CEP84A4/CEB84A4 N-Channel Enhancement Mode Field Effect Transistor FEATURES 40V, 90A, RDS(ON) = 5.1mΩ @VGS = 10V. RDS(ON) = 7.8mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous@ TC = 25 C ID @ TC = 100 C Drain Current-Pulsed a IDM Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range 40 Units V ±20 V 90 A 62 A 360 A 71 W 0.47 W/ C TJ,Tstg -55 to 175 C Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 2.1 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 1. 2010.Oct. http://www.cetsemi.com Details are subject to change without notice . 1 CEP84A4/CEB84A4 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 40 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 40V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 80 nA IGSSR VGS = -20V, VDS = 0V -80 nA Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) RDS(on) VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 30A 1 3.9 5.1 mΩ VGS = 4.5V, ID = 20A 5.6 7.8 mΩ Dynamic Characteristics c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz 3070 pF 385 pF 285 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 15V, ID = 1A, VGS = 10V, RGEN = 6Ω 19 38 ns 10 20 ns 84 168 ns 44 81 nC Turn-Off Fall Time tf 22 Total Gate Charge Qg 67 Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 16A, VGS = 10V ns 10 nC 12 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 20A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 90 A 1.5 V CEP84A4/CEB84A4 150 VGS=10,9,8,7V 50 ID, Drain Current (A) ID, Drain Current (A) 60 40 30 20 VGS=3V 10 0 0 1 2 3 4 5 6 1 2 3 4 5 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 3000 2000 1000 Coss Crss 0 5 10 15 20 25 2.2 1.9 ID=30A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 0 -55 C VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 25 C 30 VDS, Drain-to-Source Voltage (V) 4000 1.2 60 TJ=125 C 5000 1.3 90 0 6000 0 120 -25 0 25 50 75 100 125 VGS=0V 10 2 10 1 10 0 0.4 150 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 10 VDS=15V ID=16A 8 6 4 2 0 0 3 RDS(ON)Limit ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP84A4/CEB84A4 15 30 45 60 10 1ms 10 10 75 100ms 2 10ms 1 DC TC=25 C TJ=150 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 0.02 0.01 Single Pulse 10 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -5 t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2