IDIF1-0: Audio Interface Format for PORT2 (Table 9) Initial values are “01”. ODIF: Audio Interface Format for PORT3 (Table 10) Initial values are “0”. Addr Register Name 03H DIR Control R/W Default D7 CS12 R/W 0 D6 AMUTE R/W 1 OPS1-0: Output Through Data Select for TX (Table 15) Initial values are “00”. IPS1-0: Input Recovery Data Select (Table 14) Initial values are “00”. EFH1-0: Interrupt 0 pin Hold Count Select Initial values are “01”. LRCK of Table 21 is DIR’s LRCK, the hold time scales with 1/fs. EFH1 0 0 1 1 EFH0 Hold Count 0 512LRCK 1 1024LRCK (default) 0 2048LRCK 1 4096LRCK Table 21. Hold count select AMUTE: Auto Mute Control 0: Normal operation 1: Auto Mute (default) When AMUTE bit = “1”, SDTIO and SDTO are muted automatically if the AK4122A detects unlock, Non-Audio or Non-PCM/DTS-CD. CS12: Channel Status select 0: Channel 1 (default) 1: Channel 2 These bit selects the channel status for C-bit, AuDN, PEM, FS3-0, Pc, Pd and CRC bit. MS1076-E-01 2010/05 - 39 - [AK4122A] Addr Register Name 04H INT0 Mask R/W Default D7 MULK0 R/W 0 MQIT0: Mask enable for QINT bit 0: Mask disable 1: Mask enable (default) MCIT0: Mask enable for CINT bit 0: Mask disable 1: Mask enable (default) MSTC0: Mask enable for STC bit 0: Mask disable 1: Mask enable (default) D6 MPAR0 R/W 0 D5 MAUT0 R/W 1 D4 MV0 R/W 1 D3 MAUD0 R/W 1 D2 MSTC0 R/W 1 D1 MCIT0 R/W 1 D0 MQIT0 R/W 1 MAUD0: Mask enable for AUDN bit 0: Mask disable 1: Mask enable (default) MV0: Mask enable for V bit 0: Mask disable 1: Mask enable (default) MAUT0: Mask enable for AUTO bit 0: Mask disable 1: Mask enable (default) MPAR0: Mask enable for PAR bit 0: Mask disable (default) 1: Mask enable MULK0: Mask enable for UNLCK bit 0: Mask disable (default) 1: Mask enable Registers which the corresponding mask bit is set to “0” affects INT0 and INT2 pins operation. MS1076-E-01 2010/05 - 40 - [AK4122A] Addr Register Name 05H INT1 Mask R/W Default D7 MULK1 R/W 1 MQIT1: Mask enable for QINT bit 0: Mask disable 1: Mask enable (default) MCIT1: Mask enable for CINT bit 0: Mask disable 1: Mask enable (default) MSTC1: Mask enable for STC bit 0: Mask disable 1: Mask enable (default) D6 MPAR1 R/W 1 D5 MAUT1 R/W 0 D4 MV1 R/W 0 D3 MAUD1 R/W 0 D2 MSTC1 R/W 1 D1 MCIT1 R/W 1 D0 MQIT1 R/W 1 MAUD1: Mask enable for AUDN bit 0: Mask disable (default) 1: Mask enable MV1: Mask enable for V bit 0: Mask disable (default) 1: Mask enable MAUT1: Mask enable for AUTO bit 0: Mask disable (default) 1: Mask enable MPAR1: Mask enable for PAR bit 0: Mask disable 1: Mask enable (default) MULK1: Mask enable for UNLCK bit 0: Mask disable 1: Mask enable (default) Registers which the corresponding mask bit is set to “0” affects the INT1 pin operation. MS1076-E-01 2010/05 - 41 - [AK4122A] Addr Register Name 06H DAT Mask & DTS Detect R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 DTS16 R/W 1 D2 DTS14 R/W 1 D1 MDAT1 R/W 1 D0 MDAT0 R/W 1 MDAT0: Mask enable for DAT bit 0: Mask disable 1: Mask enable (default) If this mask bit is set to “0”, DAT bit affects INT0 and INT2 pins operation. MDAT1: Mask enable for DAT bit 0: Mask disable 1: Mask enable (default) If this mask bit is set to “0”, DAT bit affects the INT1 pin operation. DTS14: DTS-CD 14bit Sync Word Detect 0: No detect 1: Detect (default) DTS16: DST-CD 16bit Sync Word Detect 0: No detect 1: Detect (default) MS1076-E-01 2010/05 - 42 - [AK4122A] Addr Register Name 07H Receiver Status 0 R/W Default D7 UNLCK RD 0 D6 PAR RD 0 D5 AUTO RD 0 D4 V RD 0 D3 AUDN RD 0 D2 STC RD 0 D1 CINT RD 0 D0 QINT RD 0 QINT: Q-subcode Buffer Interrupt 0: No change 1: Changed This bit goes to “1” when Q-subcode stored in register addresses 13H to 1CH is updated. CINT: Channel Status Buffer Interrupt 0: No change 1: Changed This bit goes to “1” when C-bit stored in register addresses 0AH to 0EH changes. STC: Sampling Frequency or Pre-emphasis Information Change Detection 0: No detect 1: Detect This bit goes to “1” when either the FS3-0 or PEM bit changes. AUDN: V: Validity Bit 0: Valid 1: Invalid AUTO: PAR: Audio Bit Output 0: Audio 1: Non audio This bit is made by encoding channel status bits. Non-PCM or DTS-CD Bit Steam Auto Detection 0: No detect 1: Detect This bit outputs an OR’ed result of NPCM and DTSCD bits. Parity Error or Bi-phase Error Status 0: No error 1: Error This bit goes to “1” if a parity error or biphase error is detected in the sub-frame. UNLCK: PLL Lock Status 0: Lock 1: Unlock QINT, CINT and STC bits are initialized when 07H is read. MS1076-E-01 2010/05 - 43 - [AK4122A] Addr Register Name 08H Receiver Status 1 R/W Default D7 DAT RD 0 D6 DTSCD RD 0 D5 NPCM RD 0 D4 PEM RD 0 D3 FS3 RD 0 D2 FS2 RD 0 D1 FS1 RD 0 D0 FS0 RD 1 FS3-0: Sampling Frequency Detection (Table 17) PEM: NPCM: Pre-emphasis Detect (Table 18) 0: OFF 1: ON This bit is made by decoding the channel status bits. Non-PCM Bit Stream Auto Detection 0: No detect 1: Detect DTSCD: DTS-CD Bit Stream Auto Detect 0: No detect 1: Detect DAT: DAT Start ID Detect 0: No detect 1: Detect When the category code shows DAT, this bit becomes “1” if the Start ID of DAT is detected as “1”. Reading 08H register resets this bit to “0”. DAT bit is initialized when 08H is read. Addr Register Name 09H Receiver Status 2 R/W Default D7 0 RD 0 D6 0 RD 0 D5 0 RD 0 D4 0 RD 0 D3 0 RD 0 D2 0 RD 0 D1 CCRC RD 0 D0 QCRC RD 0 QCRC: Cyclic Redundancy Check for Q-subcode 0: No error 1: Error CCRC: Cyclic Redundancy Check for Channel Status 0: No error 1: Error This bit is enabled only in professional mode and only for the channel selected by the CS12 bit. MS1076-E-01 2010/05 - 44 - [AK4122A] Addr 0AH 0BH 0CH 0DH 0EH Register Name RX Channel Status Byte 0 RX Channel Status Byte 1 RX Channel Status Byte 2 RX Channel Status Byte 3 RX Channel Status Byte 4 R/W Default CR39-0: Addr 0FH 10H 11H 12H PD15-0: Addr 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH D6 CR6 CR14 CR22 CR30 CR38 D5 CR5 CR13 CR21 CR29 CR37 D4 CR4 CR12 CR20 CR28 CR36 D3 CR3 CR11 CR19 CR27 CR35 D2 CR2 CR10 CR18 CR26 CR34 D1 CR1 CR9 CR17 CR25 CR33 D0 CR0 CR8 CR16 CR24 CR32 D2 PC2 PC10 PD2 PD10 D1 PC1 PC9 PD1 PD9 D0 PC0 PC8 PD0 PD8 D2 Q4 Q12 Q20 Q28 Q36 Q44 Q52 Q60 Q68 Q76 D1 Q3 Q11 Q19 Q27 Q35 Q43 Q51 Q59 Q67 Q75 D0 Q2 Q10 Q18 Q26 Q34 Q42 Q50 Q58 Q66 Q74 RD Not initialized Receiver Channel Status Byte 4-0 All 40 bits are updated at the same time every block (192 frames) cycle. Register Name Burst Preamble Pc Byte 0 Burst Preamble Pc Byte 1 Burst Preamble Pd Byte 0 Burst Preamble Pd Byte 1 R/W Default PC15-0: D7 CR7 CR15 CR23 CR31 CR39 D7 PC7 PC15 PD7 PD15 D6 PC6 PC14 PD6 PD14 D5 PC5 PC13 PD5 PD13 D4 PC4 PC12 PD4 PD12 D3 PC3 PC11 PD3 PD11 RD Not initialized Burst Preamble Pc Byte 0 and 1 Burst Preamble Pd Byte 0 and 1 Register Name Q-subcode Address / Control Q-subcode Track Q-subcode Index Q-subcode Minute Q-subcode Second Q-subcode Frame Q-subcode Zero Q-subcode ABS Minute Q-subcode ABS Second Q-subcode ABS Frame R/W Default D7 Q9 Q17 Q25 Q33 Q41 Q49 Q57 Q65 Q73 Q81 D6 Q8 Q16 Q24 Q32 Q40 Q48 Q56 Q64 Q72 Q80 D5 Q7 Q15 Q23 Q31 Q39 Q47 Q55 Q63 Q71 Q79 D4 Q6 Q14 Q22 Q30 Q38 Q46 Q54 Q62 Q70 Q78 D3 Q5 Q13 Q21 Q29 Q37 Q45 Q53 Q61 Q69 Q77 RD Not initialized Q81-2: Q-subcode All 80 bits are updated at the same time every sync code cycle for Q-subcode. MS1076-E-01 2010/05 - 45 - [AK4122A] ■ Burst Preambles in Non-PCM Bitstreams sub-frame of IEC60958 0 3 4 preamble 7 8 Aux. 11 12 27 28 29 30 31 LSB MSB V U C P 16 bits of bitstream 0 Pa Pb Pc Pd 15 Burst_payload stuffing repetition time of the burst Figure 26. Data Structure of IEC60958 Preamble word Pa Pb Pc Pd Length of field Contents 16 bits sync word 1 16 bits sync word 2 16 bits Burst info 16 bits Length code Table 22. Burst Preamble Word MS1076-E-01 Value 0xF872 0x4E1F see Table 23 numbers of bits 2010/05 - 46 - [AK4122A] Repetition time of burst in IEC60958 frames Bits of Pc Value Contents 0-4 data type NULL data Dolby AC-3 data reserved PAUSE MPEG-1 Layer1 data MPEG-1 Layer2 or 3 data or MPEG-2 without extension MPEG-2 data with extension MPEG-2 AAC ADTS MPEG-2, Layer1 Low sample rate MPEG-2, Layer2 or 3 Low sample rate reserved DTS type I DTS type II DTS type III ATRAC ATRAC2/3 reserved reserved, shall be set to “0” error-flag indicating a valid burst_payload error-flag indicating that the burst_payload may contain errors data type dependent info bit stream number, must be set to “0” Table 23. Field of Burst Information Pc 7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-31 0 0 1 8-12 13-15 0 5, 6 MS1076-E-01 ≤ 4096 1536 384 1152 1152 1024 384 1152 512 1024 2048 512 1024 2010/05 - 47 - [AK4122A] ■ Non-PCM Bitstream Timing (1) When Non-PCM preamble does not arrive within 4096 frames PDN pin Bit stream Pa Pb Pc1 Pd1 Pa Pb Pc2 Pd2 Repetition time Pa Pb Pc3 Pd3 >4096 frames AUTO bit Pc Register “0” Pd Register “0” Pc1 Pc3 Pc2 Pd1 Pd3 Pd2 Figure 27. Timing example 1 (2) When Non-PCM bitstream stops (when MULK0 bit = “0”) INT0 hold time INT0 pin <20mS (Lock time) Bit stream Pa Pb Pc1 Pd1 Stop Pa Pb Pcn Pdn 2~3 Syncs (B,M or W) <Repetition time AUTO bit Pc Register Pd Register Pc0 Pcn Pc1 Pd0 Pd1 Pdn Figure 28. Timing example 2 MS1076-E-01 2010/05 - 48 - [AK4122A] SYSTEM DESIGN Figure 29 shows the typical system connection diagram. An evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. • PORT2, PORT3 : Slave Mode Digital Supply 3.0 ~ 3.6V uP & DSP DSP3 10μ fso 0.1μ 48 47 46 45 44 43 42 41 40 39 38 37 CCLK CSN BVSS DVDD DVSS OMCLK LRCK BICK SDTO TX INT1 INT0 1 CDTI SDTIO 36 2 CDTO BICK2 35 3 TST1 LRCK2 34 4 INT2 MCLK2 33 5 TST2 DVDD 32 Top View 6 TST3 7 M/S2 0.1μ 10μ Digital Supply 3.0 ~ 3.6V DVSS 31 SDTI 30 8 M/S3 DSP1 BICK1 29 9 SMUTE LRCK1 28 10 TST4 PDN 27 11 TST5 AVSS 26 fsi Reset RX1 TST7 RX2 TST8 RX3 TST9 RX4 TST10 TST11 2.2μ TST6 470Ω AVDD R 25 AVSS 12 FILT 2.2n DSP2 fsi 13 14 15 16 17 18 19 20 21 22 23 24 12kΩ 0.1μ 10μ Shield Analog Supply 3.0 ~ 3.6V Shield Shield Shield Shield S/PDIF sources Note: - AVSS, BVSS and DVSS of the AK4122A should be distributed separately from the ground of external digital devices (MPU, DSP etc.). - All digital input pins should not be left floating. Figure 29. Typical Connection Diagram MS1076-E-01 2010/05 - 49 - [AK4122A] 1. Grounding and Power Supply Decoupling The AK4122A requires careful attention to power supply and grounding arrangements. Alternatively if AVDD and DVDD are supplied separately, the power up sequence is not critical. AVSS, BVSS and DVSS of the AK4122A must be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4122A as possible, with the small value ceramic capacitor being the nearest. 2. PLL Loop-Filter The C1 (2.2μF) and R1 (470Ω) should be connected in series and attached between the FILT pin and AVSS in parallel with C2 (2.2nF). Noises onto the FILT pin should be avoided. AK4122A FILT R1 C2 C1 AVSS Parameter Recommended value Accuracy R1 470Ω −5% ∼ +5% C1 2.2μF −50% ∼ +50% C2 2.2nF −50% ∼ +50% Note: The accuracy includes temperature dependence. Figure 30. Loop Filter for SRC The R2 (12kΩ) should be connected in series between R pin and AVSS. Please be careful the noise onto the R pin. AK4122A R R2 AVSS Parameter Recommended value Accuracy R2 12kΩ −5% ∼ +5% Note: The accuracy includes temperature dependence. Figure 31. Loop Filter for DIR MS1076-E-01 2010/05 - 50 - [AK4122A] 3. Jitter Tolerance Figure 32 shows the jitter tolerance to ILRCK. The jitter frequency and the jitter amplitude shown in Figure 32 define the jitter quantity. When the jitter amplitude is 0.01Uipp or less, the AK4122A operate normally regardless of the jitter frequency. AK4122A Jitter Tolerance 10.00 1.00 Amplitude [UIpp] (3) (2) 0.10 0.01 (1) 0.00 1 10 100 1000 10000 Frequency [Hz] (1) Normal operation (2) There is a possibility that the distortion degrades. (It may degrade up to about −50dB.) (3) There is a possibility that the output data is lost. Note: - The jitter amplitude is for ILRCK and 1UI (Unit Interval) is one cycle of ILRCK. When FSI = 48kHz, 1UI is 1/48kHz = 20.8μs. Figure 32. Jitter Tolerance MS1076-E-01 2010/05 - 51 - [AK4122A] PACKAGE 48pin LQFP(Unit: mm) 1.70Max 9.0 ± 0.2 0.13 ± 0.13 7.0 36 25 24 48 13 7.0 37 1 9.0 ± 0.2 1.40 ± 0.05 12 0.16 ± 0.07 0.5 0.22 ± 0.08 0.10 M 0° ∼ 10° 0.10 0.5 ± 0.2 ■ Material & Lead finish Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder (Pb free) plate MS1076-E-01 2010/05 - 52 - [AK4122A] MARKING AKM AK4122AVQ XXXXXXX 1 XXXXXXXX: Date code identifier REVISION HISTORY Date (YY/MM/DD) 09/05/19 Revision 00 10/05/17 01 Reason First Edition Description Addition Page Contents 24 ■ Sequence of changing clocks Description is added in notes. MS1076-E-01 2010/05 - 53 - [AK4122A] IMPORTANT NOTICE z These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. z Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. z Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. MS1076-E-01 - 54 - 2010/05