Microsemi APT35GA90S High speed pt igbt Datasheet

APT35GA90B
APT35GA90S
900V
High Speed PT IGBT
TO
POWER MOS 8 is a high speed Punch-Through switch-mode IGBT. Low Eoff is achieved
-2
47
through leading technology silicon design and lifetime control processes. A reduced Eoff VCE(ON) tradeoff results in superior efficiency compared to other IGBT technologies. Low
gate charge and a greatly reduced ratio of Cres/Cies provide excellent noise immunity, short
delay times and simple gate drive. The intrinsic chip gate resistance and capacitance of the
APT35GA90B
poly-silicone gate structure help control di/dt during switching, resulting in low EMI, even
when switching at high frequency.
APT35GA90S
®
D3PAK
Single die IGBT
FEATURES
TYPICAL APPLICATIONS
• Fast switching with low EMI
• ZVS phase shifted and other full bridge
• Very Low Eoff for maximum efficiency
• Half bridge
• Ultra low Cres for improved noise immunity
• High power PFC boost
• Low conduction loss
• Welding
• Low gate charge
• UPS, solar, and other inverters
• Increased intrinsic gate resistance for low EMI
• High frequency, high efficiency industrial
• RoHS compliant
Absolute Maximum Ratings
Ratings
Unit
Collector Emitter Voltage
900
V
IC1
Continuous Collector Current @ TC = 25°C
63
IC2
Continuous Collector Current @ TC = 100°C
35
ICM
Pulsed Collector Current
105
VGE
Gate-Emitter Voltage
PD
Total Power Dissipation @ TC = 25°C
Vces
Parameter
1
2
SSOA
Switching Safe Operating Area @ TJ = 150°C
TJ, TSTG
Operating and Storage Junction Temperature Range
TJ
Symbol
VBR(CES)
VGE(th)
Gate Emitter Threshold Voltage
°C
300
TJ = 25°C unless otherwise specified
Collector-Emitter Breakdown Voltage
Collector-Emitter On Voltage
V
W
-55 to 150
Parameter
VCE(on)
±30
290
105A @ 900V
Lead Temperature for Soldering: 0.063" from Case for 10 Seconds
Static Characteristics
A
Test Conditions
Min
VGE = 0V, IC = 1.0mA
900
Zero Gate Voltage Collector Current
IGES
Gate-Emitter Leakage Current
Max
3.1
VGE = 15V,
TJ = 25°C
2.5
IC = 18A
TJ = 125°C
2.2
VGE =VCE , IC = 1mA
ICES
Typ
3
4.5
V
6
VCE = 900V,
TJ = 25°C
250
VGE = 0V
TJ = 125°C
1000
VGS = ±30V
Unit
μA
±100
nA
Typ
Max
Unit
Thermal and Mechanical Characteristics
Symbol
Characteristic
Min
RθJC
Junction to Case Thermal Resistance
-
-
0.43
°C/W
WT
Package Weight
-
5.9
-
g
10
in·lbf
Torque
Mounting Torque (TO-247 Package), 4-40 or M3 screw
Microsemi Website - http://www.microsemi.com
052-6332 Rev C 6 - 2009
Symbol
Dynamic Characteristics
Symbol
Parameter
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
Qg3
Total Gate Charge
Qge
Gate-Emitter Charge
Qgc
SSOA
td(on)
tr
td(off)
tf
Gate- Collector Charge
Switching Safe Operating Area
Turn-On Delay Time
APT35GA90B_S
TJ = 25°C unless otherwise specified
Test Conditions
Min
Typ
Capacitance
1934
VGE = 0V, VCE = 25V
173
f = 1MHz
28
Gate Charge
84
VGE = 15V
14
VCE= 450V
L= 100uH, VCE = 900V
Inductive Switching (25°C)
105
VCC = 600V
15
Turn-Off Delay Time
VGE = 15V
104
IC = 18A
86
Turn-On Switching Energy
RG = 10Ω4
642
Eoff6
Turn-Off Switching Energy
TJ = +25°C
382
td(on
Turn-On Delay Time
Inductive Switching (125°C)
11
tr
Current Rise Time
VCC = 600V
14
Turn-Off Delay Time
VGE = 15V
154
IC = 18A
144
Eon2
Turn-On Switching Energy
RG = 10Ω4
1044
Eoff6
Turn-Off Switching Energy
TJ = +125°C
907
tf
Current Fall Time
nC
12
Eon2
td(off)
pF
A
Current Rise Time
Current Fall Time
Unit
34
IC = 18A
TJ = 150°C, RG = 10Ω4, VGE = 15V,
Max
ns
μJ
ns
μJ
052-6332 Rev C 6 - 2009
1 Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
2 Pulse test: Pulse Width < 380μs, duty cycle < 2%.
3 See Mil-Std-750 Method 3471.
4 RG is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)
5 Eon2 is the clamped inductive turn on energy that includes a commutating diode reverse recovery current in the IGBT turn on energy loss. A combi device is used for the
clamping diode.
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1.
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
V
= 15V
13V
IC, COLLECTOR CURRENT (A)
50
TJ= 55°C
40
TJ= 25°C
TJ= 150°C
30
20
10
0
IC, COLLECTOR CURRENT (A)
10V
100
60
40
TJ= -55°C
20
TJ= 25°C
TJ= 125°C
0
0
2
4
6
8
10
12
IC = 36A
3
TJ = 25°C.
250μs PULSE TEST
<0.5 % DUTY CYCLE
IC = 18A
IC = 3A
2
1
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to-Emitter Voltage
IC, DC COLLECTOR CURRENT (A)
0.85
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE
FIGURE 7, Threshold Voltage vs Junction Temperature
J
VCE = 180V
VCE = 450V
VCE = 720V
6
4
2
0
20
5
40
60
80
GATE CHARGE (nC)
FIGURE 4, Gate charge
100
4
IC = 36A
3
IC = 18A
2
IC = 3A
1
VGE = 15V.
250μs PULSE TEST
<0.5 % DUTY CYCLE
0
50
75
100
125 150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.90
I = 18A
C
T = 25°C
8
1.10
0.95
0
4
8
12
16 20 24 28
32
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (TJ = 25°C)
10
80
1.00
6V
12
1.15
1.05
7V
14
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
8V
16
14
9V
50
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
250μs PULSE
TEST<0.5 % DUTY
CYCLE
11V
150
1
2
3
4
5
6
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics (TJ = 25°C)
80
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
200
0
100
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
15V
TJ= 125°C
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
GE
APT35GA90B_S
250
0
25
60
50
40
30
20
10
0
25
50
75
100
125
150
TC, Case Temperature (°C)
FIGURE 8, DC Collector Current vs Case Temperature
052-6332 Rev C 6 - 2009
60
Typical Performance Curves
VCE = 600V
TJ = 25°C, or 125°C
RG = 10Ω
L = 100μH
14
td(OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
15
APT35GA90B_S
200
13
12
11
160
VGE =15V,TJ=125°C
120
80
40
0
5
10
15 20 25 30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
0
5 10
15 20 25
30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
50
RG = 10Ω, L = 100μH, VCE = 600V
45
200
160
140
tr, FALL TIME (ns)
tr, RISE TIME (ns)
35
30
25
20
15
10
TJ = 25 or 125°C,VGE = 15V
120
100
80
60
20
0
V
= 600V
CE
V
= +15V
GE
R =10Ω
G
2000
TJ = 125°C
1500
1000
TJ = 25°C
500
0
5
10
15 20
25 30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
2500
EOFF, TURN OFF ENERGY LOSS (μJ)
2500
RG = 10Ω, L = 100μH, VCE = 600V
0
0
5
10 15
20 25
30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Eon2, TURN ON ENERGY LOSS (μJ)
TJ = 25°C, VGE = 15V
40
5
V
= 600V
CE
V
= +15V
GE
R = 10Ω
2250
G
2000
1750
TJ = 125°C
1500
1250
1000
750
500
TJ = 25°C
250
0
0
0
5
10 15 20
25
30 35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 14, Turn-Off Energy Loss vs Collector Current
0
5
10 15 20 25
30
35 40
ICE, COLLECTOR-TO-EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
3000
V
= 600V
CE
V
= +15V
GE
T = 125°C
3000
J
Eon2,36A
2500
Eoff,36A
2000
1500
Eon2,18A
1000
Eoff,18A
500
Eon2,9A
Eoff,9A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs Gate Resistance
SWITCHING ENERGY LOSSES (μJ)
3500
SWITCHING ENERGY LOSSES (μJ)
TJ = 125°C, VGE = 15V
180
40
052-6332 Rev C 6 - 2009
VCE = 600V
RG = 10Ω
L = 100μH
0
10
0
VGE =15V,TJ=25°C
V
= 600V
CE
V
= +15V
GE
R = 10Ω
2500
G
Eon2,36A
2000
Eoff,36A
1500
Eon2,18A
1000
Eoff,18A
Eon2,9A
500
Eoff,9A
0
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
Typical Performance Curves
APT35GA90B_S
10,000
200
100
1,000
100
Coes
Cres
10
1
0
200
400
600
800
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
FIGURE 17, Capacitance vs Collector-To-Emitter Voltage
IC, COLLECTOR CURRENT (A)
C, CAPACITANCE (pF)
Cies
10
1
0.1
1
10
100
1000
VCE, COLLECTOR-TO-EMITTER VOLTAGE
FIGURE 18, Minimum Switching Safe Operating Area
0.45
D = 0.9
0.40
0.35
0.7
0.30
0.25
0.5
Note:
0.20
0.15
PDM
0.3
t2
0.10
t
0.1
0.05
0
t1
0.05
SINGLE PULSE
10-2
10-3
0.1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10-5
10-4
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
1
052-6332 Rev C 6 - 2009
ZθJC, THERMAL IMPEDANCE (°C/W)
0.50
APT35GA90B_S
10%
Gate Voltage
TJ = 125°C
td(on)
90%
APT30DQ120
tr
IC
V CC
V CE
5%
Collector Current
5%
10%
Collector Voltage
Switching Energy
A
D.U.T.
Figure 20, Inductive Switching Test Circuit
Figure 21, Turn-on Switching Waveforms and Definitions
TJ = 125°C
90%
td(off)
Gate Voltage
Collector Voltage
tf
10%
0
Collector Current
Switching Energy
Figure 22, Turn-off Switching Waveforms and Definitions
D3PAK Package Outline
TO-247 (B) Package Outline
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
5.38 (.212)
6.20 (.244)
Collector
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
(Heat Sink)
e3 100% Sn Plated
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
052-6332 Rev C 6 - 2009
13.41 (.528)
13.51(.532)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Drain)
and Leads
are Plated
Emitter
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages