ATMEL AT91SAM9R64 At91 arm thumb microcontroller Datasheet

Features
• Incorporates the ARM926EJ-S™ ARM® Thumb® Processor
•
•
•
•
•
•
•
•
•
•
•
– DSP Instruction Extensions
– ARM Jazelle® Technology for Java® Acceleration
– 4 Kbyte Data Cache, 4 Kbyte Instruction Cache, Write Buffer
– 265 MIPS at 240 MHz
– Memory Management Unit
– EmbeddedICE™ In-circuit Emulation, Debug Communication Channel Support
Multi-layer AHB Bus Matrix for Large Bandwidth Transfers
– Six 32-bit-layer Matrix
– Boot Mode Select Option, Remap Command
One 32-KByte internal ROM, Single-cycle Access at Maximum Speed
One 64-KByte internal SRAM, Single-cycle Access at Maximum Speed
– 4 Blocks of 16 Kbytes Configurable in TCM or General-purpose SRAM on the AHB
Bus Matrix
– Single-cycle Accessible on AHB Bus at Bus Speed
– Single-cycle Accessible on TCM Interface at Processor Speed
2-channel DMA
– Memory to Memory Transfer
– 16 Bytes FIFO
– LInked List
External Bus Interface (EBI)
– EBI Supports SDRAM, Static Memory, ECC-enabled NAND Flash and
CompactFlash®
LCD Controller (for AT91SAM9RL64 only)
– Supports Passive or Active Displays
– Up to 24 Bits per Pixel in TFT Mode, Up to 16 bits per Pixel in STN Color Mode
– Up to 16M Colors in TFT Mode, Resolution Up to 2048x2048, Virtual Screen
Support
High Speed (480 Mbit/s) USB 2.0 Device Controller
– On-Chip High Speed Transceiver, UTMI+ Physical Interface
– Integrated FIFOs and Dedicated DMA
– 4 Kbyte Configurable Integrated DPRAM
Fully-featured System Controller, including
– Reset Controller, Shutdown Controller
– Four 32-bit Battery Backup Registers for a Total of 16 Bytes
– Clock Generator and Power Management Controller
– Advanced Interrupt Controller and Debug Unit
– Periodic Interval Timer, Watchdog Timer and Real-time Timer and Real-time Clock
Reset Controller (RSTC)
– Based on Two Power-on Reset Cells
– Reset Source Identification and Reset Output Control
Shutdown Controller (SHDC)
– Programmable Shutdown Pin Control and Wake-up Circuitry
Clock Generator (CKGR)
– Selectable 32768 Hz Low-power Oscillator or Internal Low-power RC Oscillator on
Battery Backup Power Supply, Providing a Permanent Slow Clock
– 12 MHz On-chip Oscillator for Main System Clock and USB Clock
– One PLL up to 240 MHz
AT91 ARM
Thumb
Microcontrollers
AT91SAM9R64
AT91SAM9RL64
Preliminary
6289C–ATARM–28-May-09
– One PLL 480 MHz Optimized for USB HS
• Power Management Controller (PMC)
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
2
– Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
– Two Programmable External Clock Signals
Advanced Interrupt Controller (AIC)
– Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
– One External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected
Debug Unit (DBGU)
– 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access Prevention
– Mode for General Purpose 2-wire UART Serial Communication
Periodic Interval Timer (PIT)
– 20-bit Interval Timer plus 12-bit Interval Counter
Watchdog Timer (WDT)
– Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock
Real-time Timer (RTT)
– 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler
Real-time Clock (RTC)
– Time, Date and Alarm 32-bit Parallel Load
– Low Power Consumption
– Programmable Periodic Interrupt
One 6-channel 10-Bit Analog-to-Digital Converter
– Touch Screen Interface Compatible with Industry Standard 4-wire Sensitive Touch Panels
Four 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC and PIOD)
– 118 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os for 217-ball BGA Package
– Input Change Interrupt Capability on Each I/O Line
– Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
22-channel Peripheral DMA Controller (PDC)
One MultiMedia Card Interface (MCI)
– SDCard/SDIO 1.0 and MultiMediaCard™ 4.3 Compliant
– Automatic Protocol Control and Fast Automatic Data Transfers with PDC
Two Synchronous Serial Controllers (SSC)
– Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
– I²S Analog Interface Support, Time Division Multiplex Support
– High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
One AC97 Controller (AC97C)
– 6-channel Single AC97 Analog Front End Interface, Slot Assigner
Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)
– Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
– Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
One Master/Slave Serial Peripheral Interface (SPI)
– 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
– High-speed Synchronous Communications
One Three-channel 16-bit Timer/Counter (TC)
– Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
– Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
One Four-channel 16-bit PWM Controller (PWMC)
Two Two-wire Interfaces (TWI)
– Compatible with Standard Two-wire Serial Memories
– One, Two or Three Bytes for Slave Address
– Sequential Read/Write Operations
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
–
–
–
–
•
•
•
•
Master, Multi-master and Slave Mode Operation
Bit Rate: Up to 400 Kbits
General Call Supported in Slave Mode
Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers in Master Mode Only
(TWI0 only)
SAM-BA® Boot Assistant
– Default Boot Program
– Interface with SAM-BA Graphic User Interface
IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
Required Power Supplies:
– 1.08 to 1.32V for VDDCORE, VDDUTMIC, VDDPLLB and VDDBU
– 3.0V to 3.6V for VDDPLLA, VDDANA, VDDUTMII and VDDIOP
– Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM
Available in a 144-ball BGA (AT91SAM9R64) and a 217-ball LFBGA (AT91SAM9RL64) Package
1. Description
The AT91SAM9R64/RL64 device is based on the integration of an ARM926EJ-S processor with
a large fast SRAM and a wide range of peripherals.
The AT91SAM9R64/RL64 embeds one USB Device High Speed Controller, one LCD Controller
(for AT91SAM9RL64 only), one AC97 controller, a 2-channel DMA Controller, four USARTs, two
SSCs, one SPI, two TWIs, three Timer Counter channels, a 4-channel PWM generator, one Multimedia Card interface and a 6-channel Analog-to-digital converter that also provides resistive
touch screen management.
The AT91SAM9R64/RL64 is architectured on a 6-layer bus matrix. It also features an External
Bus Interface capable of interfacing with a wide range of memory and peripheral devices.
Some features are not available for AT91SAM9R64 in the 144-ball BGA package.
Separate block diagrams and PIO multiplexing are provided in this document. Table 1-1 lists the
features and signals of AT91SAM9RL64 that are not available or partially available for
AT91SAM9R64. When the signal is multiplexed on a PIO, the PIO line is specified.
Table 1-1.
Feature
Unavailable or Partially Available Features and Signals in AT91SAM9R64
Full/Partial
Signal
Peripheral A
Peripheral B
AC97
Full
AC97FS
AC97CK
AC97TX
AC97RX
PD1
PD2
PD3
PD4
-
EBI
Partial
D16-D31
NCS2
NCS5/CFCS1
PB16-PB31
PD0
PD13
-
Full
LCDMOD
LCDCC
LCDVSYNC
LCDHSYNC
LCDDOTCK
LCDDEN
LCDD0-LCDD23
PC2
PC3
PC4
PC5
PC6
PC7
PC8-PC31
-
LCDC
3
6289C–ATARM–28-May-09
Table 1-1.
Feature
Full/Partial
Signal
Peripheral A
Peripheral B
PWM
Partial
PWM2
PD5 and PD12
-
SPI
Partial
NPCS2
NPCS3
PD8
SSC1
Full
RF1
RK1
TD1
RD1
TK1
TF1
-
PA8
PA9
PA13
PA14
PA29
PA30
Touchscreen
ADC
Partial
AD3YM
GPAD4
GPAD5
PA20
PD6
PD7
-
TC
Partial
TIOA1
TIOB1
TCLK1
TIOA2
TIOB2
-
PC29
PC30
PC31
PD10
PD11
TWI
Full
TWD1
TWCK1
PD10
PD11
-
USART0
Partial
SCK0
RTS0
CTS0
DSR0
DTR0
DCD0
RI0
PA8
PA9
PA10
PD14
PD15
PD16
PD17
-
USART1
Partial
SCK1
-
PD2
USART2
Partial
SCK2
RTS2
CTS2
PD9
PA29
PA30
-
Partial
SCK3
RTS3
CTS3
-
PA20
PD3
PD4
USART3
4
Unavailable or Partially Available Features and Signals in AT91SAM9R64
PD9 and PD13
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
6289C–ATARM–28-May-09
12 MHz
OSC
XIN
XOUT
POR
VDDBU
NRST
MCI
PDC
TWI0
PDC
ROM
32K Bytes
USART0
USART1
USART2
USART3
PDC
D
G
S
SPI
PDC
APB
PWM
Peripheral
Bridge
TC0
TC1
TC2
SSC0
PDC
EF NA AN
VR DA ND
AD VD G
S
T
G 0 1 2
TR AD AD AD
D
A
TS
3-channel 10-bit ADC
PDC
2-channel
DMA
0 0 0 0 0 K0
TK TF TD RD RF R
Peripheral
DMA
Controller
5-layer AHB Bus Matrix
DMA
USB
Device
HS
HS UTMI
Transceiver
BM
1 S1
3 3
0 1 3
0 2 A0 B0
S1 CK SI ISO
M M M
TS RT XD XD
LK LK O O
W
PC P O
R T
C TC TI TI
PW PW P
N S M M
0- D0T
S0
XD TX
R
PC
N
C
I
ICache
DCache
4 Kbytes 4 Kbytes
SRAM
64K Bytes
TCM
Interface
ITCM DTCM
ARM926EJ-S Processor
In-Circuit Emulator
JTAG Selection and Boundary Scan
TD
T I
D
O
TM
S
T
C
RTK
CK
NT
RS
T
J
T
AG
SE
L
A3 A K D0 K0
-D CD C W
C
T
TW
0
DA
PIOB
PIOD
PIOA
RSTC
RTC
RTT
4
GPBREG
PIT
PMC
PDC
DBGU
AIC
PIOC
POR
SHDC
SHDN
WKUP
VDDCORE
32 kHz
OSC
XIN32
XOUT32
RC
WDT
UPLL
PLLA
PLLRCA
PCK0-PCK1
DRXD
DTXD
IRQ
FIQ
System Controller
SLAVE
Static
Memory
Controller
SDRAM
Controller
CompactFlash
NAND Flash
& ECC
EBI
NANDOE, NANDWE
CFCE1-CFCE2
NCS3/NANDCS
NCS4/CFCS0
A25/CFRNW
A22/NANDCLE
A21/NANDALE
A23-A24, A18-A20
NWAIT
D0-D15
A0/NBS0
A1/NBS2/NWR2
A2-A15
A16/BA0
A17/BA1
NCS0
NCS1/SDCS
NRD/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK, SDCKE
RAS, CAS
SDWE, SDA10
Figure 2-1.
TST
MASTER
I II IC
TM TM TM
P M DP DM
U
D DU G FSD FSD HS HS
D
V VD VB D D D D
U
D
N
AT91SAM9R64/RL64 Preliminary
2. Block Diagrams
AT91SAM9R64 Block Diagram
5
6
POR
VDDBU
NRST
PIOD
PIOC
TD
TDI
O
TM
S
T
C
RTK
CK
NT
RS
T
J
T
AG
SE
L
MCI
TWI0
PDC PDC
TWI1
I
ROM
32K Bytes
USART0
USART1
USART2
USART3
PDC
D
ICache
DCache
4 Kbytes 4 Kbytes
SRAM
64K Bytes
TCM
Interface
ITCM DTCM
ARM926EJ-S Processor
In-Circuit Emulator
JTAG Selection and Boundary Scan
BM
S
SPI
PDC
APB
PWM
TC0
TC1
TC2
Peripheral
Bridge
AC97
PDC
Peripheral
DMA
Controller
6-layer AHB Bus Matrix
DMA
USB
Device
HS
HS UTMI
Transceiver
SSC0
SSC1
PDC
Touch
Screen
Controller
6-channel 10-bit ADC
PDC
2-channel
DMA
DMA
LCDC
LC
LCDD
0
LCDV -LC
S
L D YN DD
H
C
D SY C 23
LD DO NC
T
LCDE CK
N
LCDC
C
LCDP
DMWR
O
D
3
3
2 2 2
K S X X 1 1 1 1 1 K1 G
A3 A K 0 0 D1 1 S3 S K3 D3 3 D0 I0 0 0 S3 K I O
4 5 EF A N
N A
LK A B C F R T K TF D D F R R X P X M Y P Y M D D
-D CD C WD CK W CK CT -RT SC RX TXD C R SR TR PC PC OSMIS WM
C -TIO TIO 97 C97 97 C97 0-T 0- 0-T 0-R 0-RK0- DT D0 D1 D2 D3 PA PA VR DA ND
D D -N S M
T W T TW 0- S0 0- 0- 0- D
P
T
C
T
0
0 B0
A A AC A TK TF TD RD RF R SA A A A A G G AD VD G
0
0
TS RT CK XD XD
A
M
S
S
T
C
LK IO IO
S R T
C
T
W
P
P
TC T T
N
0
DA
PIOB
RSTC
RTC
RTT
4
GPBREG
PIT
PMC
PDC
DBGU
AIC
PIOA
POR
SHDC
SHDN
WKUP
RC
WDT
UPLL
OSC
12M
PLLA
OSC
32K
VDDCORE
SLAVE
System Controller
XIN32
XOUT32
XIN
XOUT
PLLRCA
PCK0-PCK1
DRXD
DTXD
IRQ
FIQ
TST
MASTER
I II IC
TM M M
P M P M
U T T
D DU DU G SD SD SD SD
N
F F H H
G VD VD VB D D D D
Static
Memory
Controller
SDRAM
Controller
CompactFlash
NAND Flash
& ECC
EBI
NANDOE, NANDWE
CFCE1-CFCE2
NCS2
NCS3/NANDCS
NCS5/CFCS1
NCS4/CFCS0
D16-D31
A25/CFRNW
A22/NANDCLE
A21/NANDALE
A23-A24 A18-A20
NWAIT
D0-D15
A0/NBS0
A1/NBS2/NWR2
A2-A15
A16/BA0
A17/BA1
NCS0
NCS1/SDCS
NRD/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK, SDCKE
RAS, CAS
SDWE, SDA10
Figure 2-2.
AT91SAM9RL64 Block Diagram
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
3. Signal Description
Table 3-1 gives details on the signal name classified by peripheral.
Table 3-1.
Signal Description List
Signal Name
Function
Type
Active
Level
Comments
Power Supplies
VDDIOM
EBI I/O Lines Power Supply
Power
1.65V to 3.6V
VDDIOP
Peripherals I/O Lines Power Supply
Power
3.0V to 3.6V
VDDUTMII
USB UTMI+ Interface Power Supply
Power
3.0V to 3.6V
VDDUTMIC
USB UTMI+ Core Power Supply
Power
1.08V to 1.32V
GNDUTMI
USB UTMI Ground
Ground
VDDBU
Backup I/O Lines Power Supply
Power
GNDBU
Backup Ground
Ground
VDDPLLA
PLL Power Supply
Power
GNDPLLA
PLL Ground
Ground
VDDPLLB
UTMI PLL and OSC 12M Power Supply
Power
GNDPLLB
UTMI PLL and OSC 12M Ground
Ground
VDDANA
ADC Analog Power Supply
Power
GNDANA
ADC Analog Ground
Ground
VDDCORE
Core Chip Power Supply
Power
GNDCORE
Ground
Ground
GND
Ground
Ground
1.08V to 1.32V
3.0V to 3.6V
1.08 V to 1.32V
3.0V to 3.6V
1.08V to 1.32V
Clocks, Oscillators and PLLs
XIN
Main Oscillator Input
Input
XOUT
Main Oscillator Output
XIN32
Slow Clock Oscillator Input
XOUT32
Slow Clock Oscillator Output
Output
VBG
Bias Voltage Reference
Analog
PLLRCA
PLL A Filter
PCK0 - PCK1
Programmable Clock Output
Output
Input
Input
Output
Shutdown, Wakeup Logic
SHDN
Shutdown Control
WKUP
Wake-Up Input
Output
Input
Driven at 0V only.
0: The device is in backup mode.
1: The device is running (not in backup mode.)
Accept between 0V and VDDBU
ICE and JTAG
TCK
Test Clock
Input
No pull-up resistor
TDI
Test Data In
Input
No pull-up resistor
TDO
Test Data Out
TMS
Test Mode Select
Input
No pull-up resistor
JTAGSEL
JTAG Selection
Input
Pull-down resistor
Output
7
6289C–ATARM–28-May-09
Table 3-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
NTRST
Test Reset Signal
Input
Low
Pull-up resistor.
Low
Pull-up resistor
Comments
Reset/Test
NRST
Microcontroller Reset
TST
Test Mode Select
BMS
I/O
Boot Mode Select
Input
Pull-down resistor
Input
Must be connected to GND or VDDIOP.
No pullup resistor
BMS = 0 when tied to GND
BMS = 1 when tied to VDDIOP
Debug Unit - DBGU
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
Advanced Interrupt Controller - AIC
IRQ
External Interrupt Input
Input
FIQ
Fast Interrupt Input
Input
PIO Controller - PIOA - PIOB - PIOC-PIOD
PA0 - PA31
Parallel IO Controller A
I/O
Pulled-up input at reset
PB0 - PB31
Parallel IO Controller B
I/O
Pulled-up input at reset
PC0 - PC31
Parallel IO Controller C
I/O
Pulled-up input at reset
PD0 - PD21
Parallel IO Controller D
I/O
Pulled-up input at reset
External Bus Interface - EBI
D0 - D31
Data Bus
A0 - A25
Address Bus
NWAIT
External Wait Signal
Pulled-up input at reset. D16-D31 not present
on AT91SAM9R64.
I/O
Output
Input
0 at reset
Low
Static Memory Controller - SMC
NCS0 - NCS5
Chip Select Lines
Output
Low
NWR0 - NWR3
Write Signal
Output
Low
NRD
Read Signal
Output
Low
NWE
Write Enable
Output
Low
NBS0 - NBS3
Byte Mask Signal
Output
Low
NCS2, NCS5 not present on AT91SAM9R64.
CompactFlash Support
CFCE1 - CFCE2
CompactFlash Chip Enable
Output
Low
CFOE
CompactFlash Output Enable
Output
Low
CFWE
CompactFlash Write Enable
Output
Low
CFIOR
CompactFlash IO Read
Output
Low
CFIOW
CompactFlash IO Write
Output
Low
CFRNW
CompactFlash Read Not Write
Output
CFCS0 - CFCS1
CompactFlash Chip Select Lines
Output
8
Low
CFCS1 not present on AT91SAM9R64.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 3-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
Comments
NAND Flash Support
NANDCS
NAND Flash Chip Select
Output
Low
NANDOE
NAND Flash Output Enable
Output
Low
NANDWE
NAND Flash Write Enable
Output
Low
SDRAM Controller
SDCK
SDRAM Clock
Output
SDCKE
SDRAM Clock Enable
Output
High
SDCS
SDRAM Controller Chip Select
Output
Low
BA0 - BA1
Bank Select
Output
SDWE
SDRAM Write Enable
Output
Low
RAS - CAS
Row and Column Signal
Output
Low
SDA10
SDRAM Address 10 Line
Output
CK
Multimedia Card Clock
I/O
CDA
Multimedia Card Slot A Command
I/O
DA0 - DA3
Multimedia Card Slot A Data
I/O
Multimedia Card Interface MCI
Universal Synchronous Asynchronous Receiver Transmitter USARTx
SCKx
USARTx Serial Clock
I/O
TXDx
USARTx Transmit Data
I/O
RXDx
USARTx Receive Data
Input
RTSx
USARTx Request To Send
CTSx
USARTx Clear To Send
DTR0
USART0 Data Terminal Ready
DSR0
USART0 Data Set Ready
DCD0
USART0 Data Carrier Detect
RI0
USART0 Ring Indicator
SCKx not present on AT91SAM9R64.
Output
RTS0, RTS2, RTS3 not present on
AT91SAM9R64.
Input
CTS0, CTS2, CTS3 not present on
AT91SAM9R64.
I/O
Not present on AT91SAM9R64.
Input
Not present on AT91SAM9R64.
Output
Not present on AT91SAM9R64.
Input
Not present on AT91SAM9R64.
Synchronous Serial Controller - SSCx
TD0 - TD1
SSC Transmit Data
Output
TD1 not present on AT91SAM9R64.
RD0 - RD1
SSC Receive Data
Input
RD1 not present on AT91SAM9R64.
TK0 - TK1
SSC Transmit Clock
I/O
TK1 not present on AT91SAM9R64.
RK0 - RK1
SSC Receive Clock
I/O
RK1 not present on AT91SAM9R64.
TF0 - TF1
SSC Transmit Frame Sync
I/O
TF1 not present on AT91SAM9R64.
RF0 - RF1
SSC Receive Frame Sync
I/O
RF1 not present on AT91SAM9R64.
9
6289C–ATARM–28-May-09
Table 3-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
Comments
AC97 Controller - AC97C
AC97RX
AC97 Receive Signal
Input
Not present on AT91SAM9R64.
AC97TX
AC97 Transmit Signal
Output
Not present on AT91SAM9R64.
AC97FS
AC97 Frame Synchronization Signal
Output
Not present on AT91SAM9R64.
AC97CK
AC97 Clock signal
Input
Not present on AT91SAM9R64.
Timer/Counter - TC
TCLKx
TC Channel x External Clock Input
TIOAx
TC Channel x I/O Line A
Input
I/O
TIOA1, TIOA2 not present on AT91SAM9R64.
TCLK1 not present on AT91SAM9R64.
TIOBx
TC Channel x I/O Line B
I/O
TIOB1, TIOB2 not present on AT91SAM9R64.
PMWx
Pulse Width Modulation Output
Pulse Width Modulation Controller- PWMC
Output
PWM2 not present on AT91SAM9R64.
Serial Peripheral Interface - SPI
MISO
Master In Slave Out
I/O
MOSI
Master Out Slave In
I/O
SPCK
SPI Serial Clock
I/O
NPCS0
SPI Peripheral Chip Select 0
NPCS1 - NPCS3
SPI Peripheral Chip Select
I/O
Low
Output
Low
NPCS2, NPCS3 not present on AT91SAM9R64.
Two-Wire Interface - TWIx
TWDx
TWIx Two-wire Serial Data
I/O
TWD1 not present on AT91SAM9R64.
TWCKx
TWIx Two-wire Serial Clock
I/O
TWCK1 not present on AT91SAM9R64.
Touch Screen Analog-to-Digital Converter
GPAD0-GPAD5
Analog Inputs
Analog
GPAD4, GPAD5 not present on AT91SAM9R64.
AD0XP
Touch Panel Right side
Analog
Multiplexed with AD0
AD1XM
Touch Panel Left side
Analog
Multiplexed with AD1
AD2YP
Touch Panel Top side
Analog
Multiplexed with AD2
AD3YM
Touch Panel Bottom side
Analog
Multiplexed with AD3. Not present on
AT91SAM9R64.
TSADTRG
ADC Trigger
TSADVREF
ADC Reference
Input
Analog
LCD Controller - LCDC
LCDD0 - LCDD23
LCD Data Bus
Output
Not present on AT91SAM9R64.
LCDVSYNC
LCD Vertical Synchronization
Output
Not present on AT91SAM9R64.
LCDHSYNC
LCD Horizontal Synchronization
Output
Not present on AT91SAM9R64.
LCDDOTCK
LCD Dot Clock
Output
Not present on AT91SAM9R64.
LCDDEN
LCD Data Enable
Output
Not present on AT91SAM9R64.
LCDCC
LCD Contrast Control
Output
Not present on AT91SAM9R64.
LCDPWR
LCD panel Power enable control
Output
Not present on AT91SAM9R64.
LCDMOD
LCD Modulation signal
Output
Not present on AT91SAM9R64.
10
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 3-1.
Signal Description List (Continued)
Signal Name
Function
Type
Active
Level
Comments
USB High Speed Device
DFSDM
USB Device Full Speed Data -
Analog
DFSDP
USB Device Full Speed Data +
Analog
DHSDM
USB Device High Speed Data -
Analog
DHSDP
USB Device High Speed Data +
Analog
11
6289C–ATARM–28-May-09
4. Package and Pinout
The AT91SAM9R64 is available in a 144-ball BGA package. The AT91SAM9RL64 is available
in a 217-ball LFBGA package.
4.1
144-ball BGA Package Outline
Figure 4-1 shows the orientation of the 144-ball BGA package.
Figure 4-1.
144-ball BGA Pinout (Top View)
12
11
10
9
8
7
6
5
4
3
2
1
A B C D E F G H J
K L M
BALL A1
12
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
4.2
Pinout
Table 4-1.
AT91SAM9R64 Pinout for 144-ball BGA Package
Pin
Signal Name
Pin
Signal Name
Pin
Signal Name
Pin
Signal Name
A1
DFSDM
D1
PLLRCA
G1
PB[10]
K1
A[5]
A2
DHSDM
D2
VDDUTMII
G2
PB[11]
K2
A[6]
A3
XIN
D3
NWR3/NBS3/CFIOW
G3
PB[12]
K3
A[13]
A4
XOUT
D4
NWR1/NBS1/CFIOR
G4
PB[9]
K4
A[15]
A5
XIN32
D5
JTAGSEL
G5
PB[13]
K5
RAS
A6
XOUT32
D6
GNDBU
G6
GND
K6
D[3]
A7
TDO
D7
TCK
G7
GND
K7
D[6]
A8
PA[31]
D8
PA[26]
G8
GND
K8
D[13]
A9
PA[22]
D9
PA[24]
G9
GNDUTMI
K9
VDDIOM
A10
PA[16]
D10
PA[13]
G10
VDDCORE
K10
VDDIOM
A11
PA[14]
D11
PA[6]
G11
VDDIOP
K11
D[11]
A12
PA[11]
D12
PD[20]
G12
VDDIOP
K12
PB[1]
B1
DFSDP
E1
GNDPLLA
H1
PB[14]
L1
A[7]
B2
DHSDP
E2
NWR0/NWE/CFWE
H2
PB[15]
L2
A[8]
B3
NC
E3
NRD/CFOE
H3
A[0]
L3
A[11]
B4
VDDPLLB
E4
NCS0
H4
A[2]
L4
A[16]
B5
GNDPLLB
E5
NCS1/SDCS
H5
SDA10
L5
SDWE
B6
TMS
E6
PB[2]
H6
D[1]
L6
D[4]
B7
RTCK
E7
NRST
H7
GND
L7
D[7]
B8
PA[27]
E8
BMS
H8
GND
L8
D[15]
B9
PA[21]
E9
PA[25]
H9
VDDIOM
L9
PC[1]
B10
PA[12]
E10
PA[15]
H10
SDCKE
L10
PC[0]
B11
PD[21]
E11
PA[5]
H11
VDDCORE
L11
PB[0]
B12
PA[10]
E12
PA[4]
H12
VDDIOP
L12
GNDANA
C1
VDDPLLA
F1
PB[5]
J1
A[4]
M1
A[9]
C2
VBG
F2
PB[6]
J2
A[1]
M2
A[10]
C3
VDDBU
F3
PB[7]
J3
A[3]
M3
A[12]
C4
SHDN
F4
PB[8]
J4
A[14]
M4
A[17]
C5
WKUP
F5
PB[3]
J5
CAS
M5
D[0]
C6
NTRST
F6
PB[4]
J6
D[2]
M6
SDCK
C7
TDI
F7
TST
J7
D[5]
M7
D[8]
C8
PA[28]
F8
VDDUTMIC
J8
D[12]
M8
ADVREF
C9
PA[23]
F9
PA[3]
J9
D[14]
M9
VDDANA
C10
PA[7]
F10
PA[2]
J10
VDDIOM
M10
PA[17]
C11
PD[19]
F11
PA[0]
J11
D[10]
M11
PA[18]
C12
PD[18]
F12
PA[1]
J12
D[9]
M12
PA[19]
13
6289C–ATARM–28-May-09
4.3
217-ball LFBGA Package Outline
Figure 4-2 shows the orientation of the 217-ball LFBGA package.
Figure 4-2.
217-ball LFBGA Pinout (Top View)
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
A B C D E F G H J K L M N P R T U
BALL A1
14
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
4.4
Pinout
Table 4-2.
Pin
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
B16
B17
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
D1
D2
D3
D4
Note:
AT91SAM9RL64 Pinout for 217-ball LFBGA Package (1)
Signal Name
DFSDM
DHSDP
VDDPLLB
XIN
XOUT
GNDPLLB
XOUT32
GND
NRST
RTCK
PA[29]
PA[26]
PA[22]
PA[14]
PA[10]
PD[20]
PD[17]
DFSDP
DHSDM
VBG
NC
NC
XIN32
TST
GND
TMS
VDDCORE
PA[28]
PA[25]
PA[21]
PA[13]
PD[21]
PD[19]
PA[9]
VDDPLLA
VDDUTMII
GND
GNDUTMI
VDDBU
WKUP
GNDBU
TCK
TDI
PA[31]
PA[27]
PA[24]
PA[16]
PA[11]
PD[18]
PA[7]
PA[6]
PLLRCA
NWR1/NBS1/CFIOR
GND
GND
Pin
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16
D17
E1
E2
E3
E4
E14
E15
E16
E17
F1
F2
F3
F4
F14
F15
F16
F17
G1
G2
G3
G4
G14
G15
G16
G17
H1
H2
H3
H4
H8
H9
H10
H14
H15
H16
H17
J1
J2
J3
J4
J8
J9
J10
Signal Name
SHDN
JTAGSEL
NTRST
BMS
TDO
PA[30]
GND
PA[23]
PA[15]
PA[12]
PA[8]
PD[13]
PD[16]
GNDPLLA
NCS1/SDCS
NCS0
NWR3/NBS3/CFIOW
PD[15]
PD[14]
PA[5]
PA[4]
NRD/CFOE
PB[2]
NWR0/NWE/CFWE
PB[3]
PA[1]
PA[0]
PA[2]
PA[3]
GND
VDDIOM
PB[5]
PB[4]
PD[12]
PD[11]
PD[10]
PD[9]
PB[8]
PB[9]
PB[7]
PB[6]
VDDCORE
VDDIOP
PD[4]
PD[8]
PD[5]
PD[2]
PD[3]
PB[12]
PB[13]
PB[11]
PB[10]
VDDCORE
VDDIOP
PC[29]
Pin
J14
J15
J16
J17
K1
K2
K3
K4
K8
K9
K10
K14
K15
K16
K17
L1
L2
L3
L4
L14
L15
L16
L17
M1
M2
M3
M4
M14
M15
M16
M17
N1
N2
N3
N4
N14
N15
N16
N17
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
P16
Signal Name
PD[1]
PD[0]
PC[30]
PC[31]
PB[14]
PB[15]
PB[17]
PB[16]
VDDUTMIC
VDDIOP
PC[28]
PC[25]
PC[24]
PC[26]
PC[27]
PB[18]
PB[19]
PB[21]
PB[20]
PC[21]
PC[20]
PC[22]
PC[23]
PB[22]
PB[23]
PB[25]
PB[24]
PC[17]
PC[16]
PC[18]
PC[19]
PB[26]
PB[27]
PB[29]
PB[28]
PC[13]
PC[12]
PC[14]
PC[15]
PB[30]
PB[31]
A[1]
A[11]
A[15]
CAS
D[1]
SDCKE
D[5]
D[8]
D[15]
PC[0]
PB[0]
PC[8]
PC[9]
PC[10]
Pin
P17
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15
R16
R17
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
U11
U12
U13
U14
U15
U16
U17
Signal Name
PC[11]
A[0]
A[2]
A[7]
A[10]
A[14]
SDA10
D[0]
VDDIOM
D[6]
D[9]
NC
VDDIOM
PC[1]
PB[1]
PC[5]
PC[6]
PC[7]
A[3]
A[5]
A[8]
A[12]
A[16]
RAS
D[2]
D[4]
D[7]
D[10]
D[14]
VDDANA
PA[17]
PA[19]
PC[2]
PC[3]
PC[4]
A[4]
A[6]
A[9]
A[13]
A[17]
SDWE
D[3]
SDCK
D[11]
D[12]
D[13]
TSADVREF
PA[18]
PA[20]
PD[6]
PD[7]
GNDANA
1. Shaded cells define the pins powered by VDDIOM.
15
6289C–ATARM–28-May-09
5. Power Considerations
5.1
Power Supplies
The AT91SAM9R64/RL64 has several types of power supply pins:
• VDDCORE pins: Power the core, including the processor, the embedded memories and the
peripherals; voltage ranges from 1.08V and 1.32V, 1.2V nominal.
• VDDIOM pins: Power the External Bus Interface; voltage ranges between 1.65V and 1.95V
(1.8V nominal) or between 3.0V and 3.6V (3.3V nominal).
• VDDIOP pins: Power the Peripherals I/O lines; voltage ranges from 3.0V and 3.6V, 3.3V
nominal.
• VDDBU pin: Powers the Slow Clock oscillator and a part of the System Controller; voltage
ranges from 1.08V and 1.32V, 1.2V nominal.
• VDDPLLA pin: Powers the PLL cell; voltage ranges from 3.0V and 3.6V, 3.3V nominal.
• VDDPLLB pin: Powers the UTMI PLL (480MHz) and OSC 12M cells; voltage ranges from
1.08V and 1.32V, 1.2V nominal.
• VDDUTMII pin: Powers the UTMI+ interface; voltage ranges from 3.0V and 3.6V, 3.3V
nominal.
• VDDUTMIC pin: Powers the UTMI+ core; voltage ranges from 1.08V and 1.32V, 1.2V
nominal.
• VDDANA pin: Powers the ADC cell; voltage ranges from 3.0V and 3.6V, 3.3V nominal.
The power supplies VDDIOM and VDDIOP are identified in the pinout table and the PIO multiplexing tables. These supplies enable the user to power the device differently for interfacing with
memories and for interfacing with peripherals.
Ground pins GND are common to VDDCORE, VDDIOM and VDDIOP pins power supplies.
Separated ground pins are provided for VDDBU, VDDPLLA, VDDPLLB and VDDANA. These
ground pins are respectively GNDBU, GNDPLLA, GNDPLLB and GNDANA. A common ground
pin is provided for VDDUTMII and VDDUTMIC. This ground pin is GNDUTMI.
Caution: VDDCORE and VDDIO constraints at startup to be checked in the Core Power Supply
POR Characteristics in the Electical Characteristics section of the datasheet.
5.1.1
USB Power Supply Considerations
To achieve the best performances on the UDPHS, care must be taken in the power supplies
choice and especially on VDDPLLB,VDDUTMIC and VDDUTMII.
The USB High speed requires power supplies with a ripple voltage < 20 mV on VDDPLLB and
VDDUTMIC. The VDDUTMII powering the UTMI transceiver must also be filtered.
It is highly recommended to use an LDO linear regulator to generate the 1.2 volts for both
VDDPLLB and VDDUTMIC. VDDUTMII can be connected on the 3.3 volts of the system via an
LC filter.
The figure below gives an example of VDDPLLB, VDDUTMIC and VDDUTMII.
16
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 5-1.
Example of PLL and USB Power Supplies
VIN
VIN
1V2_USB
VOUT
10µF
CE
0.1µF
1K
10µF
ADJ
VSS
100K
MIC5235YM5
2.2µH
1V2_USB
VDDPLLB
0.1µF
2.2µH
1V2_USB
VDDUTMIC
0.1µF
2.2µH
3V3
VDDUTMII
0.1µF
5.2
Programmable I/O Lines Power Supplies
The power supplies pins VDDIOM support two voltage ranges. This allows the device to reach
its maximum speed either out of 1.8V or 3.3V external memories.
The maximum speed is MCK on the pin SDCK (SDRAM Clock) loaded with 30pF for power supply at 1.8V and 50 pF for power supply at 3.3V.
The maximum speed on the other signals of the External Bus Interface (control, address and
data signals) is 50 MHz.
The voltage ranges are determined by programming registers in the Chip Configuration registers
located in the Matrix User Interface.
At reset, the selected voltage defaults to 3.3V nominal and power supply pins can accept either
1.8V or 3.3V. The user must make sure to program the EBI voltage range before getting the
device out of its Slow Clock Mode.
The PIO lines are supplied through VDDIOP and the speed of the signal that can be driven on
them can reach 50 MHz with 50 pF load.
17
6289C–ATARM–28-May-09
6. I/O Line Considerations
6.1
JTAG Port Pins
TMS, TDI and TCK are schmitt trigger inputs and have no pull-up resistors.
TDO is an output, driven at up to VDDIOP, and have no pull-up resistor.
The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It
integrates a permanent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal operations.
All the JTAG signals are supplied with VDDIOP except JTAGSEL supplied by VDDBU.
6.2
Test Pin
The TST pin is used for manufacturing test purposes when asserted high. It integrates a permanent pull-down resistor of about 15 kΩ to GNDBU, so that it can be left unconnected for normal
operations. Driving this line at a high level leads to unpredictable results.
This pin is supplied with VDDBU.
6.3
Reset Pins
NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven
with voltage at up to VDDIOP.
As the product integrates power-on reset cells, which manages the processor and the JTAG
reset, the NRST and NTRST pin can be left unconnected.
The NRST and NTRST pins integrates a permanent pull-up resistor of 100 kΩ typical to
VDDIOP.
The NRST signal is inserted in the Boundary Scan.
6.4
PIO Controllers
All the I/O lines which are managed by the PIO Controllers integrate a programmable pull-up
resistor. Refer to the section “AT91SAM9R64/RL64 Electrical Characteristics” in the product
datasheet for more details.
After reset, all the I/O lines default as inputs with pull-up resistors enabled, except those which
are multiplexed with the External Bus Interface signals that require to be enabled as Peripheral
at reset. This is explicitly indicated in the column “Reset State” of the PIO Controller multiplexing
tables.
6.5
Shutdown Logic Pins
The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.
7. Processor and Architecture
7.1
18
ARM926EJ-S Processor
•
RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java
acceleration
•
Two Instruction Sets
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
ARM High-performance 32-bit Instruction Set
–
Thumb High Code Density 16-bit Instruction Set
•
DSP Instruction Extensions
•
5-Stage Pipeline Architecture:
•
•
•
•
7.2
–
–
Instruction Fetch (F)
–
Instruction Decode (D)
–
Execute (E)
–
Data Memory (M)
–
Register Write (W)
4-Kbyte Data Cache, 4-Kbyte Instruction Cache
–
Virtually-addressed 4-way Associative Cache
–
Eight words per line
–
Write-through and Write-back Operation
–
Pseudo-random or Round-robin Replacement
Write Buffer
–
Main Write Buffer with 16-word Data Buffer and 4-address Buffer
–
DCache Write-back Buffer with 8-word Entries and a Single Address Entry
–
Software Control Drain
Standard ARM v4 and v5 Memory Management Unit (MMU)
–
Access Permission for Sections
–
Access Permission for large pages and small pages can be specified separately for
each quarter of the page
–
16 embedded domains
Bus Interface Unit (BIU)
–
Arbitrates and Schedules AHB Requests
–
Separate Masters for both instruction and data access providing complete Matrix
system flexibility
–
Separate Address and Data Buses for both the 32-bit instruction interface and the
32-bit data interface
–
On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit
(Words)
Matrix Masters
The Bus Matrix of the AT91SAM9R64/RL64 product manages 6 masters, which means that
each master can perform an access concurrently with others, to an available slave.
Each master has its own decoder, which is defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.
Table 7-1.
List of Bus Matrix Masters
Master 0
DMA Controller
Master 1
USB Device High Speed DMA
Master 2
LCD Controller DMA
19
6289C–ATARM–28-May-09
Table 7-1.
7.3
List of Bus Matrix Masters
Master 3
Peripheral DMA Controller
Master 4
ARM926™ Instruction
Master 5
ARM926 Data
Matrix Slaves
The Bus Matrix of the AT91SAM9R64/RL64 product manages 6 slaves. Each slave has its own
arbiter, allowing a different arbitration per slave.
Table 7-2.
7.4
List of Bus Matrix Slaves
Slave 0
Internal ROM
Slave 1
Internal SRAM
Slave 2
LCD Controller User Interface
Slave 3
UDP High Speed RAM
Slave 4
External Bus Interface (EBI)
Slave 5
Peripheral Bridge
Master to Slave Access
All the Masters can normally access all the Slaves. However, some paths do not make sense,
for example allowing access from the USB Device High speed DMA to the Internal Peripherals.
Thus, these paths are forbidden or simply not wired, and shown as “-” in the following table.
Table 7-3.
AT91SAM9R64/RL64 Master to Slave Access
Masters
0
1
2
3
4
5
Slaves
DMA
Controller
USB HS
Device DMA
LCD
Controller
DMA
Peripheral
DMA
ARM926
Instruction
ARM926
Data
X
X
X
0
Internal ROM
X
X
1
Internal SRAM
X
X
X
X
X
X
2
LCD Controller User Interface
-
-
-
-
X
X
3
UDP High Speed RAM
-
-
-
-
X
X
4
External Bus Interface
X
X
X
X
X
X
5
Peripheral Bridge
X
X
X
-
-
-
7.5
Peripheral DMA Controller (PDC)
• Acting as one AHB Bus Matrix Master
• Allows data transfers from/to peripheral to/from any memory space without any intervention
of the processor.
• Next Pointer support, prevents strong real-time constraints on buffer management.
The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):
20
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
a. TWI0 Transmit Channel
b. DBGU Transmit Channel
c.
USART3 Transmit Channel
d. USART2 Transmit Channel
e. USART1 Transmit Channel
f.
USART0 Transmit Channel
g. AC97 Transmit Channel
h. SPI Transmit Channel
i.
SSC1 Transmit Channel
j.
SSC0 Transmit Channel
k.
TWI0 Receive Channel
l.
DBGU Receive Channel
m. ADC Receive Channel
n. USART3 Receive Channel
o.
USART2 Receive Channel
p. USART1 Receive Channel
q. USART0 Receive Channel
r.
AC97 Receive Channel
s.
SPI Receive Channel
t.
SSC1 Receive Channel
u. SSC0 Transmit Channel
v.
7.6
MCI Receive/Transmit Channel
DMA Controller
• Acting as one Matrix Master
• Embeds 2 channels
• 16 bytes/FIFO for Channel Buffering
• Linked List support with Status Write Back operation at End of Transfer
• Word, Half-word, Byte transfer support
7.7
Debug and Test Features
• ARM926 Real-time In-circuit Emulator
– Two real-time Watchpoint Units
– Two Independent Registers: Debug Control Register and Debug Status Register
– Test Access Port Accessible through JTAG Protocol
– Debug Communications Channel
• Debug Unit
– Two-pin UART
– Debug Communication Channel Interrupt Handling
– Chip ID Register
• IEEE1149.1 JTAG Boundary-scan on All Digital Pins
21
6289C–ATARM–28-May-09
8. Memories
Figure 8-1.
AT91SAM9R64/RL64 Memory Mapping
Address Memory Space
Internal Memory Mapping
0x0000 0000
0x0000 0000
Notes :
Boot Memory (1)
Internal Memories
256M Bytes
ITCM(2)
1 MBytes
(2) Software programmable
DTCM(2)
1 MBytes
SRAM(2)
1 MBytes
ROM
1 MBytes
LCD Controller
User Interface
1 MBytes
0x0020 0000
EBI
Chip Select 0
256M Bytes
0x0030 0000
0x1FFF FFFF
0x2000 0000
0x2FFF FFFF
(1) Can be SRAM, ROM depending
on BMS and the REMAP Command
0x0010 0000
0x0FFF FFFF
0x1000 0000
1 MBytes
EBI
Chip Select 1/
SDRAMC
0x0040 0000
256M Bytes
0x0050 0000
0x3000 0000
EBI
Chip Select 2
256M Bytes
0x0060 0000
UDPHS RAM
0x3FFF FFFF
0x4000 0000
1 MBytes
0x0070 0000
EBI
Chip Select 3/
NANDFlash
Undefined
(Abort)
256M Bytes
0x4FFF FFFF
0x5000 0000
0x5FFF FFFF
0x6000 0000
0x6FFF FFFF
System Controller Mapping
0x0FFF FFFF
EBI
Chip Select 4/
Compact Flash
Slot 0
256M Bytes
EBI
Chip Select 5/
Compact Flash
Slot 1
256M Bytes
0xFFFF C000
Peripheral Mapping
Reserved
0xF000 0000
Reserved
0xFFFF E600
0xFFFA 0000
0x7000 0000
TCO, TC1, TC2
16K Bytes
0xFFFA 4000
MCI
16K Bytes
TWI0
16K Bytes
TWI1
16K Bytes
USART0
16K Bytes
USART1
16K Bytes
USART2
16K Bytes
UART3
16K Bytes
SSC0
16K Bytes
SSC1
16K Bytes
PWMC
16K Bytes
SPI
16K Bytes
ADC
TouchScreen
16K Bytes
0xFFFF EF10
16K Bytes
512 Bytes
DBGU
512 Bytes
PIOA
512 Bytes
PIOB
512 Bytes
PIOC
512 bytes
PIOD
512 bytes
PMC
256 Bytes
0xFFFF FC00
0xFFFF FD00
RSTC
16 Bytes
SHDC
16 Bytes
RTTC
16 Bytes
PITC
16 Bytes
0xFFFF FD10
0xFFFF FD30
0xFFFF FD40
0xFFFD 8000
AC97
16K Bytes
0xFFFF FD50
0xFFFF FD60
0xFFFD C000
Reserved
0xFFFF FD70
WDTC
16 Bytes
SCKCR
16 Bytes
GPBR
16 Bytes
Reserved
0xFFFF FE00
0xFFFF C000
22
AIC
0xFFFF FD20
0xFFFD 4000
0xFFFF FFFF
512 Bytes
0xFFFF FA00
0xFFFC C000
256M Bytes
MATRIX
0xFFFF F800
0xFFFC 8000
Internal Peripherals
512 bytes
0xFFFF F600
0xFFFC 4000
0xEFFF FFFF
SMC
0xFFFF F400
0xFFFC 0000
0xF000 0000
512 Bytes
0xFFFF F200
0xFFFB C000
UDPHS
SDRAMC
0xFFFF F000
0xFFFB 8000
0xFFFD 0000
512 Bytes
0xFFFF EE00
0xFFFB 4000
2,048M Bytes
ECC
0xFFFF EC00
0xFFFA C000
Undefined
(Abort)
512 Bytes
0xFFFF EA00
0xFFFA 8000
0xFFFB 0000
DMAC
0xFFFF E800
SYSC
RTCC
16K Bytes
0xFFFF FFFF
0xFFFF FFFF
128 Bytes
Reserved
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
A first level of address decoding is performed by the AHB Bus Matrix, i.e., the implementation of
the Advanced High performance Bus (AHB) for its Master and Slave interfaces with additional
features.
Decoding breaks up the 4G bytes of address space into 16 banks of 256M bytes. The banks 1 to
8 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to
EBI_NCS5. The bank 0 is reserved for the addressing of the internal memories, and a second
level of decoding provides 1M byte of internal memory area. The bank 15 is reserved for the
peripherals and provides access to the Advanced Peripheral Bus (APB).
Other areas are unused and performing an access within them provides an abort to the master
requesting such an access.
8.1
Embedded Memories
• 32 KB ROM
– Single Cycle Access at full bus speed
• 64 KB Fast SRAM
– Single Cycle Access at full bus speed
– Supports ARM926EJ-S TCM interface at full processor speed
8.1.1
Internal Memory Mapping
Table 8-1 summarizes the Internal Memory Mapping for each Master, depending on the Remap
status (RCBx bit) and the BMS state at reset.
Table 8-1.
Internal Memory Mapping
RCBx(1) = 0
RCBx(1) = 1
Address
0x0000 0000
Notes:
BMS = 1
BMS =0
ROM
EBI_NCS0(2)
SRAM
1. x = 0 to maximum Master number.
2. EBI NCS0 is to be connected to a 16-bit non-volatile memory. The access configuration is
defined by the reset state of SMC Setup, SMC Pulse, SMC Cycle and SMC Mode CS0
registers.
8.1.1.1
Internal SRAM
The AT91SAM9R64/RL64 product embeds a total of 64Kbyte high-speed SRAM split in 4 blocks
of 16KBytes.
After reset and until the Remap Command is performed, the SRAM is only accessible at address
0x0030 0000.
After Remap, the SRAM also becomes available at address 0x0.
This Internal SRAM can be allocated to threes areas. Its Memory Mapping is detailed in Table 82.
• Internal SRAM A is the ARM926EJ-S Instruction TCM. The user can map this SRAM block
anywhere in the ARM926 instruction memory space using CP15 instructions and the TCR
configuration register located in the Chip Configuration User Interface. This SRAM block is
also accessible by the ARM926 Data Master and by the AHB Masters through the AHB bus
at address 0x0010 0000.
23
6289C–ATARM–28-May-09
• Internal SRAM B is the ARM926EJ-S Data TCM. The user can map this SRAM block
anywhere in the ARM926 data memory space using CP15 instructions. This SRAM block is
also accessible by the ARM926 Data Master and by the AHB Masters through the AHB bus
at address 0x0020 0000.
• Internal SRAM C is only accessible by all the AHB Masters. After reset and until the Remap
Command is performed, this SRAM block is accessible through the AHB bus at address
0x0030 0000 by all the AHB Masters. After Remap, this SRAM block also becomes
accessible through the AHB bus at address 0x0 by the ARM926 Instruction and the ARM926
Data Masters.
Within the 64Kbyte SRAM size available, the amount of memory assigned to each block is software programmable as a multiple of 16K Bytes according to Table 8-2. This Table provides the
size of the Internal SRAM C according to the size of the Internal SRAM A and the Internal SRAM
B.
Table 8-2.
Internal SRAM Block Size
Internal SRAM A (ITCM) Size
Remaining Internal SRAM C
Internal SRAM B (DTCM) size
0
16K Bytes
32K Bytes
0
64K Bytes
48K Bytes
32K Bytes
16K Bytes
48K Bytes
32K Bytes
16K Bytes
32K Bytes
32K Bytes
16K Bytes
0K Bytes
At reset, the whole memory is assigned to Internal SRAM C.
The memory blocks assigned to SRAM A, SRAM B and SRAM C areas are not contiguous and
when the user dynamically changes the Internal SRAM configuration, the new 16-Kbyte block
organization may affect the previous configuration from a software point of view.
Table 8-3 illustrates different configurations and the related 16-Kbyte blocks (RB0 to RB3)
assignments.
Table 8-3.
16-Kbyte Block Allocation example
Configuration examples and related 16-Kbyte block assignments
Decoded
Area
Address
Internal
SRAM A
(ITCM)
0x0010 0000
Internal
SRAM B
(DTCM)
0x0020 0000
Internal
SRAM C
(AHB)
Note:
24
I = 0K
D = 0K
A = 64K(1)
I = 16K
D = 0K
A = 48K
I =32K
D = 0K
A = 32K
RB1
RB1
0x0010 4000
I = 0K
D = 16K
A = 48K
I = 16K
D = 16K
A = 32K
I = 32K
D = 16K
A = 16K
RB1
RB1
RB0
I = 0K
D = 32K
A = 32K
I = 16K
D = 32K
A = 16K
I = 32K
D = 32K
A = 0K
RB1
RB1
RB0
RB3
RB3
RB3
0x0020 4000
0x0030 0000
RB3
RB3
RB3
RB2
RB2
0x0030 4000
RB2
RB2
RB2
RB1
RB0
0x0030 8000
RB1
RB0
0x0030 C000
RB0
RB2
RB0
RB3
RB3
RB3
RB2
RB2
RB2
RB1
RB0
RB0
RB0
1. Configuration after reset.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
When accessed from the AHB, the internal Fast SRAM is single cycle accessible at full matrix
speed (MCK). When accessed from the processor’s TCM Interface, they are also single cycle
accessible at full processor speed.
8.1.1.2
Internal ROM
The AT91SAM9R64/RL64 embeds an Internal ROM, which contains the SAM-BA program.
At any time, the ROM is mapped at address 0x0040 0000. It is also accessible at address 0x0
(BMS =1) after the reset and before the Remap Command.
8.1.2
Boot Strategies
The system always boots at address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed with two parameters.
REMAP allows the user to layout the internal SRAM bank to 0x0 to ease the development. This
is done by software once the system has boot. Refer to the Bus Matrix Section for more details.
When REMAP = 0 BMS allows the user to lay out to 0x0, at his convenience, the ROM or an
external memory. This is done by a hardware way at reset.
Note: All the memory blocks can always be seen at their specified base addresses that are not
concerned by these parameters.
The AT91SAM9R64/RL64 Bus Matrix manages a boot memory that depends on the level on the
pin BMS at reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is
reserved to this effect.
If BMS is detected at 1, the boot memory is the embedded ROM.
If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the
External Bus Interface.
8.1.2.1
BMS = 1, boot on embedded ROM
The system boots on Boot Program.
• Boot on on-chip RC
• Enable the 32768 Hz oscillator
• Auto baudrate detection
• Downloads and runs an application from external storage media into internal SRAM
• Downloaded code size depends on embedded SRAM size
• Automatic detection of valid application
• Bootloader on a non-volatile memory
– SDCard (boot ROM does not support high-capacity SDCards)
– NAND Flash
– SPI DataFlash® connected on NPCS0 of the SPI0
• SAM-BA Boot in case no valid program is detected in external NVM, supporting
– Serial communication on a DBGU
– USB Device HS Port
8.1.2.2
BMS = 0, boot on external memory
• Boot on on-chip RC
25
6289C–ATARM–28-May-09
• Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit
data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.
For optimization purposes, nothing else is done. To speed up the boot sequence user programmed software should perform a complete configuration:
• Enable the 32768 Hz oscillator if best accuracy needed
• Program the PMC (main oscillator enable or bypass mode)
• Program and Start the PLL
• Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them to the
new clock
• Switch the main clock to the new value
8.2
External Memories
The AT91SAM9R64/RL64 features one External Bus Interface to offer interface to a wide range
of external memories and to any parallel peripheral.
8.2.1
External Bus Interface
• Integrates three External Memory Controllers:
– Static Memory Controller
– SDRAM Controller
– SLC Nand Flash ECC Controller
• Additional logic for NAND Flash and CompactFlashTM
• Optional Full 32-bit External Data Bus
• Up to 26-bit Address Bus (up to 64MBytes linear per chip select)
• Up to 6 chips selects, Configurable Assignment:
– Static Memory Controller on NCS0
– SDRAM Controller (SDCS) or Static Memory Controller on NCS1
– Static Memory Controller on NCS2
– Static Memory Controller on NCS3, Optional NAND Flash support
– Static Memory Controller on NCS4 - NCS5, Optional CompactFlashM support
8.2.2
Static Memory Controller
• 8-, 16- or 32-bit Data Bus
• Multiple Access Modes supported
– Byte Write or Byte Select Lines
– Asynchronous read in Page Mode supported (4- up to 32-byte page size)
• Multiple device adaptability
– Control signals programmable setup, pulse and hold time for each Memory Bank
• Multiple Wait State Management
– Programmable Wait State Generation
– External Wait Request
– Programmable Data Float Time
• Slow Clock mode supported
26
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
8.2.3
SDRAM Controller
• Supported devices:
– Standard and Low Power SDRAM (Mobile SDRAM)
– 2K, 4K, 8K Row Address Memory Parts
– SDRAM with two or four Internal Banks
– SDRAM with 16- or 32-bit Data Path
• Programming facilities
– Word, half-word, byte access
– Automatic page break when Memory Boundary has been reached
– Multibank Ping-pong Access
– Timing parameters specified by software
– Automatic refresh operation, refresh rate is programmable
• Energy-saving capabilities
– Self-refresh, power down and deep power down modes supported
• Error detection
– Refresh Error Interrupt
• SDRAM Power-up Initialization by software
• SDRAM CAS Latency of 1, 2 and 3 supported
• Auto Precharge Command not used
8.2.4
NAND Flash Error Corrected Code Controller
• Tracking the accesses to a NAND Flash device by trigging on the corresponding chip select
• Single bit error correction and 2-bit Random detection.
• Automatic Hamming Code Calculation while writing
– ECC value available in a register
• Automatic Hamming Code Calculation while reading
– Error Report, including error flag, correctable error flag and word address being
detected erroneous
– Support 8- or 16-bit NAND Flash devices with 512-, 1024-, 2048- or 4096-bytes
pages
27
6289C–ATARM–28-May-09
9. System Controller
The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc.
The System Controller User Interface embeds also the registers allowing to configure the Matrix
and a set of registers configuring the EBI chip select assignment and the voltage range for external memories.
9.1
System Controller Mapping
As shown in Figure 8-1, the System Controller’s peripherals are all mapped within the highest
16K bytes of the 4 Gbyte address space, between addresses 0xFFFF C000 and 0xFFFF FFFF.
However, all the registers of System Controller are mapped on the top of the address space.
This allows addressing all the registers of the System Controller from a single pointer by using
the standard ARM instruction set, as the Load/Store instruction have an indexing mode of +/4kbytes.
28
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
9.2
Block Diagram
Figure 9-1.
System Controller Block Diagram
System Controller
VDDCORE Powered
irq0-irq2
fiq
periph_irq[2..24]
nirq
nfiq
Advanced
Interrupt
Controller
pit_irq
rtt_irq
wdt_irq
dbgu_irq
pmc_irq
rstc_irq
int
ntrst
por_ntrst
MCK
periph_nreset
Debug
Unit
dbgu_irq
dbgu_txd
dbgu_rxd
MCK
debug
periph_nreset
PCK
debug
Periodic
Interval
Timer
pit_irq
Watchdog
Timer
wdt_irq
Boundary Scan
TAP Controller
MCK
wdt_fault
WDRPROC
rtt_alarm
NRST
por_ntrst
jtag_nreset
VDDCORE
POR
proc_nreset
jtag_nreset
SLCK
debug
idle
proc_nreset
ARM926EJ-S
Reset
Controller
periph_nreset
Bus Matrix
rstc_irq
periph_nreset
proc_nreset
backup_nreset
VDDBU
VDDBU
POR
VDDBU Powered
SLCK
SLCK
backup_nreset
SLCK
backup_nreset
Real-Time
Clock
rtc_irq
Real-Time
Timer
rtt_irq
rtc_alarm
rtt_alarm
SLCK
periph_clk[22]
SHDN
WKUP
RC
OSC
XIN32
XOUT32
SLOW
CLOCK
OSC
backup_nreset
rtc_alarm
rtt_alarm
XIN
USB High Speed
Device
Port
periph_irq[22]
4 General-purpose
Backup Registers
SCKCR
periph_clk[2..24]
pck[0-1]
int
MAINCK
12MHz
MAIN OSC
PCK
Power
Management
Controller
UPLL
HSCK
PLLRCA
periph_nreset
Shutdown
Controller
SLCK
XOUT
HSCK
PLLA
MCK
pmc_irq
idle
PLLACK
periph_clk[6..24]
periph_nreset
periph_nreset
periph_nreset
periph_clk[2..4]
dbgu_rxd
PA0-PA31
PB0-PB31
PC0-PC31
PD0-PD21
PIO
Controllers
periph_irq[2..4]
irq
fiq
dbgu_txd
Embedded
Peripherals
periph_irq[6..24]
in
out
enable
29
6289C–ATARM–28-May-09
9.3
Reset Controller
The Reset Controller is based on two Power-on-Reset cells, one on VDDBU and one on
VDDCORE.
The Reset Controller is capable to return to the software the source of the last reset, either a
general reset (VDDBU rising), a wake-up reset (VDDCORE rising), a software reset, a user
reset or a watchdog reset.
The Reset Controller controls the internal resets of the system and the NRST pin output. It is
capable to shape a reset signal for the external devices, simplifying to a minimum connection of
a push-button on the NRST pin to implement a manual reset.
The configuration of the Reset Controller is saved as supplied on VDDBU.
9.4
Shutdown Controller
The Shutdown Controller is supplied on VDDBU and allows a software-controllable shut down of
the system through the pin SHDN. An input change of the WKUP pin or an alarm releases the
SHDN pin, and thus wakes up the system power supply.
9.5
Clock Generator
The Clock Generator is made up of:
• One low-power 32768 Hz Slow Clock Oscillator with bypass mode
• One low-power RC oscillator
• One 12 MHz Main Oscillator, which can be bypassed
• One 480 MHz PLL (UPLL or PLLB) providing a clock for the USB High Speed Device
Controller
• One 80 to 240 MHz programmable PLL, providing the PLL Clock (PLLCK). This PLL has an
input divider to offer a wider range of output frequencies from the 12 MHz input, the only
limitation being the lowest input frequency shall be higher or equal to 1 MHz.
30
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 9-2.
Clock Generator Block Diagram
Clock Generator
RCEN
On Chip
RC OSC
XIN32
XOUT32
Slow Clock
SLCK
Slow Clock
Oscillator
OSCSEL
OSC32EN
OSC32BYP
XIN
Main Clock
MAINCK
12M Main
Oscillator
XOUT
UPLL
(PLLB)
PLLRCA
HSCK
PLL and
Divider
Status
PLL Clock
PLLCK
Control
Power
Management
Controller
9.6
9.6.1
Slow Clock Selection
Description
The AT91SAM9R64/RL64 slow clock can be generated either by an external 32768Hz crystal or
the on-chip RC oscillator. The 32768Hz crystal oscillator can be bypassed to accept an external
slow clock on XIN32.
Configuration is located in the slow clock control register (SCKCR) located at address
0xFFFFFD50 in the backed up part of the system controller and so is preserved while VDDBU is
present.
Refer to the “Clock Generator” section for more details.
9.7
Power Management Controller
The Power Management Controller provides all the clock signals to the system. It provides:
• the Processor Clock PCK
• the Master Clock MCK, in particular to the Matrix and the memory interfaces
• the USB Device HS Clock HSCK
• independent peripheral clocks, typically at the frequency of MCK
• two programmable clock outputs: PCK0 and PCK1
This allows the software control of five flexible operating modes:
• Normal Mode, processor and peripherals running at a programmable frequency
• Idle Mode, processor stopped waiting for an interrupt
• Slow Clock Mode, processor and peripherals running at low frequency
31
6289C–ATARM–28-May-09
• Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency, processor
stopped waiting for an interrupt
• Backup Mode, Main Power Supplies off, VDDBU powered by a battery
Figure 9-3.
AT91SAM9R64/RL64 Power Management Controller Block Diagram
Processor
Clock
Controller
int
Master Clock Controller
SLCK
MAINCK
PLLCK
PCK
Idle Mode
Prescaler
/1,/2,/4,...,/64
MCK
Peripherals
Clock Controller
periph_clk[..]
ON/OFF
Programmable Clock Controller
SLCK
MAINCK
PLLCK
9.8
ON/OFF
Prescaler
/1,/2,/4,...,/64
pck[..]
Periodic Interval Timer
• Includes a 20-bit Periodic Counter, with less than 1 µs accuracy
• Includes a 12-bit Interval Overlay Counter
• Real Time OS or Linux®/WindowsCE® compliant tick generator
9.9
Watchdog Timer
• 16-bit key-protected only-once-Programmable Counter
• Windowed, prevents the processor to be in a dead-lock on the watchdog access
9.10
Real-Time Timer
• Real-Time Timer, allowing backup of time with different accuracies
– 32-bit Free-running back-up Counter
– Integrates a 16-bit programmable prescaler running on slow clock
– Alarm Register capable to generate a wake-up of the system through the Shut Down
Controller
9.11
Real-Time Clock
• Low power consumption
• Full asynchronous design
32
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• Two hundred year calendar
• Programmable Periodic Interrupt
• Alarm and update parallel load
• Control of alarm and update Time/Calendar Data In
9.12
General-Purpose Backed-up Registers
• Four 32-bit backup general-purpose registers
9.13
Advanced Interrupt Controller
• Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor
• Thirty-two individually maskable and vectored interrupt sources
– Source 0 is reserved for the Fast Interrupt Input (FIQ)
– Source 1 is reserved for system peripherals (PIT, RTT, PMC, DBGU, etc.)
– Programmable Edge-triggered or Level-sensitive Internal Sources
– Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
• One External Sources plus the Fast Interrupt signal
• 8-level Priority Controller
– Drives the Normal Interrupt of the processor
– Handles priority of the interrupt sources 1 to 31
– Higher priority interrupts can be served during service of lower priority interrupt
• Vectoring
– Optimizes Interrupt Service Routine Branch and Execution
– One 32-bit Vector Register per interrupt source
– Interrupt Vector Register reads the corresponding current Interrupt Vector
• Protect Mode
– Easy debugging by preventing automatic operations when protect modeIs are
enabled
• Fast Forcing
– Permits redirecting any normal interrupt source on the Fast Interrupt of the
processor
9.14
Debug Unit
• Composed of two functions
– Two-pin UART
– Debug Communication Channel (DCC) support
• Two-pin UART
– Implemented features are 100% compatible with the standard Atmel USART
– Independent receiver and transmitter with a common programmable Baud Rate
Generator
– Even, Odd, Mark or Space Parity Generation
– Parity, Framing and Overrun Error Detection
– Automatic Echo, Local Loopback and Remote Loopback Channel Modes
33
6289C–ATARM–28-May-09
– Support for two PDC channels with connection to receiver and transmitter
• Debug Communication Channel Support
– Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from
the ARM Processor’s ICE Interface
9.15
Chip Identification
• Chip ID: 0x019B03A0
• JTAG ID: 0x05B2003F
• ARM926 TAP ID: 0x0792603F
9.16
PIO Controllers
• 4 PIO Controllers, PIOA, PIOB, PIOC and PIOD, controlling a maximum of 118 I/O Lines
• Each PIO Controller controls up to 32 programmable I/O Lines
– PIOA has 32 I/O Lines
– PIOB has 32 I/O Lines
– PIOC has 32 I/O Lines
– PIOD has 22 I/O Lines
• Fully programmable through Set/Clear Registers
• Multiplexing of two peripheral functions per I/O Line
• For each I/O Line (whether assigned to a peripheral or used as general purpose I/O)
– Input change interrupt
– Glitch filter
– Multi-drive option enables driving in open drain
– Programmable pull up on each I/O line
– Pin data status register, supplies visibility of the level on the pin at any time
• Synchronous output, provides Set and Clear of several I/O lines in a single write
10. Peripherals
10.1
Peripheral Mapping
As shown in Figure 8-1, the Peripherals are mapped in the upper 256M bytes of the address
space between the addresses 0xFFFA 0000 and 0xFFFC FFFF.
Each User Peripheral is allocated 16K bytes of address space.
34
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
10.2
Peripheral Identifiers
The Table 10-1 defines the Peripheral Identifiers of the AT91SAM9R64/RL64. A peripheral identifier is required for the control of the peripheral interrupt with the Advanced Interrupt Controller
and for the control of the peripheral clock with the Power Management Controller.
Table 10-1.
AT91SAM9R64/RL64 Peripheral Identifiers
Peripheral ID
Peripheral Mnemonic
0
AIC
1
SYSC
System Controller Interrupt
2
PIOA
Parallel I/O Controller A,
3
PIOB
Parallel I/O Controller B
4
PIOC
Parallel I/O Controller C
5
PIOD
Parallel I/O Controller D
6
US0
USART 0
7
US1
USART 1
8
US2
USART 2
9
US3
USART 3
10
MCI
Multimedia Card Interface
11
TWI0
Two-Wire Interface 0
12
TWI1
Two-Wire Interface 1
13
SPI
14
SSC0
Synchronous Serial Controller 0
15
SSC1
Synchronous Serial Controller 1
16
TC0
Timer Counter 0
17
TC1
Timer Counter 1
18
TC2
Timer Counter 2
19
PWMC
20
TSADCC
21
DMAC
DMA Controller
22
UDPHS
USB Device High Speed
23
LCDC
LCD Controller (AT91SAM9RL64 only)
24
AC97
AC97 Controller
25-30
-
31
AIC
Note:
Peripheral Name
Advanced Interrupt Controller
External Interrupt
FIQ
Serial Peripheral Interface
Pulse Width Modulation Controller
Touch Screen ADC Controller
Reserved
Advanced Interrupt Controller
IRQ
Setting AIC, SYSIRQ, LCDC and IRQ bits in the clock set/clear registers of the PMC has no effect.
35
6289C–ATARM–28-May-09
10.3
10.3.1
Peripheral Interrupts and Clock Control
System Interrupt
The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:
• the SDRAM Controller
• the Debug Unit
• the Periodic Interval Timer
• the Real-time Timer
• the Real-time Clock
• the Watchdog Timer
• the Reset Controller
• the Power Management Controller
The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used
within the Advanced Interrupt Controller.
10.3.2
10.4
External Interrupts
All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signal IRQ, use a
dedicated Peripheral ID. However, there is no clock control associated with these peripheral IDs.
Peripherals Signals Multiplexing on I/O Lines
The AT91SAM9R64/RL64 features 4 PIO controllers, PIOA, PIOB, PIOC and PIOD, which multiplexes the I/O lines of the peripheral set.
Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral
functions, A or B. The multiplexing tables in the following paragraphs define how the I/O lines of
the peripherals A and B are multiplexed on the PIO Controllers. The two columns “Function” and
“Comments” have been inserted in this table for the user’s own comments; they may be used to
track how pins are defined in an application.
Note that some peripheral functions which are output only, might be duplicated within the both
tables.
The column “Reset State” indicates whether the PIO Line resets in I/O mode or in peripheral
mode. If I/O is mentioned, the PIO Line resets in input with the pull-up enabled, so that the
device is maintained in a static state as soon as the reset is released. As a result, the bit corresponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.
If a signal name is mentioned in the “Reset State” column, the PIO Line is assigned to this function and the corresponding bit in PIO_PSR resets high. This is the case for pins controlling
memories, in particular the address lines, which require the pin to be driven as soon as the reset
is released. Note that the pull-up resistor is also enabled in this case.
The AT91SAM9RL64 and AT91SAM9R64 do not have the same peripheral signal multiplexing,
each one follows.
36
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
10.4.1
AT91SAM9RL64 PIO Multiplexing
10.4.1.1
Table 10-2.
AT91SAM9RL64 PIO Controller A Multiplexing
AT91SAM9RL64 Multiplexing on PIO Controller A
PIO Controller A
I/O Line
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
PA0
MC_DA0
I/O
VDDIOP
PA1
MC_CDA
I/O
VDDIOP
PA2
MC_CK
I/O
VDDIOP
PA3
MC_DA1
TCLK0
I/O
VDDIOP
PA4
MC_DA2
TIOA0
I/O
VDDIOP
PA5
MC_DA3
TIOB0
I/O
VDDIOP
PA6
TXD0
I/O
VDDIOP
PA7
RXD0
I/O
VDDIOP
PA8
SCK0
RF1
I/O
VDDIOP
PA9
RTS0
RK1
I/O
VDDIOP
PA10
CTS0
RK0
I/O
VDDIOP
PA11
TXD1
I/O
VDDIOP
PA12
RXD1
I/O
VDDIOP
PA13
TXD2
TD1
I/O
VDDIOP
PA14
RXD2
RD1
I/O
VDDIOP
PA15
TD0
I/O
VDDIOP
PA16
RD0
I/O
VDDIOP
PA17
AD0
I/O
VDDANA
PA18
AD1
RTS1
I/O
VDDANA
PA19
AD2
CTS1
I/O
VDDANA
PA20
AD3
SCK3
I/O
VDDANA
PA21
DRXD
I/O
VDDIOP
PA22
DTXD
I/O
VDDIOP
PA23
TWD0
I/O
VDDIOP
PA24
TWCK0
I/O
VDDIOP
PA25
MISO
I/O
VDDIOP
PA26
MOSI
I/O
VDDIOP
PA27
SPCK
I/O
VDDIOP
PA28
NPCS0
I/O
VDDIOP
PA29
RTS2
TF1
I/O
VDDIOP
PA30
CTS2
TK1
I/O
VDDIOP
PA31
NWAIT
IRQ
I/O
VDDIOP
RF0
Function
Comments
37
6289C–ATARM–28-May-09
10.4.1.2
AT91SAM9RL64 PIO Controller B Multiplexing
Table 10-3.
AT91SAM9RL64 Multiplexing on PIO Controller B
PIO Controller B
I/O Line
38
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
PB0
TXD3
I/O
VDDIOP
PB1
RXD3
I/O
VDDIOP
PB2
A21/NANDALE
A21
VDDIOM
PB3
A22/NANDCLE
A22
VDDIOM
PB4
NANDOE
I/O
VDDIOM
PB5
NANDWE
I/O
VDDIOM
PB6
NCS3/NANDCS
I/O
VDDIOM
PB7
NCS4/CFCS0
NPCS1
I/O
VDDIOM
PB8
CFCE1
PWM0
I/O
VDDIOM
PB9
CFCE2
PWM1
I/O
VDDIOM
PB10
A25/CFRNW
FIQ
A25
VDDIOM
PB11
A18
A18
VDDIOM
PB12
A19
A19
VDDIOM
PB13
A20
A20
VDDIOM
PB14
A23
PCK0
A23
VDDIOM
PB15
A24
ADTRG
A24
VDDIOM
PB16
D16
I/O
VDDIOM
PB17
D17
I/O
VDDIOM
PB18
D18
I/O
VDDIOM
PB19
D19
I/O
VDDIOM
PB20
D20
I/O
VDDIOM
PB21
D21
I/O
VDDIOM
PB22
D22
I/O
VDDIOM
PB23
D23
I/O
VDDIOM
PB24
D24
I/O
VDDIOM
PB25
D25
I/O
VDDIOM
PB26
D26
I/O
VDDIOM
PB27
D27
I/O
VDDIOM
PB28
D28
I/O
VDDIOM
PB29
D29
I/O
VDDIOM
PB30
D30
I/O
VDDIOM
PB31
D31
I/O
VDDIOM
Function
Comments
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
10.4.1.3
Table 10-4.
AT91SAM9RL64 PIO Controller C Multiplexing
AT91SAM9RL64 Multiplexing on PIO Controller C
PIO Controller C
I/O Line
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
I/O
VDDIOP
PC0
TF0
PC1
TK0
LCDPWR
I/O
VDDIOP
PC2
LCDMOD
PWM0
I/O
VDDIOP
PC3
LCDCC
PWM1
I/O
VDDIOP
PC4
LCDVSYNC
I/O
VDDIOP
PC5
LCDHSYNC
I/O
VDDIOP
PC6
LCDDOTCK
I/O
VDDIOP
PC7
LCDDEN
I/O
VDDIOP
PC8
LCDD0
LCDD2
I/O
VDDIOP
PC9
LCDD1
LCDD3
I/O
VDDIOP
PC10
LCDD2
LCDD4
I/O
VDDIOP
PC11
LCDD3
LCDD5
I/O
VDDIOP
PC12
LCDD4
LCDD6
I/O
VDDIOP
PC13
LCDD5
LCDD7
I/O
VDDIOP
PC14
LCDD6
LCDD10
I/O
VDDIOP
PC15
LCDD7
LCDD11
I/O
VDDIOP
PC16
LCDD8
LCDD12
I/O
VDDIOP
PC17
LCDD9
LCDD13
I/O
VDDIOP
PC18
LCDD10
LCDD14
I/O
VDDIOP
PC19
LCDD11
LCDD15
I/O
VDDIOP
PC20
LCDD12
LCDD18
I/O
VDDIOP
PC21
LCDD13
LCDD19
I/O
VDDIOP
PC22
LCDD14
LCDD20
I/O
VDDIOP
PC23
LCDD15
LCDD21
I/O
VDDIOP
PC24
LCDD16
LCDD22
I/O
VDDIOP
PC25
LCDD17
LCDD23
I/O
VDDIOP
PC26
LCDD18
I/O
VDDIOP
PC27
LCDD19
I/O
VDDIOP
PC28
LCDD20
I/O
VDDIOP
PC29
LCDD21
TIOA1
I/O
VDDIOP
PC30
LCDD22
TIOB1
I/O
VDDIOP
PC31
LCDD23
TCLK1
I/O
VDDIOP
Function
Comments
39
6289C–ATARM–28-May-09
10.4.1.4
AT91SAM9RL64 PIO Controller D Multiplexing
Table 10-5.
AT91SAM9RL64 Multiplexing on PIO Controller D
PIO Controller D
I/O Line
40
Peripheral A
Peripheral B
Comments
Application Usage
Reset
State
Power
Supply
PD0
NCS2
I/O
VDDIOP
PD1
AC97_FS
I/O
VDDIOP
PD2
AC97_CK
SCK1
I/O
VDDIOP
PD3
AC97_TX
CTS3
I/O
VDDIOP
PD4
AC97_RX
RTS3
I/O
VDDIOP
PD5
DTXD
PWM2
I/O
VDDIOP
PD6
AD4
I/O
VDDANA
PD7
AD5
I/O
VDDANA
PD8
NPCS2
PWM3
I/O
VDDIOP
PD9
SCK2
NPCS3
I/O
VDDIOP
PD10
TWD1
TIOA2
I/O
VDDIOP
PD11
TWCK1
TIOB2
I/O
VDDIOP
PD12
PWM2
PCK1
I/O
VDDIOP
PD13
NCS5/CFCS1
NPCS3
I/O
VDDIOP
PD14
DSR0
PWM0
I/O
VDDIOP
PD15
DTR0
PWM1
I/O
VDDIOP
PD16
DCD0
PWM2
I/O
VDDIOP
PD17
RI0
I/O
VDDIOP
PD18
PWM3
I/O
VDDIOP
PD19
PCK0
I/O
VDDIOP
PD20
PCK1
I/O
VDDIOP
PD21
TCLK2
I/O
VDDIOP
Function
Comments
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
10.4.2
Note:
AT91SAM9R64 PIO Multiplexing
In Table 10-6, Table 10-7, Table 10-8 and Table 10-9, shaded cells indicate I/O lines that are NOT available on the
AT91SAM9R64.
10.4.2.1
Table 10-6.
AT91SAM9R64 PIO Controller A Multiplexing
AT91SAM9R64 Multiplexing on PIO Controller A
PIO Controller A
I/O Line
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
PA0
MC_DA0
I/O
VDDIOP
PA1
MC_CDA
I/O
VDDIOP
Function
Comments
PA2
MC_CK
I/O
VDDIOP
PA3
MC_DA1
TCLK0
I/O
VDDIOP
PA4
MC_DA2
TIOA0
I/O
VDDIOP
PA5
MC_DA3
TIOB0
I/O
VDDIOP
PA6
TXD0
I/O
VDDIOP
PA7
RXD0
I/O
VDDIOP
PA8
NA
NA
Reserved
PA9
NA
NA
Reserved
PA10
CTS0
RK0
I/O
VDDIOP
PA11
TXD1
I/O
VDDIOP
PA12
RXD1
I/O
VDDIOP
PA13
TXD2
I/O
VDDIOP
PA14
RXD2
I/O
VDDIOP
PA15
TD0
I/O
VDDIOP
PA16
RD0
I/O
VDDIOP
PA17
AD0
I/O
VDDIOP
PA18
AD1
RTS1
I/O
VDDIOP
PA19
AD2
CTS1
I/O
VDDIOP
PA20
NA
NA
PA21
DRXD
I/O
VDDIOP
PA22
DTXD
I/O
VDDIOP
RF0
Reserved
PA23
TWD0
I/O
VDDIOP
PA24
TWCK0
I/O
VDDIOP
PA25
MISO
I/O
VDDIOP
PA26
MOSI
I/O
VDDIOP
PA27
SPCK
I/O
VDDIOP
PA28
NPCS0
I/O
VDDIOP
PA29
NA
NA
PA30
NA
NA
PA31
NWAIT
IRQ
Reserved
Reserved
I/O
VDDIOP
41
6289C–ATARM–28-May-09
10.4.2.2
AT91SAM9R64 PIO Controller B Multiplexing
Table 10-7.
AT91SAM9R64 Multiplexing on PIO Controller B
PIO Controller B
I/O Line
42
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
PB0
TXD3
I/O
VDDIOP
PB1
RXD3
I/O
VDDIOP
PB2
A21/NANDALE
A21
VDDIOM
PB3
A22/NANDCLE
A22
VDDIOM
PB4
NANDOE
I/O
VDDIOM
PB5
NANDWE
I/O
VDDIOM
PB6
NCS3/NANDCS
I/O
VDDIOM
PB7
NCS4/CFCS0
NPCS1
I/O
VDDIOM
PB8
CFCE1
PWM0
I/O
VDDIOM
PB9
CFCE2
PWM1
I/O
VDDIOM
PB10
A25/CFRNW
FIQ
A25
VDDIOM
PB11
A18
A18
VDDIOM
PB12
A19
A19
VDDIOM
PB13
A20
A20
VDDIOM
PB14
A23
PCK0
A23
VDDIOM
PB15
A24
ADTRG
A24
VDDIOM
PB16PB31
NA
NA
Function
Comments
Reserved
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
10.4.2.3
Table 10-8.
AT91SAM9R64 PIO Controller C Multiplexing
AT91SAM9R64 Multiplexing on PIO Controller C
PIO Controller C
I/O Line
Peripheral A
Application Usage
Peripheral B
Reset
State
Power
Supply
PC0
TF0
I/O
VDDIOP
PC1
TK0
I/O
VDDIOP
PC2PC31
NA
10.4.2.4
Table 10-9.
Function
NA
Comments
Reserved
AT91SAM9R64 PIO Controller D Multiplexing
AT91SAM9R64 Multiplexing on PIO Controller D
PIO Controller D
Application Usage
Comments
Reset
State
Power
Supply
I/O Line
Peripheral A
Peripheral B
PD0PD17
NA
NA
PD18
PWM3
I/O
VDDIOP
PD19
PCK0
I/O
VDDIOP
PD20
PCK1
I/O
VDDIOP
PD21
TCLK2
I/O
VDDIOP
Function
Comments
Reserved
43
6289C–ATARM–28-May-09
11. Embedded Peripherals Overview
11.1
Serial Peripheral Interface (SPI)
• Supports communication with serial external devices
– Four chip selects with external decoder support allow communication with up to 15
peripherals
– Serial memories, such as DataFlash and 3-wire EEPROMs
– Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and
Sensors
– External co-processors
• Master or slave serial peripheral bus interface
– 8- to 16-bit programmable data length per chip select
– Programmable phase and polarity per chip select
– Programmable transfer delays between consecutive transfers and between clock
and data per chip select
– Programmable delay between consecutive transfers
– Selectable mode fault detection
• Very fast transfers supported
– Transfers with baud rates up to MCK
– The chip select line may be left active to speed up transfers on the same device
11.2
Two-wire Interface (TWI)
• Compatibility with standard two-wire serial memory
• One, two or three bytes for slave address
• Sequential read/write operations
• Supports either master or slave modes
• Compatible with Standard Two-wire Serial Memories
• Master, Multi-master and Slave Mode Operation
• Bit Rate: Up to 400 Kbits
• General Call Supported in Slave mode
• Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data
Transfers in Master Mode Only
– One Channel for the Receiver, One Channel for the Transmitter
– Next Buffer Support
11.3
USART
• Programmable Baud Rate Generator
• 5- to 9-bit full-duplex synchronous or asynchronous serial communications
– 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
– Parity generation and error detection
– Framing error detection, overrun error detection
– MSB- or LSB-first
44
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– Optional break generation and detection
– By 8 or by-16 over-sampling receiver frequency
– Hardware handshaking RTS-CTS
– Receiver time-out and transmitter timeguard
– Optional Multi-drop Mode with address generation and detection
– Optional Manchester Encoding
• RS485 with driver control signal
• ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
– NACK handling, error counter with repetition and iteration limit
• IrDA modulation and demodulation
– Communication at up to 115.2 Kbps
• Test Modes
– Remote Loopback, Local Loopback, Automatic Echo
11.4
Serial Synchronous Controller (SSC)
• Provides serial synchronous communication links used in audio and telecom applications
(with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
• Contains an independent receiver and transmitter and a common clock divider
• Offers a configurable frame sync and data length
• Receiver and transmitter can be programmed to start automatically or on detection of
different event on the frame sync signal
• Receiver and transmitter include a data signal, a clock signal and a frame synchronization
signal
11.5
AC97 Controller
• Compatible with AC97 Component Specification V2.2
• Capable to Interface with a Single Analog Front end
• Three independent RX Channels and three independent TX Channels
– One RX and one TX channel dedicated to the AC97 Analog Front end control
– One RX and one TX channel for data transfers, associated with a PDC
– One RX and one TX channel for data transfers with no PDC
• Time Slot Assigner allowing to assign up to 12 time slots to a channel
• Channels support mono or stereo up to 20 bit sample length
– Variable sampling rate AC97 Codec Interface (48KHz and below)
11.6
Timer Counter (TC)
• Three 16-bit Timer Counter Channels
• Wide range of functions including:
– Frequency Measurement
– Event Counting
– Interval Measurement
– Pulse Generation
45
6289C–ATARM–28-May-09
– Delay Timing
– Pulse Width Modulation
– Up/down Capabilities
• Each channel is user-configurable and contains:
– Three external clock inputs
– Five internal clock inputs
– Two multi-purpose input/output signals
• Two global registers that act on all three TC Channels
11.7
Pulse Width Modulation Controller (PWM)
• 4 channels, one 16-bit counter per channel
• Common clock generator, providing Thirteen Different Clocks
– A Modulo n counter providing eleven clocks
– Two independent Linear Dividers working on modulo n counter outputs
• Independent channel programming
– Independent Enable Disable Commands
– Independent Clock Selection
– Independent Period and Duty Cycle, with Double Bufferization
– Programmable selection of the output waveform polarity
– Programmable center or left aligned output waveform
11.8
Multimedia Card Interface (MCI)
• Compatibility with MultiMedia Card Specification Version 3.31
• Compatibility with SD Memory Card Specification Version 1.0
• Compatibility with SDIO Specification Version V1.1
• Cards clock rate up to Master Clock divided by 2
• Embedded power management to slow down clock rate when not used
• MCI has one slot supporting
– One MultiMediaCard bus (up to 30 cards) or
– One SD Memory Card
– One SDIO Card
• Support for stream, block and multi-block data read and write
11.9
USB High Speed Device Port (UDPHS)
• USB V2.0 high-speed compliant, 480 MBits per second
• Embedded USB V2.0 UTMI+ high-speed transceiver
• Embedded 4K-byte dual-port RAM for endpoints
• Embedded 6 channels DMA controller
• Suspend/Resume logic
• Up to 3 banks for isochronous and bulk endpoints
• Seven endpoints:
46
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– Endpoint 0: 64 bytes, 1 bank mode
– Endpoint 1 & 2: 1024 bytes, 2 banks mode, HS isochronous capable, DMA
– Endpoint 3 & 4: 1024bytes, 3 banks mode, DMA
– Endpoint 5 & 6: 1024 bytes, 3 banks mode, HS isochronous capable, DMA
11.10 LCD Controller (LCDC)
• Single and Dual scan color and monochrome passive STN LCD panels supported
• Single scan active TFT LCD panels supported.
• 4-bit single scan, 8-bit single or dual scan, 16-bit dual scan STN interfaces supported
• Up to 24-bit single scan TFT interfaces supported
• Up to 16 gray levels for mono STN and up to 4096 colors for color STN displays
• 1, 2 bits per pixel (palletized), 4 bits per pixel (non-palletized) for mono STN
• 1, 2, 4, 8 bits per pixel (palletized), 16 bits per pixel (non-palletized) for color STN
• 1, 2, 4, 8 bits per pixel (palletized), 16, 24 bits per pixel (non-palletized) for TFT
• Single clock domain architecture
• Resolution supported up to 2048x2048
11.11 Touch Screen Analog-to-digital Converter (TSADCC)
• 6-channel ADC
• Support 4-wire resistive Touch Screen
• 10-bit 384 Ksamples/sec. Successive Approximation Register ADC
• -3/+3 LSB Integral Non Linearity, -2/+2 LSB Differential Non Linearity
• Integrated 6-to-1 multiplexer, offering eight independent 3.3V analog inputs
• External voltage reference for better accuracy on low voltage inputs
• Individual enable and disable of each channel
• Multiple trigger sources
– Hardware or software trigger
– External trigger pin
– Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
• Sleep Mode and conversion sequencer
– Automatic wakeup on trigger and back to sleep mode after conversions of all
enabled channels
47
6289C–ATARM–28-May-09
48
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
12. ARM926EJ-S Processor Overview
12.1
Overview
The ARM926EJ-S processor is a member of the ARM9™ family of general-purpose microprocessors. The ARM926EJ-S implements ARM architecture version 5TEJ and is targeted at multitasking applications where full memory management, high performance, low die size and low
power are all important features.
The ARM926EJ-S processor supports the 32-bit ARM and 16-bit THUMB instruction sets,
enabling the user to trade off between high performance and high code density. It also supports
8-bit Java instruction set and includes features for efficient execution of Java bytecode, providing a Java performance similar to a JIT (Just-In-Time compilers), for the next generation of Javapowered wireless and embedded devices. It includes an enhanced multiplier design for
improved DSP performance.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist
in both hardware and software debug.
The ARM926EJ-S provides a complete high performance processor subsystem, including:
• an ARM9EJ-S™ integer core
• a Memory Management Unit (MMU)
• separate instruction and data AMBA® AHB bus interfaces
• separate instruction and data TCM interfaces
49
6289C–ATARM–28-May-09
12.2
Block Diagram
Figure 12-1. ARM926EJ-S Internal Functional Block Diagram
ARM926EJ-S
TCM
Interface
Coprocessor
Interface
ETM
Interface
DEXT
Droute
Data
AHB
Interface
AHB
DCACHE
WDATA
Bus
Interface
Unit
RDATA
ARM9EJ-S
DA
MMU
EmbeddedICE
-RT
Processor
Instruction
AHB
Interface
IA
AHB
INSTR
ICE
Interface
ICACHE
Iroute
IEXT
12.3
12.3.1
ARM9EJ-S Processor
ARM9EJ-S Operating States
The ARM9EJ-S processor can operate in three different states, each with a specific instruction
set:
• ARM state: 32-bit, word-aligned ARM instructions.
• THUMB state: 16-bit, halfword-aligned Thumb instructions.
• Jazelle state: variable length, byte-aligned Jazelle instructions.
In Jazelle state, all instruction Fetches are in words.
12.3.2
Switching State
The operating state of the ARM9EJ-S core can be switched between:
• ARM state and THUMB state using the BX and BLX instructions, and loads to the PC
50
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• ARM state and Jazelle state using the BXJ instruction
All exceptions are entered, handled and exited in ARM state. If an exception occurs in Thumb or
Jazelle states, the processor reverts to ARM state. The transition back to Thumb or Jazelle
states occurs automatically on return from the exception handler.
12.3.3
Instruction Pipelines
The ARM9EJ-S core uses two kinds of pipelines to increase the speed of the flow of instructions
to the processor.
A five-stage (five clock cycles) pipeline is used for ARM and Thumb states. It consists of Fetch,
Decode, Execute, Memory and Writeback stages.
A six-stage (six clock cycles) pipeline is used for Jazelle state It consists of Fetch,
Jazelle/Decode (two clock cycles), Execute, Memory and Writeback stages.
12.3.4
Memory Access
The ARM9EJ-S core supports byte (8-bit), half-word (16-bit) and word (32-bit) access. Words
must be aligned to four-byte boundaries, half-words must be aligned to two-byte boundaries and
bytes can be placed on any byte boundary.
Because of the nature of the pipelines, it is possible for a value to be required for use before it
has been placed in the register bank by the actions of an earlier instruction. The ARM9EJ-S control logic automatically detects these cases and stalls the core or forward data.
12.3.5
Jazelle Technology
The Jazelle technology enables direct and efficient execution of Java byte codes on ARM processors, providing high performance for the next generation of Java-powered wireless and
embedded devices.
The new Java feature of ARM9EJ-S can be described as a hardware emulation of a JVM (Java
Virtual Machine). Java mode will appear as another state: instead of executing ARM or Thumb
instructions, it executes Java byte codes. The Java byte code decoder logic implemented in
ARM9EJ-S decodes 95% of executed byte codes and turns them into ARM instructions without
any overhead, while less frequently used byte codes are broken down into optimized sequences
of ARM instructions. The hardware/software split is invisible to the programmer, invisible to the
application and invisible to the operating system. All existing ARM registers are re-used in
Jazelle state and all registers then have particular functions in this mode.
Minimum interrupt latency is maintained across both ARM state and Java state. Since byte
codes execution can be restarted, an interrupt automatically triggers the core to switch from
Java state to ARM state for the execution of the interrupt handler. This means that no special
provision has to be made for handling interrupts while executing byte codes, whether in hardware or in software.
12.3.6
ARM9EJ-S Operating Modes
In all states, there are seven operation modes:
• User mode is the usual ARM program execution state. It is used for executing most
application programs
• Fast Interrupt (FIQ) mode is used for handling fast interrupts. It is suitable for high-speed data
transfer or channel process
• Interrupt (IRQ) mode is used for general-purpose interrupt handling
51
6289C–ATARM–28-May-09
• Supervisor mode is a protected mode for the operating system
• Abort mode is entered after a data or instruction prefetch abort
• System mode is a privileged user mode for the operating system
• Undefined mode is entered when an undefined instruction exception occurs
Mode changes may be made under software control, or may be brought about by external interrupts or exception processing. Most application programs execute in User Mode. The non-user
modes, known as privileged modes, are entered in order to service interrupts or exceptions or to
access protected resources.
12.3.7
ARM9EJ-S Registers
The ARM9EJ-S core has a total of 37 registers:
• 31 general-purpose 32-bit registers
• 6 32-bit status registers
Table 12-1 shows all the registers in all modes.
Table 12-1.
ARM9TDMI™ Modes and Registers Layout
User and
System Mode
Supervisor
Mode
Abort Mode
Undefined
Mode
Interrupt Mode
Fast Interrupt
Mode
R0
R0
R0
R0
R0
R0
R1
R1
R1
R1
R1
R1
R2
R2
R2
R2
R2
R2
R3
R3
R3
R3
R3
R3
R4
R4
R4
R4
R4
R4
R5
R5
R5
R5
R5
R5
R6
R6
R6
R6
R6
R6
R7
R7
R7
R7
R7
R7
R8
R8
R8
R8
R8
R8_FIQ
R9
R9
R9
R9
R9
R9_FIQ
R10
R10
R10
R10
R10
R10_FIQ
R11
R11
R11
R11
R11
R11_FIQ
R12
R12
R12
R12
R12
R12_FIQ
R13
R13_SVC
R13_ABORT
R13_UNDEF
R13_IRQ
R13_FIQ
R14
R14_SVC
R14_ABORT
R14_UNDEF
R14_IRQ
R14_FIQ
PC
PC
PC
PC
PC
PC
CPSR
CPSR
CPSR
CPSR
CPSR
CPSR
SPSR_SVC
SPSR_ABORT
SPSR_UNDEF
SPSR_IRQ
SPSR_FIQ
Mode-specific banked registers
The ARM state register set contains 16 directly-accessible registers, r0 to r15, and an additional
register, the Current Program Status Register (CPSR). Registers r0 to r13 are general-purpose
52
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
registers used to hold either data or address values. Register r14 is used as a Link register that
holds a value (return address) of r15 when BL or BLX is executed. Register r15 is used as a program counter (PC), whereas the Current Program Status Register (CPSR) contains condition
code flags and the current mode bits.
In privileged modes (FIQ, Supervisor, Abort, IRQ, Undefined), mode-specific banked registers
(r8 to r14 in FIQ mode or r13 to r14 in the other modes) become available. The corresponding
banked registers r14_fiq, r14_svc, r14_abt, r14_irq, r14_und are similarly used to hold the values (return address for each mode) of r15 (PC) when interrupts and exceptions arise, or when
BL or BLX instructions are executed within interrupt or exception routines. There is another register called Saved Program Status Register (SPSR) that becomes available in privileged modes
instead of CPSR. This register contains condition code flags and the current mode bits saved as
a result of the exception that caused entry to the current (privileged) mode.
In all modes and due to a software agreement, register r13 is used as stack pointer.
The use and the function of all the registers described above should obey ARM Procedure Call
Standard (APCS) which defines:
• constraints on the use of registers
• stack conventions
• argument passing and result return
The Thumb state register set is a subset of the ARM state set. The programmer has direct
access to:
• Eight general-purpose registers r0-r7
• Stack pointer, SP
• Link register, LR (ARM r14)
• PC
• CPSR
There are banked registers SPs, LRs and SPSRs for each privileged mode (for more details see
the ARM9EJ-S Technical Reference Manual, ref. DDI0222B, revision r1p2 page 2-12).
12.3.7.1
Status Registers
The ARM9EJ-S core contains one CPSR, and five SPSRs for exception handlers to use. The
program status registers:
• hold information about the most recently performed ALU operation
• control the enabling and disabling of interrupts
• set the processor operation mode
53
6289C–ATARM–28-May-09
Figure 12-2. Status Register Format
31 30 29 28 27
24
N Z C V Q
J
7 6 5
Reserved
I F T
Jazelle state bit
Reserved
Sticky Overflow
Overflow
Carry/Borrow/Extend
Zero
Negative/Less than
0
Mode
Mode bits
Thumb state bit
FIQ disable
IRQ disable
Figure 12-2 shows the status register format, where:
• N: Negative, Z: Zero, C: Carry, and V: Overflow are the four ALU flags
• The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic
instructions like QADD, QDADD, QSUB, QDSUB, SMLAxy, and SMLAWy needed to achieve
DSP operations.
The Q flag is sticky in that, when set by an instruction, it remains set until explicitly cleared by
an MSR instruction writing to the CPSR. Instructions cannot execute conditionally on the
status of the Q flag.
• The J bit in the CPSR indicates when the ARM9EJ-S core is in Jazelle state, where:
– J = 0: The processor is in ARM or Thumb state, depending on the T bit
– J = 1: The processor is in Jazelle state.
• Mode: five bits to encode the current processor mode
12.3.7.2
Exceptions
Exception Types and Priorities
The ARM9EJ-S supports five types of exceptions. Each type drives the ARM9EJ-S in a privi-
leged mode. The types of exceptions are:
• Fast interrupt (FIQ)
• Normal interrupt (IRQ)
• Data and Prefetched aborts (Abort)
• Undefined instruction (Undefined)
• Software interrupt and Reset (Supervisor)
When an exception occurs, the banked version of R14 and the SPSR for the exception mode
are used to save the state.
More than one exception can happen at a time, therefore the ARM9EJ-S takes the arisen exceptions according to the following priority order:
• Reset (highest priority)
• Data Abort
• FIQ
• IRQ
• Prefetch Abort
• BKPT, Undefined instruction, and Software Interrupt (SWI) (Lowest priority)
54
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The BKPT, or Undefined instruction, and SWI exceptions are mutually exclusive.
There is one exception in the priority scheme though, when FIQs are enabled and a Data Abort
occurs at the same time as an FIQ, the ARM9EJ-S core enters the Data Abort handler, and proceeds immediately to FIQ vector. A normal return from the FIQ causes the Data Abort handler to
resume execution. Data Aborts must have higher priority than FIQs to ensure that the transfer
error does not escape detection.
Exception Modes and Handling
Exceptions arise whenever the normal flow of a program must be halted temporarily, for example, to service an interrupt from a peripheral.
When handling an ARM exception, the ARM9EJ-S core performs the following operations:
1. Preserves the address of the next instruction in the appropriate Link Register that corresponds to the new mode that has been entered. When the exception entry is from:
– ARM and Jazelle states, the ARM9EJ-S copies the address of the next instruction
into LR (current PC(r15) + 4 or PC + 8 depending on the exception).
– THUMB state, the ARM9EJ-S writes the value of the PC into LR, offset by a value
(current PC + 2, PC + 4 or PC + 8 depending on the exception) that causes the
program to resume from the correct place on return.
2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value that depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.
The register r13 is also banked across exception modes to provide each exception handler with
private stack pointer.
The ARM9EJ-S can also set the interrupt disable flags to prevent otherwise unmanageable
nesting of exceptions.
When an exception has completed, the exception handler must move both the return value in
the banked LR minus an offset to the PC and the SPSR to the CPSR. The offset value varies
according to the type of exception. This action restores both PC and the CPSR.
The fast interrupt mode has seven private registers r8 to r14 (banked registers) to reduce or
remove the requirement for register saving which minimizes the overhead of context switching.
The Prefetch Abort is one of the aborts that indicates that the current memory access cannot be
completed. When a Prefetch Abort occurs, the ARM9EJ-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the Execute stage in the
pipeline. If the instruction is not executed, for example because a branch occurs while it is in the
pipeline, the abort does not take place.
The breakpoint (BKPT) instruction is a new feature of ARM9EJ-S that is destined to solve the
problem of the Prefetch Abort. A breakpoint instruction operates as though the instruction
caused a Prefetch Abort.
A breakpoint instruction does not cause the ARM9EJ-S to take the Prefetch Abort exception until
the instruction reaches the Execute stage of the pipeline. If the instruction is not executed, for
example because a branch occurs while it is in the pipeline, the breakpoint does not take place.
12.3.8
ARM Instruction Set Overview
The ARM instruction set is divided into:
• Branch instructions
55
6289C–ATARM–28-May-09
• Data processing instructions
• Status register transfer instructions
• Load and Store instructions
• Coprocessor instructions
• Exception-generating instructions
ARM instructions can be executed conditionally. Every instruction contains a 4-bit condition
code field (bits[31:28]).
Table 12-2 gives the ARM instruction mnemonic list.
Table 12-2.
Mnemonic
Operation
Mnemonic
Operation
MOV
Move
MVN
Move Not
ADD
Add
ADC
Add with Carry
SUB
Subtract
SBC
Subtract with Carry
RSB
Reverse Subtract
RSC
Reverse Subtract with Carry
CMP
Compare
CMN
Compare Negated
TST
Test
TEQ
Test Equivalence
AND
Logical AND
BIC
Bit Clear
EOR
Logical Exclusive OR
ORR
Logical (inclusive) OR
MUL
Multiply
MLA
Multiply Accumulate
SMULL
Sign Long Multiply
UMULL
Unsigned Long Multiply
SMLAL
Signed Long Multiply
Accumulate
UMLAL
Unsigned Long Multiply
Accumulate
MSR
B
BX
LDR
Move to Status Register
Branch
MRS
BL
Move From Status Register
Branch and Link
Branch and Exchange
SWI
Software Interrupt
Load Word
STR
Store Word
LDRSH
Load Signed Halfword
LDRSB
Load Signed Byte
LDRH
Load Half Word
STRH
Store Half Word
LDRB
Load Byte
STRB
Store Byte
LDRBT
56
ARM Instruction Mnemonic List
Load Register Byte with
Translation
STRBT
Store Register Byte with
Translation
LDRT
Load Register with
Translation
STRT
Store Register with
Translation
LDM
Load Multiple
STM
Store Multiple
SWP
Swap Word
MCR
Move To Coprocessor
MRC
Move From Coprocessor
LDC
Load To Coprocessor
STC
Store From Coprocessor
CDP
Coprocessor Data
Processing
SWPB
Swap Byte
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
12.3.9
New ARM Instruction Set
.
Table 12-3.
Mnemonic
Operation
Mnemonic
Operation
Branch and exchange to
Java
MRRC
Move double from
coprocessor
BLX (1)
Branch, Link and exchange
MCR2
Alternative move of ARM reg
to coprocessor
SMLAxy
Signed Multiply Accumulate
16 * 16 bit
MCRR
Move double to coprocessor
SMLAL
Signed Multiply Accumulate
Long
CDP2
Alternative Coprocessor
Data Processing
SMLAWy
Signed Multiply Accumulate
32 * 16 bit
BKPT
Breakpoint
SMULxy
Signed Multiply 16 * 16 bit
PLD
SMULWy
Signed Multiply 32 * 16 bit
STRD
Store Double
Saturated Add
STC2
Alternative Store from
Coprocessor
Saturated Add with Double
LDRD
Load Double
Saturated subtract
LDC2
Alternative Load to
Coprocessor
BXJ
QADD
QDADD
QSUB
QDSUB
Notes:
12.3.10
New ARM Instruction Mnemonic List
Saturated Subtract with
double
CLZ
Soft Preload, Memory
prepare to load from address
Count Leading Zeroes
1. A Thumb BLX contains two consecutive Thumb instructions, and takes four cycles.
Thumb Instruction Set Overview
The Thumb instruction set is a re-encoded subset of the ARM instruction set.
The Thumb instruction set is divided into:
• Branch instructions
• Data processing instructions
• Load and Store instructions
• Load and Store multiple instructions
• Exception-generating instruction
Table 5 shows the Thumb instruction set. Table 12-4 gives the Thumb instruction mnemonic list.
Table 12-4.
Thumb Instruction Mnemonic List
Mnemonic
Operation
Mnemonic
Operation
MOV
Move
MVN
Move Not
ADD
Add
ADC
Add with Carry
SUB
Subtract
SBC
Subtract with Carry
CMP
Compare
CMN
Compare Negated
TST
Test
NEG
Negate
AND
Logical AND
BIC
Bit Clear
57
6289C–ATARM–28-May-09
Table 12-4.
12.4
Thumb Instruction Mnemonic List (Continued)
Mnemonic
Operation
Mnemonic
Operation
EOR
Logical Exclusive OR
ORR
Logical (inclusive) OR
LSL
Logical Shift Left
LSR
Logical Shift Right
ASR
Arithmetic Shift Right
ROR
Rotate Right
MUL
Multiply
BLX
Branch, Link, and Exchange
B
Branch
BL
Branch and Link
BX
Branch and Exchange
SWI
Software Interrupt
LDR
Load Word
STR
Store Word
LDRH
Load Half Word
STRH
Store Half Word
LDRB
Load Byte
STRB
Store Byte
LDRSH
Load Signed Halfword
LDRSB
Load Signed Byte
LDMIA
Load Multiple
STMIA
Store Multiple
PUSH
Push Register to stack
POP
Pop Register from stack
BCC
Conditional Branch
BKPT
Breakpoint
CP15 Coprocessor
Coprocessor 15, or System Control Coprocessor CP15, is used to configure and control all the
items in the list below:
• ARM9EJ-S
• Caches (ICache, DCache and write buffer)
• TCM
• MMU
• Other system options
To control these features, CP15 provides 16 additional registers. See Table 12-5.
Table 12-5.
Register
Name
Read/Write
(1)
0
ID Code
0
Cache type(1)
Read/Unpredictable
0
(1)
TCM status
Read/Unpredictable
1
Control
Read/write
2
Translation Table Base
Read/write
3
Domain Access Control
Read/write
4
Reserved
None
5
58
CP15 Registers
Read/Unpredictable
Data fault Status
(1)
Read/write
(1)
5
Instruction fault status
6
Fault Address
Read/write
7
Cache Operations
Read/Write
Read/write
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 12-5.
Register
8
Notes:
CP15 Registers
Name
Read/Write
TLB operations
Unpredictable/Write
(2)
9
cache lockdown
Read/write
9
TCM region
Read/write
10
TLB lockdown
Read/write
11
Reserved
None
12
Reserved
None
(1)
Read/write
13
FCSE PID
13
Context ID(1)
Read/Write
14
Reserved
None
15
Test configuration
Read/Write
1. Register locations 0,5, and 13 each provide access to more than one register. The register
accessed depends on the value of the opcode_2 field.
2. Register location 9 provides access to more than one register. The register accessed depends
on the value of the CRm field.
59
6289C–ATARM–28-May-09
12.4.1
CP15 Registers Access
CP15 registers can only be accessed in privileged mode by:
• MCR (Move to Coprocessor from ARM Register) instruction is used to write an ARM register
to CP15.
• MRC (Move to ARM Register from Coprocessor) instruction is used to read the value of
CP15 to an ARM register.
Other instructions like CDP, LDC, STC can cause an undefined instruction exception.
The assembler code for these instructions is:
MCR/MRC{cond} p15, opcode_1, Rd, CRn, CRm, opcode_2.
The MCR, MRC instructions bit pattern is shown below:
31
30
29
28
cond
23
22
21
opcode_1
15
20
13
12
Rd
6
26
25
24
1
1
1
0
19
18
17
16
L
14
7
27
5
opcode_2
4
CRn
11
10
9
8
1
1
1
1
3
2
1
0
1
CRm
• CRm[3:0]: Specified Coprocessor Action
Determines specific coprocessor action. Its value is dependent on the CP15 register used. For details, refer to CP15 specific register behavior.
• opcode_2[7:5]
Determines specific coprocessor operation code. By default, set to 0.
• Rd[15:12]: ARM Register
Defines the ARM register whose value is transferred to the coprocessor. If R15 is chosen, the result is unpredictable.
• CRn[19:16]: Coprocessor Register
Determines the destination coprocessor register.
• L: Instruction Bit
0 = MCR instruction
1 = MRC instruction
• opcode_1[23:20]: Coprocessor Code
Defines the coprocessor specific code. Value is c15 for CP15.
• cond [31:28]: Condition
For more details, see Chapter 2 in ARM926EJ-S TRM, ref. DDI0198B.
60
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
12.5
Memory Management Unit (MMU)
The ARM926EJ-S processor implements an enhanced ARM architecture v5 MMU to provide virtual memory features required by operating systems like Symbian OS®, WindowsCE, and Linux.
These virtual memory features are memory access permission controls and virtual to physical
address translations.
The Virtual Address generated by the CPU core is converted to a Modified Virtual Address
(MVA) by the FCSE (Fast Context Switch Extension) using the value in CP15 register13. The
MMU translates modified virtual addresses to physical addresses by using a single, two-level
page table set stored in physical memory. Each entry in the set contains the access permissions
and the physical address that correspond to the virtual address.
The first level translation tables contain 4096 entries indexed by bits [31:20] of the MVA. These
entries contain a pointer to either a 1 MB section of physical memory along with attribute information (access permissions, domain, etc.) or an entry in the second level translation tables;
coarse table and fine table.
The second level translation tables contain two subtables, coarse table and fine table. An entry
in the coarse table contains a pointer to both large pages and small pages along with access
permissions. An entry in the fine table contains a pointer to large, small and tiny pages.
Table 7 shows the different attributes of each page in the physical memory.
Table 12-6.
Mapping Details
Mapping Name
Mapping Size
Access Permission By
Subpage Size
Section
1M byte
Section
-
Large Page
64K bytes
4 separated subpages
16K bytes
Small Page
4K bytes
4 separated subpages
1K byte
Tiny Page
1K byte
Tiny Page
-
The MMU consists of:
• Access control logic
• Translation Look-aside Buffer (TLB)
• Translation table walk hardware
12.5.1
Access Control Logic
The access control logic controls access information for every entry in the translation table. The
access control logic checks two pieces of access information: domain and access permissions.
The domain is the primary access control mechanism for a memory region; there are 16 of them.
It defines the conditions necessary for an access to proceed. The domain determines whether
the access permissions are used to qualify the access or whether they should be ignored.
The second access control mechanism is access permissions that are defined for sections and
for large, small and tiny pages. Sections and tiny pages have a single set of access permissions
whereas large and small pages can be associated with 4 sets of access permissions, one for
each subpage (quarter of a page).
61
6289C–ATARM–28-May-09
12.5.2
Translation Look-aside Buffer (TLB)
The Translation Look-aside Buffer (TLB) caches translated entries and thus avoids going
through the translation process every time. When the TLB contains an entry for the MVA (Modified Virtual Address), the access control logic determines if the access is permitted and outputs
the appropriate physical address corresponding to the MVA. If access is not permitted, the MMU
signals the CPU core to abort.
If the TLB does not contain an entry for the MVA, the translation table walk hardware is invoked
to retrieve the translation information from the translation table in physical memory.
12.5.3
Translation Table Walk Hardware
The translation table walk hardware is a logic that traverses the translation tables located in
physical memory, gets the physical address and access permissions and updates the TLB.
The number of stages in the hardware table walking is one or two depending whether the
address is marked as a section-mapped access or a page-mapped access.
There are three sizes of page-mapped accesses and one size of section-mapped access. Pagemapped accesses are for large pages, small pages and tiny pages. The translation process
always begins with a level one fetch. A section-mapped access requires only a level one fetch,
but a page-mapped access requires an additional level two fetch. For further details on the
MMU, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual, ref. DDI0198B.
12.5.4
MMU Faults
The MMU generates an abort on the following types of faults:
• Alignment faults (for data accesses only)
• Translation faults
• Domain faults
• Permission faults
The access control mechanism of the MMU detects the conditions that produce these faults. If
the fault is a result of memory access, the MMU aborts the access and signals the fault to the
CPU core.The MMU retains status and address information about faults generated by the data
accesses in the data fault status register and fault address register. It also retains the status of
faults generated by instruction fetches in the instruction fault status register.
The fault status register (register 5 in CP15) indicates the cause of a data or prefetch abort, and
the domain number of the aborted access when it happens. The fault address register (register 6
in CP15) holds the MVA associated with the access that caused the Data Abort. For further
details on MMU faults, please refer to chapter 3 in ARM926EJ-S Technical Reference Manual,
ref. DDI0198B.
12.6
Caches and Write Buffer
The ARM926EJ-S contains a 4 KB Instruction Cache (ICache), a 4 KB Data Cache (DCache),
and a write buffer. Although the ICache and DCache share common features, each still has
some specific mechanisms.
The caches (ICache and DCache) are four-way set associative, addressed, indexed and tagged
using the Modified Virtual Address (MVA), with a cache line length of eight words with two dirty
bits for the DCache. The ICache and DCache provide mechanisms for cache lockdown, cache
pollution control, and line replacement.
62
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
A new feature is now supported by ARM926EJ-S caches called allocate on read-miss commonly
known as wrapping. This feature enables the caches to perform critical word first cache refilling.
This means that when a request for a word causes a read-miss, the cache performs an AHB
access. Instead of loading the whole line (eight words), the cache loads the critical word first, so
the processor can reach it quickly, and then the remaining words, no matter where the word is
located in the line.
The caches and the write buffer are controlled by the CP15 register 1 (Control), CP15 register 7
(cache operations) and CP15 register 9 (cache lockdown).
12.6.1
Instruction Cache (ICache)
The ICache caches fetched instructions to be executed by the processor. The ICache can be
enabled by writing 1 to I bit of the CP15 Register 1 and disabled by writing 0 to this same bit.
When the MMU is enabled, all instruction fetches are subject to translation and permission
checks. If the MMU is disabled, all instructions fetches are cachable, no protection checks are
made and the physical address is flat-mapped to the modified virtual address. With the MVA use
disabled, context switching incurs ICache cleaning and/or invalidating.
When the ICache is disabled, all instruction fetches appear on external memory (AHB) (see
Tables 4-1 and 4-2 in page 4-4 in ARM926EJ-S TRM, ref. DDI0198B).
On reset, the ICache entries are invalidated and the ICache is disabled. For best performance,
ICache should be enabled as soon as possible after reset.
12.6.2
12.6.2.1
Data Cache (DCache) and Write Buffer
ARM926EJ-S includes a DCache and a write buffer to reduce the effect of main memory bandwidth and latency on data access performance. The operations of DCache and write buffer are
closely connected.
DCache
The DCache needs the MMU to be enabled. All data accesses are subject to MMU permission
and translation checks. Data accesses that are aborted by the MMU do not cause linefills or data
accesses to appear on the AMBA ASB interface. If the MMU is disabled, all data accesses are
noncachable, nonbufferable, with no protection checks, and appear on the AHB bus. All
addresses are flat-mapped, VA = MVA = PA, which incurs DCache cleaning and/or invalidating
every time a context switch occurs.
The DCache stores the Physical Address Tag (PA Tag) from which every line was loaded and
uses it when writing modified lines back to external memory. This means that the MMU is not
involved in write-back operations.
Each line (8 words) in the DCache has two dirty bits, one for the first four words and the other
one for the second four words. These bits, if set, mark the associated half-lines as dirty. If the
cache line is replaced due to a linefill or a cache clean operation, the dirty bits are used to decide
whether all, half or none is written back to memory.
DCache can be enabled or disabled by writing either 1 or 0 to bit C in register 1 of CP15 (see
Tables 4-3 and 4-4 on page 4-5 in ARM926EJ-S TRM, ref. DDI0222B).
The DCache supports write-through and write-back cache operations, selected by memory
region using the C and B bits in the MMU translation tables.
63
6289C–ATARM–28-May-09
The DCache contains an eight data word entry, single address entry write-back buffer used to
hold write-back data for cache line eviction or cleaning of dirty cache lines.
The Write Buffer can hold up to 16 words of data and four separate addresses. DCache and
Write Buffer operations are closely connected as their configuration is set in each section by the
page descriptor in the MMU translation table.
12.6.2.2
Write Buffer
The ARM926EJ-S contains a write buffer that has a 16-word data buffer and a four- address buffer. The write buffer is used for all writes to a bufferable region, write-through region and writeback region. It also allows to avoid stalling the processor when writes to external memory are
performed. When a store occurs, data is written to the write buffer at core speed (high speed).
The write buffer then completes the store to external memory at bus speed (typically slower than
the core speed). During this time, the ARM9EJ-S processor can preform other tasks.
DCache and Write Buffer support write-back and write-through memory regions, controlled by C
and B bits in each section and page descriptor within the MMU translation tables.
Write-though Operation
When a cache write hit occurs, the DCache line is updated. The updated data is then written to
the write buffer which transfers it to external memory.
When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.
Write-back Operation
When a cache write hit occurs, the cache line or half line is marked as dirty, meaning that its
contents are not up-to-date with those in the external memory.
When a cache write miss occurs, a line, chosen by round robin or another algorithm, is stored in
the write buffer which transfers it to external memory.
12.7
12.7.1
Tightly-Coupled Memory Interface
TCM Description
The ARM926EJ-S processor features a Tightly-Coupled Memory (TCM) interface, which
enables separate instruction and data TCMs (ITCM and DTCM) to be directly reached by the
processor. TCMs are used to store real-time and performance critical code, they also provide a
DMA support mechanism. Unlike AHB accesses to external memories, accesses to TCMs are
fast and deterministic and do not incur bus penalties.
The user has the possibility to independently configure each TCM size with values within the following ranges, [0KB, 32 KB] for ITCM size and [0KB, 32 KB] for DTCM size.
TCMs can be configured by two means: HMATRIX TCM register and TCM region register (register 9) in CP15 and both steps should be performed. HMATRIX TCM register sets TCM size
whereas TCM region register (register 9) in CP15 maps TCMs and enables them.
The data side of the ARM9EJ-S core is able to access the ITCM. This is necessary to enable
code to be loaded into the ITCM, for SWI and emulated instruction handlers, and for accesses to
PC-relative literal pools.
64
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
12.7.2
Enabling and Disabling TCMs
Prior to any enabling step, the user should configure the TCM sizes in HMATRIX TCM register.
Then enabling TCMs is performed by using TCM region register (register 9) in CP15. The user
should use the same sizes as those put in HMATRIX TCM register. For further details and programming tips, please refer to chapter 2.3 in ARM926EJ-S TRM, ref. DDI0222B.
12.7.3
TCM Mapping
The TCMs can be located anywhere in the memory map, with a single region available for ITCM
and a separate region available for DTCM. The TCMs are physically addressed and can be
placed anywhere in physical address space. However, the base address of a TCM must be
aligned to its size, and the DTCM and ITCM regions must not overlap. TCM mapping is performed by using TCM region register (register 9) in CP15. The user should input the right
mapping address for TCMs.
12.8
Bus Interface Unit
The ARM926EJ-S features a Bus Interface Unit (BIU) that arbitrates and schedules AHB
requests. The BIU implements a multi-layer AHB, based on the AHB-Lite protocol, that enables
parallel access paths between multiple AHB masters and slaves in a system. This is achieved by
using a more complex interconnection matrix and gives the benefit of increased overall bus
bandwidth, and a more flexible system architecture.
The multi-master bus architecture has a number of benefits:
• It allows the development of multi-master systems with an increased bus bandwidth and a
flexible architecture.
• Each AHB layer becomes simple because it only has one master, so no arbitration or masterto-slave muxing is required. AHB layers, implementing AHB-Lite protocol, do not have to
support request and grant, nor do they have to support retry and split transactions.
• The arbitration becomes effective when more than one master wants to access the same
slave simultaneously.
12.8.1
Supported Transfers
The ARM926EJ-S processor performs all AHB accesses as single word, bursts of four words, or
bursts of eight words. Any ARM9EJ-S core request that is not 1, 4, 8 words in size is split into
packets of these sizes. Note that the Atmel bus is AHB-Lite protocol compliant, hence it does not
support split and retry requests.
65
6289C–ATARM–28-May-09
Table 8 gives an overview of the supported transfers and different kinds of transactions they are
used for.
Table 12-7.
HBurst[2:0]
Supported Transfers
Description
Single transfer of word, half word, or byte:
• data write (NCNB, NCB, WT, or WB that has missed in DCache)
SINGLE
Single transfer
• data read (NCNB or NCB)
• NC instruction fetch (prefetched and non-prefetched)
• page table walk read
INCR4
Four-word incrementing burst
Half-line cache write-back, Instruction prefetch, if enabled. Four-word burst NCNB,
NCB, WT, or WB write.
INCR8
Eight-word incrementing burst
Full-line cache write-back, eight-word burst NCNB, NCB, WT, or WB write.
WRAP8
Eight-word wrapping burst
Cache linefill
12.8.2
Thumb Instruction Fetches
All instructions fetches, regardless of the state of ARM9EJ-S core, are made as 32-bit accesses
on the AHB. If the ARM9EJ-S is in Thumb state, then two instructions can be fetched at a time.
12.8.3
Address Alignment
The ARM926EJ-S BIU performs address alignment checking and aligns AHB addresses to the
necessary boundary. 16-bit accesses are aligned to halfword boundaries, and 32-bit accesses
are aligned to word boundaries.
66
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
13. AT91SAM9R64/RL64 Debug and Test
13.1
Description
The AT91SAM9R64/RL64 features a number of complementary debug and test capabilities. A
common JTAG/ICE (In-Circuit Emulator) port is used for standard debugging functions, such as
downloading code and single-stepping through programs. The Debug Unit provides a two-pin
UART that can be used to upload an application into internal SRAM. It manages the interrupt
handling of the internal COMMTX and COMMRX signals that trace the activity of the Debug
Communication Channel.
A set of dedicated debug and test input/output pins gives direct access to these capabilities from
a PC-based test environment.
67
6289C–ATARM–28-May-09
13.2
Block Diagram
Figure 13-1. Debug and Test Block Diagram
TMS
TCK
TDI
NTRST
ICE/JTAG
TAP
Boundary
Port
JTAGSEL
TDO
RTCK
POR
Reset
and
Test
ARM9EJ-S
TST
ICE-RT
PDC
DBGU
PIO
ARM926EJ-S
DTXD
DRXD
TAP: Test Access Port
68
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
13.3
13.3.1
Application Examples
Debug Environment
Figure 13-2 on page 69 shows a complete debug environment example. The ICE/JTAG interface is used for standard debugging functions, such as downloading code and single-stepping
through the program. The Trace Port interface is used for tracing information. A software debugger running on a personal computer provides the user interface for configuring a Trace Port
interface utilizing the ICE/JTAG interface.
Figure 13-2. Application Debug and Trace Environment Example
Host Debugger
ICE/JTAG
Interface
ICE/JTAG
Connector
RS232
Connector
AT91SAM9RL
Terminal
AT91SAM9RLbased Application
13.3.2
Test Environment
Figure 13-3 on page 69 shows a test environment example. Test vectors are sent and interpreted by the tester. In this example, the “board in test” is designed using a number of JTAGcompliant devices. These devices can be connected to form a single scan chain.
Figure 13-3. Application Test Environment Example
Test Adaptor
Tester
JTAG
Interface
ICE/JTAG
Connector
Chip n
AT91SAM9RL
Chip 2
Chip 1
AT91SAM9RL-based Application Board In Test
69
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
13.4
Debug and Test Pin Description
Table 13-1.
Pin Name
Debug and Test Pin List
Function
Type
Active Level
Input
Low
Input/Output
Low
Input
High
Reset/Test
NTRST
Test Reset Signal
NRST
Microcontroller Reset
TST
Test Mode Select
ICE and JTAG
TCK
Test Clock
Input
TDI
Test Data In
Input
TDO
Test Data Out
TMS
Test Mode Select
RTCK
Returned Test Clock
JTAGSEL
JTAG Selection
Output
Input
Output
Input
Debug Unit
13.5
13.5.1
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
Functional Description
Test Pin
One dedicated pin, TST, is used to define the device operating mode. The user must make sure
that this pin is tied at low level to ensure normal operating conditions. Other values associated
with this pin are reserved for manufacturing test.
13.5.2
Embedded In-circuit Emulator
The ARM9EJ-S Embedded In-Circuit Emulator-RT is supported via the ICE/JTAG port. It is connected to a host computer via an ICE interface. Debug support is implemented using an
ARM9EJ-S core embedded within the ARM926EJ-S. The internal state of the ARM926EJ-S is
examined through an ICE/JTAG port which allows instructions to be serially inserted into the
pipeline of the core without using the external data bus. Therefore, when in debug state, a storemultiple (STM) can be inserted into the instruction pipeline. This exports the contents of the
ARM9EJ-S registers. This data can be serially shifted out without affecting the rest of the
system.
There are two scan chains inside the ARM9EJ-S processor which support testing, debugging,
and programming of the Embedded ICE-RT™. The scan chains are controlled by the ICE/JTAG
port.
Embedded ICE mode is selected when JTAGSEL is low. It is not possible to switch directly
between ICE and JTAG operations. A chip reset must be performed after JTAGSEL is changed.
For further details on the Embedded In-Circuit-Emulator-RT, see the ARM document:
ARM9EJ-S Technical Reference Manual (DDI 0222A).
70
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
13.5.3
JTAG Signal Description
TMS is the Test Mode Select input which controls the transitions of the test interface state
machine.
TDI is the Test Data Input line which supplies the data to the JTAG registers (Boundary Scan
Register, Instruction Register, or other data registers).
TDO is the Test Data Output line which is used to serially output the data from the JTAG registers to the equipment controlling the test. It carries the sampled values from the boundary scan
chain (or other JTAG registers) and propagates them to the next chip in the serial test circuit.
NTRST (optional in IEEE Standard 1149.1) is a Test-ReSeT input which is mandatory in ARM
cores and used to reset the debug logic. On Atmel ARM926EJ-S-based cores, NTRST is a
Power On Reset output. It is asserted on power on. If necessary, the user can also reset the
debug logic with the NTRST pin assertion during 2.5 MCK periods.
TCK is the Test ClocK input which enables the test interface. TCK is pulsed by the equipment
controlling the test and not by the tested device. It can be pulsed at any frequency. Note the
maximum JTAG clock rate on ARM926EJ-S cores is 1/6th the clock of the CPU. This gives 5.45
kHz maximum initial JTAG clock rate for an ARM9E running from the 32.768 kHz slow clock.
RTCK is the Return Test Clock. Not an IEEE Standard 1149.1 signal added for a better clock
handling by emulators. From some ICE Interface probes, this return signal can be used to synchronize the TCK clock and take not care about the given ratio between the ICE Interface clock
and system clock equal to 1/6th. This signal is only available in JTAG ICE Mode and not in
boundary scan mode.
13.5.4
Debug Unit
The Debug Unit provides a two-pin (DXRD and TXRD) USART that can be used for several
debug and trace purposes and offers an ideal means for in-situ programming solutions and
debug monitor communication. Moreover, the association with two peripheral data controller
channels permits packet handling of these tasks with processor time reduced to a minimum.
The Debug Unit also manages the interrupt handling of the COMMTX and COMMRX signals
that come from the ICE and that trace the activity of the Debug Communication Channel.The
Debug Unit allows blockage of access to the system through the ICE interface.
A specific register, the Debug Unit Chip ID Register, gives information about the product version
and its internal configuration.
The AT91SAM9R64/RL64 Debug Unit Chip ID value is 0x0196 07A0 on 32-bit width.
For further details on the Debug Unit, see the Debug Unit section.
13.5.5
IEEE 1149.1 JTAG Boundary Scan
IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging
technology.
IEEE 1149.1 JTAG Boundary Scan is enabled when JTAGSEL is high. The SAMPLE, EXTEST
and BYPASS functions are implemented. In ICE debug mode, the ARM processor responds
with a non-JTAG chip ID that identifies the processor to the ICE system. This is not IEEE 1149.1
JTAG-compliant.
It is not possible to switch directly between JTAG and ICE operations. A chip reset must be performed after JTAGSEL is changed.
71
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
A Boundary-scan Descriptor Language (BSDL) file is provided to set up test.
13.5.6
ID Code Register
Access: Read-only
31
30
29
28
27
VERSION
23
22
26
25
24
PART NUMBER
21
20
19
18
17
16
10
9
8
PART NUMBER
15
14
13
12
11
PART NUMBER
7
6
MANUFACTURER IDENTITY
5
4
MANUFACTURER IDENTITY
3
2
1
0
1
• MANUFACTURER IDENTITY[11:1]
Set to 0x01F.
Bit[0] Required by IEEE Std. 1149.1.
Set to 0x1.
JTAG ID Code value is 0x05B2_003F.
• PART NUMBER[27:12]: Product Part Number
Product part Number is 0x5B20.
• VERSION[31:28]: Product Version Number
Set to 0x0.
72
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
14. AT91SAM9R64/RL64 Boot Program
14.1
Description
The Boot Program integrates different programs that manage download and/or upload into the
different memories of the product.
First, it initializes the Debug Unit serial port (DBGU) and the USB High Speed Device Port.
Then the SD Card Boot program is executed. It looks for a boot.bin file in the root directory of a
FAT12/16/32 formatted SD Card. If such a file is found, code is downloaded into the internal
SRAM. This is followed by a remap and a jump to the first address of the SRAM.
If the SD Card is not formatted or if boot.bin file is not found, NAND Flash Boot program is then
executed. The NAND Flash Boot program searches for a valid application in the NAND Flash
memory. If a valid application is found, this application is loaded into internal SRAM and executed by branching at address 0x0000_0000 after remap. See “DataFlash Boot” on page 75 for
more information on Valid Image Detection.
If no valid ARM vector sequence is found, the DataFlash Boot program is then executed. It looks
for a sequence of seven valid ARM exception vectors in a DataFlash connected to the SPI. All
these vectors must be B-branch or LDR load register instructions except for the sixth vector.
This vector is used to store the size of the image to download.
If a valid sequence is found, code is downloaded into the internal SRAM. This is followed by a
remap and a jump to the first address of the SRAM.
If no valid ARM vector sequence is found, SAM-BA Boot is then executed. It waits for transactions either on the USB device, or on the DBGU serial port.
14.2
Flow Diagram
The Boot Program implements the algorithm in Figure 14-1.
73
6289C–ATARM–28-May-09
Figure 14-1. Boot Program Algorithm Flow Diagram
Device
Setup
SD Card Boot
No
Run
SD Card Boot
Yes
Download from
NandFlash
Run
NandFlash Boot
Yes
Download from
DataFlash (NPCS0)
Run
DataFlash Boot
Timeout < 1 s
SPI DataFlash Boot
No
Download from
SD Card (MCI)
Timeout < 1 s
NandFlash Boot
No
Yes
No
Timeout < 1 s
USB Enumeration
Successful ?
No
Character(s) received
on DBGU ?
SAM-BA Boot
Yes
Run SAM-BA Boot
14.3
Yes
Run SAM-BA Boot
Device Initialization
Initialization follows the steps described below:
1. Stack setup for ARM supervisor mode
2. Main Oscillator Frequency Detection
3. C variable initialization
4. UTMI PLL is enabled to generate a 480MHz clock necessary to use the USB High
Speed Device.
5. PLL setup: PLL is initialized to generate a 96 MHz clock.
Note:
A 12 MHz Crystal is mandatory in order to generate these clocks correctly.
6. MCK is configured to generate a 48MHz clock (PLL/2).
7. Initialization of the DBGU serial port (115200 bauds, 8, N, 1)
8. Enable the user reset
74
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
9. Jump to SD Card Boot sequence. If SD Card Boot succeeds, perform a remap and
jump to 0x0.
10. Jump to NAND Flash Boot sequence. If NAND Flash Boot succeeds, perform a remap
and jump to 0x0.
11. Jump to DataFlash Boot sequence through NPCS0. If DataFlash Boot succeeds, perform a remap and jump to 0x0.
12. Activation of the Instruction Cache
13. Jump to SAM-BA Boot sequence
14. Disable the WatchDog
15. Initialization of the USB Device Port
Figure 14-2. Remap Action after Download Completion
0x0000_0000
0x0000_0000
Internal
ROM
Internal
SRAM
REMAP
0x0030_0000
0x0010_0000
Internal
SRAM
14.4
Internal
ROM
DataFlash Boot
The DataFlash Boot program searches for a valid application in the SPI DataFlash memory. If a
valid application is found, this application is loaded into internal SRAM and executed by branching at address 0x0000_0000 after remap. This application may be the application code or a
second-level bootloader.
All the calls to functions are PC relative and do not use absolute addresses.
After reset, the code in internal ROM is mapped at both addresses 0x0000_0000 and 0x0040_0000:
400000
ea000006
B
0x20
00ea000006B0x20
400004
eafffffe
B
0x04
04eafffffeB0x04
400008
ea00002f
B
_main
08ea00002fB_main
40000c
eafffffe
B
0x0c
0ceafffffeB0x0c
400010
eafffffe
B
0x10
10eafffffeB0x10
400014
eafffffe
B
0x14
14eafffffeB0x14
400018
eafffffe
B
0x18
18eafffffeB0x18
14.4.1
Valid Image Detection
The DataFlash Boot software looks for a valid application by analyzing the first 28 bytes corresponding to the ARM exception vectors. These bytes must implement ARM instructions for
either branch or load PC with PC relative addressing.
The sixth vector, at offset 0x14, contains the size of the image to download. The user must
replace this vector with his own vector (see “Structure of ARM Vector 6” on page 76).
75
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 14-3. LDR Opcode
31
1
28 27
1
1
0
1
24 23
1
I
P
U
20 19
1
W
0
16 15
Rn
12 11
0
Rd
Figure 14-4. B Opcode
31
1
28 27
1
1
0
1
24 23
0
1
0
0
Offset (24 bits)
Unconditional instruction: 0xE for bits 31 to 28
Load PC with PC relative addressing instruction:
– Rn = Rd = PC = 0xF
– I==1
– P==1
– U offset added (U==1) or subtracted (U==0)
– W==1
14.4.2
Structure of ARM Vector 6
The ARM exception vector 6 is used to store information needed by the DataFlash boot program. This information is described below.
Figure 14-5. Structure of the ARM Vector 6
31
0
Size of the code to download in bytes
14.4.2.1
Example
An example of valid vectors follows:
00
ea000006
B
0x20
04
eafffffe
B
0x04
08
ea00002f
B
_main
0c
eafffffe
B
0x0c
10
eafffffe
B
0x10
14
00001234
18
eafffffe
B
0x18
<- Code size = 4660 bytes
The size of the image to load into SRAM is contained in the location of the sixth ARM vector.
Thus the user must replace this vector by the correct vector for his application.
14.4.3
DataFlash Boot Sequence
The DataFlash boot program performs device initialization followed by the download procedure.
76
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The DataFlash boot program supports all Atmel DataFlash devices. Table 14-1 summarizes the
parameters to include in the ARM vector 6 for all devices.
Table 14-1.
Device
DataFlash Device
Density
Page Size (bytes)
Number of Pages
AT45DB011
1 Mbit
264
512
AT45DB021
2 Mbits
264
1024
AT45DB041
4 Mbits
264
2048
AT45DB081
8 Mbits
264
4096
AT45DB161
16 Mbits
528
4096
AT45DB321
32 Mbits
528
8192
AT45DB642
64 Mbits
1056
8192
The DataFlash has a Status Register that determines all the parameters required to access the
device. The DataFlash boot is configured to be compatible with the future design of the
DataFlash.
77
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 14-6. Serial DataFlash Download
Start
Send status command
Is status OK ?
No
Jump to next boot
solution
Yes
Read the first 7 instructions (28 bytes).
Decode the sixth ARM vector
7 vectors
(except vector 6) are LDR
or Branch instruction
No
Yes
Read the DataFlash into the internal SRAM.
(code size to read in vector 6)
Restore the reset value for the peripherals.
Set the PC to 0 and perform the REMAP
to jump to the downloaded application
End
14.5
SD Card Boot
Boot ROM does not support high-capacity SDCards.
The SD Card Boot program searches for a valid application in the SD Card memory.
It looks for a boot.bin file in the root directory of a FAT12/16/32 formatted SD Card. If a valid file
is found, this application is loaded into internal SRAM and executed by branching at address
0x0000_0000 after remap. This application may be the application code or a second-level
bootloader.
14.6
NAND Flash Boot
The NAND Flash Boot program searches for a valid application in the NAND Flash memory. If a
valid application is found, this application is loaded into internal SRAM and executed by branch-
78
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
ing at address 0x0000_0000 after remap. See “DataFlash Boot” on page 75 for more information
on Valid Image Detection.
14.6.1
14.7
Supported NAND Flash Devices
Any 8 or 16-bit NAND Flash devices.
SAM-BA Boot
If no valid DataFlash device has been found during the DataFlash boot sequence, the SAM-BA
boot program is performed.
The SAM-BA boot principle is to:
– Check if USB High Speed Device enumeration has occurred.
– Check if characters have been received on the DBGU.
– Once the communication interface is identified, the application runs in an infinite
loop waiting for different commands as in Table 14-2.
Table 14-2.
Commands Available through the SAM-BA Boot
Command
Action
Argument(s)
Example
O
write a byte
Address, Value#
O200001,CA#
o
read a byte
Address,#
o200001,#
H
write a half word
Address, Value#
H200002,CAFE#
h
read a half word
Address,#
h200002,#
W
write a word
Address, Value#
W200000,CAFEDECA#
w
read a word
Address,#
w200000,#
S
send a file
Address,#
S200000,#
R
receive a file
Address, NbOfBytes#
R200000,1234#
G
go
Address#
G200200#
V
display version
No argument
V#
• Write commands: Write a byte (O), a halfword (H) or a word (W) to the target.
– Address: Address in hexadecimal.
– Value: Byte, halfword or word to write in hexadecimal.
– Output: ‘>’.
• Read commands: Read a byte (o), a halfword (h) or a word (w) from the target.
– Address: Address in hexadecimal
– Output: The byte, halfword or word read in hexadecimal following by ‘>’
• Send a file (S): Send a file to a specified address
– Address: Address in hexadecimal
– Output: ‘>’.
Note:
There is a time-out on this command which is reached when the prompt ‘>’ appears before the
end of the command execution.
• Receive a file (R): Receive data into a file from a specified address
– Address: Address in hexadecimal
79
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– NbOfBytes: Number of bytes in hexadecimal to receive
– Output: ‘>’
• Go (G): Jump to a specified address and execute the code
– Address: Address to jump in hexadecimal
– Output: ‘>’
• Get Version (V): Return the SAM-BA boot version
– Output: ‘>’
14.7.1
DBGU Serial Port
Communication is performed through the DBGU serial port initialized to 115200 Baud, 8, n, 1.
The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal
performing this protocol can be used to send the application file to the target. The size of the
binary file to send depends on the SRAM size embedded in the product. In all cases, the size of
the binary file must be lower than the SRAM size because the Xmodem protocol requires some
SRAM memory to work.
14.7.2
Xmodem Protocol
The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC-16 to guarantee detection of a maximum bit error.
Xmodem protocol with CRC is accurate provided both sender and receiver report successful
transmission. Each block of the transfer looks like:
<SOH><blk #><255-blk #><--128 data bytes--><checksum> in which:
– <SOH> = 01 hex
– <blk #> = binary number, starts at 01, increments by 1, and wraps 0FFH to 00H (not
to 01)
– <255-blk #> = 1’s complement of the blk#.
– <checksum> = 2 bytes CRC16
Figure 14-7 shows a transmission using this protocol.
80
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 14-7. Xmodem Transfer Example
Host
Device
C
SOH 01 FE Data[128] CRC CRC
ACK
SOH 02 FD Data[128] CRC CRC
ACK
SOH 03 FC Data[100] CRC CRC
ACK
EOT
ACK
14.7.3
USB High Speed Device Port
A 480 MHz USB clock is necessary to use the USB High Speed Device port. It has been programmed earlier in the device initialization procedure with UTMI PLL configuration.
The Vendor ID is Atmel’s vendor ID 0x03EB. The product ID is 0x6124. These references are
used by the host operating system to mount the correct driver. On Windows systems, the INF
files contain the correspondence between vendor ID and product ID.
Atmel provides an INF example to see the device as a new serial port and also provides another
custom driver used by the SAM-BA application: atm6124.sys. Refer to the document “USB Basic
Application”, literature number 6123, for more details.
14.7.3.1
Enumeration Process
The USB protocol is a master/slave protocol. This is the host that starts the enumeration sending requests to the device through the control endpoint. The device handles standard requests
as defined in the USB Specification.
Table 14-3.
Handled Standard Requests
Request
Definition
GET_DESCRIPTOR
Returns the current device configuration value.
SET_ADDRESS
Sets the device address for all future device access.
SET_CONFIGURATION
Sets the device configuration.
GET_CONFIGURATION
Returns the current device configuration value.
GET_STATUS
Returns status for the specified recipient.
SET_FEATURE
Used to set or enable a specific feature.
CLEAR_FEATURE
Used to clear or disable a specific feature.
81
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The device also handles some class requests defined in the CDC class.
Table 14-4.
Handled Class Requests
Request
Definition
SET_LINE_CODING
Configures DTE rate, stop bits, parity and number of
character bits.
GET_LINE_CODING
Requests current DTE rate, stop bits, parity and number
of character bits.
SET_CONTROL_LINE_STATE
RS-232 signal used to tell the DCE device the DTE
device is now present.
Unhandled requests are STALLed.
14.7.3.2
Communication Endpoints
There are two communication endpoints and endpoint 0 is used for the enumeration process.
Endpoint 1 is a 512-byte Bulk OUT endpoint and endpoint 2 is a 512-byte Bulk IN endpoint.
SAM-BA Boot commands are sent by the host through the endpoint 1. If required, the message
is split by the host into several data payloads by the host driver.
If the command requires a response, the host can send IN transactions to pick up the response.
14.8
Hardware and Software Constraints
• A 12 MHz Crystal is mandatory in order to generate correctly 480 MHz clock necessary for
the USB High Speed Device and to generate the 48 MHz System clock.
• No Bypass Mode.
• The SD Card, NAND Flash and DataFlash downloaded code size must be inferior to 56 K
bytes.
• The code is always downloaded from the DataFlash or NAND Flash device address
0x0000_0000 to the address 0x0000_0000 of the internal SRAM (after remap).
• The downloaded code must be position-independent or linked at address 0x0000_0000.
• The DataFlash must be connected to NPCS0 of the SPI.
The MCI, the SPI and NAND Flash drivers use several PIOs in alternate functions to communicate with devices. Care must be taken when these PIOs are used by the application. The
devices connected could be unintentionally driven at boot time, and electrical conflicts between
peripherals output pins and the connected devices may appear.
To assure correct functionality, it is recommended to plug in critical devices to other pins.
Table 14-5 contains a list of pins that are driven during the boot program execution. These pins
are driven during the boot sequence for a period of less than 1 second if no correct boot program
is found.
For the DataFlash driven by the SPCK signal at 8 MHz, the time to download 60 K bytes is
reduced to 200 ms.
82
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Before performing the jump to the application in internal SRAM, all the PIOs and peripherals
used in the boot program are set to their reset state.
Table 14-5.
Pins Driven during Boot Program Execution
Peripheral
Pin
PIO Line
MCI
MCDA0
PIOA0
MCI
MCCDA
PIOA1
MCI
MCCK
PIOA2
MCI
MCDA1
PIOA3
MCI
MCDA2
PIOA4
MCI
MCDA3
PIOA5
SPI
MISO
PIOA25
SPI
MOSI
PIOA26
SPI
SPCK
PIOA27
SPI
NPCS0
PIOA28
PIO Controller B
NAND OE
PIOB4
PIO Controller B
NAND WE
PIOB5
PIO Controller B
NANDCS
PIOB6
Address Bus
NAND ALE
A21
Address Bus
NAND CLE
A22
DBGU
DRXD
PIOA21
DBGU
DTXD
PIOA22
83
6289C–ATARM–28-May-09
84
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
15. Reset Controller (RSTC)
15.1
Description
The Reset Controller (RSTC), based on power-on reset cells, handles all the resets of the system without any external components. It reports which reset occurred last.
The Reset Controller also drives independently or simultaneously the external reset and the
peripheral and processor resets.
15.2
Block Diagram
Figure 15-1. Reset Controller Block Diagram
Reset Controller
Main Supply
POR
Backup Supply
POR
rstc_irq
Startup
Counter
Reset
State
Manager
proc_nreset
user_reset
NRST
nrst_out
NRST
Manager
periph_nreset
exter_nreset
backup_neset
WDRPROC
wd_fault
SLCK
85
6289C–ATARM–28-May-09
15.3
Functional Description
15.3.1
Reset Controller Overview
The Reset Controller is made up of an NRST Manager, a Startup Counter and a Reset State
Manager. It runs at Slow Clock and generates the following reset signals:
• proc_nreset: Processor reset line. It also resets the Watchdog Timer.
• backup_nreset: Affects all the peripherals powered by VDDBU.
• periph_nreset: Affects the whole set of embedded peripherals.
• nrst_out: Drives the NRST pin.
These reset signals are asserted by the Reset Controller, either on external events or on software action. The Reset State Manager controls the generation of reset signals and provides a
signal to the NRST Manager when an assertion of the NRST pin is required.
The NRST Manager shapes the NRST assertion during a programmable time, thus controlling
external device resets.
The startup counter waits for the complete crystal oscillator startup. The wait delay is given by
the crystal oscillator startup time maximum value that can be found in the section Crystal Oscillator Characteristics in the Electrical Characteristics section of the product documentation.
The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered with VDDBU, so that its configuration is saved as long as VDDBU is on.
15.3.2
NRST Manager
The NRST Manager samples the NRST input pin and drives this pin low when required by the
Reset State Manager. Figure 15-2 shows the block diagram of the NRST Manager.
Figure 15-2. NRST Manager
RSTC_MR
URSTIEN
RSTC_SR
URSTS
NRSTL
rstc_irq
RSTC_MR
URSTEN
Other
interrupt
sources
user_reset
NRST
RSTC_MR
ERSTL
nrst_out
15.3.2.1
External Reset Timer
exter_nreset
NRST Signal or Interrupt
The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low,
a User Reset is reported to the Reset State Manager.
However, the NRST Manager can be programmed to not trigger a reset when an assertion of
NRST occurs. Writing the bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.
86
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR.
As soon as the pin NRST is asserted, the bit URSTS in RSTC_SR is set. This bit clears only
when RSTC_SR is read.
The Reset Controller can also be programmed to generate an interrupt instead of generating a
reset. To do so, the bit URSTIEN in RSTC_MR must be written at 1.
15.3.2.2
NRST External Reset Control
The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this
occurs, the “nrst_out” signal is driven low by the NRST Manager for a time programmed by the
field ERSTL in RSTC_MR. This assertion duration, named EXTERNAL_RESET_LENGTH, lasts
2(ERSTL+1) Slow Clock cycles. This gives the approximate duration of an assertion between 60 µs
and 2 seconds. Note that ERSTL at 0 defines a two-cycle duration for the NRST pulse.
This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that
the NRST line is driven low for a time compliant with potential external devices connected on the
system reset.
As the field is within RSTC_MR, which is backed-up, this field can be used to shape the system
power-up reset for devices requiring a longer startup time than the Slow Clock Oscillator.
15.3.3
BMS Sampling
The product matrix manages a boot memory that depends on the level on the BMS pin at reset.
The BMS signal is sampled three slow clock cycles after the Core Power-On-Reset output rising
edge.
Figure 15-3. BMS Sampling
SLCK
Core Supply
POR output
BMS Signal
XXX
H or L
BMS sampling delay
= 3 cycles
proc_nreset
87
6289C–ATARM–28-May-09
15.3.4
Reset States
The Reset State Manager handles the different reset sources and generates the internal reset
signals. It reports the reset status in the field RSTTYP of the Status Register (RSTC_SR). The
update of the field RSTTYP is performed when the processor reset is released.
15.3.4.1
General Reset
A general reset occurs when VDDBU and VDDCORE are powered on. The backup supply POR
cell output rises and is filtered with a Startup Counter, which operates at Slow Clock. The purpose of this counter is to make sure the Slow Clock oscillator is stable before starting up the
device. The length of startup time is hardcoded to comply with the Slow Clock Oscillator startup
time.
After this time, the processor clock is released at Slow Clock and all the other signals remain
valid for 3 cycles for proper processor and logic reset. Then, all the reset signals are released
and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is reset, the
NRST line rises 2 cycles after the backup_nreset, as ERSTL defaults at value 0x0.
When VDDBU is detected low by the Backup Supply POR Cell, all resets signals are immediately asserted, even if the Main Supply POR Cell does not report a Main Supply shutdown.
VDDBU only activates the backup_nreset signal.
The backup_nreset must be released so that any other reset can be generated by VDDCORE
(Main Supply POR output).
Figure 15-4 shows how the General Reset affects the reset signals.
Figure 15-4. General Reset State
SLCK
Any
Freq.
MCK
Backup Supply
POR output
Startup Time
Main Supply
POR output
backup_nreset
Processor Startup
= 3 cycles
proc_nreset
RSTTYP
XXX
0x0 = General Reset
XXX
periph_nreset
NRST
(nrst_out)
BMS Sampling
EXTERNAL RESET LENGTH
= 2 cycles
88
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
15.3.4.2
Wake-up Reset
The Wake-up Reset occurs when the Main Supply is down. When the Main Supply POR output
is active, all the reset signals are asserted except backup_nreset. When the Main Supply powers up, the POR output is resynchronized on Slow Clock. The processor clock is then re-enabled
during 3 Slow Clock cycles, depending on the requirements of the ARM processor.
At the end of this delay, the processor and other reset signals rise. The field RSTTYP in
RSTC_SR is updated to report a Wake-up Reset.
The “nrst_out” remains asserted for EXTERNAL_RESET_LENGTH cycles. As RSTC_MR is
backed-up, the programmed number of cycles is applicable.
When the Main Supply is detected falling, the reset signals are immediately asserted. This transition is synchronous with the output of the Main Supply POR.
Figure 15-5. Wake-up State
SLCK
Any
Freq.
MCK
Main Supply
POR output
backup_nreset
Resynch.
2 cycles
proc_nreset
RSTTYP
Processor Startup
= 3 cycles
XXX
0x1 = WakeUp Reset
XXX
periph_nreset
NRST
(nrst_out)
EXTERNAL RESET LENGTH
= 4 cycles (ERSTL = 1)
89
6289C–ATARM–28-May-09
15.3.4.3
User Reset
The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in
RSTC_MR is at 1. The NRST input signal is resynchronized with SLCK to insure proper behavior of the system.
The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset
and the Peripheral Reset are asserted.
The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle
processor startup. The processor clock is re-enabled as soon as NRST is confirmed high.
When the processor reset signal is released, the RSTTYP field of the Status Register
(RSTC_SR) is loaded with the value 0x4, indicating a User Reset.
The NRST Manager guarantees that the NRST line is asserted for
EXTERNAL_RESET_LENGTH Slow Clock cycles, as programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is driven low
externally, the internal reset lines remain asserted until NRST actually rises.
Figure 15-6. User Reset State
SLCK
MCK
Any
Freq.
NRST
Resynch.
2 cycles
Resynch.
2 cycles
Processor Startup
= 3 cycles
proc_nreset
RSTTYP
Any
XXX
0x4 = User Reset
periph_nreset
NRST
(nrst_out)
>= EXTERNAL RESET LENGTH
90
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
15.3.4.4
Software Reset
The Reset Controller offers several commands used to assert the different reset signals. These
commands are performed by writing the Control Register (RSTC_CR) with the following bits at
1:
• PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer.
• PERRST: Writing PERRST at 1 resets all the embedded peripherals, including the memory
system, and, in particular, the Remap Command. The Peripheral Reset is generally used for
debug purposes.
• EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field
ERSTL in the Mode Register (RSTC_MR).
The software reset is entered if at least one of these bits is set by the software. All these commands can be performed independently or simultaneously. The software reset lasts 3 Slow
Clock cycles.
The internal reset signals are asserted as soon as the register write is performed. This is
detected on the Master Clock (MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.
If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field
ERSTL. However, the resulting falling edge on NRST does not lead to a User Reset.
If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field
RSTTYP of the Status Register (RSTC_SR). Other Software Resets are not reported in
RSTTYP.
As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the Status Register (RSTC_SR). It is cleared as soon as the software reset is left.
No other software reset can be performed while the SRCMP bit is set, and writing any value in
RSTC_CR has no effect.
91
6289C–ATARM–28-May-09
Figure 15-7. Software Reset
SLCK
MCK
Any
Freq.
Write RSTC_CR
Resynch.
1 cycle
Processor Startup
= 3 cycles
proc_nreset
if PROCRST=1
RSTTYP
Any
XXX
0x3 = Software Reset
periph_nreset
if PERRST=1
NRST
(nrst_out)
if EXTRST=1
EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)
SRCMP in RSTC_SR
15.3.4.5
Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock
cycles.
When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in
WDT_MR:
• If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST
line is also asserted, depending on the programming of the field ERSTL. However, the
resulting low level on NRST does not result in a User Reset state.
• If WDRPROC = 1, only the processor reset is asserted.
The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a
processor reset if WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog
Reset, and the Watchdog is enabled by default and with a period set to a maximum.
When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset
controller.
92
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 15-8. Watchdog Reset
SLCK
MCK
Any
Freq.
wd_fault
Processor Startup
= 3 cycles
proc_nreset
RSTTYP
Any
XXX
0x2 = Watchdog Reset
periph_nreset
Only if
WDRPROC = 0
NRST
(nrst_out)
EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)
15.3.5
Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources,
given in descending order:
• Backup Reset
• Wake-up Reset
• Watchdog Reset
• Software Reset
• User Reset
Particular cases are listed below:
• When in User Reset:
– A watchdog event is impossible because the Watchdog Timer is being reset by the
proc_nreset signal.
– A software reset is impossible, since the processor reset is being activated.
• When in Software Reset:
– A watchdog event has priority over the current state.
– The NRST has no effect.
• When in Watchdog Reset:
– The processor reset is active and so a Software Reset cannot be programmed.
– A User Reset cannot be entered.
15.3.6
Reset Controller Status Register
The Reset Controller status register (RSTC_SR) provides several status fields:
• RSTTYP field: This field gives the type of the last reset, as explained in previous sections.
93
6289C–ATARM–28-May-09
• SRCMP bit: This field indicates that a Software Reset Command is in progress and that no
further software reset should be performed until the end of the current one. This bit is
automatically cleared at the end of the current software reset.
• NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on
each MCK rising edge.
• URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR
register. This transition is also detected on the Master Clock (MCK) rising edge (see Figure
15-9). If the User Reset is disabled (URSTEN = 0) and if the interruption is enabled by the
URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an interrupt. Reading the
RSTC_SR status register resets the URSTS bit and clears the interrupt.
Figure 15-9.
Reset Controller Status and Interrupt
MCK
read
RSTC_SR
Peripheral Access
2 cycle
resynchronization
2 cycle
resynchronization
NRST
NRSTL
URSTS
rstc_irq
if (URSTEN = 0) and
(URSTIEN = 1)
94
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
15.4
Reset Controller (RSTC) User Interface
Table 15-1.
Reset Controller (RSTC) Register Mapping
Offset
Register
Name
0x00
Control Register
0x04
0x08
Note:
Back-up Reset
Value
Access
Reset Value
RSTC_CR
Write-only
-
Status Register
RSTC_SR
Read-only
0x0000_0001
0x0000_0000
Mode Register
RSTC_MR
Read/Write
-
0x0000_0000
1. The reset value of RSTC_SR either reports a General Reset or a Wake-up Reset depending on last rising power supply.
95
6289C–ATARM–28-May-09
15.4.1
Reset Controller Control Register
Register Name:
RSTC_CR
Access Type:
31
Write-only
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
8
–
7
–
6
–
5
–
4
–
3
EXTRST
2
PERRST
1
–
0
PROCRST
• PROCRST: Processor Reset
0 = No effect.
1 = If KEY is correct, resets the processor.
• PERRST: Peripheral Reset
0 = No effect.
1 = If KEY is correct, resets the peripherals.
• EXTRST: External Reset
0 = No effect.
1 = If KEY is correct, asserts the NRST pin.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
96
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
15.4.2
Reset Controller Status Register
Register Name:
RSTC_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
SRCMP
16
NRSTL
15
–
14
–
13
–
12
–
11
–
10
9
RSTTYP
8
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
URSTS
• URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.
1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.
• RSTTYP: Reset Type
Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.
RSTTYP
Reset Type
Comments
0
0
0
General Reset
Both VDDCORE and VDDBU rising
0
0
1
Wake Up Reset
VDDCORE rising
0
1
0
Watchdog Reset
Watchdog fault occurred
0
1
1
Software Reset
Processor reset required by the software
1
0
0
User Reset
NRST pin detected low
• NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).
• SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.
1 = A software reset command is being performed by the reset controller. The reset controller is busy.
97
6289C–ATARM–28-May-09
15.4.3
Reset Controller Mode Register
Register Name:
RSTC_MR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
15
–
14
–
13
–
12
–
11
10
9
8
7
–
6
–
5
4
URSTIEN
3
–
1
–
0
URSTEN
ERSTL
2
–
• URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.
1 = The detection of a low level on the pin NRST triggers a User Reset.
• URSTIEN: User Reset Interrupt Enable
0 = USRTS bit in RSTC_SR at 1 has no effect on rstc_irq.
1 = USRTS bit in RSTC_SR at 1 asserts rstc_irq if URSTEN = 0.
• ERSTL: External Reset Length
This field defines the external reset length. The external reset is asserted during a time of 2(ERSTL+1) Slow Clock cycles. This
allows assertion duration to be programmed between 60 µs and 2 seconds.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
98
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
16. Real-time Timer (RTT)
16.1
Overview
The Real-time Timer is built around a 32-bit counter and used to count elapsed seconds. It generates a periodic interrupt and/or triggers an alarm on a programmed value.
16.2
Block Diagram
Figure 16-1. Real-time Timer
RTT_MR
RTTRST
RTT_MR
RTPRES
RTT_MR
SLCK
RTTINCIEN
reload
16-bit
Divider
set
0
RTT_MR
RTTRST
RTTINC
RTT_SR
1
reset
0
rtt_int
32-bit
Counter
read
RTT_SR
RTT_MR
ALMIEN
RTT_VR
reset
CRTV
RTT_SR
ALMS
set
rtt_alarm
=
RTT_AR
16.3
ALMV
Functional Description
The Real-time Timer is used to count elapsed seconds. It is built around a 32-bit counter fed by
Slow Clock divided by a programmable 16-bit value. The value can be programmed in the field
RTPRES of the Real-time Mode Register (RTT_MR).
Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz
signal (if the Slow Clock is 32.768 Hz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then roll over to 0.
The Real-time Timer can also be used as a free-running timer with a lower time-base. The best
accuracy is achieved by writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but
may result in losing status events because the status register is cleared two Slow Clock cycles
after read. Thus if the RTT is configured to trigger an interrupt, the interrupt occurs during 2 Slow
Clock cycles after reading RTT_SR. To prevent several executions of the interrupt handler, the
interrupt must be disabled in the interrupt handler and re-enabled when the status register is
clear.
99
6289C–ATARM–28-May-09
The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time
Value Register). As this value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the same value to improve accuracy of the returned value.
The current value of the counter is compared with the value written in the alarm register
RTT_AR (Real-time Alarm Register). If the counter value matches the alarm, the bit ALMS in
RTT_SR is set. The alarm register is set to its maximum value, corresponding to 0xFFFF_FFFF,
after a reset.
The bit RTTINC in RTT_SR is set each time the Real-time Timer counter is incremented. This bit
can be used to start a periodic interrupt, the period being one second when the RTPRES is programmed with 0x8000 and Slow Clock equal to 32.768 Hz.
Reading the RTT_SR status register resets the RTTINC and ALMS fields.
Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the
new programmed value. This also resets the 32-bit counter.
Note:
Because of the asynchronism between the Slow Clock (SCLK) and the System Clock (MCK):
1) The restart of the counter and the reset of the RTT_VR current value register is effective only 2
slow clock cycles after the write of the RTTRST bit in the RTT_MR register.
2) The status register flags reset is taken into account only 2 slow clock cycles after the read of the
RTT_SR (Status Register).
Figure 16-2. RTT Counting
APB cycle
APB cycle
MCK
RTPRES - 1
Prescaler
0
RTT
0
...
ALMV-1
ALMV
ALMV+1
ALMV+2
ALMV+3
RTTINC (RTT_SR)
ALMS (RTT_SR)
APB Interface
read RTT_SR
100
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
16.4
16.4.1
Real-time Timer (RTT) User Interface
Register Mapping
Table 16-1.
Real-time Timer Register Mapping
Offset
Register
Name
Access
Reset Value
0x00
Mode Register
RTT_MR
Read/Write
0x0000_8000
0x04
Alarm Register
RTT_AR
Read/Write
0xFFFF_FFFF
0x08
Value Register
RTT_VR
Read-only
0x0000_0000
0x0C
Status Register
RTT_SR
Read-only
0x0000_0000
101
6289C–ATARM–28-May-09
16.4.2
Real-time Timer Mode Register
Register Name:
RTT_MR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
RTTRST
17
RTTINCIEN
16
ALMIEN
15
14
13
12
11
10
9
8
3
2
1
0
RTPRES
7
6
5
4
RTPRES
• RTPRES: Real-time Timer Prescaler Value
Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 216
RTPRES ≠ 0: The prescaler period is equal to RTPRES.
• ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.
1 = The bit ALMS in RTT_SR asserts interrupt.
• RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 = The bit RTTINC in RTT_SR has no effect on interrupt.
1 = The bit RTTINC in RTT_SR asserts interrupt.
• RTTRST: Real-time Timer Restart
1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.
102
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
16.4.3
Real-time Timer Alarm Register
Register Name:
RTT_AR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
ALMV
23
22
21
20
ALMV
15
14
13
12
ALMV
7
6
5
4
ALMV
• ALMV: Alarm Value
Defines the alarm value (ALMV+1) compared with the Real-time Timer.
16.4.4
Real-time Timer Value Register
Register Name:
RTT_VR
Access Type:
31
Read-only
30
29
28
CRTV
23
22
21
20
CRTV
15
14
13
12
CRTV
7
6
5
4
CRTV
• CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.
103
6289C–ATARM–28-May-09
16.4.5
Real-time Timer Status Register
Register Name:
RTT_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
RTTINC
0
ALMS
• ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.
1 = The Real-time Alarm occurred since the last read of RTT_SR.
• RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.
1 = The Real-time Timer has been incremented since the last read of the RTT_SR.
104
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
17. Periodic Interval Timer (PIT)
17.1
Overview
The Periodic Interval Timer (PIT) provides the operating system’s scheduler interrupt. It is
designed to offer maximum accuracy and efficient management, even for systems with long
response time.
17.2
Block Diagram
Figure 17-1. Periodic Interval Timer
PIT_MR
PIV
=?
PIT_MR
PITIEN
set
0
PIT_SR
PITS
pit_irq
reset
0
MCK
Prescaler
0
0
1
12-bit
Adder
1
read PIT_PIVR
20-bit
Counter
MCK/16
CPIV
PIT_PIVR
CPIV
PIT_PIIR
PICNT
PICNT
105
6289C–ATARM–28-May-09
17.3
Functional Description
The Periodic Interval Timer aims at providing periodic interrupts for use by operating systems.
The PIT provides a programmable overflow counter and a reset-on-read feature. It is built
around two counters: a 20-bit CPIV counter and a 12-bit PICNT counter. Both counters work at
Master Clock /16.
The first 20-bit CPIV counter increments from 0 up to a programmable overflow value set in the
field PIV of the Mode Register (PIT_MR). When the counter CPIV reaches this value, it resets to
0 and increments the Periodic Interval Counter, PICNT. The status bit PITS in the Status Register (PIT_SR) rises and triggers an interrupt, provided the interrupt is enabled (PITIEN in
PIT_MR).
Writing a new PIV value in PIT_MR does not reset/restart the counters.
When CPIV and PICNT values are obtained by reading the Periodic Interval Value Register
(PIT_PIVR), the overflow counter (PICNT) is reset and the PITS is cleared, thus acknowledging
the interrupt. The value of PICNT gives the number of periodic intervals elapsed since the last
read of PIT_PIVR.
When CPIV and PICNT values are obtained by reading the Periodic Interval Image Register
(PIT_PIIR), there is no effect on the counters CPIV and PICNT, nor on the bit PITS. For example, a profiler can read PIT_PIIR without clearing any pending interrupt, whereas a timer
interrupt clears the interrupt by reading PIT_PIVR.
The PIT may be enabled/disabled using the PITEN bit in the PIT_MR register (disabled on
reset). The PITEN bit only becomes effective when the CPIV value is 0. Figure 17-2 illustrates
the PIT counting. After the PIT Enable bit is reset (PITEN= 0), the CPIV goes on counting until
the PIV value is reached, and is then reset. PIT restarts counting, only if the PITEN is set again.
The PIT is stopped when the core enters debug state.
106
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 17-2. Enabling/Disabling PIT with PITEN
APB cycle
APB cycle
MCK
15
restarts MCK Prescaler
MCK Prescaler 0
PITEN
CPIV
PICNT
0
1
PIV - 1
0
PIV
1
0
1
0
PITS (PIT_SR)
APB Interface
read PIT_PIVR
107
6289C–ATARM–28-May-09
17.4
Periodic Interval Timer (PIT) User Interface
Table 17-1.
Periodic Interval Timer (PIT) Register Mapping
Offset
Register
Name
Access
Reset Value
0x00
Mode Register
PIT_MR
Read/Write
0x000F_FFFF
0x04
Status Register
PIT_SR
Read-only
0x0000_0000
0x08
Periodic Interval Value Register
PIT_PIVR
Read-only
0x0000_0000
0x0C
Periodic Interval Image Register
PIT_PIIR
Read-only
0x0000_0000
108
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
17.4.1
Periodic Interval Timer Mode Register
Register Name:
PIT_MR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
PITIEN
24
PITEN
23
–
22
–
21
–
20
–
19
18
17
16
15
14
13
12
11
10
9
8
3
2
1
0
PIV
PIV
7
6
5
4
PIV
• PIV: Periodic Interval Value
Defines the value compared with the primary 20-bit counter of the Periodic Interval Timer (CPIV). The period is equal to
(PIV + 1).
• PITEN: Period Interval Timer Enabled
0 = The Periodic Interval Timer is disabled when the PIV value is reached.
1 = The Periodic Interval Timer is enabled.
• PITIEN: Periodic Interval Timer Interrupt Enable
0 = The bit PITS in PIT_SR has no effect on interrupt.
1 = The bit PITS in PIT_SR asserts interrupt.
17.4.2
Periodic Interval Timer Status Register
Register Name:
PIT_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
PITS
• PITS: Periodic Interval Timer Status
0 = The Periodic Interval timer has not reached PIV since the last read of PIT_PIVR.
1 = The Periodic Interval timer has reached PIV since the last read of PIT_PIVR.
109
6289C–ATARM–28-May-09
17.4.3
Periodic Interval Timer Value Register
Register Name:
PIT_PIVR
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
PICNT
23
22
21
20
PICNT
15
14
CPIV
13
12
11
10
9
8
3
2
1
0
25
24
17
16
CPIV
7
6
5
4
CPIV
Reading this register clears PITS in PIT_SR.
• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.
• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.
17.4.4
Periodic Interval Timer Image Register
Register Name:
PIT_PIIR
Access Type:
31
Read-only
30
29
28
27
26
19
18
PICNT
23
22
21
20
PICNT
15
14
CPIV
13
12
11
10
9
8
3
2
1
0
CPIV
7
6
5
4
CPIV
• CPIV: Current Periodic Interval Value
Returns the current value of the periodic interval timer.
• PICNT: Periodic Interval Counter
Returns the number of occurrences of periodic intervals since the last read of PIT_PIVR.
110
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
18. Watchdog Timer (WDT)
18.1
Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It features a 12-bit down counter that allows a watchdog period of up to 16 seconds
(slow clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition,
it can be stopped while the processor is in debug mode or idle mode.
18.2
Block Diagram
Figure 18-1. Watchdog Timer Block Diagram
write WDT_MR
WDT_MR
WDV
WDT_CR
WDRSTT
reload
1
0
12-bit Down
Counter
WDT_MR
WDD
reload
Current
Value
1/128
SLCK
<= WDD
WDT_MR
WDRSTEN
= 0
wdt_fault
(to Reset Controller)
set
set
read WDT_SR
or
reset
WDERR
reset
WDUNF
reset
wdt_int
WDFIEN
WDT_MR
111
6289C–ATARM–28-May-09
18.3
Functional Description
The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in
a deadlock. It is supplied with VDDCORE. It restarts with initial values on processor reset.
The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in
the field WDV of the Mode Register (WDT_MR). The Watchdog Timer uses the Slow Clock
divided by 128 to establish the maximum Watchdog period to be 16 seconds (with a typical Slow
Clock of 32.768 kHz).
After a Processor Reset, the value of WDV is 0xFFF, corresponding to the maximum value of
the counter with the external reset generation enabled (field WDRSTEN at 1 after a Backup
Reset). This means that a default Watchdog is running at reset, i.e., at power-up. The user must
either disable it (by setting the WDDIS bit in WDT_MR) if he does not expect to use it or must
reprogram it to meet the maximum Watchdog period the application requires.
The Watchdog Mode Register (WDT_MR) can be written only once. Only a processor reset
resets it. Writing the WDT_MR register reloads the timer with the newly programmed mode
parameters.
In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by writing the Control Register (WDT_CR) with the bit WDRSTT to 1. The
Watchdog counter is then immediately reloaded from WDT_MR and restarted, and the Slow
Clock 128 divider is reset and restarted. The WDT_CR register is write-protected. As a result,
writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode
Register (WDT_MR). Moreover, the bit WDUNF is set in the Watchdog Status Register
(WDT_SR).
To prevent a software deadlock that continuously triggers the Watchdog, the reload of the
Watchdog must occur while the Watchdog counter is within a window between 0 and WDD,
WDD is defined in the WatchDog Mode Register WDT_MR.
Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD
results in a Watchdog error, even if the Watchdog is disabled. The bit WDERR is updated in the
WDT_SR and the “wdt_fault” signal to the Reset Controller is asserted.
Note that this feature can be disabled by programming a WDD value greater than or equal to the
WDV value. In such a configuration, restarting the Watchdog Timer is permitted in the whole
range [0; WDV] and does not generate an error. This is the default configuration on reset (the
WDD and WDV values are equal).
The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit WDFIEN is set in the mode register. The signal “wdt_fault” to the reset
controller causes a Watchdog reset if the WDRSTEN bit is set as already explained in the reset
controller programmer Datasheet. In that case, the processor and the Watchdog Timer are
reset, and the WDERR and WDUNF flags are reset.
If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared,
and the “wdt_fault” signal to the reset controller is deasserted.
Writing the WDT_MR reloads and restarts the down counter.
While the processor is in debug state or in idle mode, the counter may be stopped depending on
the value programmed for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.
112
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 18-2. Watchdog Behavior
Watchdog Error
Watchdog Underflow
if WDRSTEN is 1
FFF
Normal behavior
if WDRSTEN is 0
WDV
Forbidden
Window
WDD
Permitted
Window
0
Watchdog
Fault
113
WDT_CR = WDRSTT
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
18.4
Watchdog Timer (WDT) User Interface
Table 18-1.
Offset
Watchdog Timer Registers
Register
Name
Access
Reset Value
0x00
Control Register
WDT_CR
Write-only
-
0x04
Mode Register
WDT_MR
Read/Write Once
0x3FFF_2FFF
0x08
Status Register
WDT_SR
Read-only
0x0000_0000
18.4.1
Watchdog Timer Control Register
Register Name:
WDT_CR
Access Type:
31
Write-only
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
WDRSTT
• WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the Watchdog.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
114
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
18.4.2
Watchdog Timer Mode Register
Register Name:
WDT_MR
Access Type:
31
Read/Write Once
30
23
29
WDIDLEHLT
28
WDDBGHLT
27
21
20
19
11
22
26
25
24
18
17
16
10
9
8
1
0
WDD
WDD
15
WDDIS
14
13
12
WDRPROC
WDRSTEN
WDFIEN
7
6
5
4
WDV
3
2
WDV
• WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.
• WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.
1: A Watchdog fault (underflow or error) asserts interrupt.
• WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.
1: A Watchdog fault (underflow or error) triggers a Watchdog reset.
• WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.
1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.
• WDD: Watchdog Delta Value
Defines the permitted range for reloading the Watchdog Timer.
If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.
• WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.
1: The Watchdog stops when the processor is in debug state.
• WDIDLEHLT: Watchdog Idle Halt
0: The Watchdog runs when the system is in idle mode.
1: The Watchdog stops when the system is in idle state.
• WDDIS: Watchdog Disable
0: Enables the Watchdog Timer.
1: Disables the Watchdog Timer.
115
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
18.4.3
Watchdog Timer Status Register
Register Name:
WDT_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
WDERR
0
WDUNF
• WDUNF: Watchdog Underflow
0: No Watchdog underflow occurred since the last read of WDT_SR.
1: At least one Watchdog underflow occurred since the last read of WDT_SR.
• WDERR: Watchdog Error
0: No Watchdog error occurred since the last read of WDT_SR.
1: At least one Watchdog error occurred since the last read of WDT_SR.
116
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
19. Shutdown Controller (SHDWC)
19.1
Description
The Shutdown Controller controls the power supplies VDDIO and VDDCORE and the wake-up
detection on debounced input lines.
19.2
Block Diagram
Figure 19-1. Shutdown Controller Block Diagram
SLCK
Shutdown Controller
SHDW_MR
read SHDW_SR
CPTWK0
reset
WAKEUP0 SHDW_SR
WKMODE0
set
WKUP0
read SHDW_SR
Wake-up
reset
RTTWKEN
SHDW_MR
RTT Alarm
RTTWK
Shutdown
Output
Controller
SHDW_SR
set
SHDN
SHDW_CR
read SHDW_SR
SHDW
Shutdown
reset
RTCWKEN
SHDW_MR
RTC Alarm
19.3
RTCWK
SHDW_SR
set
I/O Lines Description
Table 19-1.
I/O Lines Description
Name
Description
Type
WKUP0
Wake-up 0 input
Input
SHDN
Shutdown output
Output
19.4
19.4.1
Product Dependencies
Power Management
The Shutdown Controller is continuously clocked by Slow Clock. The Power Management Controller has no effect on the behavior of the Shutdown Controller.
117
6289C–ATARM–28-May-09
19.5
Functional Description
The Shutdown Controller manages the main power supply. To do so, it is supplied with VDDBU
and manages wake-up input pins and one output pin, SHDN.
A typical application connects the pin SHDN to the shutdown input of the DC/DC Converter providing the main power supplies of the system, and especially VDDCORE and/or VDDIO. The
wake-up inputs (WKUP0) connect to any push-buttons or signal that wake up the system.
The software is able to control the pin SHDN by writing the Shutdown Control Register
(SHDW_CR) with the bit SHDW at 1. The shutdown is taken into account only 2 slow clock
cycles after the write of SHDW_CR. This register is password-protected and so the value written
should contain the correct key for the command to be taken into account. As a result, the system
should be powered down.
A level change on WKUP0 is used as wake-up. Wake-up is configured in the Shutdown Mode
Register (SHDW_MR). The transition detector can be programmed to detect either a positive or
negative transition or any level change on WKUP0. The detection can also be disabled. Programming is performed by defining WKMODE0.
Moreover, a debouncing circuit can be programmed for WKUP0. The debouncing circuit filters
pulses on WKUP0 shorter than the programmed number of 16 SLCK cycles in CPTWK0 of the
SHDW_MR register. If the programmed level change is detected on a pin, a counter starts.
When the counter reaches the value programmed in the corresponding field, CPTWK0, the
SHDN pin is released. If a new input change is detected before the counter reaches the corresponding value, the counter is stopped and cleared. WAKEUP0 of the Status Register
(SHDW_SR) reports the detection of the programmed events on WKUP0 with a reset after the
read of SHDW_SR.
The Shutdown Controller can be programmed so as to activate the wake-up using the RTT
alarm (the detection of the rising edge of the RTT alarm is synchronized with SLCK). This is
done by writing the SHDW_MR register using the RTTWKEN fields. When enabled, the detection of the RTT alarm is reported in the RTTWK bit of the SHDW_SR Status register. It is reset
after the read of SHDW_SR. When using the RTT alarm to wake up the system, the user must
ensure that the RTT alarm status flag is cleared before shutting down the system. Otherwise, no
rising edge of the status flag may be detected and the wake-up fails.
The Shutdown Controller can be programmed so as to activate the wake-up using the RTC
alarm (the detection of the rising edge of the RTC alarm is synchronized with SLCK). This is
done by writing the SHDW_MR register using the RTCWKEN field. When enabled, the detection
of the RTC alarm is reported in the RTCWK bit of the SHDW_SR Status register. It is reset after
the read of SHDW_SR. When using the RTC alarm to wake up the system, the user must
ensure that the RTC alarm status flag is cleared before shutting down the system. Otherwise, no
rising edge of the status flag may be detected and the wake-up fails fail.
118
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
19.6
Shutdown Controller (SHDWC) User Interface
Table 19-2.
Register Mapping
Offset
Register
Name
Access
Reset
0x00
Shutdown Control Register
SHDW_CR
Write-only
-
0x04
Shutdown Mode Register
SHDW_MR
Read-write
0x0000_0003
0x08
Shutdown Status Register
SHDW_SR
Read-only
0x0000_0000
119
6289C–ATARM–28-May-09
19.6.1
Shutdown Control Register
Register Name:
SHDW_CR
Access Type:
31
Write-only
30
29
28
27
26
25
24
KEY
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
SHDW
• SHDW: Shutdown Command
0 = No effect.
1 = If KEY is correct, asserts the SHDN pin.
• KEY: Password
Should be written at value 0xA5. Writing any other value in this field aborts the write operation.
120
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
19.6.2
Shutdown Mode Register
Register Name:
SHDW_MR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
RTCWKEN
16
RTTWKEN
15
14
13
12
11
–
10
–
9
8
3
–
2
–
1
–
7
6
5
4
CPTWK0
–
0
WKMODE0
• WKMODE0: Wake-up Mode 0
WKMODE[1:0]
Wake-up Input Transition Selection
0
0
None. No detection is performed on the wake-up input
0
1
Low to high level
1
0
High to low level
1
1
Both levels change
• CPTWK0: Counter on Wake-up 0
Defines the number of 16 Slow Clock cycles, the level detection on the corresponding input pin shall last before the wakeup event occurs. Because of the internal synchronization of WKUP0, the SHDN pin is released
(CPTWK x 16 + 1) Slow Clock cycles after the event on WKUP.
• RTTWKEN: Real-time Timer Wake-up Enable
0 = The RTT Alarm signal has no effect on the Shutdown Controller.
1 = The RTT Alarm signal forces the de-assertion of the SHDN pin.
• RTCWKEN: Real-time Clock Wake-up Enable
0 = The RTC Alarm signal has no effect on the Shutdown Controller.
1 = The RTC Alarm signal forces the de-assertion of the SHDN pin.
121
6289C–ATARM–28-May-09
19.6.3
Shutdown Status Register
Register Name:
SHDW_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
RTCWK
16
RTTWK
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
WAKEUP0
• WAKEUP0: Wake-up 0 Status
0 = No wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
1 = At least one wake-up event occurred on the corresponding wake-up input since the last read of SHDW_SR.
• RTTWK: Real-time Timer Wake-up
0 = No wake-up alarm from the RTT occurred since the last read of SHDW_SR.
1 = At least one wake-up alarm from the RTT occurred since the last read of SHDW_SR.
• RTCWK: Real-time Clock Wake-up
0 = No wake-up alarm from the RTC occurred since the last read of SHDW_SR.
1 = At least one wake-up alarm from the RTC occurred since the last read of SHDW_SR.
122
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20. Real-time Clock (RTC)
20.1
Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.
It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian calendar, complemented by a programmable periodic interrupt. The alarm and calendar registers are
accessed by a 32-bit data bus.
The time and calendar values are coded in binary-coded decimal (BCD) format. The time format
can be 24-hour mode or 12-hour mode with an AM/PM indicator.
Updating time and calendar fields and configuring the alarm fields are performed by a parallel
capture on the 32-bit data bus. An entry control is performed to avoid loading registers with
incompatible BCD format data or with an incompatible date according to the current
month/year/century.
20.2
Block Diagram
Figure 20-1. Block Diagram
20.3
Crystal Oscillator: SLCK
32768 Divider
Bus Interface
Bus Interface
Time
Date
Entry
Control
Interrupt
Control
RTC Interrupt
Product Dependencies
20.3.1
Power Management
The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller
has no effect on RTC behavior.
20.3.2
Interrupt
The RTC Interrupt is connected to interrupt source 1 (IRQ1) of the advanced interrupt controller.
This interrupt line is due to the OR-wiring of the system peripheral interrupt lines (System Timer,
Real Time Clock, Power Management Controller, Memory Controller, etc.). When a system
interrupt occurs, the service routine must first determine the cause of the interrupt. This is done
by reading the status registers of the above system peripherals successively.
20.4
Functional Description
The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year
(with leap years), month, date, day, hours, minutes and seconds.
123
6289C–ATARM–28-May-09
The valid year range is 1900 to 2099, a two-hundred-year Gregorian calendar achieving full Y2K
compliance.
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.
Corrections for leap years are included (all years divisible by 4 being leap years, including year
2000). This is correct up to the year 2099.
After hardware reset, the calendar is initialized to Thursday, January 1, 1998.
20.4.1
Reference Clock
The reference clock is Slow Clock (SLCK).
During low power modes of the processor (idle mode), the oscillator runs and power consumption is critical. The crystal selection has to take into account the current consumption for power
saving and the frequency drift due to temperature effect on the circuit for time accuracy.
20.4.2
Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of seconds, at one-minute intervals for the counter of minutes and so on.
Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain
that the value read in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is necessary to read these registers twice. If the data is the same
both times, then it is valid. Therefore, a minimum of two and a maximum of three accesses are
required.
20.4.3
Alarm
The RTC has five programmable fields: month, date, hours, minutes and seconds.
Each of these fields can be enabled or disabled to match the alarm condition:
• If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted
and an interrupt generated if enabled) at a given month, date, hour/minute/second.
• If only the “seconds” field is enabled, then an alarm is generated every minute.
Depending on the combination of fields enabled, a large number of possibilities are available to
the user ranging from minutes to 365/366 days.
20.4.4
Error Checking
Verification on user interface data is performed when accessing the century, year, month, date,
day, hours, minutes, seconds and alarms. A check is performed on illegal BCD entries such as
illegal date of the month with regard to the year and century configured.
If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is
set in the validity register. The user can not reset this flag. It is reset as soon as an acceptable
value is programmed. This avoids any further side effects in the hardware. The same procedure
is done for the alarm.
The following checks are performed:
1. Century (check if it is in range 19 - 20)
2. Year (BCD entry check)
3. Date (check range 01 - 31)
4. Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
124
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
5. Day (check range 1 - 7)
6. Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is
not set if RTC is set in 24-hour mode; in 12-hour mode check range 01 - 12)
7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)
Note:
20.4.5
If the 12-hour mode is selected by means of the RTC_MODE register, a 12-hour value can be programmed and the returned value on RTC_TIME will be the corresponding 24-hour value. The
entry control checks the value of the AM/PM indicator (bit 22 of RTC_TIME register) to determine
the range to be checked.
Updating Time/Calendar
To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the Control Register. Bit UPDTIM must be set to update time fields (hour,
minute, second) and bit UPDCAL must be set to update calendar fields (century, year, month,
date, day).
Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Register. Once the bit reads 1, the user can write to the appropriate register.
Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control
Register.
When programming the calendar fields, the time fields remain enabled. This avoids a time slip in
case the user stays in the calendar update phase for several tens of seconds or more. In successive update operations, the user must wait at least one second after resetting the
UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these bits again. This is
done by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit.
After resetting UPDTIM/UPDCAL, the SEC flag must also be cleared.
20.5
Real-time Clock (RTC) User Interface
Table 20-1.
Register Mapping
Offset
Register Name
Read/Write
Reset
0x00
Control Register
RTC_CR
Read/Write
0x0
0x04
Mode Register
RTC_MR
Read/Write
0x0
0x08
Time Register
RTC_TIMR
Read/Write
0x0
0x0C
Calendar Register
RTC_CALR
Read/Write
0x01819819
0x10
Time Alarm Register
RTC_TIMALR
Read/Write
0x0
0x14
Calendar Alarm Register
RTC_CALALR
Read/Write
0x01010000
0x18
Status Register
RTC_SR
Read-only
0x0
0x1C
Status Clear Command Register
RTC_SCCR
Write-only
---
0x20
Interrupt Enable Register
RTC_IER
Write-only
---
0x24
Interrupt Disable Register
RTC_IDR
Write-only
---
0x28
Interrupt Mask Register
RTC_IMR
Read-only
0x0
0x2C
Valid Entry Register
RTC_VER
Read-only
0x0
RTC-VERSION
Read-only
0x-
0xFC
Note:
Register
Version Register
(1)
1. Values in the Version Register vary with the version of the IP block implementation.
125
6289C–ATARM–28-May-09
126
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.1
Name:
RTC Control Register
RTC_CR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
–
–
–
–
–
–
15
14
13
12
11
10
–
–
–
–
–
–
16
CALEVSEL
9
8
TIMEVSEL
7
6
5
4
3
2
1
0
–
–
–
–
–
–
UPDCAL
UPDTIM
• UPDTIM: Update Request Time Register
0 = No effect.
1 = Stops the RTC time counting.
Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and
acknowledged by the bit ACKUPD of the Status Register.
• UPDCAL: Update Request Calendar Register
0 = No effect.
1 = Stops the RTC calendar counting.
Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once
this bit is set.
• TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.
0 = Minute change.
1 = Hour change.
2 = Every day at midnight.
3 = Every day at noon.
• CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL.
0 = Week change (every Monday at time 00:00:00).
1 = Month change (every 01 of each month at time 00:00:00).
2, 3 = Year change (every January 1 at time 00:00:00).
127
6289C–ATARM–28-May-09
20.5.2
Name:
RTC Mode Register
RTC_MR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
HRMOD
• HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.
1 = 12-hour mode is selected.
All non-significant bits read zero.
128
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.3
Name:
RTC Time Register
RTC_TIMR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
AMPM
15
14
10
9
8
2
1
0
HOUR
13
12
–
7
11
MIN
6
5
–
4
3
SEC
• SEC: Current Second
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• MIN: Current Minute
The range that can be set is 0 - 59 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• HOUR: Current Hour
The range that can be set is 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.
• AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.
0 = AM.
1 = PM.
All non-significant bits read zero.
129
6289C–ATARM–28-May-09
20.5.4
Name:
RTC Calendar Register
RTC_CALR
Access Type:
Read/Write
31
30
–
–
23
22
29
28
27
21
20
19
DAY
15
14
26
25
24
18
17
16
DATE
MONTH
13
12
11
10
9
8
3
2
1
0
YEAR
7
6
5
–
4
CENT
• CENT: Current Century
The range that can be set is 19 - 20 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• YEAR: Current Year
The range that can be set is 00 - 99 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• MONTH: Current Month
The range that can be set is 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
• DAY: Current Day
The range that can be set is 1 - 7 (BCD).
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.
• DATE: Current Date
The range that can be set is 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.
All non-significant bits read zero.
130
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.5
Name:
RTC Time Alarm Register
RTC_TIMALR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
21
20
19
18
17
16
10
9
8
2
1
0
23
22
HOUREN
AMPM
15
14
HOUR
13
12
MINEN
7
11
MIN
6
5
SECEN
4
3
SEC
• SEC: Second Alarm
This field is the alarm field corresponding to the BCD-coded second counter.
• SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.
1 = The second-matching alarm is enabled.
• MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.
• MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.
1 = The minute-matching alarm is enabled.
• HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.
• AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.
• HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.
1 = The hour-matching alarm is enabled.
131
6289C–ATARM–28-May-09
20.5.6
Name:
RTC Calendar Alarm Register
RTC_CALALR
Access Type:
Read/Write
31
30
DATEEN
–
29
28
27
26
25
24
18
17
16
DATE
23
22
21
MTHEN
–
–
20
19
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
MONTH
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
• MONTH: Month Alarm
This field is the alarm field corresponding to the BCD-coded month counter.
• MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.
1 = The month-matching alarm is enabled.
• DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.
• DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.
1 = The date-matching alarm is enabled.
132
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.7
Name:
RTC Status Register
RTC_SR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALEV
TIMEV
SEC
ALARM
ACKUPD
• ACKUPD: Acknowledge for Update
0 = Time and calendar registers cannot be updated.
1 = Time and calendar registers can be updated.
• ALARM: Alarm Flag
0 = No alarm matching condition occurred.
1 = An alarm matching condition has occurred.
• SEC: Second Event
0 = No second event has occurred since the last clear.
1 = At least one second event has occurred since the last clear.
• TIMEV: Time Event
0 = No time event has occurred since the last clear.
1 = At least one time event has occurred since the last clear.
The time event is selected in the TIMEVSEL field in RTC_CTRL (Control Register) and can be any one of the following
events: minute change, hour change, noon, midnight (day change).
• CALEV: Calendar Event
0 = No calendar event has occurred since the last clear.
1 = At least one calendar event has occurred since the last clear.
The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week
change, month change and year change.
133
6289C–ATARM–28-May-09
20.5.8
Name:
RTC Status Clear Command Register
RTC_SCCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALCLR
TIMCLR
SECCLR
ALRCLR
ACKCLR
• ACKCLR: Acknowledge Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• ALRCLR: Alarm Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• SECCLR: Second Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• TIMCLR: Time Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
• CALCLR: Calendar Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).
134
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.9
Name:
RTC Interrupt Enable Register
RTC_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALEN
TIMEN
SECEN
ALREN
ACKEN
• ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.
1 = The acknowledge for update interrupt is enabled.
• ALREN: Alarm Interrupt Enable
0 = No effect.
1 = The alarm interrupt is enabled.
• SECEN: Second Event Interrupt Enable
0 = No effect.
1 = The second periodic interrupt is enabled.
• TIMEN: Time Event Interrupt Enable
0 = No effect.
1 = The selected time event interrupt is enabled.
• CALEN: Calendar Event Interrupt Enable
0 = No effect.
• 1 = The selected calendar event interrupt is enabled.
135
6289C–ATARM–28-May-09
20.5.10
Name:
RTC Interrupt Disable Register
RTC_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CALDIS
TIMDIS
SECDIS
ALRDIS
ACKDIS
• ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.
1 = The acknowledge for update interrupt is disabled.
• ALRDIS: Alarm Interrupt Disable
0 = No effect.
1 = The alarm interrupt is disabled.
• SECDIS: Second Event Interrupt Disable
0 = No effect.
1 = The second periodic interrupt is disabled.
• TIMDIS: Time Event Interrupt Disable
0 = No effect.
1 = The selected time event interrupt is disabled.
• CALDIS: Calendar Event Interrupt Disable
0 = No effect.
1 = The selected calendar event interrupt is disabled.
136
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
20.5.11
Name:
RTC Interrupt Mask Register
RTC_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
CAL
TIM
SEC
ALR
ACK
• ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.
1 = The acknowledge for update interrupt is enabled.
• ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.
1 = The alarm interrupt is enabled.
• SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.
1 = The second periodic interrupt is enabled.
• TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.
1 = The selected time event interrupt is enabled.
• CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.
1 = The selected calendar event interrupt is enabled.
137
6289C–ATARM–28-May-09
20.5.12
Name:
RTC Valid Entry Register
RTC_VER
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
NVCALALR
NVTIMALR
NVCAL
NVTIM
• NVTIM: Non valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).
1 = RTC_TIMR has contained invalid data since it was last programmed.
• NVCAL: Non valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).
1 = RTC_CALR has contained invalid data since it was last programmed.
• NVTIMALR: Non valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).
1 = RTC_TIMALR has contained invalid data since it was last programmed.
• NVCALALR: Non valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).
1 = RTC_CALALR has contained invalid data since it was last programmed.
138
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21. External Bus Interface (EBI)
21.1
Description
The External Bus Interface (EBI) is designed to ensure the successful data transfer between
several external devices and the embedded Memory Controller of an ARM-based device. The
Static Memory, SDRAM and ECC Controllers are all featured external Memory Controllers on
the EBI. These external Memory Controllers are capable of handling several types of external
memory and peripheral devices, such as SRAM, PROM, EPROM, EEPROM, Flash, and
SDRAM.
The EBI also supports the CompactFlash and the NAND Flash protocols via integrated circuitry
that greatly reduces the requirements for external components. Furthermore, the EBI handles
data transfers with up to six external devices, each assigned to six address spaces defined by
the embedded Memory Controller. Data transfers are performed through a 16-bit or 32-bit data
bus, an address bus of up to 26 bits, up to six chip select lines (NCS[5:0]) and several control
pins that are generally multiplexed between the different external Memory Controllers.
139
6289C–ATARM–28-May-09
21.2
21.2.1
Block Diagram
External Bus Interface 0
Figure 21-1 shows the organization of the External Bus Interface 0.
Figure 21-1. Organization of the External Bus Interface 0
External Bus Interface 0
Bus Matrix
D[15:0]
AHB
SDRAM
Controller
A0/NBS0
A1/NWR2/NBS2
A[15:2]
A16/BA0
MUX
Logic
Static
Memory
Controller
A17/BA1
NCS0
NCS1/SDCS
NRD/CFOE
NWR0/NWE/CFWE
NWR1/NBS1/CFIOR
NWR3/NBS3/CFIOW
SDCK
CompactFlash
Logic
SDCKE
RAS
CAS
SDWE
NAND Flash
Logic
SDA10
NWAIT
A[24:23], A[20:18]
A21/NANDALE
ECC
Controller
A22/NANDCLE
PIO
A25/CFRNW
Address Decoders
Chip Select
Assignor
D[31:16]
NCS2
NCS3/NANDCS
NCS4/CFCS0
User Interface
NCS5/CFCS1
CFCE1 - CFCE2
NANDOE, NANDWE
APB
140
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.3
I/O Lines Description
Table 21-1.
EBI I/O Lines Description
Name
Function
Type
Active Level
EBI
EBI_D0 - EBI_D31
Data Bus
I/O
EBI_A0 - EBI_A25
Address Bus
EBI_NWAIT
External Wait Signal
Output
Input
Low
SMC
EBI_NCS0 - EBI_NCS5
Chip Select Lines
Output
Low
EBI_NWR0 - EBI_NWR3
Write Signals
Output
Low
EBI_NRD
Read Signal
Output
Low
EBI_NWE
Write Enable
Output
Low
EBI_NBS0 - EBI_NBS3
Byte Mask Signals
Output
Low
EBI for CompactFlash Support
EBI_CFCE1 - EBI_CFCE2
CompactFlash Chip Enable
Output
Low
EBI_CFOE
CompactFlash Output Enable
Output
Low
EBI_CFWE
CompactFlash Write Enable
Output
Low
EBI_CFIOR
CompactFlash I/O Read Signal
Output
Low
EBI_CFIOW
CompactFlash I/O Write Signal
Output
Low
EBI_CFRNW
CompactFlash Read Not Write Signal
Output
EBI_CFCS0 - EBI_CFCS1
CompactFlash Chip Select Lines
Output
Low
EBI for NAND Flash Support
EBI_NANDCS
NAND Flash Chip Select Line
Output
Low
EBI_NANDOE
NAND Flash Output Enable
Output
Low
EBI_NANDWE
NAND Flash Write Enable
Output
Low
SDRAM Controller
EBI_SDCK
SDRAM Clock
Output
EBI_SDCKE
SDRAM Clock Enable
Output
High
EBI_SDCS
SDRAM Controller Chip Select Line
Output
Low
EBI_BA0 - EBI_BA1
Bank Select
Output
EBI_SDWE
SDRAM Write Enable
Output
Low
EBI_RAS - EBI_CAS
Row and Column Signal
Output
Low
EBI_NWR0 - EBI_NWR3
Write Signals
Output
Low
EBI_NBS0 - EBI_NBS3
Byte Mask Signals
Output
Low
EBI_SDA10
SDRAM Address 10 Line
Output
141
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The connection of some signals through the MUX logic is not direct and depends on the Memory
Controller in use at the moment.
Table 21-2 on page 142 details the connections between the two Memory Controllers and the
EBI pins.
Table 21-2.
EBI Pins and Memory Controllers I/O Lines Connections
EBIx Pins(1)
SDRAMC I/O Lines
SMC I/O Lines
EBI_NWR1/NBS1/CFIOR
NBS1
NWR1/NUB
EBI_A0/NBS0
Not Supported
SMC_A0/NLB
EBI_A1/NBS2/NWR2
Not Supported
SMC_A1
EBI_A[11:2]
SDRAMC_A[9:0]
SMC_A[11:2]
EBI_SDA10
SDRAMC_A10
Not Supported
EBI_A12
Not Supported
SMC_A12
EBI_A[14:13]
SDRAMC_A[12:11]
SMC_A[14:13]
EBI_A[22:15]
Not Supported
SMC_A[22:15]
EBI_A[25:23]
Not Supported
SMC_A[25:23]
EBI_D[31:0]
D[31:0]
D[31:0]
142
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.4
Application Example
21.4.1
Hardware Interface
Table 21-3 on page 143 details the connections to be applied between the EBI pins and the
external devices for each Memory Controller.
Table 21-3.
EBI Pins and External Static Devices Connections
Pins of the Interfaced Device
8-bit Static
Device
Signals:
EBI_
2 x 8-bit
Static
Devices
16-bit Static
Device
Controller
4 x 8-bit
Static
Devices
2 x 16-bit
Static
Devices
32-bit Static
Device
SMC
D0 - D7
D0 - D7
D0 - D7
D0 - D7
D0 - D7
D0 - D7
D0 - D7
D8 - D15
–
D8 - D15
D8 - D15
D8 - D15
D8 - 15
D8 - 15
D16 - D23
–
–
–
D16 - D23
D16 - D23
D16 - D23
D24 - D31
–
–
–
D24 - D31
D24 - D31
D24 - D31
BE0(5)
A0/NBS0
A0
–
NLB
–
A1/NWR2/NBS2
A1
A0
A0
WE(2)
NLB(4)
BE2(5)
A2 - A22
A[2:22]
A[1:21]
A[1:21]
A[0:20]
A[0:20]
A[0:20]
A23 - A25
A[23:25]
A[22:24]
A[22:24]
A[21:23]
A[21:23]
A[21:23]
NCS0
CS
CS
CS
CS
CS
CS
NCS1/SDCS
CS
CS
CS
CS
CS
CS
NCS2
CS
CS
CS
CS
CS
CS
NCS3/NANDCS
CS
CS
CS
CS
CS
CS
NCS4/CFCS0
CS
CS
CS
CS
CS
CS
NCS5/CFCS1
CS
CS
CS
CS
CS
CS
NRD/CFOE
OE
OE
OE
OE
OE
OE
WE
WE
NWR0/NWE
WE
WE
(1)
(1)
NWR1/NBS1
–
WE
NWR3/NBS3
–
–
Notes:
1.
2.
3.
4.
5.
WE
NUB
–
NLB
(3)
WE
(2)
WE
(2)
WE(2)
(3)
BE1(5)
NUB(4)
BE3(5)
NUB
NWR1 enables upper byte writes. NWR0 enables lower byte writes.
NWRx enables corresponding byte x writes. (x = 0,1,2 or 3)
NBS0 and NBS1 enable respectively lower and upper bytes of the lower 16-bit word.
NBS2 and NBS3 enable respectively lower and upper bytes of the upper 16-bit word.
BEx: Byte x Enable (x = 0,1,2 or 3)
143
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 21-4.
EBI Pins and External Devices Connections
Pins of the Interfaced Device
Signals:
EBI_
Controller
SDRAM
CompactFlash
(EBI only)
SDRAMC
CompactFlash
True IDE Mode
(EBI only)
NAND Flash
SMC
D0 - D7
D0 - D7
D0 - D7
D0 - D7
AD0-AD7
D8 - D15
D8 - D15
D8 - 15
D8 - 15
AD8-AD15
D16 - D31
D16 - D31
–
–
–
A0/NBS0
DQM0
A0
A0
–
A1/NWR2/NBS2
DQM2
A1
A1
–
A2 - A10
A[0:8]
A[2:10]
A[2:10]
–
A11
A9
–
–
–
SDA10
A10
–
–
–
–
–
–
–
A[11:12]
–
–
–
–
–
–
–
A16/BA0
BA0
–
–
–
A17/BA1
BA1
–
–
–
A18 - A20
–
–
–
–
A21/NANDALE
–
–
–
ALE
A22/NANDCLE
–
REG
REG
CLE
A23 - A24
–
–
A12
A13 - A14
A15
–
–
(1)
A25
–
NCS0
–
–
–
–
CS
–
–
–
NCS2
–
–
–
–
NCS3/NANDCS
–
–
NCS1/SDCS
NCS4/CFCS0
–
CFRNW
(1)
CFRNW
–
CFCS0
(1)
CFCS1
(1)
–
–
CFCS0
(1)
–
CFCS1
(1)
–
NCS5/CFCS1
–
NANDOE
–
–
–
OE
NANDWE
–
–
–
WE
NRD/CFOE
–
OE
–
–
NWR0/NWE/CFWE
–
WE
WE
–
NWR1/NBS1/CFIOR
DQM1
IOR
IOR
–
NWR3/NBS3/CFIOW
DQM3
IOW
IOW
–
CFCE1
–
CE1
CS0
–
CFCE2
–
CE2
CS1
–
SDCK
CLK
–
–
–
144
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 21-4.
EBI Pins and External Devices Connections (Continued)
Pins of the Interfaced Device
Signals:
EBI_
Controller
SDRAM
CompactFlash
(EBI only)
SDRAMC
CompactFlash
True IDE Mode
(EBI only)
NAND Flash
SMC
SDCKE
CKE
–
–
–
RAS
RAS
–
–
–
CAS
CAS
–
–
–
SDWE
WE
–
–
–
NWAIT
–
WAIT
WAIT
–
Pxx
(2)
–
CD1 or CD2
CD1 or CD2
–
Pxx
(2)
–
–
–
CE
Pxx
(2)
–
–
–
RDY
Note:
1. Not directly connected to the CompactFlash slot. Permits the control of the bidirectional buffer between the EBI data bus and
the CompactFlash slot.
2. Any PIO line.
145
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.4.2
Connection Examples
Figure 21-2 shows an example of connections between the EBI and external devices.
Figure 21-2. EBI Connections to Memory Devices
EBI
D0-D31
RAS
CAS
SDCK
SDCKE
SDWE
A0/NBS0
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3
NRD/NOE
NWR0/NWE
D0-D7
2M x 8
SDRAM
D8-D15
D0-D7
CS
CLK
CKE
SDWE WE
RAS
CAS
DQM
NBS0
A0-A9, A11
A10
BA0
BA1
2M x 8
SDRAM
D0-D7
CS
CLK
CKE
SDWE
WE
RAS
CAS
DQM
NBS1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
A0-A9, A11
A10
BA0
BA1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
SDA10
A2-A15
A16/BA0
A17/BA1
A18-A25
D16-D23 D0-D7
NCS0
NCS1/SDCS
NCS2
NCS3
NCS4
NCS5
CS
CLK
CKE
SDWE WE
RAS
CAS
DQM
2M x 8
SDRAM
A0-A9, A11
A10
BA0
BA1
D24-D31
2M x 8
SDRAM
D0-D7
CS
CLK
CKE
SDWE
WE
RAS
CAS
DQM
NBS3
A2-A11, A13
SDA10
A16/BA0
A17/BA1
A0-A9, A11
A10
BA0
BA1
A2-A11, A13
SDA10
A16/BA0
A17/BA1
NBS2
128K x 8
SRAM
D0-D7
D0-D7
A0-A16
128K x 8
SRAM
A1-A17
CS
OE
NRD/NOE
WE
A0/NWR0/NBS0
21.5
21.5.1
D8-D15
D0-D7
A0-A16
A1-A17
CS
OE
NRD/NOE
WE
NWR1/NBS1
Product Dependencies
I/O Lines
The pins used for interfacing the External Bus Interface may be multiplexed with the PIO lines.
The programmer must first program the PIO controller to assign the External Bus Interface pins
to their peripheral function. If I/O lines of the External Bus Interface are not used by the application, they can be used for other purposes by the PIO Controller.
21.6
Functional Description
The EBI transfers data between the internal AHB Bus (handled by the Bus Matrix) and the external memories or peripheral devices. It controls the waveforms and the parameters of the
external address, data and control buses and is composed of the following elements:
• the Static Memory Controller (SMC)
• the SDRAM Controller (SDRAMC)
146
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• the ECC Controller (ECC)
• a chip select assignment feature that assigns an AHB address space to the external devices
• a multiplex controller circuit that shares the pins between the different Memory Controllers
• programmable CompactFlash support logic
• programmable NAND Flash support logic
21.6.1
Bus Multiplexing
The EBI and EBI1 offers a complete set of control signals that share the 32-bit data lines, the
address lines of up to 26 bits and the control signals through a multiplex logic operating in function of the memory area requests.
Multiplexing is specifically organized in order to guarantee the maintenance of the address and
output control lines at a stable state while no external access is being performed. Multiplexing is
also designed to respect the data float times defined in the Memory Controllers. Furthermore,
refresh cycles of the SDRAM are executed independently by the SDRAM Controller without
delaying the other external Memory Controller accesses.
21.6.2
Pull-up Control
The EBI_CSA register in the Chip Configuration User Interface permit enabling of on-chip pullup resistors on the data bus lines not multiplexed with the PIO Controller lines. The pull-up resistors are enabled after reset. Setting the EBI_DBPUC bit disables the pull-up resistors on the D0
to D15 lines. Enabling the pull-up resistor on the D16-D31 lines can be performed by programming the appropriate PIO controller.
21.6.3
Static Memory Controller
For information on the Static Memory Controller, refer to the Static Memory Controller section.
21.6.4
SDRAM Controller
For information on the SDRAM Controller, refer to the SDRAM section.
21.6.5
ECC Controller
For information on the ECC Controller, refer to the ECC section.
21.6.6
CompactFlash Support
The External Bus Interface integrates circuitry that interfaces to CompactFlash devices.
The CompactFlash logic is driven by the Static Memory Controller (SMC) on the NCS4 and/or
NCS5 address space. Programming the EBI_CS4A and/or EBI_CS5A bit of the EBI_CSA Register in the Chip Configuration User Interface to the appropriate value enables this logic. For
details on this register, refer to the in the Bus Matrix Section. Access to an external CompactFlash device is then made by accessing the address space reserved to NCS4 and/or NCS5 (i.e.,
between 0x5000 0000 and 0x5FFF FFFF for NCS4 and between 0x6000 0000 and 0x6FFF
FFFF for NCS5).
All CompactFlash modes (Attribute Memory, Common Memory, I/O and True IDE) are supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are
not handled.
147
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.6.6.1
I/O Mode, Common Memory Mode, Attribute Memory Mode and True IDE Mode
Within the NCS4 and/or NCS5 address space, the current transfer address is used to distinguish
I/O mode, common memory mode, attribute memory mode and True IDE mode.
The different modes are accessed through a specific memory mapping as illustrated on Figure
21-3. A[23:21] bits of the transfer address are used to select the desired mode as described in
Table 21-5 on page 148.
Figure 21-3. CompactFlash Memory Mapping
True IDE Alternate Mode Space
Offset 0x00E0 0000
True IDE Mode Space
Offset 0x00C0 0000
CF Address Space
I/O Mode Space
Offset 0x0080 0000
Common Memory Mode Space
Offset 0x0040 0000
Attribute Memory Mode Space
Offset 0x0000 0000
Note:
The A22 pin is used to drive the REG signal of the CompactFlash Device (except in True IDE
mode).
Table 21-5.
A[23:21]
21.6.6.2
CompactFlash Mode Selection
Mode Base Address
000
Attribute Memory
010
Common Memory
100
I/O Mode
110
True IDE Mode
111
Alternate True IDE Mode
CFCE1 and CFCE2 Signals
To cover all types of access, the SMC must be alternatively set to drive 8-bit data bus or 16-bit
data bus. The odd byte access on the D[7:0] bus is only possible when the SMC is configured to
drive 8-bit memory devices on the corresponding NCS pin (NCS4 or NCS5). The Chip Select
Register (DBW field in the corresponding Chip Select Register) of the NCS4 and/or NCS5
address space must be set as shown in Table 21-6 to enable the required access type.
NBS1 and NBS0 are the byte selection signals from SMC and are available when the SMC is set
in Byte Select mode on the corresponding Chip Select.
148
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The CFCE1 and CFCE2 waveforms are identical to the corresponding NCSx waveform. For
details on these waveforms and timings, refer to the Static Memory Controller section.
Table 21-6.
CFCE1 and CFCE2 Truth Table
Mode
CFCE2
CFCE1
DBW
Comment
SMC Access Mode
NBS1
NBS0
16 bits
Access to Even Byte on D[7:0]
Byte Select
NBS1
NBS0
16bits
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
Byte Select
1
0
8 bits
Access to Odd Byte on D[7:0]
NBS1
NBS0
16 bits
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
1
0
8 bits
Access to Odd Byte on D[7:0]
Task File
1
0
8 bits
Access to Even Byte on D[7:0]
Access to Odd Byte on D[7:0]
Data Register
1
0
16 bits
Access to Even Byte on D[7:0]
Access to Odd Byte on D[15:8]
Byte Select
Control Register
Alternate Status Read
0
1
Don’t
Care
Access to Even Byte on D[7:0]
Don’t Care
Drive Address
0
1
8 bits
Access to Odd Byte on D[7:0]
1
1
–
Attribute Memory
Common Memory
I/O Mode
Byte Select
True IDE Mode
Alternate True IDE Mode
Standby Mode or
Address Space is not
assigned to CF
21.6.6.3
–
–
Read/Write Signals
In I/O mode and True IDE mode, the CompactFlash logic drives the read and write command
signals of the SMC on CFIOR and CFIOW signals, while the CFOE and CFWE signals are deactivated. Likewise, in common memory mode and attribute memory mode, the SMC signals are
driven on the CFOE and CFWE signals, while the CFIOR and CFIOW are deactivated. Figure
21-4 on page 150 demonstrates a schematic representation of this logic.
Attribute memory mode, common memory mode and I/O mode are supported by setting the
address setup and hold time on the NCS4 (and/or NCS5) chip select to the appropriate values.
For details on these signal waveforms, please refer to the section: Setup and Hold Cycles of the
Static Memory Controller section.
149
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 21-4. CompactFlash Read/Write Control Signals
External Bus Interface
SMC
CompactFlash Logic
A23
1
1
0
1
0
0
CFOE
CFWE
1
1
A22
NRD_NOE
NWR0_NWE
0
1
1
Table 21-7.
CFIOR
CFIOW
1
CompactFlash Mode Selection
Mode Base Address
CFOE
CFWE
CFIOR
CFIOW
NRD
NWR0_NWE
1
1
I/O Mode
1
1
NRD
NWR0_NWE
True IDE Mode
0
1
NRD
NWR0_NWE
Attribute Memory
Common Memory
21.6.6.4
Multiplexing of CompactFlash Signals on EBI Pins
Table 21-8 on page 150 and Table 21-9 on page 151 illustrate the multiplexing of the CompactFlash logic signals with other EBI signals on the EBI pins. The EBI pins in Table 21-8 are strictly
dedicated to the CompactFlash interface as soon as the EBI_CS4A and/or EBI_CS5A field of
the EBI_CSA Register in the Chip Configuration User Interface is set. These pins must not be
used to drive any other memory devices.
The EBI pins in Table 21-9 on page 151 remain shared between all memory areas when the corresponding CompactFlash interface is enabled (EBI_CS4A = 1 and/or EBI_CS5A = 1).
Table 21-8.
Dedicated CompactFlash Interface Multiplexing
CompactFlash Signals
EBI Signals
Pins
CS4A = 1
NCS4/CFCS0
NCS5/CFCS1
CS5A = 1
CFCS0
CS4A = 0
CS5A = 0
NCS4
CFCS1
NCS5
150
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 21-9.
Shared CompactFlash Interface Multiplexing
Access to CompactFlash Device
Access to Other EBI Devices
Pins
CompactFlash Signals
EBI Signals
NRD/CFOE
CFOE
NRD
NWR0/NWE/CFWE
CFWE
NWR0/NWE
NWR1/NBS1/CFIOR
CFIOR
NWR1/NBS1
NWR3/NBS3/CFIOW
CFIOW
NWR3/NBS3
A25/CFRNW
CFRNW
A25
21.6.6.5
Application Example
Figure 21-5 on page 152 illustrates an example of a CompactFlash application. CFCS0 and
CFRNW signals are not directly connected to the CompactFlash slot 0, but do control the direction and the output enable of the buffers between the EBI and the CompactFlash Device. The
timing of the CFCS0 signal is identical to the NCS4 signal. Moreover, the CFRNW signal
remains valid throughout the transfer, as does the address bus. The CompactFlash _WAIT signal is connected to the NWAIT input of the Static Memory Controller. For details on these
waveforms and timings, refer to the Static Memory Controller Section.
151
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 21-5. CompactFlash Application Example
EBI
CompactFlash Connector
D[15:0]
D[15:0]
DIR /OE
A25/CFRNW
NCS4/CFCS0
_CD1
CD (PIO)
_CD2
/OE
21.6.7
21.6.7.1
A[10:0]
A[10:0]
A22/REG
_REG
NOE/CFOE
_OE
NWE/CFWE
_WE
NWR1/CFIOR
_IORD
NWR3/CFIOW
_IOWR
CFCE1
_CE1
CFCE2
_CE2
NWAIT
_WAIT
NAND Flash Support
External Bus Interface integrates circuitry that interfaces to NAND Flash devices.
External Bus Interface
The NAND Flash logic is driven by the Static Memory Controller on the NCS3 address space.
Programming the EBI_CS3A field in the EBI_CSA Register in the Chip Configuration User Interface to the appropriate value enables the NAND Flash logic. For details on this register, refer to
the Bus Matrix Section. Access to an external NAND Flash device is then made by accessing
the address space reserved to NCS3 (i.e., between 0x4000 0000 and 0x4FFF FFFF).
The NAND Flash Logic drives the read and write command signals of the SMC on the NANDOE
and NANDWE signals when the NCS3 signal is active. NANDOE and NANDWE are invalidated
as soon as the transfer address fails to lie in the NCS3 address space. See Figure “NAND Flash
Signal Multiplexing on EBI Pins” on page 153 for more information. For details on these waveforms, refer to the Static Memory Controller section.
152
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 21-6. NAND Flash Signal Multiplexing on EBI Pins
SMC
NAND Flash Logic
NANDOE
NCSx
NRD
NANDWE
NANDOE
NANDWE
NWR0_NWE
21.6.7.2
NAND Flash Signals
The address latch enable and command latch enable signals on the NAND Flash device are
driven by address bits A22 and A21 of the EBI address bus. The command, address or data
words on the data bus of the NAND Flash device are distinguished by using their address within
the NCSx address space. The chip enable (CE) signal of the device and the ready/busy (R/B)
signals are connected to PIO lines. The CE signal then remains asserted even when NCSx is
not selected, preventing the device from returning to standby mode.
Figure 21-7. NAND Flash Application Example
D[7:0]
AD[7:0]
A[22:21]
ALE
CLE
NCSx/NANDCS
Not Connected
EBI
NAND Flash
NANDOE
NANDWE
Note:
NOE
NWE
PIO
CE
PIO
R/B
The External Bus Interfaces 0 and 1 are also able to support 16-bit devices.
153
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.7
Implementation Examples
The following hardware configurations are given for illustration only. The user should refer to the
memory manufacturer web site to check current device availability.
21.7.1
21.7.1.1
16-bit SDRAM
Hardware Configuration
D[0..15]
A[0..14]
(Not used A12)
U1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A13
SDA10
BA0
BA1
SDA10
BA0
BA1
A14
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
SDCK
A0
CFIOR_NBS1_NWR1
CAS
RAS
SDWE
SDCS_NCS1
SDCKE
37
SDCK
38
15
39
CAS
RAS
17
18
SDWE
16
19
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
C1
C2
C3
C4
C5
C6
C7
1
1
1
1
1
1
1
28
41
54
6
12
46
52
256 Mbits
TSOP54 PACKAGE
21.7.1.2
Software Configuration
The following configuration has to be performed:
• Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space.
• Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 16 bits.
The SDRAM initialization sequence is described in the section “SDRAM Device Initialization” in
“SDRAM Controller (SDRAMC)”.
154
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.7.2
21.7.2.1
32-bit SDRAM
Hardware Configuration
D[0..31]
A[0..14]
U1
(Not used A12)
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A13
SDA10
BA0
BA1
SDA10
BA0
BA1
A14
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
SDCK
A0
CFIOR_NBS1_NWR1
CAS
RAS
SDWE
SDCS_NCS1
SDCKE
37
SDCK
38
15
39
CAS
RAS
17
18
SDWE
16
19
U2
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
28
41
54
6
12
46
52
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
SDA10
A13
BA0
BA1
A14
C1
C2
C3
C4
C5
C6
C7
100NF
100NF
100NF
100NF
100NF
100NF
100NF
A1
CFIOW_NBS3_NWR3
256 Mbits
23
24
25
26
29
30
31
32
33
34
22
35
20
21
36
40
SDCKE
37
SDCK
38
15
39
CAS
RAS
17
18
SDWE
16
19
A0 MT48LC16M16A2 DQ0
A1
DQ1
A2
DQ2
A3
DQ3
A4
DQ4
A5
DQ5
A6
DQ6
A7
DQ7
A8
DQ8
A9
DQ9
A10
DQ10
A11
DQ11
DQ12
BA0
DQ13
BA1
DQ14
DQ15
A12
N.C
VDD
VDD
CKE
VDD
VDDQ
CLK
VDDQ
VDDQ
DQML
VDDQ
DQMH
VSS
CAS
VSS
RAS
VSS
VSSQ
VSSQ
WE
VSSQ
CS
VSSQ
2
4
5
7
8
10
11
13
42
44
45
47
48
50
51
53
1
14
27
3
9
43
49
D16
D17
D18
D19
D20
D21
D22
D23
D24
D25
D26
D27
D28
D29
D30
D31
3V3
C8
C9
C10
C11
C12
C13
C14
100NF
100NF
100NF
100NF
100NF
100NF
100NF
28
41
54
6
12
46
52
256 Mbits
TSOP54 PACKAGE
21.7.2.2
Software Configuration
The following configuration has to be performed:
• Assign the EBI CS1 to the SDRAM controller by setting the bit EBI_CS1A in the EBI Chip
Select Assignment Register located in the bus matrix memory space.
• Initialize the SDRAM Controller depending on the SDRAM device and system bus frequency.
The Data Bus Width is to be programmed to 32 bits. The data lines D[16..31] are multiplexed
with PIO lines and thus the dedicated PIOs must be programmed in peripheral mode in the PIO
controller.
The SDRAM initialization sequence is described in the section “SDRAM Device Initialization” in
“SDRAM Controller (SDRAMC)”.
155
6289C–ATARM–28-May-09
21.7.3
21.7.3.1
8-bit NAND Flash
Hardware Configuration
D[0..7]
U1
CLE
ALE
NANDOE
NANDWE
(ANY PIO)
(ANY PIO)
R1
3V3
R2
10K
16
17
8
18
9
CLE
ALE
RE
WE
CE
7
R/B
19
WP
10K
1
2
3
4
5
6
10
11
14
15
20
21
22
23
24
25
26
K9F2G08U0M
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
I/O0
I/O1
I/O2
I/O3
I/O4
I/O5
I/O6
I/O7
29
30
31
32
41
42
43
44
N.C
N.C
N.C
N.C
N.C
N.C
PRE
N.C
N.C
N.C
N.C
N.C
48
47
46
45
40
39
38
35
34
33
28
27
VCC
VCC
37
12
VSS
VSS
36
13
2 Gb
D0
D1
D2
D3
D4
D5
D6
D7
3V3
C2
100NF
C1
100NF
TSOP48 PACKAGE
21.7.3.2
Software Configuration
The following configuration has to be performed:
• Assign the EBI CS3 to the NAND Flash by setting the bit EBI_CS3A in the EBI Chip Select
Assignment Register located in the bus matrix memory space
• Reserve A21 / A22 for ALE / CLE functions. Address and Command Latches are controlled
respectively by setting to 1 the address bit A21 and A22 during accesses.
• NANDOE and NANDWE signals are multiplexed with PIO lines and thus the dedicated PIOs
must be programmed in peripheral mode in the PIO controller.
• A21/NANDALE and A22/NANDCLE signals are multiplexed with PIO lines and thus the
dedicated PIOs must be programmed in peripheral mode in the PIO controller.
• Configure a PIO line as an input to manage the Ready/Busy signal.
• Configure Static Memory Controller CS3 Setup, Pulse, Cycle and Mode accordingly to NAND
Flash timings, the data bus width and the system bus frequency.
156
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.7.4
21.7.4.1
16-bit NAND Flash
Hardware Configuration
D[0..15]
U1
CLE
ALE
NANDOE
NANDWE
(ANY PIO)
(ANY PIO)
R1
3V3
R2
10K
16
17
8
18
9
CLE
ALE
RE
WE
CE
7
R/B
19
WP
1
2
3
4
5
6
10
11
14
15
20
21
22
23
24
34
35
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
N.C
10K
MT29F2G16AABWP-ET
I/O0 26
I/O1 28
I/O2 30
I/O3 32
I/O4 40
I/O5 42
I/O6 44
I/O7 46
I/O8 27
I/O9 29
I/O10 31
I/O11 33
I/O12 41
I/O13 43
I/O14 45
I/O15 47
2 Gb
N.C
PRE
N.C
39
38
36
VCC
VCC
37
12
VSS
VSS
VSS
48
25
13
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
3V3
C2
100NF
C1
100NF
TSOP48 PACKAGE
21.7.4.2
Software Configuration
The software configuration is the same as for an 8-bit NAND Flash except the data bus width
programmed in the mode register of the Static Memory Controller.
157
6289C–ATARM–28-May-09
21.7.5
21.7.5.1
NOR Flash on NCS0
Hardware Configuration
D[0..15]
A[1..22]
U1
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
NRST
NWE
3V3
NCS0
NRD
25
24
23
22
21
20
19
18
8
7
6
5
4
3
2
1
48
17
16
15
10
9
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
12
11
14
13
26
28
RESET
WE
WP
VPP
CE
OE
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
AT49BV6416
3V3
VCCQ
47
VCC
37
VSS
VSS
46
27
TSOP48 PACKAGE
21.7.5.2
29
31
33
35
38
40
42
44
30
32
34
36
39
41
43
45
C2
100NF
C1
100NF
Software Configuration
The default configuration for the Static Memory Controller, byte select mode, 16-bit data bus,
Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory at slow clock.
For another configuration, configure the Static Memory Controller CS0 Setup, Pulse, Cycle and
Mode depending on Flash timings and system bus frequency.
158
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.7.6
21.7.6.1
Compact Flash
Hardware Configuration
MEMORY & I/O MODE
D[0..15]
MN1A
D15
D14
D13
D12
D11
D10
D9
D8
A2
A1
B2
B1
C2
C1
D2
D1
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
A3
A4
1DIR
1OE
J1
1A1
1A2
1A3
1A4
1A5
1A6
1A7
1A8
A5
A6
B5
B6
C5
C6
D5
D6
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
E5
E6
F5
F6
G5
G6
H5
H6
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
74ALVCH32245
MN1B
D7
D6
D5
D4
D3
D2
D1
D0
A25/CFRNW
4
CFCSx
(CFCS0 or CFCS1)
6
5
E2
E1
F2
F1
G2
G1
H2
H1
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
H3
H4
2DIR
2OE
2A1
2A2
2A3
2A4
2A5
2A6
2A7
2A8
3V3
R1
MN2A
47K
SN74ALVC32
74ALVCH32245
MN2B
SN74ALVC32
R2
47K
CD2
1
3
(ANY PIO)
CD1
2
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
31
30
29
28
27
49
48
47
6
5
4
3
2
23
22
21
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CD2
CD1
25
26
CD2#
CD1#
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
CF_A2
CF_A1
CF_A0
8
10
11
12
14
15
16
17
18
19
20
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
REG
44
REG#
WE
OE
IOWR
IORD
36
9
35
34
WE#
OE#
IOWR#
IORD#
MN1C
A[0..10]
A10
A9
A8
A7
A6
A5
A4
A3
J5
J6
K5
K6
L5
L6
M5
M6
J3
J4
3V3
3A1
3A2
3A3
3A4
3A5
3A6
3A7
3A8
3B1
3B2
3B3
3B4
3B5
3B6
3B7
3B8
J2
J1
K2
K1
L2
L1
M2
M1
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
CE2
CE1
3DIR
3OE
74ALVCH32245
MN1D
A2
A1
A0
A22/REG
CFWE
CFOE
CFIOW
CFIOR
N5
N6
P5
P6
R5
R6
T6
T5
4A1
4A2
4A3
4A4
4A5
4A6
4A7
4A8
T3
T4
4DIR
4OE
4B1
4B2
4B3
4B4
4B5
4B6
4B7
4B8
N2
N1
P2
P1
R2
R1
T1
T2
CF_A2
CF_A1
CF_A0
REG
WE
OE
IOWR
IORD
VCC
38
VCC
13
GND
GND
50
1
CSEL#
39
INPACK#
43
BVD2
BVD1
45
46
32
7
CE2#
CE1#
24
WP
WAIT#
42
WAIT#
VS2#
VS1#
40
33
RESET
41
RESET
RDY/BSY
37
3V3
C1
100NF
C2
100NF
RDY/BSY
N7E50-7516VY-20
1
74ALVCH32245
2
CFCE1
5
10
4
CFCE2
9
(ANY PIO)
CFIRQ
11
13
(ANY PIO)
CFRST
MN3A
SN74ALVC125
3
CE2
MN3B
SN74ALVC125
6
CE1
MN3C
SN74ALVC125
RESET
8
MN3D
R3
SN74ALVC125
10K
RDY/BSY
12
3V3
MN4
3V3
NWAIT
5 VCC
1
4
2
GND
R4
10K
WAIT#
3V3
3
SN74LVC1G125-Q1
159
6289C–ATARM–28-May-09
21.7.6.2
Software Configuration
The following configuration has to be performed:
• Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the
bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the
bus matrix memory space.
• The address line A23 is to select I/O (A23=1) or Memory mode (A23=0) and the address line
A22 for REG function.
• A23, CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and
thus the dedicated PIOs must be programmed in peripheral mode in the PIO controller.
• Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.
• Configure SMC CS4 and/or SMC_CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode
accordingly to Compact Flash timings and system bus frequency.
160
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
21.7.7
21.7.7.1
Compact Flash True IDE
Hardware Configuration
TRUE IDE MODE
D[0..15]
MN1A
D15
D14
D13
D12
D11
D10
D9
D8
A2
A1
B2
B1
C2
C1
D2
D1
A3
A4
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
E5
E6
F5
F6
G5
G6
H5
H6
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
1DIR
1OE
74ALVCH32245
MN1B
D7
D6
D5
D4
D3
D2
D1
D0
A25/CFRNW
CFCSx
(CFCS0 or CFCS1)
4
6
5
E2
E1
F2
F1
G2
G1
H2
H1
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
H3
H4
2DIR
2OE
2A1
2A2
2A3
2A4
2A5
2A6
2A7
2A8
3V3
R1
MN2A
47K
SN74ALVC32
74ALVCH32245
MN2B
SN74ALVC32
CD2
1
CD1
2
J5
J6
K5
K6
L5
L6
M5
M6
3A1
3A2
3A3
3A4
3A5
3A6
3A7
3A8
J3
J4
3DIR
3OE
3V3
3B1
3B2
3B3
3B4
3B5
3B6
3B7
3B8
J2
J1
K2
K1
L2
L1
M2
M1
CF_A10
CF_A9
CF_A8
CF_A7
CF_A6
CF_A5
CF_A4
CF_A3
74ALVCH32245
MN1D
A2
A1
A0
A22/REG
CFWE
CFOE
CFIOW
CFIOR
N5
N6
P5
P6
R5
R6
T6
T5
4A1
4A2
4A3
4A4
4A5
4A6
4A7
4A8
T3
T4
4DIR
4OE
31
30
29
28
27
49
48
47
6
5
4
3
2
23
22
21
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
CD2
CD1
25
26
CD2#
CD1#
CF_A2
CF_A1
CF_A0
8
10
11
12
14
15
16
17
18
19
20
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
44
REG#
IOWR
IORD
36
9
35
34
WE#
ATA SEL#
IOWR#
IORD#
CE2
CE1
32
7
CS1#
CS0#
3V3
MN1C
A10
A9
A8
A7
A6
A5
A4
A3
CF_D15
CF_D14
CF_D13
CF_D12
CF_D11
CF_D10
CF_D9
CF_D8
CF_D7
CF_D6
CF_D5
CF_D4
CF_D3
CF_D2
CF_D1
CF_D0
R2
47K
3
(ANY PIO)
A[0..10]
3V3
J1
1A1
1A2
1A3
1A4
1A5
1A6
1A7
1A8
A5
A6
B5
B6
C5
C6
D5
D6
4B1
4B2
4B3
4B4
4B5
4B6
4B7
4B8
N2
N1
P2
P1
R2
R1
T1
T2
CF_A2
CF_A1
CF_A0
REG
WE
OE
IOWR
IORD
24
IOIS16#
IORDY
42
IORDY
RESET#
41
VCC
38
VCC
13
GND
GND
50
1
CSEL#
39
INPACK#
43
DASP#
PDIAG#
45
46
VS2#
VS1#
40
33
INTRQ
37
RESET#
C1
100NF
C2
100NF
INTRQ
N7E50-7516VY-20
1
74ALVCH32245
2
CFCE1
5
10
4
CFCE2
9
(ANY PIO)
CFIRQ
11
13
(ANY PIO)
CFRST
MN3A
SN74ALVC125
3
CE2
MN3B
SN74ALVC125
6
CE1
MN3C
SN74ALVC125
RESET#
8
MN3D
SN74ALVC125
INTRQ
12
R3
10K
3V3
MN4
3V3
NWAIT
5 VCC
1
4
2
GND
R4
10K
IORDY
3V3
3
SN74LVC1G125-Q1
161
6289C–ATARM–28-May-09
21.7.7.2
Software Configuration
The following configuration has to be performed:
• Assign the EBI CS4 and/or EBI_CS5 to the CompactFlash Slot 0 or/and Slot 1 by setting the
bit EBI_CS4A or/and EBI_CS5A in the EBI Chip Select Assignment Register located in the
bus matrix memory space.
• The address line A21 is to select Alternate True IDE (A21=1) or True IDE (A21=0) modes.
• CFRNW, CFS0, CFCS1, CFCE1 and CFCE2 signals are multiplexed with PIO lines and thus
the dedicated PIOs must be programmed in peripheral mode in the PIO controller.
• Configure a PIO line as an output for CFRST and two others as an input for CFIRQ and
CARD DETECT functions respectively.
• Configure SMC CS4 and/or SMC_CS5 (for Slot 0 or 1) Setup, Pulse, Cycle and Mode
accordingly to Compact Flash timings and system bus frequency.
162
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22. Static Memory Controller (SMC)
22.1
Description
The Static Memory Controller (SMC) generates the signals that control the access to the external memory devices or peripheral devices. It has 6 Chip Selects and a 26-bit address bus. The
32-bit data bus can be configured to interface with 8-, 16-, or 32-bit external devices. Separate
read and write control signals allow for direct memory and peripheral interfacing. Read and write
signal waveforms are fully parametrizable.
The SMC can manage wait requests from external devices to extend the current access. The
SMC is provided with an automatic slow clock mode. In slow clock mode, it switches from userprogrammed waveforms to slow-rate specific waveforms on read and write signals. The SMC
supports asynchronous burst read in page mode access for page size up to 32 bytes.
22.2
I/O Lines Description
Table 22-1.
I/O Line Description
Name
Description
Type
Active Level
NCS[7:0]
Static Memory Controller Chip Select Lines
Output
Low
NRD
Read Signal
Output
Low
NWR0/NWE
Write 0/Write Enable Signal
Output
Low
A0/NBS0
Address Bit 0/Byte 0 Select Signal
Output
Low
NWR1/NBS1
Write 1/Byte 1 Select Signal
Output
Low
A1/NWR2/NBS2
Address Bit 1/Write 2/Byte 2 Select Signal
Output
Low
NWR3/NBS3
Write 3/Byte 3 Select Signal
Output
Low
A[25:2]
Address Bus
Output
D[31:0]
Data Bus
NWAIT
External Wait Signal
22.3
I/O
Input
Low
Multiplexed Signals
Table 22-2.
Static Memory Controller (SMC) Multiplexed Signals
Multiplexed Signals
Related Function
NWR0
NWE
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page 165
A0
NBS0
8-bit or 16-/32-bit data bus, see “Data Bus Width” on page 165
NWR1
NBS1
Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 165
A1
NWR2
NWR3
NBS3
NBS2
8-/16-bit or 32-bit data bus, see “Data Bus Width” on page 165.
Byte-write or byte-select access, see “Byte Write or Byte Select Access” on page 165
Byte-write or byte-select access see “Byte Write or Byte Select Access” on page 165
163
6289C–ATARM–28-May-09
22.4
22.4.1
Application Example
Hardware Interface
Figure 22-1. SMC Connections to Static Memory Devices
D0-D31
A0/NBS0
NWR0/NWE
NWR1/NBS1
A1/NWR2/NBS2
NWR3/NBS3
D0 - D7
128K x 8
SRAM
D8-D15
D0 - D7
CS
NRD
NWR0/NWE
A2 - A25
A2 - A18
A0 - A16
NRD
OE
NWR1/NBS1
WE
128K x 8
SRAM
D16 - D23
D24-D31
D0 - D7
A0 - A16
NRD
Static Memory
Controller
22.5
22.5.1
A2 - A18
OE
WE
128K x 8
SRAM
D0-D7
CS
CS
A1/NWR2/NBS2
D0-D7
CS
A0 - A16
NCS0
NCS1
NCS2
NCS3
NCS4
NCS5
NCS6
NCS7
128K x 8
SRAM
A2 - A18
A2 - A18
A0 - A16
NRD
OE
WE
OE
NWR3/NBS3
WE
Product Dependencies
I/O Lines
The pins used for interfacing the Static Memory Controller may be multiplexed with the PIO
lines. The programmer must first program the PIO controller to assign the Static Memory Controller pins to their peripheral function. If I/O Lines of the SMC are not used by the application,
they can be used for other purposes by the PIO Controller.
164
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.6
External Memory Mapping
The SMC provides up to 26 address lines, A[25:0]. This allows each chip select line to address
up to 64 Mbytes of memory.
If the physical memory device connected on one chip select is smaller than 64 Mbytes, it wraps
around and appears to be repeated within this space. The SMC correctly handles any valid
access to the memory device within the page (see Figure 22-2).
A[25:0] is only significant for 8-bit memory, A[25:1] is used for 16-bit memory, A[25:2] is used for
32-bit memory.
Figure 22-2.
Memory Connections for Eight External Devices
NCS[0] - NCS[7]
NCS7
NRD
SMC
NCS6
NWE
NCS5
A[25:0]
NCS4
D[31:0]
NCS3
NCS2
NCS1
NCS0
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Memory Enable
Output Enable
Write Enable
A[25:0]
8 or 16 or 32
22.7
22.7.1
D[31:0] or D[15:0] or
D[7:0]
Connection to External Devices
Data Bus Width
A data bus width of 8, 16, or 32 bits can be selected for each chip select. This option is controlled by the field DBW in SMC_MODE (Mode Register) for the corresponding chip select.
Figure 22-3 shows how to connect a 512K x 8-bit memory on NCS2. Figure 22-4 shows how to
connect a 512K x 16-bit memory on NCS2. Figure 22-5 shows two 16-bit memories connected
as a single 32-bit memory
22.7.2
Byte Write or Byte Select Access
Each chip select with a 16-bit or 32-bit data bus can operate with one of two different types of
write access: byte write or byte select access. This is controlled by the BAT field of the
SMC_MODE register for the corresponding chip select.
165
6289C–ATARM–28-May-09
Figure 22-3.
Memory Connection for an 8-bit Data Bus
D[7:0]
D[7:0]
A[18:2]
A[18:2]
SMC
A0
A0
A1
A1
NWE
Write Enable
NRD
Output Enable
Memory Enable
NCS[2]
Figure 22-4.
Memory Connection for a 16-bit Data Bus
D[15:0]
D[15:0]
A[19:2]
A[18:1]
A1
SMC
A[0]
NBS0
Low Byte Enable
NBS1
High Byte Enable
NWE
Write Enable
NRD
Output Enable
NCS[2]
Memory Enable
Figure 22-5. Memory Connection for a 32-bit Data Bus
D[31:16]
D[31:16]
SMC
D[15:0]
D[15:0]
A[20:2]
A[18:0]
NBS0
Byte 0 Enable
NBS1
Byte 1 Enable
NBS2
Byte 2 Enable
NBS3
Byte 3 Enable
NWE
Write Enable
NRD
Output Enable
NCS[2]
166
Memory Enable
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.7.2.1
Byte Write Access
Byte write access supports one byte write signal per byte of the data bus and a single read
signal.
Note that the SMC does not allow boot in Byte Write Access mode.
• For 16-bit devices: the SMC provides NWR0 and NWR1 write signals for respectively byte0
(lower byte) and byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.
Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory.
• For 32-bit devices: NWR0, NWR1, NWR2 and NWR3, are the write signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. One single read signal (NRD) is
provided.
Byte Write Access is used to connect 4 x 8-bit devices as a 32-bit memory.
Byte Write option is illustrated on Figure 22-6.
22.7.2.2
Byte Select Access
In this mode, read/write operations can be enabled/disabled at a byte level. One byte-select line
per byte of the data bus is provided. One NRD and one NWE signal control read and write.
• For 16-bit devices: the SMC provides NBS0 and NBS1 selection signals for respectively
byte0 (lower byte) and byte1 (upper byte) of a 16-bit bus.
Byte Select Access is used to connect one 16-bit device.
• For 32-bit devices: NBS0, NBS1, NBS2 and NBS3, are the selection signals of byte0 (lower
byte), byte1, byte2 and byte 3 (upper byte) respectively. Byte Select Access is used to
connect two 16-bit devices.
Figure 22-7 shows how to connect two 16-bit devices on a 32-bit data bus in Byte Select Access
mode, on NCS3 (BAT = Byte Select Access).
167
6289C–ATARM–28-May-09
Figure 22-6.
Connection of 2 x 8-bit Devices on a 16-bit Bus: Byte Write Option
D[7:0]
D[7:0]
D[15:8]
A[24:2]
SMC
A1
NWR0
A[23:1]
A[0]
Write Enable
NWR1
NRD
NCS[3]
Read Enable
Memory Enable
D[15:8]
A[23:1]
A[0]
Write Enable
Read Enable
Memory Enable
22.7.2.3
Signal Multiplexing
Depending on the BAT, only the write signals or the byte select signals are used. To save IOs at
the external bus interface, control signals at the SMC interface are multiplexed. Table 22-3
shows signal multiplexing depending on the data bus width and the byte access type.
For 32-bit devices, bits A0 and A1 are unused. For 16-bit devices, bit A0 of address is unused.
When Byte Select Option is selected, NWR1 to NWR3 are unused. When Byte Write option is
selected, NBS0 to NBS3 are unused.
168
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-7. Connection of 2x16-bit Data Bus on a 32-bit Data Bus (Byte Select Option)
D[15:0]
D[15:0]
D[31:16]
A[25:2]
SMC
A[23:0]
NWE
Write Enable
NBS0
Low Byte Enable
NBS1
High Byte Enable
NBS2
NBS3
Read Enable
NRD
Memory Enable
NCS[3]
D[31:16]
A[23:0]
Write Enable
Low Byte Enable
High Byte Enable
Read Enable
Memory Enable
Table 22-3.
SMC Multiplexed Signal Translation
Signal Name
Device Type
32-bit Bus
16-bit Bus
8-bit Bus
1x32-bit
2x16-bit
4 x 8-bit
1x16-bit
2 x 8-bit
Byte Select
Byte Select
Byte Write
Byte Select
Byte Write
NBS0_A0
NBS0
NBS0
NWE_NWR0
NWE
NWE
NWR0
NWE
NWR0
NBS1_NWR1
NBS1
NBS1
NWR1
NBS1
NWR1
NBS2_NWR2_A1
NBS2
NBS2
NWR2
A1
A1
NBS3_NWR3
NBS3
NBS3
NWR3
Byte Access Type (BAT)
22.8
NBS0
1 x 8-bit
A0
NWE
A1
Standard Read and Write Protocols
In the following sections, the byte access type is not considered. Byte select lines (NBS0 to
NBS3) always have the same timing as the A address bus. NWE represents either the NWE signal in byte select access type or one of the byte write lines (NWR0 to NWR3) in byte write
access type. NWR0 to NWR3 have the same timings and protocol as NWE. In the same way,
NCS represents one of the NCS[0..5] chip select lines.
169
6289C–ATARM–28-May-09
22.8.1
Read Waveforms
The read cycle is shown on Figure 22-8.
The read cycle starts with the address setting on the memory address bus, i.e.:
{A[25:2], A1, A0} for 8-bit devices
{A[25:2], A1} for 16-bit devices
A[25:2] for 32-bit devices.
Figure 22-8. Standard Read Cycle
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
D[31:0]
NRD_SETUP
NCS_RD_SETUP
NRD_PULSE
NCS_RD_PULSE
NRD_HOLD
NCS_RD_HOLD
NRD_CYCLE
22.8.1.1
NRD Waveform
The NRD signal is characterized by a setup timing, a pulse width and a hold timing.
1. NRD_SETUP: the NRD setup time is defined as the setup of address before the NRD
falling edge;
2. NRD_PULSE: the NRD pulse length is the time between NRD falling edge and NRD
rising edge;
3. NRD_HOLD: the NRD hold time is defined as the hold time of address after the NRD
rising edge.
170
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.8.1.2
NCS Waveform
Similarly, the NCS signal can be divided into a setup time, pulse length and hold time:
1. NCS_RD_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.
2. NCS_RD_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;
3. NCS_RD_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.
22.8.1.3
Read Cycle
The NRD_CYCLE time is defined as the total duration of the read cycle, i.e., from the time where
address is set on the address bus to the point where address may change. The total read cycle
time is equal to:
NRD_CYCLE = NRD_SETUP + NRD_PULSE + NRD_HOLD
= NCS_RD_SETUP + NCS_RD_PULSE + NCS_RD_HOLD
All NRD and NCS timings are defined separately for each chip select as an integer number of
Master Clock cycles. To ensure that the NRD and NCS timings are coherent, user must define
the total read cycle instead of the hold timing. NRD_CYCLE implicitly defines the NRD hold time
and NCS hold time as:
NRD_HOLD = NRD_CYCLE - NRD SETUP - NRD PULSE
NCS_RD_HOLD = NRD_CYCLE - NCS_RD_SETUP - NCS_RD_PULSE
22.8.1.4
Null Delay Setup and Hold
If null setup and hold parameters are programmed for NRD and/or NCS, NRD and NCS remain
active continuously in case of consecutive read cycles in the same memory (see Figure 22-9).
171
6289C–ATARM–28-May-09
Figure 22-9. No Setup, No Hold On NRD and NCS Read Signals
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
D[31:0]
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
22.8.1.5
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
NRD_PULSE
NCS_RD_PULSE
NRD_CYCLE
Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.
22.8.2
Read Mode
As NCS and NRD waveforms are defined independently of one other, the SMC needs to know
when the read data is available on the data bus. The SMC does not compare NCS and NRD timings to know which signal rises first. The READ_MODE parameter in the SMC_MODE register
of the corresponding chip select indicates which signal of NRD and NCS controls the read
operation.
22.8.2.1
172
Read is Controlled by NRD (READ_MODE = 1):
Figure 22-10 shows the waveforms of a read operation of a typical asynchronous RAM. The
read data is available tPACC after the falling edge of NRD, and turns to ‘Z’ after the rising edge of
NRD. In this case, the READ_MODE must be set to 1 (read is controlled by NRD), to indicate
that data is available with the rising edge of NRD. The SMC samples the read data internally on
the rising edge of Master Clock that generates the rising edge of NRD, whatever the programmed waveform of NCS may be.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-10. READ_MODE = 1: Data is sampled by SMC before the rising edge of NRD
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
tPACC
D[31:0]
Data Sampling
22.8.2.2
Read is Controlled by NCS (READ_MODE = 0)
Figure 22-11 shows the typical read cycle of an LCD module. The read data is valid tPACC after
the falling edge of the NCS signal and remains valid until the rising edge of NCS. Data must be
sampled when NCS is raised. In that case, the READ_MODE must be set to 0 (read is controlled
by NCS): the SMC internally samples the data on the rising edge of Master Clock that generates
the rising edge of NCS, whatever the programmed waveform of NRD may be.
Figure 22-11. READ_MODE = 0: Data is sampled by SMC before the rising edge of NCS
MCK
A[25:2]
NBS0,NBS1,
NBS2,NBS3,
A0, A1
NRD
NCS
tPACC
D[31:0]
Data Sampling
173
6289C–ATARM–28-May-09
22.8.3
22.8.3.1
Write Waveforms
The write protocol is similar to the read protocol. It is depicted in Figure 22-12. The write cycle
starts with the address setting on the memory address bus.
NWE Waveforms
The NWE signal is characterized by a setup timing, a pulse width and a hold timing.
1. NWE_SETUP: the NWE setup time is defined as the setup of address and data before
the NWE falling edge;
2. NWE_PULSE: The NWE pulse length is the time between NWE falling edge and NWE
rising edge;
3. NWE_HOLD: The NWE hold time is defined as the hold time of address and data after
the NWE rising edge.
The NWE waveforms apply to all byte-write lines in Byte Write access mode: NWR0 to NWR3.
22.8.3.2
NCS Waveforms
The NCS signal waveforms in write operation are not the same that those applied in read operations, but are separately defined:
1. NCS_WR_SETUP: the NCS setup time is defined as the setup time of address before
the NCS falling edge.
2. NCS_WR_PULSE: the NCS pulse length is the time between NCS falling edge and
NCS rising edge;
3. NCS_WR_HOLD: the NCS hold time is defined as the hold time of address after the
NCS rising edge.
Figure 22-12. Write Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE
NCS
NWE_SETUP
NCS_WR_SETUP
NWE_PULSE
NCS_WR_PULSE
NWE_HOLD
NCS_WR_HOLD
NWE_CYCLE
174
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.8.3.3
Write Cycle
The write_cycle time is defined as the total duration of the write cycle, that is, from the time
where address is set on the address bus to the point where address may change. The total write
cycle time is equal to:
NWE_CYCLE = NWE_SETUP + NWE_PULSE + NWE_HOLD
= NCS_WR_SETUP + NCS_WR_PULSE + NCS_WR_HOLD
All NWE and NCS (write) timings are defined separately for each chip select as an integer number of Master Clock cycles. To ensure that the NWE and NCS timings are coherent, the user
must define the total write cycle instead of the hold timing. This implicitly defines the NWE hold
time and NCS (write) hold times as:
NWE_HOLD = NWE_CYCLE - NWE_SETUP - NWE_PULSE
NCS_WR_HOLD = NWE_CYCLE - NCS_WR_SETUP - NCS_WR_PULSE
22.8.3.4
Null Delay Setup and Hold
If null setup parameters are programmed for NWE and/or NCS, NWE and/or NCS remain active
continuously in case of consecutive write cycles in the same memory (see Figure 22-13). However, for devices that perform write operations on the rising edge of NWE or NCS, such as
SRAM, either a setup or a hold must be programmed.
Figure 22-13. Null Setup and Hold Values of NCS and NWE in Write Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
NWE_PULSE
22.8.3.5
NWE_PULSE
NWE_PULSE
NCS_WR_PULSE
NCS_WR_PULSE
NCS_WR_PULSE
NWE_CYCLE
NWE_CYCLE
NWE_CYCLE
Null Pulse
Programming null pulse is not permitted. Pulse must be at least set to 1. A null value leads to
unpredictable behavior.
175
6289C–ATARM–28-May-09
22.8.4
Write Mode
The WRITE_MODE parameter in the SMC_MODE register of the corresponding chip select indicates which signal controls the write operation.
22.8.4.1
Write is Controlled by NWE (WRITE_MODE = 1):
Figure 22-14 shows the waveforms of a write operation with WRITE_MODE set to 1. The data is
put on the bus during the pulse and hold steps of the NWE signal. The internal data buffers are
turned out after the NWE_SETUP time, and until the end of the write cycle, regardless of the
programmed waveform on NCS.
Figure 22-14. WRITE_MODE = 1. The write operation is controlled by NWE
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
22.8.4.2
176
Write is Controlled by NCS (WRITE_MODE = 0)
Figure 22-15 shows the waveforms of a write operation with WRITE_MODE set to 0. The data is
put on the bus during the pulse and hold steps of the NCS signal. The internal data buffers are
turned out after the NCS_WR_SETUP time, and until the end of the write cycle, regardless of
the programmed waveform on NWE.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-15. WRITE_MODE = 0. The write operation is controlled by NCS
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE,
NWR0, NWR1,
NWR2, NWR3
NCS
D[31:0]
22.8.5
Coding Timing Parameters
All timing parameters are defined for one chip select and are grouped together in one
SMC_REGISTER according to their type.
The SMC_SETUP register groups the definition of all setup parameters:
• NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP
The SMC_PULSE register groups the definition of all pulse parameters:
• NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE
The SMC_CYCLE register groups the definition of all cycle parameters:
• NRD_CYCLE, NWE_CYCLE
Table 22-4 shows how the timing parameters are coded and their permitted range.
Table 22-4.
Coding and Range of Timing Parameters
Permitted Range
Coded Value
Number of Bits
Effective Value
Coded Value
Effective Value
setup [5:0]
6
128 x setup[5] + setup[4:0]
0 ≤≤31
128 ≤≤128+31
pulse [6:0]
7
256 x pulse[6] + pulse[5:0]
0 ≤≤63
256 ≤≤256+63
cycle [8:0]
9
256 x cycle[8:7] + cycle[6:0]
0 ≤≤127
256 ≤≤256+127
512 ≤≤512+127
768 ≤≤768+127
177
6289C–ATARM–28-May-09
22.8.6
Reset Values of Timing Parameters
Table 22-5 gives the default value of timing parameters at reset.
Table 22-5.
22.8.7
Reset Values of Timing Parameters
Register
Reset Value
SMC_SETUP
0x00000000
All setup timings are set to 1
SMC_PULSE
0x01010101
All pulse timings are set to 1
SMC_CYCLE
0x00030003
The read and write operation last 3 Master Clock
cycles and provide one hold cycle
WRITE_MODE
1
Write is controlled with NWE
READ_MODE
1
Read is controlled with NRD
Usage Restriction
The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP
and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.
For read operations:
Null but positive setup and hold of address and NRD and/or NCS can not be guaranteed at the
memory interface because of the propagation delay of theses signals through external logic and
pads. If positive setup and hold values must be verified, then it is strictly recommended to program non-null values so as to cover possible skews between address, NCS and NRD signals.
For write operations:
If a null hold value is programmed on NWE, the SMC can guarantee a positive hold of address,
byte select lines, and NCS signal after the rising edge of NWE. This is true for WRITE_MODE =
1 only. See “Early Read Wait State” on page 179.
For read and write operations: a null value for pulse parameters is forbidden and may lead to
unpredictable behavior.
In read and write cycles, the setup and hold time parameters are defined in reference to the
address bus. For external devices that require setup and hold time between NCS and NRD signals (read), or between NCS and NWE signals (write), these setup and hold times must be
converted into setup and hold times in reference to the address bus.
22.9
Automatic Wait States
Under certain circumstances, the SMC automatically inserts idle cycles between accesses to
avoid bus contention or operation conflict.
22.9.1
Chip Select Wait States
The SMC always inserts an idle cycle between 2 transfers on separate chip selects. This idle
cycle ensures that there is no bus contention between the de-activation of one device and the
activation of the next one.
During chip select wait state, all control lines are turned inactive: NBS0 to NBS3, NWR0 to
NWR3, NCS[0..5], NRD lines are all set to 1.
Figure 22-16 illustrates a chip select wait state between access on Chip Select 0 and Chip
Select 2.
178
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-16. Chip Select Wait State between a Read Access on NCS0 and a Write Access on NCS2
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NRD
NWE
NCS0
NCS2
NWE_CYCLE
NRD_CYCLE
D[31:0]
Read to Write Chip Select
Wait State
Wait State
22.9.2
Early Read Wait State
In some cases, the SMC inserts a wait state cycle between a write access and a read access to
allow time for the write cycle to end before the subsequent read cycle begins. This wait state is
not generated in addition to a chip select wait state. The early read cycle thus only occurs
between a write and read access to the same memory device (same chip select).
An early read wait state is automatically inserted if at least one of the following conditions is
valid:
• if the write controlling signal has no hold time and the read controlling signal has no setup
time (Figure 22-17).
• in NCS write controlled mode (WRITE_MODE = 0), if there is no hold timing on the NCS
signal and the NCS_RD_SETUP parameter is set to 0, regardless of the read mode (Figure
22-18). The write operation must end with a NCS rising edge. Without an Early Read Wait
State, the write operation could not complete properly.
• in NWE controlled mode (WRITE_MODE = 1) and if there is no hold timing (NWE_HOLD =
0), the feedback of the write control signal is used to control address, data, chip select and
byte select lines. If the external write control signal is not inactivated as expected due to load
capacitances, an Early Read Wait State is inserted and address, data and control signals are
maintained one more cycle. See Figure 22-19.
179
6289C–ATARM–28-May-09
Figure 22-17. Early Read Wait State: Write with No Hold Followed by Read with No Setup
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NWE
NRD
no hold
no setup
D[31:0]
write cycle
read cycle
Early Read
wait state
Figure 22-18. Early Read Wait State: NCS Controlled Write with No Hold Followed by a Read with No NCS Setup
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NCS
NRD
no hold
no setup
D[31:0]
write cycle
(WRITE_MODE = 0)
180
Early Read
wait state
read cycle
(READ_MODE = 0 or READ_MODE = 1)
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-19. Early Read Wait State: NWE-controlled Write with No Hold Followed by a Read with one Set-up Cycle
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
internal write controlling signal
external write controlling signal
(NWE)
no hold
read setup = 1
NRD
D[31:0]
write cycle
(WRITE_MODE = 1)
22.9.3
Early Read
wait state
read cycle
(READ_MODE = 0 or READ_MODE = 1)
Reload User Configuration Wait State
The user may change any of the configuration parameters by writing the SMC user interface.
When detecting that a new user configuration has been written in the user interface, the SMC
inserts a wait state before starting the next access. The so called “Reload User Configuration
Wait State” is used by the SMC to load the new set of parameters to apply to next accesses.
The Reload Configuration Wait State is not applied in addition to the Chip Select Wait State. If
accesses before and after re-programming the user interface are made to different devices
(Chip Selects), then one single Chip Select Wait State is applied.
On the other hand, if accesses before and after writing the user interface are made to the same
device, a Reload Configuration Wait State is inserted, even if the change does not concern the
current Chip Select.
22.9.3.1
User Procedure
To insert a Reload Configuration Wait State, the SMC detects a write access to any
SMC_MODE register of the user interface. If the user only modifies timing registers
(SMC_SETUP, SMC_PULSE, SMC_CYCLE registers) in the user interface, he must validate
the modification by writing the SMC_MODE, even if no change was made on the mode
parameters.
22.9.3.2
Slow Clock Mode Transition
A Reload Configuration Wait State is also inserted when the Slow Clock Mode is entered or
exited, after the end of the current transfer (see “Slow Clock Mode” on page 193).
181
6289C–ATARM–28-May-09
22.9.4
Read to Write Wait State
Due to an internal mechanism, a wait cycle is always inserted between consecutive read and
write SMC accesses.
This wait cycle is referred to as a read to write wait state in this document.
This wait cycle is applied in addition to chip select and reload user configuration wait states
when they are to be inserted. See Figure 22-16 on page 179.
182
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.10 Data Float Wait States
Some memory devices are slow to release the external bus. For such devices, it is necessary to
add wait states (data float wait states) after a read access:
• before starting a read access to a different external memory
• before starting a write access to the same device or to a different external one.
The Data Float Output Time (t DF ) for each external memory device is programmed in the
TDF_CYCLES field of the SMC_MODE register for the corresponding chip select. The value of
TDF_CYCLES indicates the number of data float wait cycles (between 0 and 15) before the
external device releases the bus, and represents the time allowed for the data output to go to
high impedance after the memory is disabled.
Data float wait states do not delay internal memory accesses. Hence, a single access to an
external memory with long t DF will not slow down the execution of a program from internal
memory.
The data float wait states management depends on the READ_MODE and the TDF_MODE
fields of the SMC_MODE register for the corresponding chip select.
22.10.1
READ_MODE
Setting the READ_MODE to 1 indicates to the SMC that the NRD signal is responsible for turning off the tri-state buffers of the external memory device. The Data Float Period then begins
after the rising edge of the NRD signal and lasts TDF_CYCLES MCK cycles.
When the read operation is controlled by the NCS signal (READ_MODE = 0), the TDF field gives
the number of MCK cycles during which the data bus remains busy after the rising edge of NCS.
Figure 22-20 illustrates the Data Float Period in NRD-controlled mode (READ_MODE =1),
assuming a data float period of 2 cycles (TDF_CYCLES = 2). Figure 22-21 shows the read operation when controlled by NCS (READ_MODE = 0) and the TDF_CYCLES parameter equals 3.
183
6289C–ATARM–28-May-09
Figure 22-20. TDF Period in NRD Controlled Read Access (TDF = 2)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
NRD
NCS
tpacc
D[31:0]
TDF = 2 clock cycles
NRD controlled read operation
Figure 22-21. TDF Period in NCS Controlled Read Operation (TDF = 3)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NRD
NCS
tpacc
D[31:0]
TDF = 3 clock cycles
NCS controlled read operation
184
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.10.2
TDF Optimization Enabled (TDF_MODE = 1)
When the TDF_MODE of the SMC_MODE register is set to 1 (TDF optimization is enabled), the
SMC takes advantage of the setup period of the next access to optimize the number of wait
states cycle to insert.
Figure 22-22 shows a read access controlled by NRD, followed by a write access controlled by
NWE, on Chip Select 0. Chip Select 0 has been programmed with:
NRD_HOLD = 4; READ_MODE = 1 (NRD controlled)
NWE_SETUP = 3; WRITE_MODE = 1 (NWE controlled)
TDF_CYCLES = 6; TDF_MODE = 1 (optimization enabled).
Figure 22-22. TDF Optimization: No TDF wait states are inserted if the TDF period is over when the next access begins
MCK
A[25:2]
NRD
NRD_HOLD= 4
NWE
NWE_SETUP= 3
NCS0
TDF_CYCLES = 6
D[31:0]
read access on NCS0 (NRD controlled)
22.10.3
Read to Write
Wait State
write access on NCS0 (NWE controlled)
TDF Optimization Disabled (TDF_MODE = 0)
When optimization is disabled, tdf wait states are inserted at the end of the read transfer, so that
the data float period is ended when the second access begins. If the hold period of the read1
controlling signal overlaps the data float period, no additional tdf wait states will be inserted.
Figure 22-23, Figure 22-24 and Figure 22-25 illustrate the cases:
• read access followed by a read access on another chip select,
• read access followed by a write access on another chip select,
• read access followed by a write access on the same chip select,
with no TDF optimization.
185
6289C–ATARM–28-May-09
Figure 22-23. TDF Optimization Disabled (TDF Mode = 0). TDF wait states between 2 read accesses on different chip
selects
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
read1 hold = 1
read2 controlling signal
(NRD)
read2 setup = 1
TDF_CYCLES = 6
D[31:0]
5 TDF WAIT STATES
read 2 cycle
TDF_MODE = 0
(optimization disabled)
read1 cycle
TDF_CYCLES = 6
Chip Select Wait State
Figure 22-24. TDF Mode = 0: TDF wait states between a read and a write access on different chip selects
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
read1 hold = 1
write2 controlling signal
(NWE)
write2 setup = 1
TDF_CYCLES = 4
D[31:0]
2 TDF WAIT STATES
read1 cycle
TDF_CYCLES = 4
Read to Write Chip Select
Wait State Wait State
186
write2 cycle
TDF_MODE = 0
(optimization disabled)
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-25. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0, A1
read1 controlling signal
(NRD)
write2 setup = 1
read1 hold = 1
write2 controlling signal
(NWE)
TDF_CYCLES = 5
D[31:0]
4 TDF WAIT STATES
read1 cycle
TDF_CYCLES = 5
Read to Write
Wait State
write2 cycle
TDF_MODE = 0
(optimization disabled)
22.11 External Wait
Any access can be extended by an external device using the NWAIT input signal of the SMC.
The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be
set to either to “10” (frozen mode) or “11” (ready mode). When the EXNW_MODE is set to “00”
(disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT
signal delays the read or write operation in regards to the read or write controlling signal,
depending on the read and write modes of the corresponding chip select.
22.11.1
Restriction
When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold
cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be
used in Page Mode (“Asynchronous Page Mode” on page 196), or in Slow Clock Mode
(“Slow Clock Mode” on page 193).
The NWAIT signal is assumed to be a response of the external device to the read/write request
of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write
controlling signal. The assertion of the NWAIT signal outside the expected period has no impact
on SMC behavior.
187
6289C–ATARM–28-May-09
22.11.2
Frozen Mode
When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control
signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC
completes the access, resuming the access from the point where it was stopped. See Figure 2226. This mode must be selected when the external device uses the NWAIT signal to delay the
access and to freeze the SMC.
The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure
22-27.
Figure 22-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
FROZEN STATE
4
3
2
1
1
1
1
0
3
2
2
2
2
1
NWE
6
5
4
0
NCS
D[31:0]
NWAIT
internally synchronized
NWAIT signal
Write cycle
EXNW_MODE = 10 (Frozen)
WRITE_MODE = 1 (NWE_controlled)
NWE_PULSE = 5
NCS_WR_PULSE = 7
188
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-27. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NCS
FROZEN STATE
4
1
NRD
3
2
2
2
1
0
2
1
0
2
1
0
0
5
5
5
4
3
NWAIT
internally synchronized
NWAIT signal
Read cycle
EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)
NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3
Assertion is ignored
189
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.11.3
Ready Mode
In Ready mode (EXNW_MODE = 11), the SMC behaves differently. Normally, the SMC begins
the access by down counting the setup and pulse counters of the read/write controlling signal. In
the last cycle of the pulse phase, the resynchronized NWAIT signal is examined.
If asserted, the SMC suspends the access as shown in Figure 22-28 and Figure 22-29. After
deassertion, the access is completed: the hold step of the access is performed.
This mode must be selected when the external device uses deassertion of the NWAIT signal to
indicate its ability to complete the read or write operation.
If the NWAIT signal is deasserted before the end of the pulse, or asserted after the end of the
pulse of the controlling read/write signal, it has no impact on the access length as shown in Figure 22-29.
Figure 22-28. NWAIT Assertion in Write Access: Ready Mode (EXNW_MODE = 11)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
Wait STATE
4
3
2
1
0
0
0
3
2
1
1
1
NWE
6
5
4
0
NCS
D[31:0]
NWAIT
internally synchronized
NWAIT signal
Write cycle
EXNW_MODE = 11 (Ready mode)
WRITE_MODE = 1 (NWE_controlled)
NWE_PULSE = 5
NCS_WR_PULSE = 7
190
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-29. NWAIT Assertion in Read Access: Ready Mode (EXNW_MODE = 11)
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
Wait STATE
6
5
4
3
2
1
0
0
6
5
4
3
2
1
1
NCS
NRD
0
NWAIT
internally synchronized
NWAIT signal
Read cycle
EXNW_MODE = 11(Ready mode)
READ_MODE = 0 (NCS_controlled)
Assertion is ignored
Assertion is ignored
NRD_PULSE = 7
NCS_RD_PULSE =7
191
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.11.4
NWAIT Latency and Read/write Timings
There may be a latency between the assertion of the read/write controlling signal and the assertion of the NWAIT signal by the device. The programmed pulse length of the read/write
controlling signal must be at least equal to this latency plus the 2 cycles of resynchronization + 1
cycle. Otherwise, the SMC may enter the hold state of the access without detecting the NWAIT
signal assertion. This is true in frozen mode as well as in ready mode. This is illustrated on Figure 22-30.
When EXNW_MODE is enabled (ready or frozen), the user must program a pulse length of the
read and write controlling signal of at least:
minimal pulse length = NWAIT latency + 2 resynchronization cycles + 1 cycle
Figure 22-30. NWAIT Latency
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
WAIT STATE
4
3
2
1
0
0
0
NRD
minimal pulse length
NWAIT
intenally synchronized
NWAIT signal
NWAIT latency 2 cycle resynchronization
Read cycle
EXNW_MODE = 10 or 11
READ_MODE = 1 (NRD_controlled)
NRD_PULSE = 5
192
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.12 Slow Clock Mode
The SMC is able to automatically apply a set of “slow clock mode” read/write waveforms when
an internal signal driven by the Power Management Controller is asserted because MCK has
been turned to a very slow clock rate (typically 32kHz clock rate). In this mode, the user-programmed waveforms are ignored and the slow clock mode waveforms are applied. This mode is
provided so as to avoid reprogramming the User Interface with appropriate waveforms at very
slow clock rate. When activated, the slow mode is active on all chip selects.
22.12.1
Slow Clock Mode Waveforms
Figure 22-31 illustrates the read and write operations in slow clock mode. They are valid on all
chip selects. Table 22-6 indicates the value of read and write parameters in slow clock mode.
Figure 22-31. Read/write Cycles in Slow Clock Mode
MCK
MCK
A[25:2]
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWE
NRD
1
1
1
1
1
NCS
NCS
NRD_CYCLE = 2
NWE_CYCLE = 3
SLOW CLOCK MODE WRITE
Table 22-6.
SLOW CLOCK MODE READ
Read and Write Timing Parameters in Slow Clock Mode
Read Parameters
Duration (cycles)
Write Parameters
Duration (cycles)
NRD_SETUP
1
NWE_SETUP
1
NRD_PULSE
1
NWE_PULSE
1
NCS_RD_SETUP
0
NCS_WR_SETUP
0
NCS_RD_PULSE
2
NCS_WR_PULSE
3
NRD_CYCLE
2
NWE_CYCLE
3
193
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.12.2
Switching from (to) Slow Clock Mode to (from) Normal Mode
When switching from slow clock mode to the normal mode, the current slow clock mode transfer
is completed at high clock rate, with the set of slow clock mode parameters.See Figure 22-32 on
page 194. The external device may not be fast enough to support such timings.
Figure 22-33 illustrates the recommended procedure to properly switch from one mode to the
other.
Figure 22-32. Clock Rate Transition Occurs while the SMC is Performing a Write Operation
Slow Clock Mode
internal signal from PMC
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWE
1
1
1
1
1
1
2
3
2
NCS
NWE_CYCLE = 3
NWE_CYCLE = 7
SLOW CLOCK MODE WRITE SLOW CLOCK MODE WRITE
This write cycle finishes with the slow clock mode set
of parameters after the clock rate transition
NORMAL MODE WRITE
Slow clock mode transition is detected:
Reload Configuration Wait State
194
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-33. Recommended Procedure to Switch from Slow Clock Mode to Normal Mode or from Normal Mode to Slow
Clock Mode
Slow Clock Mode
internal signal from PMC
MCK
A[25:2]
NBS0, NBS1,
NBS2, NBS3,
A0,A1
NWE
1
1
1
2
3
2
NCS
SLOW CLOCK MODE WRITE
IDLE STATE
NORMAL MODE WRITE
Reload Configuration
Wait State
195
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.13 Asynchronous Page Mode
The SMC supports asynchronous burst reads in page mode, providing that the page mode is
enabled in the SMC_MODE register (PMEN field). The page size must be configured in the
SMC_MODE register (PS field) to 4, 8, 16 or 32 bytes.
The page defines a set of consecutive bytes into memory. A 4-byte page (resp. 8-, 16-, 32-byte
page) is always aligned to 4-byte boundaries (resp. 8-, 16-, 32-byte boundaries) of memory. The
MSB of data address defines the address of the page in memory, the LSB of address define the
address of the data in the page as detailed in Table 22-7.
With page mode memory devices, the first access to one page (tpa) takes longer than the subsequent accesses to the page (tsa ) as shown in Figure 22-34. When in page mode, the SMC
enables the user to define different read timings for the first access within one page, and next
accesses within the page.
Table 22-7.
Page Size
Page Address(1)
Data Address in the Page(2)
4 bytes
A[25:2]
A[1:0]
8 bytes
A[25:3]
A[2:0]
16 bytes
A[25:4]
A[3:0]
32 bytes
A[25:5]
A[4:0]
Notes:
22.13.1
Page Address and Data Address within a Page
1. A denotes the address bus of the memory device
2. For 16-bit devices, the bit 0 of address is ignored. For 32-bit devices, bits [1:0] are ignored.
Protocol and Timings in Page Mode
Figure 22-34 shows the NRD and NCS timings in page mode access.
Figure 22-34. Page Mode Read Protocol (Address MSB and LSB are defined in Table 22-7)
MCK
A[MSB]
A[LSB]
NRD
NCS
tpa
tsa
tsa
D[31:0]
NCS_RD_PULSE
NRD_PULSE
NRD_PULSE
The NRD and NCS signals are held low during all read transfers, whatever the programmed values of the setup and hold timings in the User Interface may be. Moreover, the NRD and NCS
timings are identical. The pulse length of the first access to the page is defined with the
196
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
NCS_RD_PULSE field of the SMC_PULSE register. The pulse length of subsequent accesses
within the page are defined using the NRD_PULSE parameter.
In page mode, the programming of the read timings is described in Table 22-8:
Table 22-8.
Programming of Read Timings in Page Mode
Parameter
Value
Definition
READ_MODE
‘x’
No impact
NCS_RD_SETUP
‘x’
No impact
NCS_RD_PULSE
tpa
Access time of first access to the page
NRD_SETUP
‘x’
No impact
NRD_PULSE
tsa
Access time of subsequent accesses in the page
NRD_CYCLE
‘x’
No impact
The SMC does not check the coherency of timings. It will always apply the NCS_RD_PULSE
timings as page access timing (tpa) and the NRD_PULSE for accesses to the page (tsa), even if
the programmed value for tpa is shorter than the programmed value for tsa.
22.13.2
Byte Access Type in Page Mode
The Byte Access Type configuration remains active in page mode. For 16-bit or 32-bit page
mode devices that require byte selection signals, configure the BAT field of the
SMC_REGISTER to 0 (byte select access type).
22.13.3
Page Mode Restriction
The page mode is not compatible with the use of the NWAIT signal. Using the page mode and
the NWAIT signal may lead to unpredictable behavior.
22.13.4
Sequential and Non-sequential Accesses
If the chip select and the MSB of addresses as defined in Table 22-7 are identical, then the current access lies in the same page as the previous one, and no page break occurs.
Using this information, all data within the same page, sequential or not sequential, are accessed
with a minimum access time (tsa). Figure 22-35 illustrates access to an 8-bit memory device in
page mode, with 8-byte pages. Access to D1 causes a page access with a long access time
(tpa). Accesses to D3 and D7, though they are not sequential accesses, only require a short
access time (tsa).
If the MSB of addresses are different, the SMC performs the access of a new page. In the same
way, if the chip select is different from the previous access, a page break occurs. If two sequential accesses are made to the page mode memory, but separated by an other internal or external
peripheral access, a page break occurs on the second access because the chip select of the
device was deasserted between both accesses.
197
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 22-35. Access to Non-sequential Data within the Same Page
MCK
Page address
A[25:3]
A[2], A1, A0
A1
A3
A7
NRD
NCS
D[7:0]
D1
NCS_RD_PULSE
D3
NRD_PULSE
D7
NRD_PULSE
198
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.14 Static Memory Controller (SMC) User Interface
The SMC is programmed using the registers listed in Table 22-9. For each chip select, a set of 4 registers is used to program the parameters of the external device connected on it. In Table 22-9, “CS_number” denotes the chip select number.
16 bytes (0x10) are required per chip select.
The user must complete writing the configuration by writing any one of the SMC_MODE registers.
Table 22-9.
SMC Register Mapping
Offset
Register
Name
Access
Reset State
0x10 x CS_number + 0x00
SMC Setup Register
SMC_SETUP
Read/Write
0x00000000
0x10 x CS_number + 0x04
SMC Pulse Register
SMC_PULSE
Read/Write
0x01010101
0x10 x CS_number + 0x08
SMC Cycle Register
SMC_CYCLE
Read/Write
0x00030003
0x10 x CS_number + 0x0C
SMC Mode Register
SMC_MODE
Read/Write
0x10001000
199
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.14.1 SMC Setup Register
Register Name:
SMC_SETUP[0 ..5]
Access Type:
Read/Write
31
30
–
–
23
22
–
–
15
14
–
–
7
6
–
–
29
28
27
26
25
24
18
17
16
10
9
8
1
0
NCS_RD_SETUP
21
20
19
NRD_SETUP
13
12
11
NCS_WR_SETUP
5
4
3
2
NWE_SETUP
• NWE_SETUP: NWE Setup Length
The NWE signal setup length is defined as:
NWE setup length = (128* NWE_SETUP[5] + NWE_SETUP[4:0]) clock cycles
• NCS_WR_SETUP: NCS Setup Length in WRITE Access
In write access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_WR_SETUP[5] + NCS_WR_SETUP[4:0]) clock cycles
• NRD_SETUP: NRD Setup Length
The NRD signal setup length is defined in clock cycles as:
NRD setup length = (128* NRD_SETUP[5] + NRD_SETUP[4:0]) clock cycles
• NCS_RD_SETUP: NCS Setup Length in READ Access
In read access, the NCS signal setup length is defined as:
NCS setup length = (128* NCS_RD_SETUP[5] + NCS_RD_SETUP[4:0]) clock cycles
200
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.14.2 SMC Pulse Register
Register Name:
SMC_PULSE[0..5]
Access Type:
31
Read/Write
30
29
28
–
23
22
21
20
–
15
26
25
24
19
18
17
16
10
9
8
2
1
0
NRD_PULSE
14
13
12
–
7
27
NCS_RD_PULSE
11
NCS_WR_PULSE
6
5
4
–
3
NWE_PULSE
• NWE_PULSE: NWE Pulse Length
The NWE signal pulse length is defined as:
NWE pulse length = (256* NWE_PULSE[6] + NWE_PULSE[5:0]) clock cycles
The NWE pulse length must be at least 1 clock cycle.
• NCS_WR_PULSE: NCS Pulse Length in WRITE Access
In write access, the NCS signal pulse length is defined as:
NCS pulse length = (256* NCS_WR_PULSE[6] + NCS_WR_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.
• NRD_PULSE: NRD Pulse Length
In standard read access, the NRD signal pulse length is defined in clock cycles as:
NRD pulse length = (256* NRD_PULSE[6] + NRD_PULSE[5:0]) clock cycles
The NRD pulse length must be at least 1 clock cycle.
In page mode read access, the NRD_PULSE parameter defines the duration of the subsequent accesses in the page.
• NCS_RD_PULSE: NCS Pulse Length in READ Access
In standard read access, the NCS signal pulse length is defined as:
NCS pulse length = (256* NCS_RD_PULSE[6] + NCS_RD_PULSE[5:0]) clock cycles
The NCS pulse length must be at least 1 clock cycle.
In page mode read access, the NCS_RD_PULSE parameter defines the duration of the first access to one page.
201
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.14.3 SMC Cycle Register
Register Name:
SMC_CYCLE[0..5]
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
NRD_CYCLE
23
22
21
20
19
18
17
16
NRD_CYCLE
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
NWE_CYCLE
7
6
5
4
3
2
1
0
NWE_CYCLE
• NWE_CYCLE: Total Write Cycle Length
The total write cycle length is the total duration in clock cycles of the write cycle. It is equal to the sum of the setup, pulse
and hold steps of the NWE and NCS signals. It is defined as:
Write cycle length = (NWE_CYCLE[8:7]*256 + NWE_CYCLE[6:0]) clock cycles
• NRD_CYCLE: Total Read Cycle Length
The total read cycle length is the total duration in clock cycles of the read cycle. It is equal to the sum of the setup, pulse
and hold steps of the NRD and NCS signals. It is defined as:
Read cycle length = (NRD_CYCLE[8:7]*256 + NRD_CYCLE[6:0]) clock cycles
202
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
22.14.4 SMC MODE Register
Register Name:
SMC_MODE[0..5]
Access Type:
Read/Write
31
30
–
–
29
28
23
22
21
20
–
–
–
TDF_MODE
15
14
13
–
–
7
6
–
–
PS
12
DBW
5
4
EXNW_MODE
27
26
25
24
–
–
–
PMEN
19
18
17
16
TDF_CYCLES
11
10
9
8
–
–
–
BAT
3
2
1
0
–
–
WRITE_MODE
READ_MODE
• READ_MODE:
1: The read operation is controlled by the NRD signal.
– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NRD.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NRD.
0: The read operation is controlled by the NCS signal.
– If TDF cycles are programmed, the external bus is marked busy after the rising edge of NCS.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states are inserted after the setup of NCS.
• WRITE_MODE
1: The write operation is controlled by the NWE signal.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NWE.
0: The write operation is controlled by the NCS signal.
– If TDF optimization is enabled (TDF_MODE =1), TDF wait states will be inserted after the setup of NCS.
• EXNW_MODE: NWAIT Mode
The NWAIT signal is used to extend the current read or write signal. It is only taken into account during the pulse phase of
the read and write controlling signal. When the use of NWAIT is enabled, at least one cycle hold duration must be programmed for the read and write controlling signal.
EXNW_MODE
NWAIT Mode
0
0
Disabled
0
1
Reserved
1
0
Frozen Mode
1
1
Ready Mode
• Disabled Mode: The NWAIT input signal is ignored on the corresponding Chip Select.
• Frozen Mode: If asserted, the NWAIT signal freezes the current read or write cycle. After deassertion, the read/write
cycle is resumed from the point where it was stopped.
• Ready Mode: The NWAIT signal indicates the availability of the external device at the end of the pulse of the controlling
read or write signal, to complete the access. If high, the access normally completes. If low, the access is extended until
NWAIT returns high.
203
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• BAT: Byte Access Type
This field is used only if DBW defines a 16- or 32-bit data bus.
• 1: Byte write access type:
– Write operation is controlled using NCS, NWR0, NWR1, NWR2, NWR3.
– Read operation is controlled using NCS and NRD.
• 0: Byte select access type:
– Write operation is controlled using NCS, NWE, NBS0, NBS1, NBS2 and NBS3
– Read operation is controlled using NCS, NRD, NBS0, NBS1, NBS2 and NBS3
• DBW: Data Bus Width
DBW
Data Bus Width
0
0
8-bit bus
0
1
16-bit bus
1
0
32-bit bus
1
1
Reserved
• TDF_CYCLES: Data Float Time
This field gives the integer number of clock cycles required by the external device to release the data after the rising edge
of the read controlling signal. The SMC always provide one full cycle of bus turnaround after the TDF_CYCLES period. The
external bus cannot be used by another chip select during TDF_CYCLES + 1 cycles. From 0 up to 15 TDF_CYCLES can
be set.
• TDF_MODE: TDF Optimization
1: TDF optimization is enabled.
– The number of TDF wait states is optimized using the setup period of the next read/write access.
0: TDF optimization is disabled.
– The number of TDF wait states is inserted before the next access begins.
• PMEN: Page Mode Enabled
1: Asynchronous burst read in page mode is applied on the corresponding chip select.
0: Standard read is applied.
• PS: Page Size
If page mode is enabled, this field indicates the size of the page in bytes.
PS
Page Size
0
0
4-byte page
0
1
8-byte page
1
0
16-byte page
1
1
32-byte page
204
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23. SDRAM Controller (SDRAMC)
23.1
Description
The SDRAM Controller (SDRAMC) extends the memory capabilities of a chip by providing the
interface to an external 16-bit or 32-bit SDRAM device. The page size supports ranges from
2048 to 8192 and the number of columns from 256 to 2048. It supports byte (8-bit), half-word
(16-bit) and word (32-bit) accesses.
The SDRAM Controller supports a read or write burst length of one location. It keeps track of the
active row in each bank, thus maximizing SDRAM performance, e.g., the application may be
placed in one bank and data in the other banks. So as to optimize performance, it is advisable to
avoid accessing different rows in the same bank.
The SDRAM controller supports a CAS latency of 1, 2 or 3 and optimizes the read access
depending on the frequency.
The different modes available - self-refresh, power-down and deep power-down modes - minimize power consumption on the SDRAM device.
23.2
I/O Lines Description
Table 23-1.
I/O Line Description
Name
Description
Type
Active Level
SDCK
SDRAM Clock
Output
SDCKE
SDRAM Clock Enable
Output
High
SDCS
SDRAM Controller Chip Select
Output
Low
BA[1:0]
Bank Select Signals
Output
RAS
Row Signal
Output
Low
CAS
Column Signal
Output
Low
SDWE
SDRAM Write Enable
Output
Low
NBS[3:0]
Data Mask Enable Signals
Output
Low
SDRAMC_A[12:0]
Address Bus
Output
D[31:0]
Data Bus
I/O
205
6289C–ATARM–28-May-09
23.3
Application Example
23.3.1
Software Interface
The SDRAM address space is organized into banks, rows, and columns. The SDRAM controller
allows mapping different memory types according to the values set in the SDRAMC configuration register.
The SDRAM Controller’s function is to make the SDRAM device access protocol transparent to
the user. Table 23-2 to Table 23-7 illustrate the SDRAM device memory mapping seen by the
user in correlation with the device structure. Various configurations are illustrated.
23.3.2
32-bit Memory Data Bus Width
Table 23-2.
SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
Bk[1:0]
14
13
12
11
10
9
8
7
Row[10:0]
Bk[1:0]
Bk[1:0]
6
5
4
3
2
Column[7:0]
Row[10:0]
0
M[1:0]
Column[9:0]
Row[10:0]
1
M[1:0]
Column[8:0]
Row[10:0]
Bk[1:0]
Table 23-3.
15
M[1:0]
Column[10:0]
M[1:0]
SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
Bk[1:0]
15
14
13
12
11
10
9
8
7
Row[11:0]
Bk[1:0]
Bk[1:0]
6
5
4
3
2
Column[7:0]
Row[11:0]
0
M[1:0]
Column[9:0]
Row[11:0]
1
M[1:0]
Column[8:0]
Row[11:0]
Bk[1:0]
Table 23-4.
16
M[1:0]
Column[10:0]
M[1:0]
SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
Bk[1:0]
Bk[1:0]
Notes:
206
15
14
13
12
11
Row[12:0]
Bk[1:0]
Bk[1:0]
16
Row[12:0]
Row[12:0]
Row[12:0]
10
9
8
7
6
5
Column[7:0]
Column[8:0]
Column[9:0]
Column[10:0]
4
3
2
1
0
M[1:0]
M[1:0]
M[1:0]
M[1:0]
1. M[1:0] is the byte address inside a 32-bit word.
2. Bk[1] = BA1, Bk[0] = BA0.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.3.3
16-bit Memory Data Bus Width
Table 23-5.
SDRAM Configuration Mapping: 2K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
15
Bk[1:0]
13
12
11
10
9
8
7
6
Row[10:0]
Bk[1:0]
4
3
2
1
M0
M0
Column[9:0]
Row[10:0]
0
M0
Column[8:0]
Row[10:0]
Bk[1:0]
5
Column[7:0]
Row[10:0]
Bk[1:0]
Table 23-6.
14
M0
Column[10:0]
SDRAM Configuration Mapping: 4K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
Bk[1:0]
14
13
12
11
10
9
8
7
6
Row[11:0]
Bk[1:0]
4
3
2
1
M0
M0
Column[9:0]
Row[11:0]
0
M0
Column[8:0]
Row[11:0]
Bk[1:0]
5
Column[7:0]
Row[11:0]
Bk[1:0]
Table 23-7.
15
M0
Column[10:0]
SDRAM Configuration Mapping: 8K Rows, 256/512/1024/2048 Columns
CPU Address Line
27
26
25
24
23
22
21
20
19
18
17
16
Bk[1:0]
Bk[1:0]
Notes:
14
Row[12:0]
Bk[1:0]
Bk[1:0]
15
Row[12:0]
Row[12:0]
Row[12:0]
13
12
11
10
9
8
7
6
5
4
Column[7:0]
Column[8:0]
Column[9:0]
Column[10:0]
3
2
1
0
M0
M0
M0
M0
1. M0 is the byte address inside a 16-bit half-word.
2. Bk[1] = BA1, Bk[0] = BA0.
207
6289C–ATARM–28-May-09
23.4
23.4.1
Product Dependencies
SDRAM Device Initialization
The initialization sequence is generated by software. The SDRAM devices are initialized by the
following sequence:
1. SDRAM features must be set in the configuration register: asynchronous timings (TRC,
TRAS, etc.), number of columns, rows, CAS latency, and the data bus width.
2. For mobile SDRAM, temperature-compensated self refresh (TCSR), drive strength
(DS) and partial array self refresh (PASR) must be set in the Low Power Register.
3. The SDRAM memory type must be set in the Memory Device Register.
4. A minimum pause of 200 µs is provided to precede any signal toggle.
5.
(1)
A NOP command is issued to the SDRAM devices. The application must set Mode to
1 in the Mode Register and perform a write access to any SDRAM address.
6. An All Banks Precharge command is issued to the SDRAM devices. The application
must set Mode to 2 in the Mode Register and perform a write access to any SDRAM
address.
7. Eight auto-refresh (CBR) cycles are provided. The application must set the Mode to 4 in
the Mode Register and perform a write access to any SDRAM location eight times.
8. A Mode Register set (MRS) cycle is issued to program the parameters of the SDRAM
devices, in particular CAS latency and burst length. The application must set Mode to 3
in the Mode Register and perform a write access to the SDRAM. The write address
must be chosen so that BA[1:0] are set to 0. For example, with a 16-bit 128 MB SDRAM
(12 rows, 9 columns, 4 banks) bank address, the SDRAM write access should be done
at the address 0x20000000.
9. For mobile SDRAM initialization, an Extended Mode Register set (EMRS) cycle is
issued to program the SDRAM parameters (TCSR, PASR, DS). The application must
set Mode to 5 in the Mode Register and perform a write access to the SDRAM. The
write address must be chosen so that BA[1] or BA[0] are set to 1. For example, with a
16-bit 128 MB SDRAM, (12 rows, 9 columns, 4 banks) bank address the SDRAM write
access should be done at the address 0x20800000 or 0x20400000.
10. The application must go into Normal Mode, setting Mode to 0 in the Mode Register and
performing a write access at any location in the SDRAM.
11. Write the refresh rate into the count field in the SDRAMC Refresh Timer register.
(Refresh rate = delay between refresh cycles). The SDRAM device requires a refresh
every 15.625 µs or 7.81 µs. With a 100 MHz frequency, the Refresh Timer Counter
Register must be set with the value 1562(15.652 µs x 100 MHz) or 781(7.81 µs x 100
MHz).
After initialization, the SDRAM devices are fully functional.
Note:
208
1. It is strongly recommended to respect the instructions stated in Step 5 of the initialization process in order to be certain that the subsequent commands issued by the SDRAMC will be
taken into account.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 23-1. SDRAM Device Initialization Sequence
SDCKE
tRP
tRC
tMRD
SDCK
SDRAMC_A[9:0]
A10
SDRAMC_A[12:11]
SDCS
RAS
CAS
SDWE
NBS
Inputs Stable for
200 μsec
23.4.2
Precharge All Banks
1st Auto-refresh
8th Auto-refresh
MRS Command
Valid Command
I/O Lines
The pins used for interfacing the SDRAM Controller may be multiplexed with the PIO lines. The
programmer must first program the PIO controller to assign the SDRAM Controller pins to their
peripheral function. If I/O lines of the SDRAM Controller are not used by the application, they
can be used for other purposes by the PIO Controller.
23.4.3
Interrupt
The SDRAM Controller interrupt (Refresh Error notification) is connected to the Memory Controller. This interrupt may be ORed with other System Peripheral interrupt lines and is finally
provided as the System Interrupt Source (Source 1) to the AIC (Advanced Interrupt Controller).
Using the SDRAM Controller interrupt requires the AIC to be programmed first.
209
6289C–ATARM–28-May-09
23.5
23.5.1
Functional Description
SDRAM Controller Write Cycle
The SDRAM Controller allows burst access or single access. In both cases, the SDRAM controller keeps track of the active row in each bank, thus maximizing performance. To initiate a burst
access, the SDRAM Controller uses the transfer type signal provided by the master requesting
the access. If the next access is a sequential write access, writing to the SDRAM device is carried out. If the next access is a write-sequential access, but the current access is to a boundary
page, or if the next access is in another row, then the SDRAM Controller generates a precharge
command, activates the new row and initiates a write command. To comply with SDRAM timing
parameters, additional clock cycles are inserted between precharge/active (tRP) commands and
active/write (tRCD) commands. For definition of these timing parameters, refer to the “SDRAMC
Configuration Register” on page 221. This is described in Figure 23-2 below.
Figure 23-2. Write Burst, 32-bit SDRAM Access
tRCD = 3
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
col g
col h
col i
col j
col k
col l
Dnb
Dnc
Dnd
Dne
Dnf
Dng
Dnh
Dni
Dnj
Dnk
Dnl
RAS
CAS
SDWE
D[31:0]
210
Dna
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.5.2
SDRAM Controller Read Cycle
The SDRAM Controller allows burst access, incremental burst of unspecified length or single
access. In all cases, the SDRAM Controller keeps track of the active row in each bank, thus
maximizing performance of the SDRAM. If row and bank addresses do not match the previous
row/bank address, then the SDRAM controller automatically generates a precharge command,
activates the new row and starts the read command. To comply with the SDRAM timing parameters, additional clock cycles on SDCK are inserted between precharge and active commands
(tRP) and between active and read command (tRCD). These two parameters are set in the configuration register of the SDRAM Controller. After a read command, additional wait states are
generated to comply with the CAS latency (1, 2 or 3 clock delays specified in the configuration
register).
For a single access or an incremented burst of unspecified length, the SDRAM Controller anticipates the next access. While the last value of the column is returned by the SDRAM Controller
on the bus, the SDRAM Controller anticipates the read to the next column and thus anticipates
the CAS latency. This reduces the effect of the CAS latency on the internal bus.
For burst access of specified length (4, 8, 16 words), access is not anticipated. This case leads
to the best performance. If the burst is broken (border, busy mode, etc.), the next access is handled as an incrementing burst of unspecified length.
Figure 23-3. Read Burst, 32-bit SDRAM Access
tRCD = 3
CAS = 2
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
RAS
CAS
SDWE
D[31:0]
(Input)
Dna
Dnb
Dnc
Dnd
Dne
Dnf
211
6289C–ATARM–28-May-09
23.5.3
Border Management
When the memory row boundary has been reached, an automatic page break is inserted. In this
case, the SDRAM controller generates a precharge command, activates the new row and initiates a read or write command. To comply with SDRAM timing parameters, an additional clock
cycle is inserted between the precharge/active (tRP) command and the active/read (tRCD) command. This is described in Figure 23-4 below.
Figure 23-4. Read Burst with Boundary Row Access
TRP = 3
TRCD = 3
CAS = 2
SDCS
SDCK
Row n
SDRAMC_A[12:0]
col a
col b
col c
col d
Row m
col a
col b
col c
col d
col e
RAS
CAS
SDWE
D[31:0]
212
Dna
Dnb
Dnc
Dnd
Dma
Dmb
Dmc
Dmd
Dme
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.5.4
SDRAM Controller Refresh Cycles
An auto-refresh command is used to refresh the SDRAM device. Refresh addresses are generated internally by the SDRAM device and incremented after each auto-refresh automatically.
The SDRAM Controller generates these auto-refresh commands periodically. An internal timer is
loaded with the value in the register SDRAMC_TR that indicates the number of clock cycles
between refresh cycles.
A refresh error interrupt is generated when the previous auto-refresh command did not perform.
It is acknowledged by reading the Interrupt Status Register (SDRAMC_ISR).
When the SDRAM Controller initiates a refresh of the SDRAM device, internal memory accesses
are not delayed. However, if the CPU tries to access the SDRAM, the slave indicates that the
device is busy and the master is held by a wait signal. See Figure 23-5.
Figure 23-5. Refresh Cycle Followed by a Read Access
tRP = 3
tRC = 8
tRCD = 3
CAS = 2
SDCS
SDCK
Row n
SDRAMC_A[12:0]
Row m
col c col d
col a
RAS
CAS
SDWE
D[31:0]
(input)
Dnb
Dnc
Dnd
Dma
213
6289C–ATARM–28-May-09
23.5.5
Power Management
Three low-power modes are available:
• Self-refresh Mode: The SDRAM executes its own Auto-refresh cycle without control of the
SDRAM Controller. Current drained by the SDRAM is very low.
• Power-down Mode: Auto-refresh cycles are controlled by the SDRAM Controller. Between
auto-refresh cycles, the SDRAM is in power-down. Current drained in Power-down mode is
higher than in Self-refresh Mode.
• Deep Power-down Mode: (Only available with Mobile SDRAM) The SDRAM contents are
lost, but the SDRAM does not drain any current.
The SDRAM Controller activates one low-power mode as soon as the SDRAM device is not
selected. It is possible to delay the entry in self-refresh and power-down mode after the last
access by programming a timeout value in the Low Power Register.
214
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.5.6
Self-refresh Mode
This mode is selected by programming the LPCB field to 1 in the SDRAMC Low Power Register.
In self-refresh mode, the SDRAM device retains data without external clocking and provides its
own internal clocking, thus performing its own auto-refresh cycles. All the inputs to the SDRAM
device become “don’t care” except SDCKE, which remains low. As soon as the SDRAM device
is selected, the SDRAM Controller provides a sequence of commands and exits self-refresh
mode.
Some low-power SDRAMs (e.g., mobile SDRAM) can refresh only one quarter or a half quarter
or all banks of the SDRAM array. This feature reduces the self-refresh current. To configure this
feature, Temperature Compensated Self Refresh (TCSR), Partial Array Self Refresh (PASR)
and Drive Strength (DS) parameters must be set in the Low Power Register and transmitted to
the low-power SDRAM during initialization.
After initialization, as soon as PASR/DS/TCSR fields are modified and self-refresh mode is activated, the Extended Mode Register is accessed automatically and PASR/DS/TCSR bits are
updated before entry into self-refresh mode.
The SDRAM device must remain in self-refresh mode for a minimum period of tRAS and may
remain in self-refresh mode for an indefinite period. This is described in Figure 23-6.
Figure 23-6. Self-refresh Mode Behavior
Self Refresh Mode
TXSR = 3
SRCB = 1
Write
SDRAMC_SRR
Row
SDRAMC_A[12:0]
SDCK
SDCKE
SDCS
RAS
CAS
SDWE
Access Request
to the SDRAM Controller
215
6289C–ATARM–28-May-09
23.5.7
Low-power Mode
This mode is selected by programming the LPCB field to 2 in the SDRAMC Low Power Register.
Power consumption is greater than in self-refresh mode. All the input and output buffers of the
SDRAM device are deactivated except SDCKE, which remains low. In contrast to self-refresh
mode, the SDRAM device cannot remain in low-power mode longer than the refresh period (64
ms for a whole device refresh operation). As no auto-refresh operations are performed by the
SDRAM itself, the SDRAM Controller carries out the refresh operation. The exit procedure is
faster than in self-refresh mode.
This is described in Figure 23-7.
Figure 23-7. Low-power Mode Behavior
TRCD = 3
CAS = 2
Low Power Mode
SDCS
SDCK
SDRAMC_A[12:0]
Row n
col a
col b
col c
col d
col e
col f
RAS
CAS
SDCKE
D[31:0]
(input)
216
Dna
Dnb
Dnc
Dnd
Dne
Dnf
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.5.8
Deep Power-down Mode
This mode is selected by programming the LPCB field to 3 in the SDRAMC Low Power Register.
When this mode is activated, all internal voltage generators inside the SDRAM are stopped and
all data is lost.
When this mode is enabled, the application must not access to the SDRAM until a new initialization sequence is done (See “SDRAM Device Initialization” on page 208).
This is described in Figure 23-8.
Figure 23-8. Deep Power-down Mode Behavior
tRP = 3
SDCS
SDCK
Row n
SDRAMC_A[12:0]
col c
col d
RAS
CAS
SDWE
CKE
D[31:0]
(input)
Dnb
Dnc
Dnd
217
6289C–ATARM–28-May-09
23.6
SDRAM Controller User Interface
Table 23-8.
Offset
Register
Name
Access
Reset State
0x00
SDRAMC Mode Register
SDRAMC_MR
Read/Write
0x00000000
0x04
SDRAMC Refresh Timer Register
SDRAMC_TR
Read/Write
0x00000000
0x08
SDRAMC Configuration Register
SDRAMC_CR
Read/Write
0x852372C0
0x10
SDRAMC Low Power Register
SDRAMC_LPR
Read/Write
0x0
0x14
SDRAMC Interrupt Enable Register
SDRAMC_IER
Write-only
–
0x18
SDRAMC Interrupt Disable Register
SDRAMC_IDR
Write-only
–
0x1C
SDRAMC Interrupt Mask Register
SDRAMC_IMR
Read-only
0x0
0x20
SDRAMC Interrupt Status Register
SDRAMC_ISR
Read-only
0x0
0x24
SDRAMC Memory Device Register
SDRAMC_MDR
Read
0x0
–
–
–
0x28 - 0xFC
218
SDRAM Controller Memory Map
Reserved
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.6.1
SDRAMC Mode Register
Register Name:
SDRAMC_MR
Access Type:
Read/Write
Reset Value:
0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
1
0
MODE
• MODE: SDRAMC Command Mode
This field defines the command issued by the SDRAM Controller when the SDRAM device is accessed.
MODE
Description
0
0
0
Normal mode. Any access to the SDRAM is decoded normally.
0
0
1
The SDRAM Controller issues a NOP command when the SDRAM device is accessed regardless of the
cycle.
0
1
0
The SDRAM Controller issues an “All Banks Precharge” command when the SDRAM device is accessed
regardless of the cycle.
0
1
1
The SDRAM Controller issues a “Load Mode Register” command when the SDRAM device is accessed
regardless of the cycle. The address offset with respect to the SDRAM device base address is used to
program the Mode Register. For instance, when this mode is activated, an access to the “SDRAM_Base +
offset” address generates a “Load Mode Register” command with the value “offset” written to the SDRAM
device Mode Register.
1
0
0
The SDRAM Controller issues an “Auto-Refresh” Command when the SDRAM device is accessed
regardless of the cycle. Previously, an “All Banks Precharge” command must be issued.
1
0
1
The SDRAM Controller issues an extended load mode register command when the SDRAM device is
accessed regardless of the cycle. The address offset with respect to the SDRAM device base address is
used to program the Mode Register. For instance, when this mode is activated, an access to the
“SDRAM_Base + offset” address generates an “Extended Load Mode Register” command with the value
“offset” written to the SDRAM device Mode Register.
1
1
0
Deep power-down mode. Enters deep power-down mode.
219
6289C–ATARM–28-May-09
23.6.2
SDRAMC Refresh Timer Register
Register Name:
SDRAMC_TR
Access Type:
Read/Write
Reset Value:
0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
10
9
8
7
6
5
4
1
0
COUNT
3
2
COUNT
• COUNT: SDRAMC Refresh Timer Count
This 12-bit field is loaded into a timer that generates the refresh pulse. Each time the refresh pulse is generated, a refresh
burst is initiated. The value to be loaded depends on the SDRAMC clock frequency (MCK: Master Clock), the refresh rate
of the SDRAM device and the refresh burst length where 15.6 µs per row is a typical value for a burst of length one.
To refresh the SDRAM device, this 12-bit field must be written. If this condition is not satisfied, no refresh command is
issued and no refresh of the SDRAM device is carried out.
220
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.6.3
SDRAMC Configuration Register
Register Name:
SDRAMC_CR
Access Type:
Read/Write
Reset Value:
0x852372C0
31
30
29
28
27
26
TXSR
23
21
20
19
18
TRCD
17
16
9
8
TRP
14
13
12
11
10
TRC
7
DBW
24
TRAS
22
15
25
TWR
6
5
CAS
4
NB
3
2
NR
1
0
NC
• NC: Number of Column Bits
Reset value is 8 column bits.
NC
Column Bits
0
0
8
0
1
9
1
0
10
1
1
11
• NR: Number of Row Bits
Reset value is 11 row bits.
NR
Row Bits
0
0
11
0
1
12
1
0
13
1
1
Reserved
• NB: Number of Banks
Reset value is two banks.
NB
Number of Banks
0
2
1
4
221
6289C–ATARM–28-May-09
• CAS: CAS Latency
Reset value is two cycles.
In the SDRAMC, only a CAS latency of one, two and three cycles are managed. In any case, another value must be
programmed.
CAS
CAS Latency (Cycles)
0
0
Reserved
0
1
1
1
0
2
1
1
3
• DBW: Data Bus Width
Reset value is 16 bits
0: Data bus width is 32 bits.
1: Data bus width is 16 bits.
• TWR: Write Recovery Delay
Reset value is two cycles.
This field defines the Write Recovery Time in number of cycles. Number of cycles is between 0 and 15.
• TRC: Row Cycle Delay
Reset value is seven cycles.
This field defines the delay between a Refresh and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.
• TRP: Row Precharge Delay
Reset value is three cycles.
This field defines the delay between a Precharge Command and another Command in number of cycles. Number of cycles
is between 0 and 15.
• TRCD: Row to Column Delay
Reset value is two cycles.
This field defines the delay between an Activate Command and a Read/Write Command in number of cycles. Number of
cycles is between 0 and 15.
• TRAS: Active to Precharge Delay
Reset value is five cycles.
This field defines the delay between an Activate Command and a Precharge Command in number of cycles. Number of
cycles is between 0 and 15.
• TXSR: Exit Self Refresh to Active Delay
Reset value is eight cycles.
This field defines the delay between SCKE set high and an Activate Command in number of cycles. Number of cycles is
between 0 and 15.
222
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.6.4
SDRAMC Low Power Register
Register Name:
SDRAMC_LPR
Access Type:
Read/Write
Reset Value:
0x0
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
12
11
10
9
7
–
6
5
PASR
TIMEOUT
DS
4
3
–
8
TCSR
2
–
1
0
LPCB
• LPCB: Low-power Configuration Bits
00
Low Power Feature is inhibited: no Power-down, Self-refresh or Deep Power-down command is issued to the
SDRAM device.
01
The SDRAM Controller issues a Self-refresh command to the SDRAM device, the SDCLK clock is deactivated
and the SDCKE signal is set low. The SDRAM device leaves the Self Refresh Mode when accessed and enters
it after the access.
10
The SDRAM Controller issues a Power-down Command to the SDRAM device after each access, the SDCKE
signal is set to low. The SDRAM device leaves the Power-down Mode when accessed and enters it after the
access.
11
The SDRAM Controller issues a Deep Power-down command to the SDRAM device. This mode is unique to
low-power SDRAM.
• PASR: Partial Array Self-refresh (only for low-power SDRAM)
PASR parameter is transmitted to the SDRAM during initialization to specify whether only one quarter, one half or all banks
of the SDRAM array are enabled. Disabled banks are not refreshed in self-refresh mode. This parameter must be set
according to the SDRAM device specification.
After initialization, as soon as PASR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and PASR bits are updated before entry in self-refresh mode.
• TCSR: Temperature Compensated Self-Refresh (only for low-power SDRAM)
TCSR parameter is transmitted to the SDRAM during initialization to set the refresh interval during self-refresh mode
depending on the temperature of the low-power SDRAM. This parameter must be set according to the SDRAM device
specification.
After initialization, as soon as TCSR field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and TCSR bits are updated before entry in self-refresh mode.
• DS: Drive Strength (only for low-power SDRAM)
DS parameter is transmitted to the SDRAM during initialization to select the SDRAM strength of data output. This parameter must be set according to the SDRAM device specification.
223
6289C–ATARM–28-May-09
After initialization, as soon as DS field is modified and self-refresh mode is activated, the Extended Mode Register is
accessed automatically and DS bits are updated before entry in self-refresh mode.
• TIMEOUT: Time to define when low-power mode is enabled
224
00
The SDRAM controller activates the SDRAM low-power mode immediately after the end of the last transfer.
01
The SDRAM controller activates the SDRAM low-power mode 64 clock cycles after the end of the last transfer.
10
The SDRAM controller activates the SDRAM low-power mode 128 clock cycles after the end of the last
transfer.
11
Reserved.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.6.5
SDRAMC Interrupt Enable Register
Register Name:
SDRAMC_IER
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Status
0: No effect.
1: Enables the refresh error interrupt.
23.6.6
SDRAMC Interrupt Disable Register
Register Name:
SDRAMC_IDR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Status
0: No effect.
1: Disables the refresh error interrupt.
225
6289C–ATARM–28-May-09
23.6.7
SDRAMC Interrupt Mask Register
Register Name:
SDRAMC_IMR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Status
0: The refresh error interrupt is disabled.
1: The refresh error interrupt is enabled.
226
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
23.6.8
SDRAMC Interrupt Status Register
Register Name:
SDRAMC_ISR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RES
• RES: Refresh Error Status
0: No refresh error has been detected since the register was last read.
1: A refresh error has been detected since the register was last read.
227
6289C–ATARM–28-May-09
23.6.9
SDRAMC Memory Device Register
Register Name:
SDRAMC_MDR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
0
MD
• MD: Memory Device Type
228
00
SDRAM
01
Low-power SDRAM
10
Reserved
11
Reserved.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
24. Error Corrected Code (ECC) Controller
24.1
Description
NAND Flash/SmartMedia devices contain by default invalid blocks which have one or more
invalid bits. Over the NAND Flash/SmartMedia lifetime, additional invalid blocks may occur
which can be detected/corrected by ECC code.
The ECC Controller is a mechanism that encodes data in a manner that makes possible the
identification and correction of certain errors in data. The ECC controller is capable of single bit
error correction and 2-bit random detection. When NAND Flash/SmartMedia have more than 2
bits of errors, the data cannot be corrected.
The ECC user interface is compliant with the ARM Advanced Peripheral Bus (APB rev2).
24.2
Block Diagram
Figure 24-1. Block Diagram
NAND Flash
Static
Memory
Controller
SmartMedia
Logic
ECC
Controller
Ctrl/ECC Algorithm
User Interface
APB
24.3
Functional Description
A page in NAND Flash and SmartMedia memories contains an area for main data and an additional area used for redundancy (ECC). The page is organized in 8-bit or 16-bit words. The page
size corresponds to the number of words in the main area plus the number of words in the extra
area used for redundancy.
229
6289C–ATARM–28-May-09
The only configuration required for ECC is the NAND Flash or the SmartMedia page size
(528/1056/2112/4224). Page size is configured setting the PAGESIZE field in the ECC Mode
Register (ECC_MR).
ECC is automatically computed as soon as a read (00h)/write (80h) command to the NAND
Flash or the SmartMedia is detected. Read and write access must start at a page boundary.
ECC results are available as soon as the counter reaches the end of the main area. Values in
the ECC Parity Register (ECC_PR) and ECC NParity Register (ECC_NPR) are then valid and
locked until a new start condition occurs (read/write command followed by address cycles).
24.3.1
Write Access
Once the flash memory page is written, the computed ECC code is available in the ECC Parity
Error (ECC_PR) and ECC_NParity Error (ECC_NPR) registers. The ECC code value must be
written by the software application in the extra area used for redundancy.
24.3.2
Read Access
After reading the whole data in the main area, the application must perform read accesses to the
extra area where ECC code has been previously stored. Error detection is automatically performed by the ECC controller. Please note that it is mandatory to read consecutively the entire
main area and the locations where Parity and NParity values have been previously stored to let
the ECC controller perform error detection.
The application can check the ECC Status Register (ECC_SR) for any detected errors.
It is up to the application to correct any detected error. ECC computation can detect four different circumstances:
• No error: XOR between the ECC computation and the ECC code stored at the end of the
NAND Flash or SmartMedia page is equal to 0. No error flags in the ECC Status Register
(ECC_SR).
• Recoverable error: Only the RECERR flag in the ECC Status register (ECC_SR) is set. The
corrupted word offset in the read page is defined by the WORDADDR field in the ECC Parity
Register (ECC_PR). The corrupted bit position in the concerned word is defined in the
BITADDR field in the ECC Parity Register (ECC_PR).
• ECC error: The ECCERR flag in the ECC Status Register is set. An error has been detected
in the ECC code stored in the Flash memory. The position of the corrupted bit can be found
by the application performing an XOR between the Parity and the NParity contained in the
ECC code stored in the flash memory.
• Non correctable error: The MULERR flag in the ECC Status Register is set. Several
unrecoverable errors have been detected in the flash memory page.
ECC Status Register, ECC Parity Register and ECC NParity Register are cleared when a
read/write command is detected or a software reset is performed.
For Single-bit Error Correction and Double-bit Error Detection (SEC-DED) hsiao code is used.
32-bit ECC is generated in order to perform one bit correction per 512/1024/2048/4096 8- or 16bit words. Of the 32 ECC bits, 26 bits are for line parity and 6 bits are for column parity. They are
generated according to the schemes shown in Figure 24-2 and Figure 24-3.
230
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 24-2. Parity Generation for 512/1024/2048/4096 8-bit Words1
1st byte
2nd byte
Bit7
Bit6
Bit7
3rd byte
4 th byte
(page size -3 )th byte
(page size -2 )th byte
(page size -1 )th byte
Page size th byte
Bit4
Bit4
Bit3
Bit3
Bit2
Bit2
Bit1
Bit1
Bit0
Bit0
P8
Bit6
Bit5
Bit5
Bit7
Bit7
Bit6
Bit6
Bit5
Bit5
Bit4
Bit4
Bit3
Bit3
Bit2
Bit2
Bit1
Bit1
Bit0
Bit0
P8
Bit7
Bit7
Bit6
Bit6
Bit5
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
P8
Bit4
Bit3
Bit2
Bit1
Bit0
P8'
Bit7
Bit5
Bit5
Bit3
Bit3
Bit2
P8
Bit2
Bit1
Bit1
Bit0
Bit7
Bit6
Bit6
Bit0
P8'
P1
P1'
P1
P1
P1'
P1
P1'
P2
Bit4
Bit4
P1'
P2
P2'
P4
Page size
Page size
Page size
Page size
= 512
= 1024
= 2048
= 4096
P8'
P8'
P16
P32
PX
P32
PX'
P16'
P16
P16'
P2'
P4'
P1=bit7(+)bit5(+)bit3(+)bit1(+)P1
P2=bit7(+)bit6(+)bit3(+)bit2(+)P2
P4=bit7(+)bit6(+)bit5(+)bit4(+)P4
P1'=bit6(+)bit4(+)bit2(+)bit0(+)P1'
P2'=bit5(+)bit4(+)bit1(+)bit0(+)P2'
P4'=bit7(+)bit6(+)bit5(+)bit4(+)P4'
Px = 2048
Px = 4096
Px = 8192
Px = 16384
To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.
Page size = 2n
for i =0 to n
begin
for (j = 0 to page_size_byte)
begin
if(j[i] ==1)
P[2i+3]=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]
else
P[2i+3]’=bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]'
end
end
231
6289C–ATARM–28-May-09
232
(Page size -3 )th word
(Page size -2 )th word
(Page size -1 )th word
Page size th word
3rd word
4th word
1st word
2nd word
(+)
Figure 24-3. Parity Generation for 512/1024/2048/4096 16-bit Words
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
To calculate P8’ to PX’ and P8 to PX, apply the algorithm that follows.
Page size = 2n
for i =0 to n
begin
for (j = 0 to page_size_word)
begin
if(j[i] ==1)
P[2i+3]= bit15(+)bit14(+)bit13(+)bit12(+)
bit11(+)bit10(+)bit9(+)bit8(+)
bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2n+3]
else
P[2i+3]’=bit15(+)bit14(+)bit13(+)bit12(+)
bit11(+)bit10(+)bit9(+)bit8(+)
bit7(+)bit6(+)bit5(+)bit4(+)bit3(+)
bit2(+)bit1(+)bit0(+)P[2i+3]'
end
end
233
6289C–ATARM–28-May-09
24.4
Error Corrected Code (ECC) Controller User Interface
Table 24-1.
Offset
234
ECC Register Mapping
Register
Register Name
Access
Reset
0x00
ECC Control Register
ECC_CR
Write-only
0x0
0x04
ECC Mode Register
ECC_MR
Read/Write
0x0
0x08
ECC Status Register
ECC_SR
Read-only
0x0
0x0C
ECC Parity Register
ECC_PR
Read-only
0x0
0x10
ECC NParity Register
ECC_NPR
Read-only
0x0
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
24.4.1
Name:
ECC Control Register
ECC_CR
Access Type:
31
–
23
–
15
–
7
–
Write-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
–
24
–
16
–
8
–
0
RST
• RST: RESET Parity
Provides reset to current ECC by software.
1 = Resets ECC Parity and ECC NParity register.
0 = No effect.
235
6289C–ATARM–28-May-09
24.4.2
ECC Mode Register
Register Name:
ECC_MR
Access Type:
31
–
23
–
15
–
7
–
Read/Write
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
–
25
–
17
–
9
–
1
24
–
16
–
8
–
0
PAGESIZE
• PAGESIZE: Page Size
This field defines the page size of the NAND Flash device.
Page Size
Description
00
528 words
01
1056 words
10
2112 words
11
4224 words
A word has a value of 8 bits or 16 bits, depending on the NAND Flash or SmartMedia memory organization.
236
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
24.4.3
ECC Status Register
Register Name:
ECC_SR
Access Type:
31
–
23
–
15
–
7
–
Read-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
MULERR
25
–
17
–
9
–
1
ECCERR
24
–
16
–
8
–
0
RECERR
• RECERR: Recoverable Error
0 = No Errors Detected.
1 = Errors Detected. If MUL_ERROR is 0, a single correctable error was detected. Otherwise multiple uncorrected errors
were detected.
• ECCERR: ECC Error
0 = No Errors Detected.
1 = A single bit error occurred in the ECC bytes.
Read both ECC Parity and ECC NParity register, the error occurred at the location which contains a 1 in the least significant 16 bits.
• MULERR: Multiple Error
0 = No Multiple Errors Detected.
1 = Multiple Errors Detected.
237
6289C–ATARM–28-May-09
24.4.4
ECC Parity Register
Register Name:
ECC_PR
Access Type:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
WORDADDR
WORDADDR
BITADDR
Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.
• BITADDR
During a page read, this value contains the corrupted bit offset where an error occurred, if a single error was detected. If
multiple errors were detected, this value is meaningless.
• WORDADDR
During a page read, this value contains the word address (8-bit or 16-bit word depending on the memory plane organization) where an error occurred, if a single error was detected. If multiple errors were detected, this value is meaningless.
24.4.5
ECC NParity Register
Register Name:
ECC_NPR
Access Type:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
NPARITY
NPARITY
• NPARITY:
Once the entire main area of a page is written with data, the register content must be stored at any free location of the
spare area.
238
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25. Peripheral DMA Controller (PDC)
25.1
Description
The Peripheral DMA Controller (PDC) transfers data between on-chip serial peripherals and the
on- and/or off-chip memories. The link between the PDC and a serial peripheral is operated by
the AHB to ABP bridge.
The PDC contains twenty-two channels. The full-duplex peripherals feature twenty-one monodirectional channels used in pairs (transmit only or receive only). The half-duplex peripherals
feature one bi-directional channel.
The user interface of each PDC channel is integrated into the user interface of the peripheral it
serves. The user interface of mono directional channels (receive only or transmit only), contains
two 32-bit memory pointers and two 16-bit counters, one set (pointer, counter) for current transfer and one set (pointer, counter) for next transfer. The bi-directional channel user interface
contains four 32-bit memory pointers and four 16-bit counters. Each set (pointer, counter) is
used by current transmit, next transmit, current receive and next receive.
Using the PDC removes processor overhead by reducing its intervention during the transfer.
This significantly reduces the number of clock cycles required for a data transfer, which
improves microcontroller performance.
To launch a transfer, the peripheral triggers its associated PDC channels by using transmit and
receive signals. When the programmed data is transferred, an end of transfer interrupt is generated by the peripheral itself.
239
6289C–ATARM–28-May-09
25.2
Block Diagram
Figure 25-1. Block Diagram
FULL DUPLEX
PERIPHERAL
PDC
THR
PDC Channel A
RHR
PDC Channel B
Control
Status & Control
HALF DUPLEX
PERIPHERAL
Control
THR
PDC Channel C
RHR
Control
Status & Control
RECEIVE or TRANSMIT
PERIPHERAL
RHR or THR
Control
240
PDC Channel D
Status & Control
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.3
25.3.1
Functional Description
Configuration
The PDC channel user interface enables the user to configure and control data transfers for
each channel. The user interface of each PDC channel is integrated into the associated peripheral user interface.
The user interface of a serial peripheral, whether it is full or half duplex, contains four 32-bit
pointers (RPR, RNPR, TPR, TNPR) and four 16-bit counter registers (RCR, RNCR, TCR,
TNCR). However, the transmit and receive parts of each type are programmed differently: the
transmit and receive parts of a full duplex peripheral can be programmed at the same time,
whereas only one part (transmit or receive) of a half duplex peripheral can be programmed at a
time.
32-bit pointers define the access location in memory for current and next transfer, whether it is
for read (transmit) or write (receive). 16-bit counters define the size of current and next transfers.
It is possible, at any moment, to read the number of transfers left for each channel.
The PDC has dedicated status registers which indicate if the transfer is enabled or disabled for
each channel. The status for each channel is located in the associated peripheral status register.
Transfers can be enabled and/or disabled by setting TXTEN/TXTDIS and RXTEN/RXTDIS in
the peripheral’s Transfer Control Register.
At the end of a transfer, the PDC channel sends status flags to its associated peripheral. These
flags are visible in the peripheral status register (ENDRX, ENDTX, RXBUFF, and TXBUFE).
Refer to Section 25.3.3 and to the associated peripheral user interface.
25.3.2
Memory Pointers
Each full duplex peripheral is connected to the PDC by a receive channel and a transmit channel. Both channels have 32-bit memory pointers that point respectively to a receive area and to
a transmit area in on- and/or off-chip memory.
Each half duplex peripheral is connected to the PDC by a bidirectional channel. This channel
has two 32-bit memory pointers, one for current transfer and the other for next transfer. These
pointers point to transmit or receive data depending on the operating mode of the peripheral.
Depending on the type of transfer (byte, half-word or word), the memory pointer is incremented
respectively by 1, 2 or 4 bytes.
If a memory pointer address changes in the middle of a transfer, the PDC channel continues
operating using the new address.
25.3.3
Transfer Counters
Each channel has two 16-bit counters, one for current transfer and the other one for next transfer. These counters define the size of data to be transferred by the channel. The current transfer
counter is decremented first as the data addressed by current memory pointer starts to be transferred. When the current transfer counter reaches zero, the channel checks its next transfer
counter. If the value of next counter is zero, the channel stops transferring data and sets the
appropriate flag. But if the next counter value is greater then zero, the values of the next
pointer/next counter are copied into the current pointer/current counter and the channel resumes
the transfer whereas next pointer/next counter get zero/zero as values. At the end of this transfer the PDC channel sets the appropriate flags in the Peripheral Status Register.
241
6289C–ATARM–28-May-09
The following list gives an overview of how status register flags behave depending on the counters’ values:
• ENDRX flag is set when the PERIPH_RCR register reaches zero.
• RXBUFF flag is set when both PERIPH_RCR and PERIPH_RNCR reach zero.
• ENDTX flag is set when the PERIPH_TCR register reaches zero.
• TXBUFE flag is set when both PERIPH_TCR and PERIPH_TNCR reach zero.
These status flags are described in the Peripheral Status Register.
25.3.4
Data Transfers
The serial peripheral triggers its associated PDC channels’ transfers using transmit enable
(TXEN) and receive enable (RXEN) flags in the transfer control register integrated in the peripheral’s user interface.
When the peripheral receives an external data, it sends a Receive Ready signal to its PDC
receive channel which then requests access to the Matrix. When access is granted, the PDC
receive channel starts reading the peripheral Receive Holding Register (RHR). The read data
are stored in an internal buffer and then written to memory.
When the peripheral is about to send data, it sends a Transmit Ready to its PDC transmit channel which then requests access to the Matrix. When access is granted, the PDC transmit
channel reads data from memory and puts them to Transmit Holding Register (THR) of its associated peripheral. The same peripheral sends data according to its mechanism.
25.3.5
PDC Flags and Peripheral Status Register
Each peripheral connected to the PDC sends out receive ready and transmit ready flags and the
PDC sends back flags to the peripheral. All these flags are only visible in the Peripheral Status
Register.
Depending on the type of peripheral, half or full duplex, the flags belong to either one single
channel or two different channels.
25.3.5.1
Receive Transfer End
This flag is set when PERIPH_RCR register reaches zero and the last data has been transferred
to memory.
It is reset by writing a non zero value in PERIPH_RCR or PERIPH_RNCR.
25.3.5.2
Transmit Transfer End
This flag is set when PERIPH_TCR register reaches zero and the last data has been written into
peripheral THR.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
25.3.5.3
Receive Buffer Full
This flag is set when PERIPH_RCR register reaches zero with PERIPH_RNCR also set to zero
and the last data has been transferred to memory.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
242
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.3.5.4
Transmit Buffer Empty
This flag is set when PERIPH_TCR register reaches zero with PERIPH_TNCR also set to zero
and the last data has been written into peripheral THR.
It is reset by writing a non zero value in PERIPH_TCR or PERIPH_TNCR.
243
6289C–ATARM–28-May-09
25.4
Peripheral DMA Controller (PDC) User Interface
Table 25-1.
Offset
Memory Map
Register
Name
(1)
Access
Reset State
0x100
Receive Pointer Register
PERIPH _RPR
Read/Write
0
0x104
Receive Counter Register
PERIPH_RCR
Read/Write
0
0x108
Transmit Pointer Register
PERIPH_TPR
Read/Write
0
0x10C
Transmit Counter Register
PERIPH_TCR
Read/Write
0
0x110
Receive Next Pointer Register
PERIPH_RNPR
Read/Write
0
0x114
Receive Next Counter Register
PERIPH_RNCR
Read/Write
0
0x118
Transmit Next Pointer Register
PERIPH_TNPR
Read/Write
0
0x11C
Transmit Next Counter Register
PERIPH_TNCR
Read/Write
0
0x120
Transfer Control Register
PERIPH_PTCR
Write
0
0x124
Transfer Status Register
PERIPH_PTSR
Read
0
Note:
244
1. PERIPH: Ten registers are mapped in the peripheral memory space at the same offset. These can be defined by the user
according to the function and the peripheral desired (DBGU, USART, SSC, SPI, MCI, etc.)
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.4.1
Receive Pointer Register
Register Name:
PERIPH_RPR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RXPTR
23
22
21
20
RXPTR
15
14
13
12
RXPTR
7
6
5
4
RXPTR
• RXPTR: Receive Pointer Register
RXPTR must be set to receive buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.
245
6289C–ATARM–28-May-09
25.4.2
Receive Counter Register
Register Name:
PERIPH_RCR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RXCTR
7
6
5
4
RXCTR
• RXCTR: Receive Counter Register
RXCTR must be set to receive buffer size.
When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the receiver
1 - 65535 = Starts peripheral data transfer if corresponding channel is active
246
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.4.3
Transmit Pointer Register
Register Name:
PERIPH_TPR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TXPTR
23
22
21
20
TXPTR
15
14
13
12
TXPTR
7
6
5
4
TXPTR
• TXPTR: Transmit Counter Register
TXPTR must be set to transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXPTR = TXPTR.
247
6289C–ATARM–28-May-09
25.4.4
Transmit Counter Register
Register Name:
PERIPH_TCR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TXCTR
7
6
5
4
TXCTR
• TXCTR: Transmit Counter Register
TXCTR must be set to transmit buffer size.
When a half duplex peripheral is connected to the PDC, RXCTR = TXCTR.
0 = Stops peripheral data transfer to the transmitter
1- 65535 = Starts peripheral data transfer if corresponding channel is active
248
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.4.5
Receive Next Pointer Register
Register Name:
PERIPH_RNPR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RXNPTR
23
22
21
20
RXNPTR
15
14
13
12
RXNPTR
7
6
5
4
RXNPTR
• RXNPTR: Receive Next Pointer
RXNPTR contains next receive buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
249
6289C–ATARM–28-May-09
25.4.6
Receive Next Counter Register
Register Name:
PERIPH_RNCR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RXNCTR
7
6
5
4
RXNCTR
• RXNCTR: Receive Next Counter
RXNCTR contains next receive buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.
250
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.4.7
Transmit Next Pointer Register
Register Name:
PERIPH_TNPR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TXNPTR
23
22
21
20
TXNPTR
15
14
13
12
TXNPTR
7
6
5
4
TXNPTR
• TXNPTR: Transmit Next Pointer
TXNPTR contains next transmit buffer address.
When a half duplex peripheral is connected to the PDC, RXNPTR = TXNPTR.
251
6289C–ATARM–28-May-09
25.4.8
Transmit Next Counter Register
Register Name:
PERIPH_TNCR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TXNCTR
7
6
5
4
TXNCTR
• TXNCTR: Transmit Counter Next
TXNCTR contains next transmit buffer size.
When a half duplex peripheral is connected to the PDC, RXNCTR = TXNCTR.
252
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
25.4.9
Transfer Control Register
Register Name:
PERIPH_PTCR
Access Type:
Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
TXTDIS
8
TXTEN
7
–
6
–
5
–
4
–
3
–
2
–
1
RXTDIS
0
RXTEN
• RXTEN: Receiver Transfer Enable
0 = No effect.
1 = Enables PDC receiver channel requests if RXTDIS is not set.
When a half duplex peripheral is connected to the PDC, enabling the receiver channel requests automatically disables the
transmitter channel requests. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.
• RXTDIS: Receiver Transfer Disable
0 = No effect.
1 = Disables the PDC receiver channel requests.
When a half duplex peripheral is connected to the PDC, disabling the receiver channel requests also disables the transmitter channel requests.
• TXTEN: Transmitter Transfer Enable
0 = No effect.
1 = Enables the PDC transmitter channel requests.
When a half duplex peripheral is connected to the PDC, it enables the transmitter channel requests only if RXTEN is not
set. It is forbidden to set both TXTEN and RXTEN for a half duplex peripheral.
• TXTDIS: Transmitter Transfer Disable
0 = No effect.
1 = Disables the PDC transmitter channel requests.
When a half duplex peripheral is connected to the PDC, disabling the transmitter channel requests disables the receiver
channel requests.
253
6289C–ATARM–28-May-09
25.4.10 Transfer Status Register
Register Name:
PERIPH_PTSR
Access Type:
Read
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
TXTEN
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
RXTEN
• RXTEN: Receiver Transfer Enable
0 = PDC Receiver channel requests are disabled.
1 = PDC Receiver channel requests are enabled.
• TXTEN: Transmitter Transfer Enable
0 = PDC Transmitter channel requests are disabled.
1 = PDC Transmitter channel requests are enabled.
254
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
26. Clock Generator
26.1
Description
The Clock Generator is made up of one PLL, a 12 MHz Main Oscillator, as well as an RC Oscillator and a 32,768 Hz low-power Oscillator.
It provides the following clocks:
• SLCK, the Slow Clock, which is the only permanent clock within the system
• MAINCK is the output of the 12 MHz Main Oscillator
• PLLCK is the output of the Divider and PLL block
The Clock Generator User Interface is embedded within the Power Management Controller one
and is described in Section 27.8. However, the Clock Generator registers are named CKGR_.
26.2
Slow Clock Crystal Oscillator
The Clock Generator integrates a 32,768 Hz low-power oscillator. The XIN32 and XOUT32 pins
must be connected to a 32,768 Hz crystal. Two external capacitors must be wired as shown in
Figure 26-1.
Figure 26-1. Typical Slow Clock Crystal Oscillator Connection
XIN32
XOUT32
GNDPLL
32,768 Hz
Crystal
26.3
Slow Clock RC Oscillator
The user has to take into account the possible drifts of the RC Oscillator. More details are given
in the section “DC Characteristics” of the product datasheet.
26.4
Slow Clock Selection
The AT91SAM9R64/RL64 slow clock can be generated either by an external 32,768 Hz crystal
or by the on-chip RC oscillator. The 32,768 Hz crystal oscillator can be bypassed by setting the
bit OSC32BYP to accept an external slow clock on XIN32.
The internal RC oscillator and the 32,768 Hz oscillator can be enabled by setting to 1, respectively, RCEN bit and OSC32EN bit in the System Controller user interface. The OSCSEL
command selects the slow clock source.
By default the AT91SAM9R64/RL64 slow clock source is the internal RC oscillator. System
startup time is 4 slow clock periods, typically 125 µs.
255
6289C–ATARM–28-May-09
Figure 26-2. Slow Clock Selection
Clock Generator
RCEN
On Chip
RC OSC
Slow Clock
SLCK
XIN32
Slow Clock
Oscillator
XOUT32
OSCSEL
OSC32EN
OSC32BYP
RCEN, OSC32EN,OSCSEL and OSC32BYP bits are located in the Slow Clock Control Register
(SCKCR) located at address 0xFFFFFD50 in the backed up part of the System Controller and so
are preserved while VDDBU is present.
After a VDDBU power on reset, the default configuration is RCEN=1, OSC32EN=0 and OSCSEL=0, allowing the system to start on the internal RC oscillator.
The programmer controls the slow clock switching by software and so must take precautions
during the switching phase.
26.4.1
Switching from Internal RC Oscillator to the 32,768 Hz Crystal
To switch from internal RC oscillator to the 32,768 Hz crystal, the programmer must execute the
following sequence:
• Switch the master clock to a source different from slow clock (PLL or Main Oscillator) through
the Power Management Controller.
• Enable the 32,768 Hz oscillator by setting the bit OSC32EN to 1.
• Wait 32,768 Hz Startup Time for clock stabilization (software loop).
• Switch from internal RC to 32,768 Hz oscillator by setting the bit OSCSEL to 1.
• Wait 5 slow clock cycles for internal resynchronization.
• Disable the RC oscillator by setting the bit RCEN to 0.
26.4.2
Bypassing the 32,768 Hz Oscillator
Following steps must be added to bypass the 32,768 Hz oscillator:
• An external clock must be connected on XIN32.
• Enable the bypass path OSC32BYP bit set to 1.
• Disable the 32,768 Hz oscillator by setting the bit OSC32EN to 0.
26.4.3
Switching from 32768 Hz Crystal to the Internal RC Oscillator
The same procedure must be followed to switch from a 32,768 Hz crystal to the internal RC
oscillator.
• Switch the master clock to a source different from slow clock (PLL or Main Oscillator).
• Enable the internal RC oscillator by setting the bit RCEN to 1.
256
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• Wait internal RC Startup Time for clock stabilization (software loop).
• Switch from 32768 Hz oscillator to internal RC by setting the bit OSCSEL to 0.
• Wait 5 slow clock cycles for internal resynchronization.
• Disable the 32768 Hz oscillator by setting the bit OSC32EN to 0.
26.4.4
Name:
Slow Clock Configuration Register
SCKCR
Address:
0xFFFFFD50
Acess:
Read-write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
OSCSEL
2
OSC32BYP
1
OSC32EN
0
RCEN
• RCEN: Internal RC
0: RC is disabled
1: RC is enabled
• OSC32EN: 32768 Hz oscillator
0: 32768Hz oscillator is disabled
1: 32768Hz oscillator is enabled
• OSC32BYP: 32768Hz oscillator bypass
0: 32768Hz oscillator is not bypassed
1: 32768Hz oscillator is bypassed, accept an external slow clock on XIN32
• OSCSEL: Slow clock selector
0: Slow clock is internal RC
1: Slow clock is 32768 Hz oscillator
257
6289C–ATARM–28-May-09
26.5
Main Oscillator
The Main Oscillator is designed for a 12 MHz fundamental crystal. The 12 MHz is also used to
generate the 480 MHz USB High Speed Clock (HSCK) thanks to the UTMI PLL (UPLL).
Figure 26-3 shows the Main Oscillator block diagram.
Figure 26-3. Main Oscillator Block Diagram
OSCEN
XIN
XOUT
UTMI
12MHz
Main
Oscillator
MAINCK
Main Clock
UPLL
HSCK
480 MHz
OSCOUNT
SLCK
Slow Clock
26.5.1
Main
Oscillator
Counter
MOSCS
Main Oscillator Connections
The typical crystal connection is illustrated in Figure 26-4. For further details on the electrical
characteristics of the Main Oscillator, see the section “DC Characteristics” of the product
datasheet.
Figure 26-4. Typical Crystal Connection
XIN
XOUT
GND
26.5.2
Main Oscillator Startup Time
The startup time of the 12 MHz Main Oscillator is given in thesection “DC Characteristics” of the
product datasheet.
26.5.3
Main Oscillator Control
To minimize the power required to start up the system, the main oscillator is disabled after reset
and slow clock is selected.
The software enables or disables the main oscillator so as to reduce power consumption by
clearing the MOSCEN bit in the Main Oscillator Register (CKGR_MOR).
When disabling the main oscillator by clearing the MOSCEN bit in CKGR_MOR, the MOSCS bit
in PMC_SR is automatically cleared, indicating the main clock is off.
258
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
When enabling the main oscillator, the user must initiate the main oscillator counter with a value
corresponding to the startup time of the oscillator. This startup time depends on the crystal frequency connected to the main oscillator.
When the MOSCEN bit and the OSCOUNT are written in CKGR_MOR to enable the main oscillator, the MOSCS bit in PMC_SR (Status Register) is cleared and the counter starts counting
down on the slow clock divided by 8 from the OSCOUNT value. Since the OSCOUNT value is
coded with 8 bits, the maximum startup time is about 62 ms.
When the counter reaches 0, the MOSCS bit is set, indicating that the main clock is valid. Setting the MOSCS bit in PMC_IMR can trigger an interrupt to the processor.
26.5.4
26.6
Main Oscillator Bypass
The user can input a clock on the device instead of connecting a crystal. In this case, the user
has to provide the external clock signal on the XIN pin. The input characteristics of the XIN pin
under these conditions are given in the product electrical characteristics section. The programmer has to be sure to set the OSCBYPASS bit to 1 and the MOSCEN bit to 0 in the Main OSC
register (CKGR_MOR) for the external clock to operate properly.
Divider and PLL Block
The PLL embeds an input divider to increase the accuracy of the resulting clock signals. However, the user must respect the PLL minimum input frequency when programming the divider.
Figure 26-5 shows the block diagram of the divider and PLL block.
Figure 26-5. Divider and PLL Block Diagram
DIV
Divider
MAINCK
OUT
MUL
PLLCK
PLL
PLLRC
PLLCOUNT
SLCK
26.6.1
PLL
Counter
LOCK
PLL Filter
The PLL requires connection to an external second-order filter through the PLLRC pin. Figure
26-6 shows a schematic of these filters.
259
6289C–ATARM–28-May-09
Figure 26-6. PLL Capacitors and Resistors
PLLRC
PLL
R
C2
C1
GND
Values of R, C1 and C2 to be connected to the PLLRC pin must be calculated as a function of
the PLL input frequency, the PLL output frequency and the phase margin. A trade-off has to be
found between output signal overshoot and startup time.
26.6.2
Divider and Phase Lock Loop Programming
The divider can be set between 1 and 255 in steps of 1. When a divider field (DIV) is set to 0, the
output of the corresponding divider and the PLL output is a continuous signal at level 0. On
reset, each DIV field is set to 0, thus the corresponding PLL input clock is set to 0.
The PLL allows multiplication of the divider’s outputs. The PLL clock signal has a frequency that
depends on the respective source signal frequency and on the parameters DIV and MUL. The
factor applied to the source signal frequency is (MUL + 1)/DIV. When MUL is written to 0, the
corresponding PLL is disabled and its power consumption is saved. Re-enabling the PLL can be
performed by writing a value higher than 0 in the MUL field.
Whenever the PLL is re-enabled or one of its parameters is changed, the LOCK bit in PMC_SR
is automatically cleared. The values written in the PLLCOUNT field in CKGR_PLLR are loaded
in the PLL counter. The PLL counter then decrements at the speed of the Slow Clock until it
reaches 0. At this time, the LOCK bit is set in PMC_SR and can trigger an interrupt to the processor. The user has to load the number of Slow Clock cycles required to cover the PLL
transient time into the PLLCOUNT field. The transient time depends on the PLL filter. The initial
state of the PLL and its target frequency can be calculated using a specific tool provided by
Atmel.
26.6.3
UTMI Bias and Phase Lock Loop Programming
The multiplier is hard-wired to 40 to obtain the USB High Speed 480 MHz.
UPLLEN
MAINCK
PLL
USBHSCK
PLLCOUNT
SLCK
260
PLL
Counter
LOCKU
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Whenever the PLL is enabled by writing UPLLEN in CKGR_UCKR, the LOCKU bit in PMC_SR
is automatically cleared, the BIAS is enabled by writing BIASEN in CKGR_UCKR in the same
time. The values written in the PLLCOUNT field in CKGR_UCKR are loaded in the PLL counter.
The PLL counter then decrements at the speed of the Slow Clock divided by 8 until it reaches 0.
At this time, the LOCKU bit is set in PMC_SR and can trigger an interrupt to the processor. The
user has to load the number of Slow Clock cycles required to cover the PLL transient time into
the PLLCOUNT field.
261
6289C–ATARM–28-May-09
27. Power Management Controller (PMC)
27.1
Description
The Power Management Controller (PMC) optimizes power consumption by controlling all system and user peripheral clocks. The PMC enables/disables the clock inputs to many of the
peripherals and the ARM Processor.
The Power Management Controller provides the following clocks:
• MCK, the Master Clock, programmable from a few hundred Hz to the maximum operating
frequency of the device. It is available to the modules running permanently, such as the AIC
and the Memory Controller.
• Processor Clock (PCK), must be switched off when entering processor in idle mode.
• Peripheral Clocks, typically MCK, provided to the embedded peripherals (USART, SSC, SPI,
TWI, TC, MCI, etc.) and independently controllable. In order to reduce the number of clock
names in a product, the Peripheral Clocks are named MCK in the product datasheet.
• Programmable Clock Outputs can be selected from the clocks provided by the clock
generator and driven on the PCKx pins.
27.2
Master Clock Controller
The Master Clock Controller provides selection and division of the Master Clock (MCK). MCK is
the clock provided to all the peripherals and the memory controller.
The Master Clock is selected from one of the clocks provided by the Clock Generator. Selecting
the Slow Clock provides a Slow Clock signal to the whole device. Selecting the Main Clock
saves power consumption of the PLL.
The Master Clock Controller is made up of a clock selector and a prescaler. It also contains a
Master Clock divider which allows the processor clock to be faster than the Master Clock.
The Master Clock selection is made by writing the CSS field (Clock Source Selection) in
PMC_MCKR (Master Clock Register). The prescaler supports the division by a power of 2 of the
selected clock between 1 and 64. The PRES field in PMC_MCKR programs the prescaler. The
Master Clock divider can be programmed through the MDIV field in PMC_MCKR.
Each time PMC_MCKR is written to define a new Master Clock, the MCKRDY bit is cleared in
PMC_SR. It reads 0 until the Master Clock is established. Then, the MCKRDY bit is set and can
trigger an interrupt to the processor. This feature is useful when switching from a high-speed
clock to a lower one to inform the software when the change is actually done.
262
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 27-1. Master Clock Controller
PMC_MCKR
CSS
PMC_MCKR
PRES
SLCK
MAINCK
PLLCK
Master Clock
Prescaler
PMC_MCKR
MDIV
Master
Clock
Divider
MCK
To the Processor
Clock Controller (PCK)
27.3
Processor Clock Controller
The PMC features a Processor Clock Controller (PCK) that implements the Processor Idle
Mode. The Processor Clock can be disabled by writing the System Clock Disable Register
(PMC_SCDR). The status of this clock (at least for debug purpose) can be read in the System
Clock Status Register (PMC_SCSR).
The Processor Clock PCK is enabled after a reset and is automatically re-enabled by any
enabled interrupt. The Processor Idle Mode is achieved by disabling the Processor Clock and
entering in Wait for Interrupt Mode. The Processor Clock is automatically re-enabled by any
enabled fast or normal interrupt, or by the reset of the product.
When the Processor Clock is disabled, the current instruction is finished before the clock is
stopped, but this does not prevent data transfers from other masters of the system bus.
Notes:
1. The Processor clock is disabled in PMC_SCDR register.
2. The ARM Wait For Interrupt mode is entered with CP15 coprocessor operation.
3. Refer to the Atmel application note “Optimizing Power Consumption of AT91SAM9261-based
Systems”, lit. no. 6217 for details.
27.4
Peripheral Clock Controller
The Power Management Controller controls the clocks of each embedded peripheral by the way
of the Peripheral Clock Controller. The user can individually enable and disable the Master
Clock on the peripherals by writing into the Peripheral Clock Enable (PMC_PCER) and Peripheral Clock Disable (PMC_PCDR) registers. The status of the peripheral clock activity can be
read in the Peripheral Clock Status Register (PMC_PCSR).
When a peripheral clock is disabled, the clock is immediately stopped. The peripheral clocks are
automatically disabled after a reset.
In order to stop a peripheral, it is recommended that the system software wait until the peripheral
has executed its last programmed operation before disabling the clock. This is to avoid data corruption or erroneous behavior of the system.
The bit number within the Peripheral Clock Control registers (PMC_PCER, PMC_PCDR, and
PMC_PCSR) is the Peripheral Identifier defined at the product level. Generally, the bit number
corresponds to the interrupt source number assigned to the peripheral.
27.5
Programmable Clock Output Controller
The PMC controls 2 signals to be output on external pins PCKx. Each signal can be independently programmed via the PMC_PCKx registers.
263
6289C–ATARM–28-May-09
PCKx can be independently selected between the Slow clock, the PLL output and the main
clock by writing the CSS field in PMC_PCKx. Each output signal can also be divided by a power
of 2 between 1 and 64 by writing the PRES (Prescaler) field in PMC_PCKx.
Each output signal can be enabled and disabled by writing 1 in the corresponding bit, PCKx of
PMC_SCER and PMC_SCDR, respectively. Status of the active programmable output clocks
are given in the PCKx bits of PMC_SCSR (System Clock Status Register).
Moreover, like the PCK, a status bit in PMC_SR indicates that the Programmable Clock is actually what has been programmed in the Programmable Clock registers.
As the Programmable Clock Controller does not manage with glitch prevention when switching
clocks, it is strongly recommended to disable the Programmable Clock before any configuration
change and to re-enable it after the change is actually performed.
27.6
Programming Sequence
1. Enabling the 12MHz Main Oscillator:
The main oscillator is enabled by setting the MOSCEN field in the CKGR_MOR register. In
some cases it may be advantageous to define a start-up time. This can be achieved by writing a value in the OSCOUNT field in the CKGR_MOR register.
Once this register has been correctly configured, the user must wait for MOSCS field in the
PMC_SR register to be set. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to MOSCS has been enabled in
the PMC_IER register.
2. Setting PLL and divider:
All parameters needed to configure PLL and the divider are located in the CKGR_PLLR
register.
The DIV field is used to control divider itself. A value between 0 and 255 can be programmed. Divider output is divider input divided by DIV parameter. By default DIV
parameter is set to 0 which means that divider is turned off.
The OUT field is used to select the PLL output frequency range.
The MUL field is the PLL multiplier factor. This parameter can be programmed between 0
and 2047. If MUL is set to 0, PLL will be turned off, otherwise the PLL output frequency is
PLL input frequency multiplied by (MUL + 1).
The PLLCOUNT field specifies the number of slow clock cycles before LOCK bit is set in the
PMC_SR register after CKGR_PLLR register has been written.
Once the PMC_PLL register has been written, the user must wait for the LOCK bit to be set
in the PMC_SR register. This can be done either by polling the status register or by waiting
the interrupt line to be raised if the associated interrupt to LOCK has been enabled in the
PMC_IER register. All parameters in CKGR_PLLR can be programmed in a single write
operation. If at some stage one of the following parameters, MUL, DIV is modified, LOCK bit
will go low to indicate that PLL is not ready yet. When PLL is locked, LOCK will be set again.
The user is constrained to wait for LOCK bit to be set before using the PLL output clock.
Code Example:
write_register(CKGR_PLLR,0x00040805)
264
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
If PLL and divider are enabled, the PLL input clock is the main clock. PLL output clock is PLL
input clock multiplied by 5. Once CKGR_PLLR has been written, LOCK bit will be set after
eight slow clock cycles.
3. Setting Bias and High Speed PLL (UPLL) for UTMI
The UTMI PLL is enabled by setting the UPLLEN field in the CKGR_UCKR register. The
UTMI Bias must be enabled by setting the BIASEN field in the CKGR_UCKR register in the
same time. In some cases it may be advantageous to define a start-up time. This can be
achieved by writing a value in the PLLCOUNT field in the CKGR_UCKR register.
Note:
If UTMI Bias is not enabled, the USB Device works only in Full Speed Mode.
Once this register has been correctly configured, the user must wait for LOCKU field in the
PMC_SR register to be set. This can be done either by polling the status register or by waiting the interrupt line to be raised if the associated interrupt to LOCKU has been enabled in
the PMC_IER register.
4. Selection of Master Clock and Processor Clock
The Master Clock and the Processor Clock are configurable via the PMC_MCKR register.
The CSS field is used to select the Master Clock divider source. By default, the selected
clock source is slow clock.
The PRES field is used to control the Master Clock prescaler. The user can choose between
different values (1, 2, 4, 8, 16, 32, 64). Master Clock output is prescaler input divided by
PRES parameter. By default, PRES parameter is set to 1 which means that master clock is
equal to slow clock.
The MDIV field is used to control the Master Clock prescaler. It is possible to choose
between different values (0, 1, 2). The Master Clock output is Processor Clock divided by 1,
2 or 4, depending on the value programmed in MDIV. By default, MDIV is set to 0, which
indicates that the Processor Clock is equal to the Master Clock.
Once the PMC_MCKR register has been written, the user must wait for the MCKRDY bit to
be set in the PMC_SR register. This can be done either by polling the status register or by
waiting for the interrupt line to be raised if the associated interrupt to MCKRDY has been
enabled in the PMC_IER register.
The PMC_MCKR register must not be programmed in a single write operation. The preferred programming sequence for the PMC_MCKR register is as follows:
• If a new value for CSS field corresponds to PLL Clock,
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
• If a new value for CSS field corresponds to Main Clock or Slow Clock,
– Program the CSS field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
265
6289C–ATARM–28-May-09
– Program the PRES field in the PMC_MCKR register.
– Wait for the MCKRDY bit to be set in the PMC_SR register.
If at some stage one of the following parameters, CSS or PRES, is modified, the MCKRDY
bit will go low to indicate that the Master Clock and the Processor Clock are not ready yet.
The user must wait for MCKRDY bit to be set again before using the Master and Processor
Clocks.
Note:
IF PLLx clock was selected as the Master Clock and the user decides to modify it by writing in
CKGR_PLLR, the MCKRDY flag will go low while PLL is unlocked. Once PLL is locked again,
LOCK goes high and MCKRDY is set.
While PLL is unlocked, the Master Clock selection is automatically changed to Main Clock. For further information, see Section 27.7.2. “Clock Switching Waveforms” on page 268.
Code Example:
write_register(PMC_MCKR,0x00000001)
wait (MCKRDY=1)
write_register(PMC_MCKR,0x00000011)
wait (MCKRDY=1)
The Master Clock is main clock divided by 16.
The Processor Clock is the Master Clock.
5. Selection of Programmable clocks
Programmable clocks are controlled via registers; PMC_SCER, PMC_SCDR and
PMC_SCSR.
Programmable clocks can be enabled and/or disabled via the PMC_SCER and PMC_SCDR
registers. Depending on the system used, 2 programmable clocks can be enabled or disabled. The PMC_SCSR provides a clear indication as to which Programmable clock is
enabled. By default all Programmable clocks are disabled.
PMC_PCKx registers are used to configure programmable clocks.
The CSS field is used to select the programmable clock divider source. Four clock options
are available: main clock, slow clock, PLLCK. By default, the clock source selected is slow
clock.
The PRES field is used to control the programmable clock prescaler. It is possible to choose
between different values (1, 2, 4, 8, 16, 32, 64). Programmable clock output is prescaler
input divided by PRES parameter. By default, the PRES parameter is set to 1 which means
that master clock is equal to slow clock.
Once the PMC_PCKx register has been programmed, The corresponding programmable
clock must be enabled and the user is constrained to wait for the PCKRDYx bit to be set in
the PMC_SR register. This can be done either by polling the status register or by waiting the
interrupt line to be raised if the associated interrupt to PCKRDYx has been enabled in the
PMC_IER register. All parameters in PMC_PCKx can be programmed in a single write
operation.
If the CSS and PRES parameters are to be modified, the corresponding programmable
clock must be disabled first. The parameters can then be modified. Once this has been
266
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
done, the user must re-enable the programmable clock and wait for the PCKRDYx bit to be
set.
Code Example:
write_register(PMC_PCK0,0x00000015)
Programmable clock 0 is main clock divided by 32.
6. Enabling Peripheral Clocks
Once all of the previous steps have been completed, the peripheral clocks can be enabled
and/or disabled via registers PMC_PCER and PMC_PCDR.
Depending on the system used, 19 peripheral clocks can be enabled or disabled. The
PMC_PCSR provides a clear view as to which peripheral clock is enabled.
Note:
Each enabled peripheral clock corresponds to Master Clock.
Code Examples:
write_register(PMC_PCER,0x00000110)
Peripheral clocks 4 and 8 are enabled.
write_register(PMC_PCDR,0x00000010)
Peripheral clock 4 is disabled.
27.7
27.7.1
Clock Switching Details
Master Clock Switching Timings
Table 27-1 gives the worst case timings required for the Master Clock to switch from one
selected clock to another one. This is in the event that the prescaler is de-activated. When the
prescaler is activated, an additional time of 64 clock cycles of the new selected clock has to be
added.
Table 27-1.
Clock Switching Timings (Worst Case)
From
Main Clock
SLCK
PLL Clock
To
267
6289C–ATARM–28-May-09
Table 27-1.
Clock Switching Timings (Worst Case)
From
Main Clock
SLCK
PLL Clock
–
4 x SLCK +
2.5 x Main Clock
3 x PLL Clock +
4 x SLCK +
1 x Main Clock
0.5 x Main Clock +
4.5 x SLCK
–
3 x PLL Clock +
5 x SLCK
0.5 x Main Clock +
4 x SLCK +
PLLCOUNT x SLCK +
2.5 x PLLx Clock
2.5 x PLL Clock +
5 x SLCK +
PLLCOUNT x SLCK
2.5 x PLL Clock +
4 x SLCK +
PLLCOUNT x SLCK
Main Clock
SLCK
PLL Clock
27.7.2
Clock Switching Waveforms
Figure 27-2. Switch Master Clock from Slow Clock to PLL Clock
Slow Clock
PLL Clock
LOCK
MCKRDY
Master Clock
Write PMC_MCKR
268
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 27-3. Switch Master Clock from Main Clock to Slow Clock
Slow Clock
Main Clock
MCKRDY
Master Clock
Write PMC_MCKR
Figure 27-4. Change PLL Programming
Main Clock
PLL Clock
LOCK
MCKRDY
Master Clock
Main Clock
Write CKGR_PLLR
269
6289C–ATARM–28-May-09
Figure 27-5. Programmable Clock Output Programming
PLL Clock
PCKRDY
PCKx Output
Write PMC_PCKx
PLL Clock is selected
Write PMC_SCER
Write PMC_SCDR
270
PCKx is enabled
PCKx is disabled
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8
Power Management Controller (PMC) User Interface
Table 27-2.
Register Mapping
Offset
Register
Name
Access
Reset Value
0x0000
System Clock Enable Register
PMC_SCER
Write-only
–
0x0004
System Clock Disable Register
PMC_SCDR
Write-only
–
0x0008
System Clock Status Register
PMC _SCSR
Read-only
0x01
0x000C
Reserved
–
–
0x0010
Peripheral Clock Enable Register
PMC _PCER
Write-only
–
0x0014
Peripheral Clock Disable Register
PMC_PCDR
Write-only
–
0x0018
Peripheral Clock Status Register
PMC_PCSR
Read-only
0x0
0x001C
UTMI Clock Register
CKGR_UCKR
Read-write
0x0
0x0020
Main Oscillator Register
CKGR_MOR
Read-write
0x0
0x0024
Main Clock Frequency Register
CKGR_MCFR
Read-only
0x0
0x0028
PLL Register
CKGR_PLLR
Read-write
0x3F00
0x002C
Reserved
–
–
0x0030
Master Clock Register
Read-write
0x0
0x0038
Reserved
–
–
–
0x003C
Reserved
–
–
–
0x0040
Programmable Clock 0 Register
PMC_PCK0
Read-write
0x0
0x0044
Programmable Clock 1 Register
PMC_PCK1
Read-write
0x0
–
–
0x0048 - 0x005C
–
–
PMC_MCKR
Reserved
–
0x0060
Interrupt Enable Register
PMC_IER
Write-only
--
0x0064
Interrupt Disable Register
PMC_IDR
Write-only
--
0x0068
Status Register
PMC_SR
Read-only
0x08
0x006C
Interrupt Mask Register
PMC_IMR
Read-only
0x0
–
–
0x0070 - 0x007C
Reserved
–
271
6289C–ATARM–28-May-09
27.8.1
Name:
PMC System Clock Enable Register
PMC_SCER
Acess:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCK1
PCK0
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
• PCKx: Programmable Clock x Output Enable
0 = No effect.
1 = Enables the corresponding Programmable Clock output.
272
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.2
Name:
PMC System Clock Disable Register
PMC_SCDR
Acess:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCK1
PCK0
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
PCK
• PCK: Processor Clock Disable
0 = No effect.
1 = Disables the Processor clock. This is used to enter the processor in Idle Mode.
• PCKx: Programmable Clock x Output Disable
0 = No effect.
1 = Disables the corresponding Programmable Clock output.
273
6289C–ATARM–28-May-09
27.8.3
Name:
PMC System Clock Status Register
PMC_SCSR
Acess:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCK1
PCK0
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
PCK
• PCK: Processor Clock Status
0 = The Processor clock is disabled.
1 = The Processor clock is enabled.
• PCKx: Programmable Clock x Output Status
0 = The corresponding Programmable Clock output is disabled.
1 = The corresponding Programmable Clock output is enabled.
274
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.4
Name:
PMC Peripheral Clock Enable Register
PMC_PCER
Access :
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
-
-
• PIDx: Peripheral Clock x Enable
0 = No effect.
1 = Enables the corresponding peripheral clock.
Note:
PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
Note:
Programming the control bits of the Peripheral ID that are not implemented has no effect on the behavior of the PMC.
27.8.5
Name:
PMC Peripheral Clock Disable Register
PMC_PCDR
Acess:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
-
-
• PIDx: Peripheral Clock x Disable
0 = No effect.
1 = Disables the corresponding peripheral clock.
Note:
PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
275
6289C–ATARM–28-May-09
27.8.6
Name:
PMC Peripheral Clock Status Register
PMC_PCSR
Acess:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
–
–
• PIDx: Peripheral Clock x Status
0 = The corresponding peripheral clock is disabled.
1 = The corresponding peripheral clock is enabled.
Note:
276
PID2 to PID31 refer to identifiers as defined in the section “Peripheral Identifiers” in the product datasheet.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.7
Name:
PMC UTMI Clock Configuration Register
CKGR_UCKR
Acess:
Read-write
31
30
29
28
27
–
26
–
25
–
24
BIASEN
21
20
19
–
18
–
17
–
16
UPLLEN
BIASCOUNT
23
22
PLLCOUNT
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
–
• UPLLEN: UTMI PLL Enable
0 = The UTMI PLL is disabled.
1 = The UTMI PLL is enabled.
When UPLLEN is set, the LOCKU flag is set once the UTMI PLL startup time is achieved.
• PLLCOUNT: UTMI PLL Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the UTMI PLL start-up time.
• BIASEN: UTMI BIAS Enable
0 = The UTMI BIAS is disabled. The USB Device works only in FS Mode.
1 = The UTMI BIAS is enabled. The USB Device works in HS Mode.
• BIASCOUNT: UTMI BIAS Start-up Time
Specifies the number of Slow Clock cycles for the UTMI BIAS start-up time.
277
6289C–ATARM–28-May-09
27.8.8
Name:
PMC Clock Generator Main Oscillator Register
CKGR_MOR
Acess:
Read-write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
–
2
–
1
OSCBYPASS
0
MOSCEN
OSCOUNT
7
–
6
–
5
–
4
–
• MOSCEN: Main Oscillator Enable
A crystal must be connected between XIN and XOUT.
0 = The Main Oscillator is disabled.
1 = The Main Oscillator is enabled. OSCBYPASS must be set to 0.
When MOSCEN is set, the MOSCS flag is set once the Main Oscillator startup time is achieved.
• OSCBYPASS: Oscillator Bypass
0 = No effect.
1 = The Main Oscillator is bypassed. MOSCEN must be set to 0. An external clock must be connected on XIN.
When OSCBYPASS is set, the MOSCS flag in PMC_SR is automatically set.
Clearing MOSCEN and OSCBYPASS bits allows resetting the MOSCS flag.
• OSCOUNT: Main Oscillator Start-up Time
Specifies the number of Slow Clock cycles multiplied by 8 for the Main Oscillator start-up time.
278
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.9
Name:
PMC Clock Generator Main Clock Frequency Register
CKGR_MCFR
Acess:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
MAINRDY
15
14
13
12
11
10
9
8
3
2
1
0
MAINF
7
6
5
4
MAINF
• MAINF: Main Clock Frequency
Gives the number of Main Clock cycles within 16 Slow Clock periods.
• MAINRDY: Main Clock Ready
0 = MAINF value is not valid or the Main Oscillator is disabled.
1 = The Main Oscillator has been enabled previously and MAINF value is available.
279
6289C–ATARM–28-May-09
27.8.10
Name:
Acess:
PMC Clock Generator PLL Register
CKGR_PLLR
Read-write
31
–
30
–
29
1
28
–
27
–
26
25
MUL
24
23
22
21
20
19
18
17
16
11
10
9
8
2
1
0
MUL
15
14
13
12
OUT
7
PLLCOUNT
6
5
4
3
DIV
Possible limitations on PLL input frequencies and multiplier factors should be checked before using the PMC.
Warning: Bit 29 must always be set to 1 when programming the CKGR_PLLR register.
• DIV: Divider
DIV
Divider Selected
0
Divider output is 0
1
Divider is bypassed
2 - 255
Divider output is the selected clock divided by DIV.
• PLLCOUNT: PLL Counter
Specifies the number of slow clock cycles before the LOCK bit is set in PMC_SR after CKGR_PLLR is written.
• OUT: PLL Clock Frequency Range
To optimize clock performance, this field must be programmed as specified in “PLL Characteristics” in the Electrical Characteristics section of the product datasheet.
• MUL: PLL Multiplier
0 = The PLL is deactivated.
1 up to 2047 = The PLL Clock frequency is the PLL input frequency multiplied by MUL+ 1.
280
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.11
Name:
PMC Master Clock Register
PMC_MCKR
Acess:
Read-write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
–
–
–
–
–
–
4
3
2
7
6
5
–
–
–
8
MDIV
1
PRES
0
CSS
• CSS: Master Clock Selection
CSS
Clock Source Selection
0
0
Slow Clock is selected
0
1
Main Clock is selected
1
0
PLL Clock is selected.
1
1
Reserved
• PRES: Processor Clock Prescaler
PRES
Processor Clock
0
0
0
Selected clock
0
0
1
Selected clock divided by 2
0
1
0
Selected clock divided by 4
0
1
1
Selected clock divided by 8
1
0
0
Selected clock divided by 16
1
0
1
Selected clock divided by 32
1
1
0
Selected clock divided by 64
1
1
1
Reserved
• MDIV: Master Clock Division
MDIV
Master Clock Division
0
0
Master Clock is Processor Clock.
0
1
Master Clock is Processor Clock divided by 2.
1
0
Master Clock is Processor Clock divided by 4.
1
1
Reserved.
281
6289C–ATARM–28-May-09
27.8.12
Name:
Acess:
PMC Programmable Clock Register
PMC_PCKx
Read-write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
4
3
2
1
7
6
5
–
–
–
PRES
0
CSS
• CSS: Master Clock Selection
CSS
Clock Source Selection
0
0
Slow Clock is selected
0
1
Main Clock is selected
1
0
PLL Clock is selected.
1
1
Reserved
• PRES: Programmable Clock Prescaler
PRES
282
Programmable Clock
0
0
0
Selected clock
0
0
1
Selected clock divided by 2
0
1
0
Selected clock divided by 4
0
1
1
Selected clock divided by 8
1
0
0
Selected clock divided by 16
1
0
1
Selected clock divided by 32
1
1
0
Selected clock divided by 64
1
1
1
Reserved
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.13
Name:
Acess:
PMC Interrupt Enable Register
PMC_IER
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
LOCKU
–
–
MCKRDY
–
LOCK
MOSCS
• MOSCS: Main Oscillator Status Interrupt Enable
• LOCK: PLL Lock Interrupt Enable
• MCKRDY: Master Clock Ready Interrupt Enable
• LOCKU: UTMI PLL Lock Interrupt Enable
• PCKRDYx: Programmable Clock Ready x Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
283
6289C–ATARM–28-May-09
27.8.14
Name:
Acess:
PMC Interrupt Disable Register
PMC_IDR
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
LOCKU
–
–
MCKRDY
–
LOCK
MOSCS
• MOSCS: Main Oscillator Status Interrupt Disable
• LOCK: PLL Lock Interrupt Disable
• MCKRDY: Master Clock Ready Interrupt Disable
• LOCKU: UTMI PLL Lock Interrupt Disable
• PCKRDYx: Programmable Clock Ready x Interrupt Disable
0 = No effect.
1 = Disables the corresponding interrupt.
284
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
27.8.15
Name:
PMC Status Register
PMC_SR
Acess:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
OSC_SEL
LOCKU
–
–
MCKRDY
–
LOCK
MOSCS
• MOSCS: MOSCS Flag Status
0 = Main oscillator is not stabilized.
1 = Main oscillator is stabilized.
• LOCK: PLL Lock Status
0 = PLL is not locked
1 = PLL is locked.
• MCKRDY: Master Clock Status
0 = Master Clock is not ready.
1 = Master Clock is ready.
• LOCKU: UPLL Lock Status
0 = UPLL is not locked
1 = UPLL is locked.
• OSC_SEL: Slow Clock Oscillator
0 = Internal slow clock RC oscillator is selected.
1 = External slow clock 32 kHz oscillator is selected.
• PCKRDYx: Programmable Clock Ready Status
0 = Programmable Clock x is not ready.
1 = Programmable Clock x is ready.
285
6289C–ATARM–28-May-09
27.8.16
Name:
Acess:
PMC Interrupt Mask Register
PMC_IMR
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
PCKRDY1
PCKRDY0
7
6
5
4
3
2
1
0
–
LOCKU
–
–
MCKRDY
–
LOCK
MOSCS
• MOSCS: Main Oscillator Status Interrupt Mask
• LOCK: PLL Lock Interrupt Mask
• MCKRDY: Master Clock Ready Interrupt Mask
• LOCKU: UTMI PLL Lock Interrupt Mask
• PCKRDYx: Programmable Clock Ready x Interrupt Mask
0 = The corresponding interrupt is enabled.
1 = The corresponding interrupt is disabled.
286
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28. AT91SAM9R64/RL64 Bus Matrix
28.1
Description
Bus Matrix implements a multi-layer AHB, based on AHB-Lite protocol, that enables parallel
access paths between multiple AHB masters and slaves in a system, which increases the overall bandwidth. Bus Matrix interconnects 6 AHB Masters to 6 AHB Slaves. The normal latency to
connect a master to a slave is one cycle except for the default master of the accessed slave
which is connected directly (zero cycle latency).
The Bus Matrix user interface is compliant with ARM Advanced Peripheral Bus and provides a
Chip Configuration User Interface with Registers that allow the Bus Matrix to support application
specific features.
28.2
Memory Mapping
Bus Matrix provides one decoder for every AHB Master Interface. The decoder offers each AHB
Master several memory mappings. In fact, depending on the product, each memory area may be
assigned to several slaves. Booting at the same address while using different AHB slaves (i.e.,
external RAM, internal ROM or internal Flash, etc.) becomes possible.
The Bus Matrix user interface provides Master Remap Control Register (MATRIX_MRCR) that
allows to perform remap action for every master independently.
28.3
Special Bus Granting Techniques
The Bus Matrix provides some speculative bus granting techniques in order to anticipate access
requests from some masters. This mechanism allows to reduce latency at first accesses of a
burst or single transfer. The bus granting mechanism allows to set a default master for every
slave.
At the end of the current access, if no other request is pending, the slave remains connected to
its associated default master. A slave can be associated with three kinds of default masters: no
default master, last access master and fixed default master.
28.3.1
No Default Master
At the end of the current access, if no other request is pending, the slave is disconnected from
all masters. No Default Master, suits low power mode.
28.3.2
Last Access Master
At the end of the current access, if no other request is pending, the slave remains connected to
the last master that performed an access request.
28.3.3
Fixed Default Master
At the end of the current access, if no other request is pending, the slave connects to its fixed
default master. Unlike last access master, the fixed master doesn’t change unless the user modifies it by a software action (field FIXED_DEFMSTR of the related MATRIX_SCFG).
To change from one kind of default master to another, the Bus Matrix user interface provides the
Slave Configuration Registers, one for each slave, that allow to set a default master for each
slave. The Slave Configuration Register contains two fields:
DEFMSTR_TYPE and FIXED_DEFMSTR. The 2-bit DEFMSTR_TYPE field allows to choose
the default master type (no default, last access master, fixed default master) whereas the 4-bit
287
6289C–ATARM–28-May-09
FIXED_DEFMSTR field allows to choose a fixed default master provided that DEFMSTR_TYPE
is set to fixed default master. Please refer to the Bus Matrix user interface description.
28.4
Arbitration
The Bus Matrix provides an arbitration mechanism that allows to reduce latency when conflict
cases occur, basically when two or more masters try to access the same slave at the same time.
One arbiter per AHB slave is provided, allowing to arbitrate each slave differently.
The Bus Matrix provides to the user the possibility to choose between 2 arbitration types, and
this for each slave:
1. Round-Robin Arbitration (the default)
2. Fixed Priority Arbitration
This choice is given through the field ARBT of the Slave Configuration Registers
(MATRIX_SCFG).
Each algorithm may be complemented by selecting a default master configuration for each
slave.
When a re-arbitration has to be done, it is realized only under some specific conditions detailed
in the following paragraph.
28.4.1
Arbitration rules
Each arbiter has the ability to arbitrate between two or more different master’s requests. In order
to avoid burst breaking and also to provide the maximum throughput for slave interfaces, arbitration may only take place during the following cycles:
1. Idle Cycles: when a slave is not connected to any master or is connected to a master
which is not currently accessing it.
2. Single Cycles: when a slave is currently doing a single access.
3. End of Burst Cycles: when the current cycle is the last cycle of a burst transfer. For
defined length burst, predicted end of burst matches the size of the transfer but is managed differently for undefined length burst (See “Undefined Length Burst Arbitration” on
page iv.).
4. Slot Cycle Limit: when the slot cycle counter has reach the limit value indicating that the
current master access is too long and must be broken (See “Slot Cycle Limit Arbitration” on page iv.).
28.4.1.1
Undefined Length Burst Arbitration
In order to avoid too long slave handling during undefined length bursts (INCR), the Bus Matrix
provides specific logic in order to re-arbitrate before the end of the INCR transfer.
A predicted end of burst is used as for defined length burst transfer, which is selected between
the following:
1. Infinite: no predicted end of burst is generated and therefore INCR burst transfer will
never be broken.
2. Four beat bursts: predicted end of burst is generated at the end of each four beat
boundary inside INCR transfer.
3. Eight beat bursts: predicted end of burst is generated at the end of each eight beat
boundary inside INCR transfer.
4. Sixteen beat bursts: predicted end of burst is generated at the end of each sixteen beat
boundary inside INCR transfer.
288
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
This selection can be done through the field ULBT of the Master Configuration Registers
(MATRIX_MCFG).
28.4.1.2
28.4.2
Slot Cycle Limit Arbitration
The Bus Matrix contains specific logic to break too long accesses such as very long bursts on a
very slow slave (e.g. an external low speed memory). At the beginning of the burst access, a
counter is loaded with the value previously written in the SLOT_CYCLE field of the related Slave
Configuration Register (MATRIX_SCFG) and decreased at each clock cycle. When the counter
reaches zero, the arbiter has the ability to re-arbitrate at the end of the current byte, half word or
word transfer.
Round-Robin Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave in a round-robin manner. If two or more master’s requests arise at the same
time, the master with the lowest number is first serviced then the others are serviced in a roundrobin manner.
There are three round-robin algorithm implemented:
• Round-Robin arbitration without default master
• Round-Robin arbitration with last access master
• Round-Robin arbitration with fixed default master
28.4.2.1
Round-Robin Arbitration without Default Master
This is the main algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to dispatch
requests from different masters to the same slave in a pure round-robin manner. At the end of
the current access, if no other request is pending, the slave is disconnected from all masters.
This configuration incurs one latency cycle for the first access of a burst. Arbitration without
default master can be used for masters that perform significant bursts.
28.4.2.2
Round-Robin Arbitration with Last Access Master
This is a biased round-robin algorithm used by Bus Matrix arbiters. It allows the Bus Matrix to
remove the one latency cycle for the last master that accessed the slave. In fact, at the end of
the current transfer, if no other master request is pending, the slave remains connected to the
last master that performs the access. Other non privileged masters will still get one latency cycle
if they want to access the same slave. This technique can be used for masters that mainly perform single accesses.
28.4.2.3
Round-Robin Arbitration with Fixed Default Master
This is another biased round-robin algorithm, it allows the Bus Matrix arbiters to remove the one
latency cycle for the fixed default master per slave. At the end of the current access, the slave
remains connected to its fixed default master. Every request attempted by this fixed default master will not cause any latency whereas other non privileged masters will still get one latency
cycle. This technique can be used for masters that mainly perform single accesses.
28.4.3
Fixed Priority Arbitration
This algorithm allows the Bus Matrix arbiters to dispatch the requests from different masters to
the same slave by using the fixed priority defined by the user. If two or more master’s requests
are active at the same time, the master with the highest priority number is serviced first. If two or
289
6289C–ATARM–28-May-09
more master’s requests with the same priority are active at the same time, the master with the
highest number is serviced first.
For each slave, the priority of each master may be defined through the Priority Registers for
Slaves (MATRIX_PRAS and MATRIX_PRBS).
290
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5
Bus Matrix User Interface
Table 28-1.
Register Mapping
Offset
Register
Name
Access
Reset Value
0x0000
Master Configuration Register 0
MATRIX_MCFG0
Read/Write
0x00000000
0x0004
Master Configuration Register 1
MATRIX_MCFG1
Read/Write
0x00000000
0x0008
Master Configuration Register 2
MATRIX_MCFG2
Read/Write
0x00000000
0x000C
Master Configuration Register 3
MATRIX_MCFG3
Read/Write
0x00000000
0x0010
Master Configuration Register 4
MATRIX_MCFG4
Read/Write
0x00000000
0x0014
Master Configuration Register 5
MATRIX_MCFG5
Read/Write
0x00000000
–
–
0x0018 - 0x003C
Reserved
–
0x0040
Slave Configuration Register 0
MATRIX_SCFG0
Read/Write
0x00010010
0x0044
Slave Configuration Register 1
MATRIX_SCFG1
Read/Write
0x00050010
0x0048
Slave Configuration Register 2
MATRIX_SCFG2
Read/Write
0x00000010
0x004C
Slave Configuration Register 3
MATRIX_SCFG3
Read/Write
0x00000010
0x0050
Slave Configuration Register 4
MATRIX_SCFG4
Read/Write
0x00000010
0x0054
Slave Configuration Register 5
MATRIX_SCFG5
Read/Write
0x00000010
–
–
Write
0x00000000
-
-
Write
0x00000000
-
-
Write
0x00000000
-
-
Write
0x00000000
-
-
Write
0x00000000
-
-
Write
0x00000000
–
–
Read/Write
0x00000000
0x0058 - 0x007C
Reserved
–
0x0080
Priority Register A for Slave 0
MATRIX_PRAS0
0x0084
Reserved
-
0x0088
Priority Register A for Slave 1
MATRIX_PRAS1
0x008C
Reserved
-
0x0090
Priority Register A for Slave 2
MATRIX_PRAS2
0x0094
Reserved
-
0x0098
Priority Register A for Slave 3
MATRIX_PRAS3
0x009C
Reserved
-
0x00A0
Priority Register A for Slave 4
MATRIX_PRAS4
0x00A4
Reserved
-
0x00A8
Priority Register A for Slave 5
MATRIX_PRAS5
0x00A8 - 0x00FC
0x0100
Reserved
Master Remap Control Register
–
MATRIX_MRCR
0x0104 - 0x010C
Reserved
–
–
–
0x0110
Reserved
–
–
–
0x0114
Bus Matrix TCM Configuration Register
Read/Write
0x00000000
–
–
Read/Write
0x00010000
–
–
0x0118-0x11C
0x0120
0x0124 - 0x01FC
MATRIX_TCR
Reserved
EBI Chip Select Assignment Register
Reserved
–
EBI_CSA
–
291
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.1
Bus Matrix Master Configuration Registers
Register Name:
MATRIX_MCFG0...MATRIX_MCFG5
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
ULBT
• ULBT: Undefined Length Burst Type
0: Infinite Length Burst
No predicted end of burst is generated and therefore INCR bursts coming from this master cannot be broken.
1: Single Access
The undefined length burst is treated as a succession of single accesses, allowing rearbitration at each beat of the INCR
burst.
2: Four-beat Burst
The undefined length burst is split into four-beat burst allowing rearbitration at each four-beat burst end.
3: Eight-beat Burst
The undefined length burst is split into eight-beat burst allowing rearbitration at each eight-beat burst end.
4: Sixteen-beat Burst
The undefined length burst is split into sixteen-beat burst allowing rearbitration at each sixteen-beat burst end.
292
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.2
Bus Matrix Slave Configuration Registers
Register Name:
MATRIX_SCFG0...MATRIX_SCFG5
Access Type:
Read/Write
31
30
29
28
27
26
–
–
–
–
–
–
23
22
21
20
19
18
–
FIXED_DEFMSTR
25
24
ARBT
17
16
DEFMSTR_TYPE
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SLOT_CYCLE
• SLOT_CYCLE: Maximum Number of Allowed Cycles for a Burst
When the SLOT_CYCLE limit is reached for a burst, it may be broken by another master trying to access this slave.
This limit has been placed to avoid locking a very slow slave when very long bursts are used.
Note that an unreasonably small value breaks every burst and the Bus Matrix then arbitrates without performing any data
transfer. 16 cycles is a reasonable value for SLOT_CYCLE.
• DEFMASTR_TYPE: Default Master Type
0: No Default Master
At the end of current slave access, if no other master request is pending, the slave is disconnected from all masters.
This results in a one-cycle latency for the first access of a burst transfer or for a single access.
1: Last Default Master
At the end of current slave access, if no other master request is pending, the slave remains connected to the last master
that accessed it.
This results in not having the one cycle latency when the last master tries access to the slave again.
2: Fixed Default Master
At the end of the current slave access, if no other master request is pending, the slave connects to the fixed master the
number of which has been written in the FIXED_DEFMSTR field.
This results in not having the one cycle latency when the fixed master tries access to the slave again.
• FIXED_DEFMSTR: Fixed Default Master
This is the number of the Default Master for this slave. Only used if DEFMASTR_TYPE is 2. Specifying the number of a
master which is not connected to the selected slave is equivalent to setting DEFMASTR_TYPE to 0.
• ARBT: Arbitration Type
0: Round-Robin Arbitration
1: Fixed Priority Arbitration
2: Reserved
3: Reserved
293
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.3
Bus Matrix Priority Registers A For Slaves
Register Name:
MATRIX_PRAS0...MATRIX_PRAS5
Access Type:
Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
–
–
–
–
15
14
11
10
–
–
–
–
7
6
3
2
–
–
–
–
M5PR
13
12
M3PR
5
4
M1PR
16
M4PR
9
8
M2PR
1
0
M0PR
• MxPR: Master x Priority
Fixed priority of Master x for accessing to the selected slave.The higher the number, the higher the priority.
294
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.4
Bus Matrix Master Remap Control Register
Register Name:
MATRIX_MRCR
Access Type:
Read/Write
Reset:
0x0000_0000
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
RCB5
RCB4
RCB3
RCB2
RCB1
RCB0
• RCBx: Remap Command Bit for AHB Master x
0: Disable remapped address decoding for the selected Master.
1: Enable remapped address decoding for the selected Master.
Table 28-2.
AT91SAM9R/RL64 Remap Control Bits
RCBx
Master
RCB0
ARM926 Instruction
RCB1
ARM926 Data
RCB2
Peripheral DMA Controller
RCB3
USB Device High Speed DMA
RCB4
LCD Controller DMA
RCB5
DMA Controller
295
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.5
Bus Matrix TCM Configuration Register
Register Name:
MATRIX_TCR
Access Type:
Read/Write
Reset:
0x0000_0000
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
DTCM_SIZE
ITCM_SIZE
• ITCM_SIZE: Size of ITCM enabled memory block
0000: 0 KB (No ITCM Memory)
0101: 16 KB
0110: 32 KB
Others: Reserved
• DTCM_SIZE: Size of DTCM enabled memory block
0000: 0 KB (No DTCM Memory)
0101: 16 KB
0110: 32 KB
Others: Reserved
296
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
28.5.6
EBI0 Chip Select Assignment Register
Register Name:
EBI_CSA
Access Type:
Read/Write
Reset:
0x0001_0000
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
VDDIOMSEL
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
EBI_DBPUC
7
6
5
4
3
2
1
0
–
–
EBI_CS5A
EBI_CS4A
EBI_CS3A
–
EBI_CS1A
–
• EBI0_CS1A: EBI0 Chip Select 1 Assignment
0 = EBI0 Chip Select 1 is assigned to the Static Memory Controller.
1 = EBI0 Chip Select 1 is assigned to the SDRAM Controller.
• EBI0_CS3A: EBI0 Chip Select 3 Assignment
0 = EBI0 Chip Select 3 is only assigned to the Static Memory Controller and EBI0_NCS3 behaves as defined by the SMC.
1 = EBI0 Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash Logic is activated.
• EBI0_CS4A: EBI0 Chip Select 4 Assignment
0 = EBI0 Chip Select 4 is only assigned to the Static Memory Controller and EBI0_NCS4 behaves as defined by the SMC.
1 = EBI0 Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic (first slot) is activated.
• EBI0_CS5A: EBI0 Chip Select 5 Assignment
0 = EBI0 Chip Select 5 is only assigned to the Static Memory Controller and EBI0_NCS5 behaves as defined by the SMC.
1 = EBI0 Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic (second slot) is activated.
• EBI0_DBPUC: EBI0 Data Bus Pull-Up Configuration
0 = EBI0 D0 - D15 Data Bus bits are internally pulled-up to the VDDIOM0 power supply.
1 = EBI0 D0 - D15 Data Bus bits are not internally pulled-up.
• VDDIOMSEL: Memory voltage selection
0 = Memories are 1.8V powered.
1 = Memories are 3.3V powered.
297
6289C–ATARM–28-May-09
298
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29. Advanced Interrupt Controller (AIC)
29.1
Description
The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to substantially reduce the software and real-time overhead in handling internal and external
interrupts.
The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external interrupts coming from the product's pins.
The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.
Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or highlevel or low-level sensitive.
The fast forcing feature redirects any internal or external interrupt source to provide a fast interrupt rather than a normal interrupt.
299
6289C–ATARM–28-May-09
29.2
Block Diagram
Figure 29-1. Block Diagram
FIQ
AIC
ARM
Processor
IRQ0-IRQn
Up to
Thirty-two
Sources
Embedded
PeripheralEE
Embedded
nFIQ
nIRQ
Peripheral
Embedded
Peripheral
APB
29.3
Application Block Diagram
Figure 29-2. Description of the Application Block
OS-based Applications
Standalone
Applications
OS Drivers
RTOS Drivers
Hard Real Time Tasks
General OS Interrupt Handler
Advanced Interrupt Controller
External Peripherals
(External Interrupts)
Embedded Peripherals
29.4
AIC Detailed Block Diagram
Figure 29-3. AIC Detailed Block Diagram
Advanced Interrupt Controller
FIQ
PIO
Controller
Fast
Interrupt
Controller
External
Source
Input
Stage
ARM
Processor
nFIQ
nIRQ
IRQ0-IRQn
Embedded
Peripherals
Interrupt
Priority
Controller
Fast
Forcing
PIOIRQ
Internal
Source
Input
Stage
Processor
Clock
Power
Management
Controller
User Interface
Wake Up
APB
300
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.5
I/O Line Description
Table 29-1.
I/O Line Description
Pin Name
Pin Description
Type
FIQ
Fast Interrupt
Input
IRQ0 - IRQn
Interrupt 0 - Interrupt n
Input
29.6
29.6.1
Product Dependencies
I/O Lines
The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO controllers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.
29.6.2
Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.
The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing synchronization of the processor on an event.
29.6.3
Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.
The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading successively the status registers of the above mentioned system peripherals.
The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.
The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.
The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to simplify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.
301
6289C–ATARM–28-May-09
29.7
Functional Description
29.7.1
29.7.1.1
Interrupt Source Control
Interrupt Source Mode
The Advanced Interrupt Controller independently programs each interrupt source. The SRCTYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.
The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.
The external interrupt sources can be programmed either in high level-sensitive or low level-sensitive modes, or in positive edge-triggered or negative edge-triggered modes.
29.7.1.2
Interrupt Source Enabling
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruction. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.
29.7.1.3
Interrupt Clearing and Setting
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clearing or setting interrupt sources programmed in level-sensitive mode has no effect.
The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.
The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See “Priority Controller” on page 305.) The automatic clear reduces
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on
page 309.)
The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.
29.7.1.4
Interrupt Status
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.
The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page
305) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.
Each status referred to above can be used to optimize the interrupt handling of the systems.
302
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.7.1.5
Figure 29-4.
Internal Interrupt Source Input Stage
Internal Interrupt Source Input Stage
AIC_SMRI
(SRCTYPE)
Level/
Edge
Source i
AIC_IPR
AIC_IMR
Fast Interrupt Controller
or
Priority Controller
Edge
AIC_IECR
Detector
Set Clear
FF
AIC_ISCR
AIC_ICCR
AIC_IDCR
29.7.1.6
External Interrupt Source Input Stage
Figure 29-5. External Interrupt Source Input Stage
High/Low
AIC_SMRi
SRCTYPE
Level/
Edge
AIC_IPR
AIC_IMR
Source i
Fast Interrupt Controller
or
Priority Controller
AIC_IECR
Pos./Neg.
Edge
Detector
Set
AIC_ISCR
FF
Clear
AIC_IDCR
AIC_ICCR
303
6289C–ATARM–28-May-09
29.7.2
Interrupt Latencies
Global interrupt latencies depend on several parameters, including:
• The time the software masks the interrupts.
• Occurrence, either at the processor level or at the AIC level.
• The execution time of the instruction in progress when the interrupt occurs.
• The treatment of higher priority interrupts and the resynchronization of the hardware signals.
This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the processor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.
The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.
29.7.2.1
External Interrupt Edge Triggered Source
Figure 29-6.
External Interrupt Edge Triggered Source
MCK
IRQ or FIQ
(Positive Edge)
IRQ or FIQ
(Negative Edge)
nIRQ
Maximum IRQ Latency = 4 Cycles
nFIQ
Maximum FIQ Latency = 4 Cycles
29.7.2.2
External Interrupt Level Sensitive Source
Figure 29-7.
External Interrupt Level Sensitive Source
MCK
IRQ or FIQ
(High Level)
IRQ or FIQ
(Low Level)
nIRQ
Maximum IRQ
Latency = 3 Cycles
nFIQ
Maximum FIQ
Latency = 3 cycles
304
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.7.2.3
Internal Interrupt Edge Triggered Source
Figure 29-8. Internal Interrupt Edge Triggered Source
MCK
nIRQ
Maximum IRQ Latency = 4.5 Cycles
Peripheral Interrupt
Becomes Active
29.7.2.4
Internal Interrupt Level Sensitive Source
Figure 29-9. Internal Interrupt Level Sensitive Source
MCK
nIRQ
Maximum IRQ Latency = 3.5 Cycles
Peripheral Interrupt
Becomes Active
29.7.3
29.7.3.1
Normal Interrupt
Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).
Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.
As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR
(Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have happened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.
The current priority level is defined as the priority level of the current interrupt.
If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.
305
6289C–ATARM–28-May-09
The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.
29.7.3.2
Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled
during the service of lower priority interrupts. This requires the interrupt service routines of the
lower interrupts to re-enable the interrupt at the processor level.
When an interrupt of a higher priority happens during an already occurring interrupt service routine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.
The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.
29.7.3.3
Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the registers AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the current interrupt is returned.
This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus accessible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:
LDR
PC,[PC,# -&F20]
When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.
This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.
However, it is strongly recommended to port the operating system on AT91 products by supporting the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral handling) to be handled efficiently and independently of the application running under an operating
system.
29.7.3.4
306
Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and especially the processor interrupt modes and the associated status bits.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
It is assumed that:
1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.
2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring
LDR PC, [PC, # -&F20]
When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:
1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, decrementing it by four.
2. The ARM core enters Interrupt mode, if it has not already done so.
3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:
– Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.
– De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.
– Automatically clears the interrupt, if it has been programmed to be edge-triggered.
– Pushes the current level and the current interrupt number on to the stack.
– Returns the value written in the AIC_SVR corresponding to the current interrupt.
4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB PC,
LR, #4 may be used.
5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing reassertion of the nIRQ to be taken into account by the core. This can happen if an interrupt with a higher priority than the current interrupt occurs.
6. The interrupt handler can then proceed as required, saving the registers that are used
and restoring them at the end. During this phase, an interrupt of higher priority than the
current level restarts the sequence from step 1.
Note:
If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared during this phase.
7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.
8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indicate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the interrupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has the effect of returning from the interrupt to whatever was being exe-
307
6289C–ATARM–28-May-09
cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.
Note:
29.7.4
The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).
Fast Interrupt
29.7.4.1
Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor
except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the
product, either directly or through a PIO Controller.
29.7.4.2
Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMR0 enables programming the fast interrupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive
Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.
29.7.4.3
Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Register). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM fast interrupt vector at address 0x0000 001C through the following instruction:
LDR
PC,[PC,# -&F20]
When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically performs the clear of the fast interrupt source if it is programmed in edge-triggered mode.
29.7.4.4
Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and especially the processor interrupt modes and associated status bits.
Assuming that:
1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.
2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:
LDR PC, [PC, # -&F20]
3. The user does not need nested fast interrupts.
When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:
308
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decrementing it by four.
2. The ARM core enters FIQ mode.
3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automatically clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.
4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.
5. The Interrupt Handler can then proceed as required. It is not necessary to save registers R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.
6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.
Note:
The “F” bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).
Another way to handle the fast interrupt is to map the interrupt service routine at the address of
the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must
be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.
29.7.4.5
Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal
Interrupt source on the fast interrupt controller.
Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER)
and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an
update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each internal or external interrupt source.
When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.
When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detection of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.
If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.
If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.
309
6289C–ATARM–28-May-09
The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Register (AIC_IPR).
The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0
(AIC_SVR0), whatever the source of the fast interrupt may be. The read of the FVR does not
clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).
All enabled and pending interrupt sources that have the fast forcing feature enabled and that are
programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.
The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.
The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.
Figure 29-10. Fast Forcing
Source 0 _ FIQ
AIC_IPR
Input Stage
Automatic Clear
AIC_IMR
nFIQ
Read FVR if Fast Forcing is
disabled on Sources 1 to 31.
AIC_FFSR
Source n
AIC_IPR
Input Stage
Priority
Manager
Automatic Clear
AIC_IMR
nIRQ
Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.
29.7.5
Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applications and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:
• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.
• If there is no enabled pending interrupt, the spurious vector is returned.
In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.
This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Register)
at 0x1 enables the Protect Mode.
When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the
310
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.
An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.
To summarize, in normal operating mode, the read of AIC_IVR performs the following operations within the AIC:
1. Calculates active interrupt (higher than current or spurious).
2. Determines and returns the vector of the active interrupt.
3. Memorizes the interrupt.
4. Pushes the current priority level onto the internal stack.
5. Acknowledges the interrupt.
However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.
Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.
29.7.6
Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:
• An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.
• An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)
• An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.
The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.
29.7.7
General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.
311
6289C–ATARM–28-May-09
29.8
Advanced Interrupt Controller (AIC) User Interface
29.8.1
Base Address
The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
support only a ± 4-Kbyte offset.
29.8.2
Register Mapping
Table 29-2.
Offset
Register
Name
Access
Reset Value
0000
Source Mode Register 0
AIC_SMR0
Read-write
0x0
0x04
Source Mode Register 1
AIC_SMR1
Read-write
0x0
---
---
---
---
---
0x7C
Source Mode Register 31
AIC_SMR31
Read-write
0x0
0x80
Source Vector Register 0
AIC_SVR0
Read-write
0x0
0x84
Source Vector Register 1
AIC_SVR1
Read-write
0x0
---
---
---
AIC_SVR31
Read-write
0x0
---
---
0xFC
Source Vector Register 31
0x100
Interrupt Vector Register
AIC_IVR
Read-only
0x0
0x104
FIQ Interrupt Vector Register
AIC_FVR
Read-only
0x0
0x108
Interrupt Status Register
AIC_ISR
Read-only
0x0
AIC_IPR
Read-only
0x0(1)
(2)
0x10C
Interrupt Pending Register
0x110
Interrupt Mask Register(2)
AIC_IMR
Read-only
0x0
0x114
Core Interrupt Status Register
AIC_CISR
Read-only
0x0
0x118
Reserved
---
---
---
0x11C
Reserved
---
---
---
AIC_IECR
Write-only
---
AIC_IDCR
Write-only
---
AIC_ICCR
Write-only
---
AIC_ISCR
Write-only
---
AIC_EOICR
Write-only
---
0x120
Interrupt Enable Command Register
(2)
0x124
Interrupt Disable Command Register
0x128
Interrupt Clear Command Register(2)
(2)
(2)
0x12C
Interrupt Set Command Register
0x130
End of Interrupt Command Register
0x134
Spurious Interrupt Vector Register
AIC_SPU
Read-write
0x0
0x138
Debug Control Register
AIC_DCR
Read-write
0x0
0x13C
Reserved
---
---
---
AIC_FFER
Write-only
---
0x140
(2)
Fast Forcing Enable Register
(2)
0x144
Fast Forcing Disable Register
AIC_FFDR
Write-only
---
0x148
Fast Forcing Status Register(2)
AIC_FFSR
Read-only
0x0
Notes:
312
Register Mapping
1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,
thus not pending.
2. PID2...PID31 bit fields refer to the identifiers as defined in the section “Peripheral Identifiers” of the product datasheet.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.3
AIC Source Mode Register
Register Name:
AIC_SMR0..AIC_SMR31
Access Type:
Read-write
Reset Value:
0x0
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
SRCTYPE
PRIOR
• PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).
The priority level can be between 0 (lowest) and 7 (highest).
The priority level is not used for the FIQ in the related SMR register AIC_SMRx.
• SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.
SRCTYPE
Internal Interrupt Sources
External Interrupt Sources
0
0
High level Sensitive
Low level Sensitive
0
1
Positive edge triggered
Negative edge triggered
1
0
High level Sensitive
High level Sensitive
1
1
Positive edge triggered
Positive edge triggered
313
6289C–ATARM–28-May-09
29.8.4
AIC Source Vector Register
Register Name:
AIC_SVR0..AIC_SVR31
Access Type:
Read-write
Reset Value:
0x0
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
VECTOR
23
22
21
20
VECTOR
15
14
13
12
VECTOR
7
6
5
4
VECTOR
• VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.
29.8.5
AIC Interrupt Vector Register
Register Name:
AIC_IVR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
IRQV
23
22
21
20
IRQV
15
14
13
12
IRQV
7
6
5
4
IRQV
• IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.
The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.
When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.
314
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.6
AIC FIQ Vector Register
Register Name:
AIC_FVR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
FIQV
23
22
21
20
FIQV
15
14
13
12
FIQV
7
6
5
4
FIQV
• FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.
29.8.7
AIC Interrupt Status Register
Register Name:
AIC_ISR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
IRQID
• IRQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.
315
6289C–ATARM–28-May-09
29.8.8
AIC Interrupt Pending Register
Register Name:
AIC_IPR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is not pending.
1 = Corresponding interrupt is pending.
29.8.9
AIC Interrupt Mask Register
Register Name:
AIC_IMR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.
1 = Corresponding interrupt is enabled.
316
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.10 AIC Core Interrupt Status Register
Register Name:
AIC_CISR
Access Type:
Read-only
Reset Value:
0x0
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
NIRQ
NIFQ
• NFIQ: NFIQ Status
0 = nFIQ line is deactivated.
1 = nFIQ line is active.
• NIRQ: NIRQ Status
0 = nIRQ line is deactivated.
1 = nIRQ line is active.
29.8.11 AIC Interrupt Enable Command Register
Register Name:
AIC_IECR
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID3: Interrupt Enable
0 = No effect.
1 = Enables corresponding interrupt.
317
6289C–ATARM–28-May-09
29.8.12 AIC Interrupt Disable Command Register
Register Name:
AIC_IDCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID31: Interrupt Disable
0 = No effect.
1 = Disables corresponding interrupt.
29.8.13 AIC Interrupt Clear Command Register
Register Name:
AIC_ICCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.
1 = Clears corresponding interrupt.
318
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.14 AIC Interrupt Set Command Register
Register Name:
AIC_ISCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
FIQ
• FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.
1 = Sets corresponding interrupt.
29.8.15 AIC End of Interrupt Command Register
Register Name:
AIC_EOICR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.
319
6289C–ATARM–28-May-09
29.8.16 AIC Spurious Interrupt Vector Register
Register Name:
AIC_SPU
Access Type:
Read-write
Reset Value:
0x0
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
SIQV
23
22
21
20
SIQV
15
14
13
12
SIQV
7
6
5
4
SIQV
• SIQV: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.
29.8.17 AIC Debug Control Register
Register Name:
AIC_DEBUG
Access Type:
Read-write
Reset Value:
0x0
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
GMSK
PROT
• PROT: Protection Mode
0 = The Protection Mode is disabled.
1 = The Protection Mode is enabled.
• GMSK: General Mask
0 = The nIRQ and nFIQ lines are normally controlled by the AIC.
1 = The nIRQ and nFIQ lines are tied to their inactive state.
320
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.18 AIC Fast Forcing Enable Register
Register Name:
AIC_FFER
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2-PID31: Fast Forcing Enable
0 = No effect.
1 = Enables the fast forcing feature on the corresponding interrupt.
29.8.19 AIC Fast Forcing Disable Register
Register Name:
AIC_FFDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2-PID31: Fast Forcing Disable
0 = No effect.
1 = Disables the Fast Forcing feature on the corresponding interrupt.
321
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
29.8.20 AIC Fast Forcing Status Register
Register Name:
AIC_FFSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
PID31
PID30
PID29
PID28
PID27
PID26
PID25
PID24
23
22
21
20
19
18
17
16
PID23
PID22
PID21
PID20
PID19
PID18
PID17
PID16
15
14
13
12
11
10
9
8
PID15
PID14
PID13
PID12
PID11
PID10
PID9
PID8
7
6
5
4
3
2
1
0
PID7
PID6
PID5
PID4
PID3
PID2
SYS
–
• SYS, PID2-PID31: Fast Forcing Status
0 = The Fast Forcing feature is disabled on the corresponding interrupt.
1 = The Fast Forcing feature is enabled on the corresponding interrupt.
322
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30. Debug Unit (DBGU)
30.1
Description
The Debug Unit provides a single entry point from the processor for access to all the debug
capabilities of Atmel’s ARM-based systems.
The Debug Unit features a two-pin UART that can be used for several debug and trace purposes
and offers an ideal medium for in-situ programming solutions and debug monitor communications. Moreover, the association with two peripheral data controller channels permits packet
handling for these tasks with processor time reduced to a minimum.
The Debug Unit also makes the Debug Communication Channel (DCC) signals provided by the
In-circuit Emulator of the ARM processor visible to the software. These signals indicate the status of the DCC read and write registers and generate an interrupt to the ARM processor, making
possible the handling of the DCC under interrupt control.
Chip Identifier registers permit recognition of the device and its revision. These registers inform
as to the sizes and types of the on-chip memories, as well as the set of embedded peripherals.
Finally, the Debug Unit features a Force NTRST capability that enables the software to decide
whether to prevent access to the system via the In-circuit Emulator. This permits protection of
the code, stored in ROM.
323
6289C–ATARM–28-May-09
30.2
Block Diagram
Figure 30-1. Debug Unit Functional Block Diagram
Peripheral
Bridge
Peripheral DMA Controller
APB
Debug Unit
DTXD
Transmit
Power
Management
Controller
MCK
Parallel
Input/
Output
Baud Rate
Generator
Receive
DRXD
COMMRX
ARM
Processor
COMMTX
DCC
Handler
Chip ID
nTRST
ICE
Access
Handler
Interrupt
Control
dbgu_irq
Power-on
Reset
force_ntrst
Table 30-1.
Debug Unit Pin Description
Pin Name
Description
Type
DRXD
Debug Receive Data
Input
DTXD
Debug Transmit Data
Output
Figure 30-2. Debug Unit Application Example
Boot Program
Debug Monitor
Trace Manager
Debug Unit
RS232 Drivers
Programming Tool
324
Debug Console
Trace Console
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.3
30.3.1
Product Dependencies
I/O Lines
Depending on product integration, the Debug Unit pins may be multiplexed with PIO lines. In this
case, the programmer must first configure the corresponding PIO Controller to enable I/O lines
operations of the Debug Unit.
30.3.2
Power Management
Depending on product integration, the Debug Unit clock may be controllable through the Power
Management Controller. In this case, the programmer must first configure the PMC to enable the
Debug Unit clock. Usually, the peripheral identifier used for this purpose is 1.
30.3.3
Interrupt Source
Depending on product integration, the Debug Unit interrupt line is connected to one of the interrupt sources of the Advanced Interrupt Controller. Interrupt handling requires programming of
the AIC before configuring the Debug Unit. Usually, the Debug Unit interrupt line connects to the
interrupt source 1 of the AIC, which may be shared with the real-time clock, the system timer
interrupt lines and other system peripheral interrupts, as shown in Figure 30-1. This sharing
requires the programmer to determine the source of the interrupt when the source 1 is triggered.
30.4
UART Operations
The Debug Unit operates as a UART, (asynchronous mode only) and supports only 8-bit character handling (with parity). It has no clock pin.
The Debug Unit's UART is made up of a receiver and a transmitter that operate independently,
and a common baud rate generator. Receiver timeout and transmitter time guard are not implemented. However, all the implemented features are compatible with those of a standard USART.
30.4.1
Baud Rate Generator
The baud rate generator provides the bit period clock named baud rate clock to both the receiver
and the transmitter.
The baud rate clock is the master clock divided by 16 times the value (CD) written in
DBGU_BRGR (Baud Rate Generator Register). If DBGU_BRGR is set to 0, the baud rate clock
is disabled and the Debug Unit's UART remains inactive. The maximum allowable baud rate is
Master Clock divided by 16. The minimum allowable baud rate is Master Clock divided by (16 x
65536).
MCK
Baud Rate = ---------------------16 × CD
325
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 30-3. Baud Rate Generator
CD
CD
MCK
16-bit Counter
OUT
>1
1
0
Divide
by 16
Baud Rate
Clock
0
Receiver
Sampling Clock
30.4.2
30.4.2.1
Receiver
Receiver Reset, Enable and Disable
After device reset, the Debug Unit receiver is disabled and must be enabled before being used.
The receiver can be enabled by writing the control register DBGU_CR with the bit RXEN at 1. At
this command, the receiver starts looking for a start bit.
The programmer can disable the receiver by writing DBGU_CR with the bit RXDIS at 1. If the
receiver is waiting for a start bit, it is immediately stopped. However, if the receiver has already
detected a start bit and is receiving the data, it waits for the stop bit before actually stopping its
operation.
The programmer can also put the receiver in its reset state by writing DBGU_CR with the bit
RSTRX at 1. In doing so, the receiver immediately stops its current operations and is disabled,
whatever its current state. If RSTRX is applied when data is being processed, this data is lost.
30.4.2.2
Start Detection and Data Sampling
The Debug Unit only supports asynchronous operations, and this affects only its receiver. The
Debug Unit receiver detects the start of a received character by sampling the DRXD signal until
it detects a valid start bit. A low level (space) on DRXD is interpreted as a valid start bit if it is
detected for more than 7 cycles of the sampling clock, which is 16 times the baud rate. Hence, a
space that is longer than 7/16 of the bit period is detected as a valid start bit. A space which is
7/16 of a bit period or shorter is ignored and the receiver continues to wait for a valid start bit.
When a valid start bit has been detected, the receiver samples the DRXD at the theoretical midpoint of each bit. It is assumed that each bit lasts 16 cycles of the sampling clock (1-bit period)
so the bit sampling point is eight cycles (0.5-bit period) after the start of the bit. The first sampling
point is therefore 24 cycles (1.5-bit periods) after the falling edge of the start bit was detected.
Each subsequent bit is sampled 16 cycles (1-bit period) after the previous one.
326
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 30-4. Start Bit Detection
Sampling Clock
DRXD
True Start
Detection
D0
Baud Rate
Clock
Figure 30-5. Character Reception
Example: 8-bit, parity enabled 1 stop
0.5 bit
period
1 bit
period
DRXD
D0
D1
True Start Detection
Sampling
30.4.2.3
D2
D3
D4
D5
D6
D7
Stop Bit
Parity Bit
Receiver Ready
When a complete character is received, it is transferred to the DBGU_RHR and the RXRDY status bit in DBGU_SR (Status Register) is set. The bit RXRDY is automatically cleared when the
receive holding register DBGU_RHR is read.
Figure 30-6. Receiver Ready
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
S
P
D0
D1
D2
D3
D4
D5
D6
D7
P
RXRDY
Read DBGU_RHR
30.4.2.4
Receiver Overrun
If DBGU_RHR has not been read by the software (or the Peripheral Data Controller) since the
last transfer, the RXRDY bit is still set and a new character is received, the OVRE status bit in
DBGU_SR is set. OVRE is cleared when the software writes the control register DBGU_CR with
the bit RSTSTA (Reset Status) at 1.
Figure 30-7. Receiver Overrun
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
OVRE
RSTSTA
30.4.2.5
Parity Error
Each time a character is received, the receiver calculates the parity of the received data bits, in
accordance with the field PAR in DBGU_MR. It then compares the result with the received parity
327
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
bit. If different, the parity error bit PARE in DBGU_SR is set at the same time the RXRDY is set.
The parity bit is cleared when the control register DBGU_CR is written with the bit RSTSTA
(Reset Status) at 1. If a new character is received before the reset status command is written,
the PARE bit remains at 1.
Figure 30-8. Parity Error
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
PARE
Wrong Parity Bit
30.4.2.6
RSTSTA
Receiver Framing Error
When a start bit is detected, it generates a character reception when all the data bits have been
sampled. The stop bit is also sampled and when it is detected at 0, the FRAME (Framing Error)
bit in DBGU_SR is set at the same time the RXRDY bit is set. The bit FRAME remains high until
the control register DBGU_CR is written with the bit RSTSTA at 1.
Figure 30-9. Receiver Framing Error
DRXD
S
D0
D1
D2
D3
D4
D5
D6
D7
P
stop
RXRDY
FRAME
Stop Bit
Detected at 0
30.4.3
30.4.3.1
RSTSTA
Transmitter
Transmitter Reset, Enable and Disable
After device reset, the Debug Unit transmitter is disabled and it must be enabled before being
used. The transmitter is enabled by writing the control register DBGU_CR with the bit TXEN at 1.
From this command, the transmitter waits for a character to be written in the Transmit Holding
Register DBGU_THR before actually starting the transmission.
The programmer can disable the transmitter by writing DBGU_CR with the bit TXDIS at 1. If the
transmitter is not operating, it is immediately stopped. However, if a character is being processed into the Shift Register and/or a character has been written in the Transmit Holding
Register, the characters are completed before the transmitter is actually stopped.
The programmer can also put the transmitter in its reset state by writing the DBGU_CR with the
bit RSTTX at 1. This immediately stops the transmitter, whether or not it is processing
characters.
30.4.3.2
Transmit Format
The Debug Unit transmitter drives the pin DTXD at the baud rate clock speed. The line is driven
depending on the format defined in the Mode Register and the data stored in the Shift Register.
One start bit at level 0, then the 8 data bits, from the lowest to the highest bit, one optional parity
bit and one stop bit at 1 are consecutively shifted out as shown on the following figure. The field
328
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
PARE in the mode register DBGU_MR defines whether or not a parity bit is shifted out. When a
parity bit is enabled, it can be selected between an odd parity, an even parity, or a fixed space or
mark bit.
Figure 30-10. Character Transmission
Example: Parity enabled
Baud Rate
Clock
DTXD
Start
Bit
30.4.3.3
D0
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
Transmitter Control
When the transmitter is enabled, the bit TXRDY (Transmitter Ready) is set in the status register
DBGU_SR. The transmission starts when the programmer writes in the Transmit Holding Register DBGU_THR, and after the written character is transferred from DBGU_THR to the Shift
Register. The bit TXRDY remains high until a second character is written in DBGU_THR. As
soon as the first character is completed, the last character written in DBGU_THR is transferred
into the shift register and TXRDY rises again, showing that the holding register is empty.
When both the Shift Register and the DBGU_THR are empty, i.e., all the characters written in
DBGU_THR have been processed, the bit TXEMPTY rises after the last stop bit has been
completed.
Figure 30-11. Transmitter Control
DBGU_THR
Data 0
Data 1
Shift Register
DTXD
Data 0
S
Data 0
Data 1
P
stop
S
Data 1
P
stop
TXRDY
TXEMPTY
Write Data 0
in DBGU_THR
30.4.4
Write Data 1
in DBGU_THR
Peripheral Data Controller
Both the receiver and the transmitter of the Debug Unit's UART are generally connected to a
Peripheral Data Controller (PDC) channel.
The peripheral data controller channels are programmed via registers that are mapped within
the Debug Unit user interface from the offset 0x100. The status bits are reported in the Debug
Unit status register DBGU_SR and can generate an interrupt.
329
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The RXRDY bit triggers the PDC channel data transfer of the receiver. This results in a read of
the data in DBGU_RHR. The TXRDY bit triggers the PDC channel data transfer of the transmitter. This results in a write of a data in DBGU_THR.
30.4.5
Test Modes
The Debug Unit supports three tests modes. These modes of operation are programmed by
using the field CHMODE (Channel Mode) in the mode register DBGU_MR.
The Automatic Echo mode allows bit-by-bit retransmission. When a bit is received on the DRXD
line, it is sent to the DTXD line. The transmitter operates normally, but has no effect on the
DTXD line.
The Local Loopback mode allows the transmitted characters to be received. DTXD and DRXD
pins are not used and the output of the transmitter is internally connected to the input of the
receiver. The DRXD pin level has no effect and the DTXD line is held high, as in idle state.
The Remote Loopback mode directly connects the DRXD pin to the DTXD line. The transmitter
and the receiver are disabled and have no effect. This mode allows a bit-by-bit retransmission.
Figure 30-12. Test Modes
Automatic Echo
RXD
Receiver
Transmitter
Disabled
TXD
Local Loopback
Disabled
Receiver
RXD
VDD
Disabled
Transmitter
Remote Loopback
Receiver
Transmitter
30.4.6
TXD
VDD
Disabled
Disabled
RXD
TXD
Debug Communication Channel Support
The Debug Unit handles the signals COMMRX and COMMTX that come from the Debug Communication Channel of the ARM Processor and are driven by the In-circuit Emulator.
330
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The Debug Communication Channel contains two registers that are accessible through the ICE
Breaker on the JTAG side and through the coprocessor 0 on the ARM Processor side.
As a reminder, the following instructions are used to read and write the Debug Communication
Channel:
MRC
p14, 0, Rd, c1, c0, 0
Returns the debug communication data read register into Rd
MCR
p14, 0, Rd, c1, c0, 0
Writes the value in Rd to the debug communication data write register.
The bits COMMRX and COMMTX, which indicate, respectively, that the read register has been
written by the debugger but not yet read by the processor, and that the write register has been
written by the processor and not yet read by the debugger, are wired on the two highest bits of
the status register DBGU_SR. These bits can generate an interrupt. This feature permits handling under interrupt a debug link between a debug monitor running on the target system and a
debugger.
30.4.7
Chip Identifier
The Debug Unit features two chip identifier registers, DBGU_CIDR (Chip ID Register) and
DBGU_EXID (Extension ID). Both registers contain a hard-wired value that is read-only. The first
register contains the following fields:
• EXT - shows the use of the extension identifier register
• NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size
• ARCH - identifies the set of embedded peripherals
• SRAMSIZ - indicates the size of the embedded SRAM
• EPROC - indicates the embedded ARM processor
• VERSION - gives the revision of the silicon
The second register is device-dependent and reads 0 if the bit EXT is 0.
30.4.8
ICE Access Prevention
The Debug Unit allows blockage of access to the system through the ARM processor's ICE
interface. This feature is implemented via the register Force NTRST (DBGU_FNR), that allows
assertion of the NTRST signal of the ICE Interface. Writing the bit FNTRST (Force NTRST) to 1
in this register prevents any activity on the TAP controller.
On standard devices, the bit FNTRST resets to 0 and thus does not prevent ICE access.
This feature is especially useful on custom ROM devices for customers who do not want their
on-chip code to be visible.
331
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5
Debug Unit User Interface
Table 30-2.
Debug Unit Memory Map
Offset
Register
Name
Access
Reset Value
0x0000
Control Register
DBGU_CR
Write-only
–
0x0004
Mode Register
DBGU_MR
Read/Write
0x0
0x0008
Interrupt Enable Register
DBGU_IER
Write-only
–
0x000C
Interrupt Disable Register
DBGU_IDR
Write-only
–
0x0010
Interrupt Mask Register
DBGU_IMR
Read-only
0x0
0x0014
Status Register
DBGU_SR
Read-only
–
0x0018
Receive Holding Register
DBGU_RHR
Read-only
0x0
0x001C
Transmit Holding Register
DBGU_THR
Write-only
–
0x0020
Baud Rate Generator Register
DBGU_BRGR
Read/Write
0x0
–
–
–
0x0024 - 0x003C
Reserved
0x0040
Chip ID Register
DBGU_CIDR
Read-only
–
0x0044
Chip ID Extension Register
DBGU_EXID
Read-only
–
0x0048
Force NTRST Register
DBGU_FNR
Read/Write
0x0
0x004C - 0x00FC
Reserved
–
–
–
0x0100 - 0x0124
PDC Area
–
–
–
332
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.1
Name:
Debug Unit Control Register
DBGU_CR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
RSTSTA
7
6
5
4
3
2
1
0
TXDIS
TXEN
RXDIS
RXEN
RSTTX
RSTRX
–
–
• RSTRX: Reset Receiver
0 = No effect.
1 = The receiver logic is reset and disabled. If a character is being received, the reception is aborted.
• RSTTX: Reset Transmitter
0 = No effect.
1 = The transmitter logic is reset and disabled. If a character is being transmitted, the transmission is aborted.
• RXEN: Receiver Enable
0 = No effect.
1 = The receiver is enabled if RXDIS is 0.
• RXDIS: Receiver Disable
0 = No effect.
1 = The receiver is disabled. If a character is being processed and RSTRX is not set, the character is completed before the
receiver is stopped.
• TXEN: Transmitter Enable
0 = No effect.
1 = The transmitter is enabled if TXDIS is 0.
• TXDIS: Transmitter Disable
0 = No effect.
1 = The transmitter is disabled. If a character is being processed and a character has been written the DBGU_THR and
RSTTX is not set, both characters are completed before the transmitter is stopped.
• RSTSTA: Reset Status Bits
0 = No effect.
1 = Resets the status bits PARE, FRAME and OVRE in the DBGU_SR.
333
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.2
Name:
Debug Unit Mode Register
DBGU_MR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
14
13
12
11
10
9
–
–
15
CHMODE
8
–
PAR
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
–
• PAR: Parity Type
PAR
Parity Type
0
0
0
Even parity
0
0
1
Odd parity
0
1
0
Space: parity forced to 0
0
1
1
Mark: parity forced to 1
1
x
x
No parity
• CHMODE: Channel Mode
CHMODE
Mode Description
0
0
Normal Mode
0
1
Automatic Echo
1
0
Local Loopback
1
1
Remote Loopback
334
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.3
Name:
Debug Unit Interrupt Enable Register
DBGU_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Enable RXRDY Interrupt
• TXRDY: Enable TXRDY Interrupt
• ENDRX: Enable End of Receive Transfer Interrupt
• ENDTX: Enable End of Transmit Interrupt
• OVRE: Enable Overrun Error Interrupt
• FRAME: Enable Framing Error Interrupt
• PARE: Enable Parity Error Interrupt
• TXEMPTY: Enable TXEMPTY Interrupt
• TXBUFE: Enable Buffer Empty Interrupt
• RXBUFF: Enable Buffer Full Interrupt
• COMMTX: Enable COMMTX (from ARM) Interrupt
• COMMRX: Enable COMMRX (from ARM) Interrupt
0 = No effect.
1 = Enables the corresponding interrupt.
335
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.4
Name:
Debug Unit Interrupt Disable Register
DBGU_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Disable RXRDY Interrupt
• TXRDY: Disable TXRDY Interrupt
• ENDRX: Disable End of Receive Transfer Interrupt
• ENDTX: Disable End of Transmit Interrupt
• OVRE: Disable Overrun Error Interrupt
• FRAME: Disable Framing Error Interrupt
• PARE: Disable Parity Error Interrupt
• TXEMPTY: Disable TXEMPTY Interrupt
• TXBUFE: Disable Buffer Empty Interrupt
• RXBUFF: Disable Buffer Full Interrupt
• COMMTX: Disable COMMTX (from ARM) Interrupt
• COMMRX: Disable COMMRX (from ARM) Interrupt
0 = No effect.
1 = Disables the corresponding interrupt.
336
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.5
Name:
Debug Unit Interrupt Mask Register
DBGU_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Mask RXRDY Interrupt
• TXRDY: Disable TXRDY Interrupt
• ENDRX: Mask End of Receive Transfer Interrupt
• ENDTX: Mask End of Transmit Interrupt
• OVRE: Mask Overrun Error Interrupt
• FRAME: Mask Framing Error Interrupt
• PARE: Mask Parity Error Interrupt
• TXEMPTY: Mask TXEMPTY Interrupt
• TXBUFE: Mask TXBUFE Interrupt
• RXBUFF: Mask RXBUFF Interrupt
• COMMTX: Mask COMMTX Interrupt
• COMMRX: Mask COMMRX Interrupt
0 = The corresponding interrupt is disabled.
1 = The corresponding interrupt is enabled.
337
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.6
Name:
Debug Unit Status Register
DBGU_SR
Access Type:
Read-only
31
30
29
28
27
26
25
24
COMMRX
COMMTX
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
RXBUFF
TXBUFE
–
TXEMPTY
–
7
6
5
4
3
2
1
0
PARE
FRAME
OVRE
ENDTX
ENDRX
–
TXRDY
RXRDY
• RXRDY: Receiver Ready
0 = No character has been received since the last read of the DBGU_RHR or the receiver is disabled.
1 = At least one complete character has been received, transferred to DBGU_RHR and not yet read.
• TXRDY: Transmitter Ready
0 = A character has been written to DBGU_THR and not yet transferred to the Shift Register, or the transmitter is disabled.
1 = There is no character written to DBGU_THR not yet transferred to the Shift Register.
• ENDRX: End of Receiver Transfer
0 = The End of Transfer signal from the receiver Peripheral Data Controller channel is inactive.
1 = The End of Transfer signal from the receiver Peripheral Data Controller channel is active.
• ENDTX: End of Transmitter Transfer
0 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is inactive.
1 = The End of Transfer signal from the transmitter Peripheral Data Controller channel is active.
• OVRE: Overrun Error
0 = No overrun error has occurred since the last RSTSTA.
1 = At least one overrun error has occurred since the last RSTSTA.
• FRAME: Framing Error
0 = No framing error has occurred since the last RSTSTA.
1 = At least one framing error has occurred since the last RSTSTA.
• PARE: Parity Error
0 = No parity error has occurred since the last RSTSTA.
1 = At least one parity error has occurred since the last RSTSTA.
• TXEMPTY: Transmitter Empty
0 = There are characters in DBGU_THR, or characters being processed by the transmitter, or the transmitter is disabled.
1 = There are no characters in DBGU_THR and there are no characters being processed by the transmitter.
338
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• TXBUFE: Transmission Buffer Empty
0 = The buffer empty signal from the transmitter PDC channel is inactive.
1 = The buffer empty signal from the transmitter PDC channel is active.
• RXBUFF: Receive Buffer Full
0 = The buffer full signal from the receiver PDC channel is inactive.
1 = The buffer full signal from the receiver PDC channel is active.
• COMMTX: Debug Communication Channel Write Status
0 = COMMTX from the ARM processor is inactive.
1 = COMMTX from the ARM processor is active.
• COMMRX: Debug Communication Channel Read Status
0 = COMMRX from the ARM processor is inactive.
1 = COMMRX from the ARM processor is active.
339
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.7
Name:
Debug Unit Receiver Holding Register
DBGU_RHR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
RXCHR
• RXCHR: Received Character
Last received character if RXRDY is set.
30.5.8
Name:
Debug Unit Transmit Holding Register
DBGU_THR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
TXCHR
• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.
340
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.9
Name:
Debug Unit Baud Rate Generator Register
DBGU_BRGR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
CD
7
6
5
4
CD
• CD: Clock Divisor
CD
Baud Rate Clock
0
Disabled
1
MCK
2 to 65535
MCK / (CD x 16)
341
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.10
Name:
Debug Unit Chip ID Register
DBGU_CIDR
Access Type:
31
Read-only
30
29
EXT
23
28
27
26
NVPTYP
22
21
20
19
18
ARCH
15
14
13
6
24
17
16
9
8
1
0
SRAMSIZ
12
11
10
NVPSIZ2
7
25
ARCH
NVPSIZ
5
4
3
EPROC
2
VERSION
• VERSION: Version of the Device
• EPROC: Embedded Processor
EPROC
Processor
0
0
1
ARM946E-S™
0
1
0
ARM7TDMI®
1
0
0
ARM920T™
1
0
1
ARM926EJ-S
• NVPSIZ: Nonvolatile Program Memory Size
NVPSIZ
Size
0
0
0
0
None
0
0
0
1
8K bytes
0
0
1
0
16K bytes
0
0
1
1
32K bytes
0
1
0
0
Reserved
0
1
0
1
64K bytes
0
1
1
0
Reserved
0
1
1
1
128K bytes
1
0
0
0
Reserved
1
0
0
1
256K bytes
1
0
1
0
512K bytes
1
0
1
1
Reserved
1
1
0
0
1024K bytes
1
1
0
1
Reserved
1
1
1
0
2048K bytes
1
1
1
1
Reserved
342
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• NVPSIZ2 Second Nonvolatile Program Memory Size
NVPSIZ2
Size
0
0
0
0
None
0
0
0
1
8K bytes
0
0
1
0
16K bytes
0
0
1
1
32K bytes
0
1
0
0
Reserved
0
1
0
1
64K bytes
0
1
1
0
Reserved
0
1
1
1
128K bytes
1
0
0
0
Reserved
1
0
0
1
256K bytes
1
0
1
0
512K bytes
1
0
1
1
Reserved
1
1
0
0
1024K bytes
1
1
0
1
Reserved
1
1
1
0
2048K bytes
1
1
1
1
Reserved
• SRAMSIZ: Internal SRAM Size
SRAMSIZ
Size
0
0
0
0
Reserved
0
0
0
1
1K bytes
0
0
1
0
2K bytes
0
0
1
1
6K bytes
0
1
0
0
112K bytes
0
1
0
1
4K bytes
0
1
1
0
80K bytes
0
1
1
1
160K bytes
1
0
0
0
8K bytes
1
0
0
1
16K bytes
1
0
1
0
32K bytes
1
0
1
1
64K bytes
1
1
0
0
128K bytes
1
1
0
1
256K bytes
1
1
1
0
96K bytes
1
1
1
1
512K bytes
343
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• ARCH: Architecture Identifier
ARCH
Hex
Bin
Architecture
0x19
0001 1001
AT91SAM9xx Series
0x29
0010 1001
AT91SAM9XExx Series
0x34
0011 0100
AT91x34 Series
0x37
0011 0111
CAP7 Series
0x39
0011 1001
CAP9 Series
0x3B
0011 1011
CAP11 Series
0x40
0100 0000
AT91x40 Series
0x42
0100 0010
AT91x42 Series
0x55
0101 0101
AT91x55 Series
0x60
0110 0000
AT91SAM7Axx Series
0x61
0110 0001
AT91SAM7AQxx Series
0x63
0110 0011
AT91x63 Series
0x70
0111 0000
AT91SAM7Sxx Series
0x71
0111 0001
AT91SAM7XCxx Series
0x72
0111 0010
AT91SAM7SExx Series
0x73
0111 0011
AT91SAM7Lxx Series
0x75
0111 0101
AT91SAM7Xxx Series
0x92
1001 0010
AT91x92 Series
0xF0
1111 0000
AT75Cxx Series
• NVPTYP: Nonvolatile Program Memory Type
NVPTYP
Memory
0
0
0
ROM
0
0
1
ROMless or on-chip Flash
1
0
0
SRAM emulating ROM
0
1
0
Embedded Flash Memory
0
1
1
ROM and Embedded Flash Memory
NVPSIZ is ROM size
NVPSIZ2 is Flash size
• EXT: Extension Flag
0 = Chip ID has a single register definition without extension
1 = An extended Chip ID exists.
344
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
30.5.11
Name:
Debug Unit Chip ID Extension Register
DBGU_EXID
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
EXID
23
22
21
20
EXID
15
14
13
12
EXID
7
6
5
4
EXID
• EXID: Chip ID Extension
Reads 0 if the bit EXT in DBGU_CIDR is 0.
345
6289C–ATARM–28-May-09
30.5.12
Name:
Debug Unit Force NTRST Register
DBGU_FNR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
FNTRST
• FNTRST: Force NTRST
0 = NTRST of the ARM processor’s TAP controller is driven by the power_on_reset signal.
1 = NTRST of the ARM processor’s TAP controller is held low.
346
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31. Parallel Input/Output Controller (PIO)
31.1
Description
The Parallel Input/Output Controller (PIO) manages up to 32 fully programmable input/output
lines. Each I/O line may be dedicated as a general-purpose I/O or be assigned to a function of
an embedded peripheral. This assures effective optimization of the pins of a product.
Each I/O line is associated with a bit number in all of the 32-bit registers of the 32-bit wide User
Interface.
Each I/O line of the PIO Controller features:
• An input change interrupt enabling level change detection on any I/O line.
• A glitch filter providing rejection of pulses lower than one-half of clock cycle.
• Multi-drive capability similar to an open drain I/O line.
• Control of the pull-up of the I/O line.
• Input visibility and output control.
The PIO Controller also features a synchronous output providing up to 32 bits of data output in a
single write operation.
347
6289C–ATARM–28-May-09
31.2
Block Diagram
Figure 31-1. Block Diagram
PIO Controller
AIC
PMC
PIO Interrupt
PIO Clock
Data, Enable
Up to 32
peripheral IOs
Embedded
Peripheral
PIN 0
Data, Enable
PIN 1
Up to 32 pins
Embedded
Peripheral
Up to 32
peripheral IOs
PIN 31
APB
Figure 31-2. Application Block Diagram
On-Chip Peripheral Drivers
Keyboard Driver
Control & Command
Driver
On-Chip Peripherals
PIO Controller
Keyboard Driver
348
General Purpose I/Os
External Devices
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.3
Product Dependencies
31.3.1
Pin Multiplexing
Each pin is configurable, according to product definition as either a general-purpose I/O line
only, or as an I/O line multiplexed with one or two peripheral I/Os. As the multiplexing is hardware-defined and thus product-dependent, the hardware designer and programmer must
carefully determine the configuration of the PIO controllers required by their application. When
an I/O line is general-purpose only, i.e. not multiplexed with any peripheral I/O, programming of
the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO Controller can control how the pin is driven by the product.
31.3.2
External Interrupt Lines
The interrupt signals FIQ and IRQ0 to IRQn are most generally multiplexed through the PIO
Controllers. However, it is not necessary to assign the I/O line to the interrupt function as the
PIO Controller has no effect on inputs and the interrupt lines (FIQ or IRQs) are used only as
inputs.
31.3.3
Power Management
The Power Management Controller controls the PIO Controller clock in order to save power.
Writing any of the registers of the user interface does not require the PIO Controller clock to be
enabled. This means that the configuration of the I/O lines does not require the PIO Controller
clock to be enabled.
However, when the clock is disabled, not all of the features of the PIO Controller are available.
Note that the Input Change Interrupt and the read of the pin level require the clock to be
validated.
After a hardware reset, the PIO clock is disabled by default.
The user must configure the Power Management Controller before any access to the input line
information.
31.3.4
Interrupt Generation
For interrupt handling, the PIO Controllers are considered as user peripherals. This means that
the PIO Controller interrupt lines are connected among the interrupt sources 2 to 31. Refer to the
PIO Controller peripheral identifier in the product description to identify the interrupt sources
dedicated to the PIO Controllers.
The PIO Controller interrupt can be generated only if the PIO Controller clock is enabled.
349
6289C–ATARM–28-May-09
31.4
Functional Description
The PIO Controller features up to 32 fully-programmable I/O lines. Most of the control logic associated to each I/O is represented in Figure 31-3. In this description each signal shown
represents but one of up to 32 possible indexes.
Figure 31-3. I/O Line Control Logic
PIO_OER[0]
PIO_OSR[0]
PIO_PUER[0]
PIO_ODR[0]
PIO_PUSR[0]
PIO_PUDR[0]
1
Peripheral A
Output Enable
0
0
Peripheral B
Output Enable
0
1
PIO_ASR[0]
PIO_PER[0]
PIO_ABSR[0]
1
PIO_PSR[0]
PIO_BSR[0]
PIO_PDR[0]
Peripheral A
Output
0
Peripheral B
Output
1
PIO_MDER[0]
PIO_MDSR[0]
PIO_MDDR[0]
0
0
PIO_SODR[0]
PIO_ODSR[0]
1
Pad
PIO_CODR[0]
1
Peripheral A
Input
PIO_PDSR[0]
PIO_ISR[0]
0
Edge
Detector
Glitch
Filter
Peripheral B
Input
(Up to 32 possible inputs)
PIO Interrupt
1
PIO_IFER[0]
PIO_IFSR[0]
PIO_IFDR[0]
PIO_IER[0]
PIO_IMR[0]
PIO_IDR[0]
PIO_ISR[31]
PIO_IER[31]
PIO_IMR[31]
PIO_IDR[31]
350
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.4.1
Pull-up Resistor Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pullup Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit
in PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is disabled and reading a 0 means the pull-up is enabled.
Control of the pull-up resistor is possible regardless of the configuration of the I/O line.
After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.
31.4.2
I/O Line or Peripheral Function Selection
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The register PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.
If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.
After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the peripheral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.
31.4.3
Peripheral A or B Selection
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Register). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected.
For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corresponding bit at level 1 indicates that peripheral B is selected.
Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.
After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A.
However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line
mode.
Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the corresponding
peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.
31.4.4
Output Control
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the
value in PIO_ABSR, determines whether the pin is driven or not.
When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
351
6289C–ATARM–28-May-09
The results of these write operations are detected in PIO_OSR (Output Status Register). When
a bit in this register is at 0, the corresponding I/O line is used as an input only. When the bit is at
1, the corresponding I/O line is driven by the PIO controller.
The level driven on an I/O line can be determined by writing in PIO_SODR (Set Output Data
Register) and PIO_CODR (Clear Output Data Register). These write operations respectively set
and clear PIO_ODSR (Output Data Status Register), which represents the data driven on the I/O
lines. Writing in PIO_OER and PIO_ODR manages PIO_OSR whether the pin is configured to
be controlled by the PIO controller or assigned to a peripheral function. This enables configuration of the I/O line prior to setting it to be managed by the PIO Controller.
Similarly, writing in PIO_SODR and PIO_CODR effects PIO_ODSR. This is important as it
defines the first level driven on the I/O line.
31.4.5
Synchronous Data Output
Controlling all parallel busses using several PIOs requires two successive write operations in the
PIO_SODR and PIO_CODR registers. This may lead to unexpected transient values. The PIO
controller offers a direct control of PIO outputs by single write access to PIO_ODSR (Output
Data Status Register). Only bits unmasked by PIO_OWSR (Output Write Status Register) are
written. The mask bits in the PIO_OWSR are set by writing to PIO_OWER (Output Write Enable
Register) and cleared by writing to PIO_OWDR (Output Write Disable Register).
After reset, the synchronous data output is disabled on all the I/O lines as PIO_OWSR resets at
0x0.
31.4.6
Multi Drive Control (Open Drain)
Each I/O can be independently programmed in Open Drain by using the Multi Drive feature. This
feature permits several drivers to be connected on the I/O line which is driven low only by each
device. An external pull-up resistor (or enabling of the internal one) is generally required to guarantee a high level on the line.
The Multi Drive feature is controlled by PIO_MDER (Multi-driver Enable Register) and
PIO_MDDR (Multi-driver Disable Register). The Multi Drive can be selected whether the I/O line
is controlled by the PIO controller or assigned to a peripheral function. PIO_MDSR (Multi-driver
Status Register) indicates the pins that are configured to support external drivers.
After reset, the Multi Drive feature is disabled on all pins, i.e. PIO_MDSR resets at value 0x0.
31.4.7
352
Output Line Timings
Figure 31-4 shows how the outputs are driven either by writing PIO_SODR or PIO_CODR, or by
directly writing PIO_ODSR. This last case is valid only if the corresponding bit in PIO_OWSR is
set. Figure 31-4 also shows when the feedback in PIO_PDSR is available.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 31-4. Output Line Timings
MCK
Write PIO_SODR
Write PIO_ODSR at 1
APB Access
Write PIO_CODR
Write PIO_ODSR at 0
APB Access
PIO_ODSR
2 cycles
2 cycles
PIO_PDSR
31.4.8
Inputs
The level on each I/O line can be read through PIO_PDSR (Pin Data Status Register). This register indicates the level of the I/O lines regardless of their configuration, whether uniquely as an
input or driven by the PIO controller or driven by a peripheral.
Reading the I/O line levels requires the clock of the PIO controller to be enabled, otherwise
PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
31.4.9
Input Glitch Filtering
Optional input glitch filters are independently programmable on each I/O line. When the glitch filter is enabled, a glitch with a duration of less than 1/2 Master Clock (MCK) cycle is automatically
rejected, while a pulse with a duration of 1 Master Clock cycle or more is accepted. For pulse
durations between 1/2 Master Clock cycle and 1 Master Clock cycle the pulse may or may not
be taken into account, depending on the precise timing of its occurrence. Thus for a pulse to be
visible it must exceed 1 Master Clock cycle, whereas for a glitch to be reliably filtered out, its
duration must not exceed 1/2 Master Clock cycle. The filter introduces one Master Clock cycle
latency if the pin level change occurs before a rising edge. However, this latency does not
appear if the pin level change occurs before a falling edge. This is illustrated in Figure 31-5.
The glitch filters are controlled by the register set; PIO_IFER (Input Filter Enable Register),
PIO_IFDR (Input Filter Disable Register) and PIO_IFSR (Input Filter Status Register). Writing
PIO_IFER and PIO_IFDR respectively sets and clears bits in PIO_IFSR. This last register
enables the glitch filter on the I/O lines.
When the glitch filter is enabled, it does not modify the behavior of the inputs on the peripherals.
It acts only on the value read in PIO_PDSR and on the input change interrupt detection. The
glitch filters require that the PIO Controller clock is enabled.
353
6289C–ATARM–28-May-09
Figure 31-5. Input Glitch Filter Timing
MCK
up to 1.5 cycles
Pin Level
1 cycle
1 cycle
1 cycle
1 cycle
PIO_PDSR
if PIO_IFSR = 0
2 cycles
PIO_PDSR
if PIO_IFSR = 1
31.4.10
up to 2.5 cycles
1 cycle
up to 2 cycles
Input Change Interrupt
The PIO Controller can be programmed to generate an interrupt when it detects an input change
on an I/O line. The Input Change Interrupt is controlled by writing PIO_IER (Interrupt Enable
Register) and PIO_IDR (Interrupt Disable Register), which respectively enable and disable the
input change interrupt by setting and clearing the corresponding bit in PIO_IMR (Interrupt Mask
Register). As Input change detection is possible only by comparing two successive samplings of
the input of the I/O line, the PIO Controller clock must be enabled. The Input Change Interrupt is
available, regardless of the configuration of the I/O line, i.e. configured as an input only, controlled by the PIO Controller or assigned to a peripheral function.
When an input change is detected on an I/O line, the corresponding bit in PIO_ISR (Interrupt
Status Register) is set. If the corresponding bit in PIO_IMR is set, the PIO Controller interrupt
line is asserted. The interrupt signals of the thirty-two channels are ORed-wired together to generate a single interrupt signal to the Advanced Interrupt Controller.
When the software reads PIO_ISR, all the interrupts are automatically cleared. This signifies that
all the interrupts that are pending when PIO_ISR is read must be handled.
Figure 31-6. Input Change Interrupt Timings
MCK
Pin Level
PIO_ISR
APB Access
Read PIO_ISR
31.5
APB Access
I/O Lines Programming Example
The programing example as shown in Table 31-1 below is used to define the following
configuration.
• 4-bit output port on I/O lines 0 to 3, (should be written in a single write operation), open-drain,
with pull-up resistor
354
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no
pull-up resistor
• Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up
resistors, glitch filters and input change interrupts
• Four input signals on I/O line 12 to 15 to read an external device status (polled, thus no input
change interrupt), no pull-up resistor, no glitch filter
• I/O lines 16 to 19 assigned to peripheral A functions with pull-up resistor
• I/O lines 20 to 23 assigned to peripheral B functions, no pull-up resistor
• I/O line 24 to 27 assigned to peripheral A with Input Change Interrupt and pull-up resistor
Table 31-1.
Programming Example
Register
Value to be Written
PIO_PER
0x0000 FFFF
PIO_PDR
0x0FFF 0000
PIO_OER
0x0000 00FF
PIO_ODR
0x0FFF FF00
PIO_IFER
0x0000 0F00
PIO_IFDR
0x0FFF F0FF
PIO_SODR
0x0000 0000
PIO_CODR
0x0FFF FFFF
PIO_IER
0x0F00 0F00
PIO_IDR
0x00FF F0FF
PIO_MDER
0x0000 000F
PIO_MDDR
0x0FFF FFF0
PIO_PUDR
0x00F0 00F0
PIO_PUER
0x0F0F FF0F
PIO_ASR
0x0F0F 0000
PIO_BSR
0x00F0 0000
PIO_OWER
0x0000 000F
PIO_OWDR
0x0FFF FFF0
355
6289C–ATARM–28-May-09
31.6
Parallel Input/Output (PIO) Controller User Interface
Each I/O line controlled by the PIO Controller is associated with a bit in each of the PIO Controller User Interface registers. Each register is 32 bits wide. If a parallel I/O line is not defined,
writing to the corresponding bits has no effect. Undefined bits read zero. If the I/O line is not multiplexed with any peripheral, the I/O line is controlled by the PIO Controller and PIO_PSR returns
1 systematically.
Table 31-2.
Register Mapping
Offset
Register
Name
Access
Reset Value
0x0000
PIO Enable Register
PIO_PER
Write-only
–
0x0004
PIO Disable Register
PIO_PDR
Write-only
–
PIO_PSR
Read-only
(1)
0x0008
PIO Status Register
0x000C
Reserved
0x0010
Output Enable Register
PIO_OER
Write-only
–
0x0014
Output Disable Register
PIO_ODR
Write-only
–
0x0018
Output Status Register
PIO_OSR
Read-only
0x0000 0000
0x001C
Reserved
0x0020
Glitch Input Filter Enable Register
PIO_IFER
Write-only
–
0x0024
Glitch Input Filter Disable Register
PIO_IFDR
Write-only
–
0x0028
Glitch Input Filter Status Register
PIO_IFSR
Read-only
0x0000 0000
0x002C
Reserved
0x0030
Set Output Data Register
PIO_SODR
Write-only
–
0x0034
Clear Output Data Register
PIO_CODR
Write-only
0x0038
Output Data Status Register
PIO_ODSR
Read-only
or(2)
Read/Write
–
0x003C
Pin Data Status Register
PIO_PDSR
Read-only
(3)
0x0040
Interrupt Enable Register
PIO_IER
Write-only
–
0x0044
Interrupt Disable Register
PIO_IDR
Write-only
–
0x0048
Interrupt Mask Register
PIO_IMR
Read-only
0x00000000
0x004C
Interrupt Status Register(4)
PIO_ISR
Read-only
0x00000000
0x0050
Multi-driver Enable Register
PIO_MDER
Write-only
–
0x0054
Multi-driver Disable Register
PIO_MDDR
Write-only
–
0x0058
Multi-driver Status Register
PIO_MDSR
Read-only
0x00000000
0x005C
Reserved
0x0060
Pull-up Disable Register
PIO_PUDR
Write-only
–
0x0064
Pull-up Enable Register
PIO_PUER
Write-only
–
0x0068
Pad Pull-up Status Register
PIO_PUSR
Read-only
0x00000000
0x006C
Reserved
356
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 31-2.
Register Mapping (Continued)
Offset
Register
0x0070
0x0074
Name
Peripheral A Select Register
(5)
Peripheral B Select Register
(5)
(5)
Access
Reset Value
PIO_ASR
Write-only
–
PIO_BSR
Write-only
–
PIO_ABSR
Read-only
0x00000000
0x0078
AB Status Register
0x007C
to
0x009C
Reserved
0x00A0
Output Write Enable
PIO_OWER
Write-only
–
0x00A4
Output Write Disable
PIO_OWDR
Write-only
–
0x00A8
Output Write Status Register
PIO_OWSR
Read-only
0x00000000
0x00AC
Reserved
Notes:
1. Reset value of PIO_PSR depends on the product implementation.
2. PIO_ODSR is Read-only or Read/Write depending on PIO_OWSR I/O lines.
3. Reset value of PIO_PDSR depends on the level of the I/O lines. Reading the I/O line levels requires the clock of the PIO
Controller to be enabled, otherwise PIO_PDSR reads the levels present on the I/O line at the time the clock was disabled.
4. PIO_ISR is reset at 0x0. However, the first read of the register may read a different value as input changes may have
occurred.
5. Only this set of registers clears the status by writing 1 in the first register and sets the status by writing 1 in the second
register.
357
6289C–ATARM–28-May-09
31.6.1
Name:
PIO Controller PIO Enable Register
PIO_PER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: PIO Enable
0 = No effect.
1 = Enables the PIO to control the corresponding pin (disables peripheral control of the pin).
31.6.2
Name:
PIO Controller PIO Disable Register
PIO_PDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: PIO Disable
0 = No effect.
1 = Disables the PIO from controlling the corresponding pin (enables peripheral control of the pin).
358
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.3
Name:
PIO Controller PIO Status Register
PIO_PSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: PIO Status
0 = PIO is inactive on the corresponding I/O line (peripheral is active).
1 = PIO is active on the corresponding I/O line (peripheral is inactive).
31.6.4
Name:
PIO Controller Output Enable Register
PIO_OER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Enable
0 = No effect.
1 = Enables the output on the I/O line.
359
6289C–ATARM–28-May-09
31.6.5
Name:
PIO Controller Output Disable Register
PIO_ODR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Disable
0 = No effect.
1 = Disables the output on the I/O line.
31.6.6
Name:
PIO Controller Output Status Register
PIO_OSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Status
0 = The I/O line is a pure input.
1 = The I/O line is enabled in output.
360
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.7
Name:
PIO Controller Input Filter Enable Register
PIO_IFER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Filter Enable
0 = No effect.
1 = Enables the input glitch filter on the I/O line.
31.6.8
Name:
PIO Controller Input Filter Disable Register
PIO_IFDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Filter Disable
0 = No effect.
1 = Disables the input glitch filter on the I/O line.
361
6289C–ATARM–28-May-09
31.6.9
Name:
PIO Controller Input Filter Status Register
PIO_IFSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Filer Status
0 = The input glitch filter is disabled on the I/O line.
1 = The input glitch filter is enabled on the I/O line.
31.6.10
Name:
PIO Controller Set Output Data Register
PIO_SODR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Set Output Data
0 = No effect.
1 = Sets the data to be driven on the I/O line.
362
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.11
Name:
PIO Controller Clear Output Data Register
PIO_CODR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Set Output Data
0 = No effect.
1 = Clears the data to be driven on the I/O line.
31.6.12
Name:
PIO Controller Output Data Status Register
PIO_ODSR
Access Type:
Read-only or Read/Write
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Data Status
0 = The data to be driven on the I/O line is 0.
1 = The data to be driven on the I/O line is 1.
363
6289C–ATARM–28-May-09
31.6.13
Name:
PIO Controller Pin Data Status Register
PIO_PDSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Data Status
0 = The I/O line is at level 0.
1 = The I/O line is at level 1.
31.6.14
Name:
PIO Controller Interrupt Enable Register
PIO_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Change Interrupt Enable
0 = No effect.
1 = Enables the Input Change Interrupt on the I/O line.
364
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.15
Name:
PIO Controller Interrupt Disable Register
PIO_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Change Interrupt Disable
0 = No effect.
1 = Disables the Input Change Interrupt on the I/O line.
31.6.16
Name:
PIO Controller Interrupt Mask Register
PIO_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Change Interrupt Mask
0 = Input Change Interrupt is disabled on the I/O line.
1 = Input Change Interrupt is enabled on the I/O line.
365
6289C–ATARM–28-May-09
31.6.17
Name:
PIO Controller Interrupt Status Register
PIO_ISR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Input Change Interrupt Status
0 = No Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.
1 = At least one Input Change has been detected on the I/O line since PIO_ISR was last read or since reset.
31.6.18
Name:
PIO Multi-driver Enable Register
PIO_MDER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Multi Drive Enable.
0 = No effect.
1 = Enables Multi Drive on the I/O line.
366
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.19
Name:
PIO Multi-driver Disable Register
PIO_MDDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Multi Drive Disable.
0 = No effect.
1 = Disables Multi Drive on the I/O line.
31.6.20
Name:
PIO Multi-driver Status Register
PIO_MDSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Multi Drive Status.
0 = The Multi Drive is disabled on the I/O line. The pin is driven at high and low level.
1 = The Multi Drive is enabled on the I/O line. The pin is driven at low level only.
367
6289C–ATARM–28-May-09
31.6.21
Name:
PIO Pull Up Disable Register
PIO_PUDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Pull Up Disable.
0 = No effect.
1 = Disables the pull up resistor on the I/O line.
31.6.22
Name:
PIO Pull Up Enable Register
PIO_PUER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Pull Up Enable.
0 = No effect.
1 = Enables the pull up resistor on the I/O line.
368
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.23
Name:
PIO Pull Up Status Register
PIO_PUSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Pull Up Status.
0 = Pull Up resistor is enabled on the I/O line.
1 = Pull Up resistor is disabled on the I/O line.
31.6.24
Name:
PIO Peripheral A Select Register
PIO_ASR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Peripheral A Select.
0 = No effect.
1 = Assigns the I/O line to the Peripheral A function.
369
6289C–ATARM–28-May-09
31.6.25
Name:
PIO Peripheral B Select Register
PIO_BSR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Peripheral B Select.
0 = No effect.
1 = Assigns the I/O line to the peripheral B function.
31.6.26
Name:
PIO Peripheral A B Status Register
PIO_ABSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Peripheral A B Status.
0 = The I/O line is assigned to the Peripheral A.
1 = The I/O line is assigned to the Peripheral B.
370
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
31.6.27
Name:
PIO Output Write Enable Register
PIO_OWER
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Write Enable.
0 = No effect.
1 = Enables writing PIO_ODSR for the I/O line.
31.6.28
Name:
PIO Output Write Disable Register
PIO_OWDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Write Disable.
0 = No effect.
1 = Disables writing PIO_ODSR for the I/O line.
371
6289C–ATARM–28-May-09
31.6.29
Name:
PIO Output Write Status Register
PIO_OWSR
Access Type:
Read-only
31
30
29
28
27
26
25
24
P31
P30
P29
P28
P27
P26
P25
P24
23
22
21
20
19
18
17
16
P23
P22
P21
P20
P19
P18
P17
P16
15
14
13
12
11
10
9
8
P15
P14
P13
P12
P11
P10
P9
P8
7
6
5
4
3
2
1
0
P7
P6
P5
P4
P3
P2
P1
P0
• P0-P31: Output Write Status.
0 = Writing PIO_ODSR does not affect the I/O line.
1 = Writing PIO_ODSR affects the I/O line.
372
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32. Serial Peripheral Interface (SPI)
32.1
Description
The Serial Peripheral Interface (SPI) circuit is a synchronous serial data link that provides communication with external devices in Master or Slave Mode. It also enables communication
between processors if an external processor is connected to the system.
The Serial Peripheral Interface is essentially a shift register that serially transmits data bits to
other SPIs. During a data transfer, one SPI system acts as the “master”' which controls the data
flow, while the other devices act as “slaves'' which have data shifted into and out by the master.
Different CPUs can take turn being masters (Multiple Master Protocol opposite to Single Master
Protocol where one CPU is always the master while all of the others are always slaves) and one
master may simultaneously shift data into multiple slaves. However, only one slave may drive its
output to write data back to the master at any given time.
A slave device is selected when the master asserts its NSS signal. If multiple slave devices
exist, the master generates a separate slave select signal for each slave (NPCS).
The SPI system consists of two data lines and two control lines:
• Master Out Slave In (MOSI): This data line supplies the output data from the master shifted
into the input(s) of the slave(s).
• Master In Slave Out (MISO): This data line supplies the output data from a slave to the input
of the master. There may be no more than one slave transmitting data during any particular
transfer.
• Serial Clock (SPCK): This control line is driven by the master and regulates the flow of the
data bits. The master may transmit data at a variety of baud rates; the SPCK line cycles once
for each bit that is transmitted.
• Slave Select (NSS): This control line allows slaves to be turned on and off by hardware.
373
6289C–ATARM–28-May-09
32.2
Block Diagram
Figure 32-1. Block Diagram
PDC
APB
SPCK
MISO
PMC
MOSI
MCK
SPI Interface
PIO
NPCS0/NSS
NPCS1
NPCS2
Interrupt Control
NPCS3
SPI Interrupt
32.3
Application Block Diagram
Figure 32-2. Application Block Diagram: Single Master/Multiple Slave Implementation
SPI Master
SPCK
SPCK
MISO
MISO
MOSI
MOSI
NPCS0
NSS
Slave 0
SPCK
NPCS1
NPCS2
NC
NPCS3
MISO
Slave 1
MOSI
NSS
SPCK
MISO
Slave 2
MOSI
NSS
374
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.4
Signal Description
Table 32-1.
Signal Description
Type
Pin Name
Pin Description
Master
Slave
MISO
Master In Slave Out
Input
Output
MOSI
Master Out Slave In
Output
Input
SPCK
Serial Clock
Output
Input
NPCS1-NPCS3
Peripheral Chip Selects
Output
Unused
NPCS0/NSS
Peripheral Chip Select/Slave Select
Output
Input
32.5
32.5.1
Product Dependencies
I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the SPI pins to their peripheral
functions.
32.5.2
Power Management
The SPI may be clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the SPI clock.
32.5.3
Interrupt
The SPI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the SPI interrupt requires programming the AIC before configuring the SPI.
375
6289C–ATARM–28-May-09
32.6
32.6.1
Functional Description
Modes of Operation
The SPI operates in Master Mode or in Slave Mode.
Operation in Master Mode is programmed by writing at 1 the MSTR bit in the Mode Register.
The pins NPCS0 to NPCS3 are all configured as outputs, the SPCK pin is driven, the MISO line
is wired on the receiver input and the MOSI line driven as an output by the transmitter.
If the MSTR bit is written at 0, the SPI operates in Slave Mode. The MISO line is driven by the
transmitter output, the MOSI line is wired on the receiver input, the SPCK pin is driven by the
transmitter to synchronize the receiver. The NPCS0 pin becomes an input, and is used as a
Slave Select signal (NSS). The pins NPCS1 to NPCS3 are not driven and can be used for other
purposes.
The data transfers are identically programmable for both modes of operations. The baud rate
generator is activated only in Master Mode.
32.6.2
Data Transfer
Four combinations of polarity and phase are available for data transfers. The clock polarity is
programmed with the CPOL bit in the Chip Select Register. The clock phase is programmed with
the NCPHA bit. These two parameters determine the edges of the clock signal on which data is
driven and sampled. Each of the two parameters has two possible states, resulting in four possible combinations that are incompatible with one another. Thus, a master/slave pair must use the
same parameter pair values to communicate. If multiple slaves are used and fixed in different
configurations, the master must reconfigure itself each time it needs to communicate with a different slave.
Table 32-2 shows the four modes and corresponding parameter settings.
Table 32-2.
SPI Bus Protocol Mode
SPI Mode
CPOL
NCPHA
0
0
1
1
0
0
2
1
1
3
1
0
Figure 32-3 and Figure 32-4 show examples of data transfers.
376
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 32-3. SPI Transfer Format (NCPHA = 1, 8 bits per transfer)
1
SPCK cycle (for reference)
2
3
4
6
5
7
8
SPCK
(CPOL = 0)
SPCK
(CPOL = 1)
MOSI
(from master)
MSB
MISO
(from slave)
MSB
6
5
4
3
2
1
LSB
6
5
4
3
2
1
LSB
*
NSS
(to slave)
* Not defined, but normally MSB of previous character received.
Figure 32-4. SPI Transfer Format (NCPHA = 0, 8 bits per transfer)
1
SPCK cycle (for reference)
2
3
4
5
7
6
8
SPCK
(CPOL = 0)
SPCK
(CPOL = 1)
MOSI
(from master)
MISO
(from slave)
*
MSB
6
5
4
3
2
1
MSB
6
5
4
3
2
1
LSB
LSB
NSS
(to slave)
* Not defined but normally LSB of previous character transmitted.
377
6289C–ATARM–28-May-09
32.6.3
Master Mode Operations
When configured in Master Mode, the SPI operates on the clock generated by the internal programmable baud rate generator. It fully controls the data transfers to and from the slave(s)
connected to the SPI bus. The SPI drives the chip select line to the slave and the serial clock
signal (SPCK).
The SPI features two holding registers, the Transmit Data Register and the Receive Data Register, and a single Shift Register. The holding registers maintain the data flow at a constant rate.
After enabling the SPI, a data transfer begins when the processor writes to the SPI_TDR (Transmit Data Register). The written data is immediately transferred in the Shift Register and transfer
on the SPI bus starts. While the data in the Shift Register is shifted on the MOSI line, the MISO
line is sampled and shifted in the Shift Register. Transmission cannot occur without reception.
Before writing the TDR, the PCS field must be set in order to select a slave.
If new data is written in SPI_TDR during the transfer, it stays in it until the current transfer is
completed. Then, the received data is transferred from the Shift Register to SPI_RDR, the data
in SPI_TDR is loaded in the Shift Register and a new transfer starts.
The transfer of a data written in SPI_TDR in the Shift Register is indicated by the TDRE bit
(Transmit Data Register Empty) in the Status Register (SPI_SR). When new data is written in
SPI_TDR, this bit is cleared. The TDRE bit is used to trigger the Transmit PDC channel.
The end of transfer is indicated by the TXEMPTY flag in the SPI_SR register. If a transfer delay
(DLYBCT) is greater than 0 for the last transfer, TXEMPTY is set after the completion of said
delay. The master clock (MCK) can be switched off at this time.
The transfer of received data from the Shift Register in SPI_RDR is indicated by the RDRF bit
(Receive Data Register Full) in the Status Register (SPI_SR). When the received data is read,
the RDRF bit is cleared.
If the SPI_RDR (Receive Data Register) has not been read before new data is received, the
Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data is loaded in
SPI_RDR. The user has to read the status register to clear the OVRES bit.
Figure 32-6 on page 380 shows a block diagram of the SPI when operating in Master Mode. Figure 32-6 on page 380 shows a flow chart describing how transfers are handled.
378
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.6.3.1
Master Mode Block Diagram
Figure 32-5. Master Mode Block Diagram
SPI_CSR0..3
SCBR
Baud Rate Generator
MCK
SPCK
SPI
Clock
SPI_CSR0..3
BITS
NCPHA
CPOL
LSB
MISO
SPI_RDR
RDRF
OVRES
RD
MSB
Shift Register
MOSI
SPI_TDR
TD
SPI_CSR0..3
CSAAT
TDRE
SPI_RDR
PCS
PS
NPCS3
PCSDEC
SPI_MR
PCS
0
NPCS2
Current
Peripheral
NPCS1
SPI_TDR
NPCS0
PCS
1
MSTR
MODF
NPCS0
MODFDIS
379
6289C–ATARM–28-May-09
32.6.3.2
Master Mode Flow Diagram
Figure 32-6. Master Mode Flow Diagram S
SPI Enable
- NPCS defines the current Chip Select
- CSAAT, DLYBS, DLYBCT refer to the fields of the
Chip Select Register corresponding to the Current Chip Select
- When NPCS is 0xF, CSAAT is 0.
1
TDRE ?
0
1
CSAAT ?
PS ?
0
1
0
Fixed
peripheral
PS ?
1
Fixed
peripheral
0
Variable
peripheral
Variable
peripheral
SPI_TDR(PCS)
= NPCS ?
no
NPCS = SPI_TDR(PCS)
NPCS = SPI_MR(PCS)
yes
SPI_MR(PCS)
= NPCS ?
no
NPCS = 0xF
NPCS = 0xF
Delay DLYBCS
Delay DLYBCS
NPCS = SPI_TDR(PCS)
NPCS = SPI_MR(PCS),
SPI_TDR(PCS)
Delay DLYBS
Serializer = SPI_TDR(TD)
TDRE = 1
Data Transfer
SPI_RDR(RD) = Serializer
RDRF = 1
Delay DLYBCT
0
TDRE ?
1
1
CSAAT ?
0
NPCS = 0xF
Delay DLYBCS
380
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.6.3.3
Clock Generation
The SPI Baud rate clock is generated by dividing the Master Clock (MCK) by a value between 1
and 255.
This allows a maximum operating baud rate at up to Master Clock and a minimum operating
baud rate of MCK divided by 255.
Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead
to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first
transfer.
The divisor can be defined independently for each chip select, as it has to be programmed in the
SCBR field of the Chip Select Registers. This allows the SPI to automatically adapt the baud
rate for each interfaced peripheral without reprogramming.
32.6.3.4
Transfer Delays
Figure 32-7 shows a chip select transfer change and consecutive transfers on the same chip
select. Three delays can be programmed to modify the transfer waveforms:
• The delay between chip selects, programmable only once for all the chip selects by writing
the DLYBCS field in the Mode Register. Allows insertion of a delay between release of one
chip select and before assertion of a new one.
• The delay before SPCK, independently programmable for each chip select by writing the field
DLYBS. Allows the start of SPCK to be delayed after the chip select has been asserted.
• The delay between consecutive transfers, independently programmable for each chip select
by writing the DLYBCT field. Allows insertion of a delay between two transfers occurring on
the same chip select
These delays allow the SPI to be adapted to the interfaced peripherals and their speed and bus
release time.
Figure 32-7. Programmable Delays
Chip Select 1
Chip Select 2
SPCK
DLYBCS
32.6.3.5
DLYBS
DLYBCT
DLYBCT
Peripheral Selection
The serial peripherals are selected through the assertion of the NPCS0 to NPCS3 signals. By
default, all the NPCS signals are high before and after each transfer.
The peripheral selection can be performed in two different ways:
• Fixed Peripheral Select: SPI exchanges data with only one peripheral
381
6289C–ATARM–28-May-09
• Variable Peripheral Select: Data can be exchanged with more than one peripheral
Fixed Peripheral Select is activated by writing the PS bit to zero in SPI_MR (Mode Register). In
this case, the current peripheral is defined by the PCS field in SPI_MR and the PCS field in the
SPI_TDR has no effect.
Variable Peripheral Select is activated by setting PS bit to one. The PCS field in SPI_TDR is
used to select the current peripheral. This means that the peripheral selection can be defined for
each new data.
The Fixed Peripheral Selection allows buffer transfers with a single peripheral. Using the PDC is
an optimal means, as the size of the data transfer between the memory and the SPI is either 8
bits or 16 bits. However, changing the peripheral selection requires the Mode Register to be
reprogrammed.
The Variable Peripheral Selection allows buffer transfers with multiple peripherals without reprogramming the Mode Register. Data written in SPI_TDR is 32 bits wide and defines the real data
to be transmitted and the peripheral it is destined to. Using the PDC in this mode requires 32-bit
wide buffers, with the data in the LSBs and the PCS and LASTXFER fields in the MSBs, however the SPI still controls the number of bits (8 to16) to be transferred through MISO and MOSI
lines with the chip select configuration registers. This is not the optimal means in term of memory size for the buffers, but it provides a very effective means to exchange data with several
peripherals without any intervention of the processor.
32.6.3.6
Peripheral Chip Select Decoding
The user can program the SPI to operate with up to 15 peripherals by decoding the four Chip
Select lines, NPCS0 to NPCS3 with an external logic. This can be enabled by writing the PCSDEC bit at 1 in the Mode Register (SPI_MR).
When operating without decoding, the SPI makes sure that in any case only one chip select line
is activated, i.e. driven low at a time. If two bits are defined low in a PCS field, only the lowest
numbered chip select is driven low.
When operating with decoding, the SPI directly outputs the value defined by the PCS field of
either the Mode Register or the Transmit Data Register (depending on PS).
As the SPI sets a default value of 0xF on the chip select lines (i.e. all chip select lines at 1) when
not processing any transfer, only 15 peripherals can be decoded.
The SPI has only four Chip Select Registers, not 15. As a result, when decoding is activated,
each chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0
defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the
PCS values 0x0 to 0x3. Thus, the user has to make sure to connect compatible peripherals on
the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14.
32.6.3.7
Peripheral Deselection
When operating normally, as soon as the transfer of the last data written in SPI_TDR is completed, the NPCS lines all rise. This might lead to runtime error if the processor is too long in
responding to an interrupt, and thus might lead to difficulties for interfacing with some serial
peripherals requiring the chip select line to remain active during a full set of transfers.
To facilitate interfacing with such devices, the Chip Select Register can be programmed with the
CSAAT bit (Chip Select Active After Transfer) at 1. This allows the chip select lines to remain in
their current state (low = active) until transfer to another peripheral is required.
382
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 32-8 shows different peripheral deselection cases and the effect of the CSAAT bit.
Figure 32-8. Peripheral Deselection
CSAAT = 0
TDRE
NPCS[0..3]
CSAAT = 1
DLYBCT
DLYBCT
A
A
A
A
DLYBCS
A
DLYBCS
PCS = A
PCS = A
Write SPI_TDR
TDRE
NPCS[0..3]
DLYBCT
DLYBCT
A
A
A
A
DLYBCS
A
DLYBCS
PCS=A
PCS = A
Write SPI_TDR
TDRE
NPCS[0..3]
DLYBCT
DLYBCT
A
B
A
B
DLYBCS
PCS = B
DLYBCS
PCS = B
Write SPI_TDR
32.6.3.8
Mode Fault Detection
A mode fault is detected when the SPI is programmed in Master Mode and a low level is driven
by an external master on the NPCS0/NSS signal. NPCS0, MOSI, MISO and SPCK must be configured in open drain through the PIO controller, so that external pull up resistors are needed to
guarantee high level.
When a mode fault is detected, the MODF bit in the SPI_SR is set until the SPI_SR is read and
the SPI is automatically disabled until re-enabled by writing the SPIEN bit in the SPI_CR (Control Register) at 1.
By default, the Mode Fault detection circuitry is enabled. The user can disable Mode Fault
detection by setting the MODFDIS bit in the SPI Mode Register (SPI_MR).
32.6.4
SPI Slave Mode
When operating in Slave Mode, the SPI processes data bits on the clock provided on the SPI
clock pin (SPCK).
The SPI waits for NSS to go active before receiving the serial clock from an external master.
When NSS falls, the clock is validated on the serializer, which processes the number of bits
383
6289C–ATARM–28-May-09
defined by the BITS field of the Chip Select Register 0 (SPI_CSR0). These bits are processed
following a phase and a polarity defined respectively by the NCPHA and CPOL bits of the
SPI_CSR0. Note that BITS, CPOL and NCPHA of the other Chip Select Registers have no
effect when the SPI is programmed in Slave Mode.
The bits are shifted out on the MISO line and sampled on the MOSI line.
When all the bits are processed, the received data is transferred in the Receive Data Register
and the RDRF bit rises. If the SPI_RDR (Receive Data Register) has not been read before new
data is received, the Overrun Error bit (OVRES) in SPI_SR is set. As long as this flag is set, data
is loaded in SPI_RDR. The user has to read the status register to clear the OVRES bit.
When a transfer starts, the data shifted out is the data present in the Shift Register. If no data
has been written in the Transmit Data Register (SPI_TDR), the last data received is transferred.
If no data has been received since the last reset, all bits are transmitted low, as the Shift Register resets at 0.
When a first data is written in SPI_TDR, it is transferred immediately in the Shift Register and the
TDRE bit rises. If new data is written, it remains in SPI_TDR until a transfer occurs, i.e. NSS falls
and there is a valid clock on the SPCK pin. When the transfer occurs, the last data written in
SPI_TDR is transferred in the Shift Register and the TDRE bit rises. This enables frequent
updates of critical variables with single transfers.
Then, a new data is loaded in the Shift Register from the Transmit Data Register. In case no
character is ready to be transmitted, i.e. no character has been written in SPI_TDR since the last
load from SPI_TDR to the Shift Register, the Shift Register is not modified and the last received
character is retransmitted.
Figure 32-9 shows a block diagram of the SPI when operating in Slave Mode.
Figure 32-9. Slave Mode Functional Block Diagram
SPCK
NSS
SPI
Clock
SPIEN
SPIENS
SPIDIS
SPI_CSR0
BITS
NCPHA
CPOL
MOSI
LSB
SPI_RDR
RDRF
OVRES
RD
MSB
Shift Register
MISO
SPI_TDR
TD
384
TDRE
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7
Serial Peripheral Interface (SPI) User Interface
Table 32-3.
SPI Register Mapping
Offset
Register
Register Name
Access
Reset
0x00
Control Register
SPI_CR
Write-only
---
0x04
Mode Register
SPI_MR
Read/Write
0x0
0x08
Receive Data Register
SPI_RDR
Read-only
0x0
0x0C
Transmit Data Register
SPI_TDR
Write-only
---
0x10
Status Register
SPI_SR
Read-only
0x000000F0
0x14
Interrupt Enable Register
SPI_IER
Write-only
---
0x18
Interrupt Disable Register
SPI_IDR
Write-only
---
0x1C
Interrupt Mask Register
SPI_IMR
Read-only
0x0
0x20 - 0x2C
Reserved
0x30
Chip Select Register 0
SPI_CSR0
Read/Write
0x0
0x34
Chip Select Register 1
SPI_CSR1
Read/Write
0x0
0x38
Chip Select Register 2
SPI_CSR2
Read/Write
0x0
0x3C
Chip Select Register 3
SPI_CSR3
Read/Write
0x0
0x004C - 0x00F8
Reserved
–
–
–
0x004C - 0x00FC
Reserved
–
–
–
0x100 - 0x124
Reserved for the PDC
385
6289C–ATARM–28-May-09
32.7.1
Name:
SPI Control Register
SPI_CR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
LASTXFER
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SWRST
–
–
–
–
–
SPIDIS
SPIEN
• SPIEN: SPI Enable
0 = No effect.
1 = Enables the SPI to transfer and receive data.
• SPIDIS: SPI Disable
0 = No effect.
1 = Disables the SPI.
As soon as SPIDIS is set, SPI finishes its transfer.
All pins are set in input mode and no data is received or transmitted.
If a transfer is in progress, the transfer is finished before the SPI is disabled.
If both SPIEN and SPIDIS are equal to one when the control register is written, the SPI is disabled.
• SWRST: SPI Software Reset
0 = No effect.
1 = Reset the SPI. A software-triggered hardware reset of the SPI interface is performed.
The SPI is in slave mode after software reset.
PDC channels are not affected by software reset.
• LASTXFER: Last Transfer
0 = No effect.
1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
386
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.2
Name:
SPI Mode Register
SPI_MR
Access Type:
31
Read/Write
30
29
28
27
26
19
18
25
24
17
16
DLYBCS
23
22
21
20
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
3
7
6
5
4
LLB
–
–
MODFDIS
PCS
2
1
0
PCSDEC
PS
MSTR
• MSTR: Master/Slave Mode
0 = SPI is in Slave mode.
1 = SPI is in Master mode.
• PS: Peripheral Select
0 = Fixed Peripheral Select.
1 = Variable Peripheral Select.
• PCSDEC: Chip Select Decode
0 = The chip selects are directly connected to a peripheral device.
1 = The four chip select lines are connected to a 4- to 16-bit decoder.
When PCSDEC equals one, up to 15 Chip Select signals can be generated with the four lines using an external 4- to 16-bit
decoder. The Chip Select Registers define the characteristics of the 15 chip selects according to the following rules:
SPI_CSR0 defines peripheral chip select signals 0 to 3.
SPI_CSR1 defines peripheral chip select signals 4 to 7.
SPI_CSR2 defines peripheral chip select signals 8 to 11.
SPI_CSR3 defines peripheral chip select signals 12 to 14.
• MODFDIS: Mode Fault Detection
0 = Mode fault detection is enabled.
1 = Mode fault detection is disabled.
• LLB: Local Loopback Enable
0 = Local loopback path disabled.
1 = Local loopback path enabled.
LLB controls the local loopback on the data serializer for testing in Master Mode only. (MISO is internally connected on
MOSI.)
• PCS: Peripheral Chip Select
This field is only used if Fixed Peripheral Select is active (PS = 0).
387
6289C–ATARM–28-May-09
If PCSDEC = 0:
PCS = xxx0
NPCS[3:0] = 1110
PCS = xx01
NPCS[3:0] = 1101
PCS = x011
NPCS[3:0] = 1011
PCS = 0111
NPCS[3:0] = 0111
PCS = 1111
forbidden (no peripheral is selected)
(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS.
• DLYBCS: Delay Between Chip Selects
This field defines the delay from NPCS inactive to the activation of another NPCS. The DLYBCS time guarantees non-overlapping chip selects and solves bus contentions in case of peripherals having long data float times.
If DLYBCS is less than or equal to six, six MCK periods will be inserted by default.
Otherwise, the following equation determines the delay:
DLYBCS
Delay Between Chip Selects = ----------------------MCK
388
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.3
Name:
SPI Receive Data Register
SPI_RDR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
15
14
13
12
PCS
11
10
9
8
3
2
1
0
RD
7
6
5
4
RD
• RD: Receive Data
Data received by the SPI Interface is stored in this register right-justified. Unused bits read zero.
• PCS: Peripheral Chip Select
In Master Mode only, these bits indicate the value on the NPCS pins at the end of a transfer. Otherwise, these bits read
zero.
389
6289C–ATARM–28-May-09
32.7.4
Name:
SPI Transmit Data Register
SPI_TDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
LASTXFER
23
22
21
20
19
18
17
16
–
–
–
–
15
14
13
12
PCS
11
10
9
8
3
2
1
0
TD
7
6
5
4
TD
• TD: Transmit Data
Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the
transmit data register in a right-justified format.
PCS: Peripheral Chip Select
This field is only used if Variable Peripheral Select is active (PS = 1).
If PCSDEC = 0:
PCS = xxx0
NPCS[3:0] = 1110
PCS = xx01
NPCS[3:0] = 1101
PCS = x011
NPCS[3:0] = 1011
PCS = 0111
NPCS[3:0] = 0111
PCS = 1111
forbidden (no peripheral is selected)
(x = don’t care)
If PCSDEC = 1:
NPCS[3:0] output signals = PCS
• LASTXFER: Last Transfer
0 = No effect.
1 = The current NPCS will be deasserted after the character written in TD has been transferred. When CSAAT is set, this
allows to close the communication with the current serial peripheral by raising the corresponding NPCS line as soon as TD
transfer has completed.
This field is only used if Variable Peripheral Select is active (PS = 1).
390
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.5
Name:
SPI Status Register
SPI_SR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
SPIENS
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
• RDRF: Receive Data Register Full
0 = No data has been received since the last read of SPI_RDR
1 = Data has been received and the received data has been transferred from the serializer to SPI_RDR since the last read
of SPI_RDR.
• TDRE: Transmit Data Register Empty
0 = Data has been written to SPI_TDR and not yet transferred to the serializer.
1 = The last data written in the Transmit Data Register has been transferred to the serializer.
TDRE equals zero when the SPI is disabled or at reset. The SPI enable command sets this bit to one.
• MODF: Mode Fault Error
0 = No Mode Fault has been detected since the last read of SPI_SR.
1 = A Mode Fault occurred since the last read of the SPI_SR.
• OVRES: Overrun Error Status
0 = No overrun has been detected since the last read of SPI_SR.
1 = An overrun has occurred since the last read of SPI_SR.
An overrun occurs when SPI_RDR is loaded at least twice from the serializer since the last read of the SPI_RDR.
• ENDRX: End of RX buffer
0 = The Receive Counter Register has not reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).
1 = The Receive Counter Register has reached 0 since the last write in SPI_RCR(1) or SPI_RNCR(1).
• ENDTX: End of TX buffer
0 = The Transmit Counter Register has not reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).
1 = The Transmit Counter Register has reached 0 since the last write in SPI_TCR(1) or SPI_TNCR(1).
• RXBUFF: RX Buffer Full
0 = SPI_RCR(1) or SPI_RNCR(1) has a value other than 0.
1 = Both SPI_RCR(1) and SPI_RNCR(1) have a value of 0.
391
6289C–ATARM–28-May-09
• TXBUFE: TX Buffer Empty
0 = SPI_TCR(1) or SPI_TNCR(1) has a value other than 0.
1 = Both SPI_TCR(1) and SPI_TNCR(1) have a value of 0.
• NSSR: NSS Rising
0 = No rising edge detected on NSS pin since last read.
1 = A rising edge occurred on NSS pin since last read.
• TXEMPTY: Transmission Registers Empty
0 = As soon as data is written in SPI_TDR.
1 = SPI_TDR and internal shifter are empty. If a transfer delay has been defined, TXEMPTY is set after the completion of
such delay.
• SPIENS: SPI Enable Status
0 = SPI is disabled.
1 = SPI is enabled.
Note:
392
1. SPI_RCR, SPI_RNCR, SPI_TCR, SPI_TNCR are physically located in the PDC.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.6
Name:
SPI Interrupt Enable Register
SPI_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
• RDRF: Receive Data Register Full Interrupt Enable
• TDRE: SPI Transmit Data Register Empty Interrupt Enable
• MODF: Mode Fault Error Interrupt Enable
• OVRES: Overrun Error Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
• TXEMPTY: Transmission Registers Empty Enable
• NSSR: NSS Rising Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
393
6289C–ATARM–28-May-09
32.7.7
Name:
SPI Interrupt Disable Register
SPI_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
• RDRF: Receive Data Register Full Interrupt Disable
• TDRE: SPI Transmit Data Register Empty Interrupt Disable
• MODF: Mode Fault Error Interrupt Disable
• OVRES: Overrun Error Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
• TXEMPTY: Transmission Registers Empty Disable
• NSSR: NSS Rising Interrupt Disable
0 = No effect.
1 = Disables the corresponding interrupt.
394
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.8
Name:
SPI Interrupt Mask Register
SPI_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
TXEMPTY
NSSR
7
6
5
4
3
2
1
0
TXBUFE
RXBUFF
ENDTX
ENDRX
OVRES
MODF
TDRE
RDRF
• RDRF: Receive Data Register Full Interrupt Mask
• TDRE: SPI Transmit Data Register Empty Interrupt Mask
• MODF: Mode Fault Error Interrupt Mask
• OVRES: Overrun Error Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
• TXEMPTY: Transmission Registers Empty Mask
• NSSR: NSS Rising Interrupt Mask
0 = The corresponding interrupt is not enabled.
1 = The corresponding interrupt is enabled.
395
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
32.7.9
Name:
SPI Chip Select Register
SPI_CSR0... SPI_CSR3
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
DLYBCT
23
22
21
20
DLYBS
15
14
13
12
SCBR
7
6
5
4
BITS
3
2
1
0
CSAAT
–
NCPHA
CPOL
• CPOL: Clock Polarity
0 = The inactive state value of SPCK is logic level zero.
1 = The inactive state value of SPCK is logic level one.
CPOL is used to determine the inactive state value of the serial clock (SPCK). It is used with NCPHA to produce the
required clock/data relationship between master and slave devices.
• NCPHA: Clock Phase
0 = Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.
1 = Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.
NCPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. NCPHA is
used with CPOL to produce the required clock/data relationship between master and slave devices.
• CSAAT: Chip Select Active After Transfer
0 = The Peripheral Chip Select Line rises as soon as the last transfer is achieved.
1 = The Peripheral Chip Select does not rise after the last transfer is achieved. It remains active until a new transfer is
requested on a different chip select.
• BITS: Bits Per Transfer
The BITS field determines the number of data bits transferred. Reserved values should not be used.
BITS
Bits Per Transfer
0000
8
0001
9
0010
10
0011
11
0100
12
0101
13
0110
14
0111
15
1000
16
396
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
BITS
Bits Per Transfer
1001
Reserved
1010
Reserved
1011
Reserved
1100
Reserved
1101
Reserved
1110
Reserved
1111
Reserved
• SCBR: Serial Clock Baud Rate
In Master Mode, the SPI Interface uses a modulus counter to derive the SPCK baud rate from the Master Clock MCK. The
Baud rate is selected by writing a value from 1 to 255 in the SCBR field. The following equations determine the SPCK baud
rate:
MCK
SPCK Baudrate = --------------SCBR
Programming the SCBR field at 0 is forbidden. Triggering a transfer while SCBR is at 0 can lead to unpredictable results.
At reset, SCBR is 0 and the user has to program it at a valid value before performing the first transfer.
• DLYBS: Delay Before SPCK
This field defines the delay from NPCS valid to the first valid SPCK transition.
When DLYBS equals zero, the NPCS valid to SPCK transition is 1/2 the SPCK clock period.
Otherwise, the following equations determine the delay:
DLYBS
Delay Before SPCK = ------------------MCK
• DLYBCT: Delay Between Consecutive Transfers
This field defines the delay between two consecutive transfers with the same peripheral without removing the chip select.
The delay is always inserted after each transfer and before removing the chip select if needed.
When DLYBCT equals zero, no delay between consecutive transfers is inserted and the clock keeps its duty cycle over the
character transfers.
Otherwise, the following equation determines the delay:
× DLYBCTDelay Between Consecutive Transfers = 32
-----------------------------------MCK
397
6289C–ATARM–28-May-09
398
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
33. Two-wire Interface (TWI)
33.1
Description
The Atmel Two-wire Interface (TWI) interconnects components on a unique two-wire bus, made
up of one clock line and one data line with speeds of up to 400 Kbits per second, based on a
byte-oriented transfer format. It can be used with any Atmel Two-wire Interface bus Serial
EEPROM and I²C compatible device such as Real Time Clock (RTC), Dot Matrix/Graphic LCD
Controllers and Temperature Sensor, to name but a few. The TWI is programmable as a master
or a slave with sequential or single-byte access. Multiple master capability is supported. Arbitration of the bus is performed internally and puts the TWI in slave mode automatically if the bus
arbitration is lost.
A configurable baud rate generator permits the output data rate to be adapted to a wide range of
core clock frequencies.
Below, Table 33-1 lists the compatibility level of the Atmel Two-wire Interface in Master Mode
and a full I2C compatible device.
Table 33-1.
Atmel TWI Compatibility with i2C Standard
I2C Standard
Atmel TWI
Standard Mode Speed (100 KHz)
Supported
Fast Mode Speed (400 KHz)
Supported
7 or 10 bits Slave Addressing
Supported
START BYTE(1)
Not Supported
Repeated Start (Sr) Condition
Supported
ACK and NACK Management
Supported
Slope control and input filtering (Fast mode)
Not Supported
Clock stretching
Supported
Note:
1. START + b000000001 + Ack + Sr
399
6289C–ATARM–28-May-09
33.2
List of Abbreviations
Table 33-2.
33.3
Abbreviations
Abbreviation
Description
TWI
Two-wire Interface
A
Acknowledge
NA
Non Acknowledge
P
Stop
S
Start
RS
Repeated Start
SADR
Slave Address
ADR
Any address except SADR
R
Read
W
Write
Block Diagram
Figure 33-1. Block Diagram
APB Bridge
TWCK
PIO
PMC
MCK
TWD
Two-wire
Interface
TWI
Interrupt
400
AIC
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.4
Application Block Diagram
Figure 33-2. Application Block Diagram
VDD
Rp
Host with
TWI
Interface
Rp
TWD
TWCK
Atmel TWI
Serial EEPROM
I2C RTC
I2C LCD
Controller
I2C Temp.
Sensor
Slave 1
Slave 2
Slave 3
Slave 4
Rp: Pull up value as given by the I2C Standard
33.4.1
I/O Lines Description
Table 33-3.
I/O Lines Description
Pin Name
Pin Description
TWD
Two-wire Serial Data
Input/Output
TWCK
Two-wire Serial Clock
Input/Output
33.5
33.5.1
Type
Product Dependencies
I/O Lines
Both TWD and TWCK are bidirectional lines, connected to a positive supply voltage via a current
source or pull-up resistor (see Figure 33-2 on page 401). When the bus is free, both lines are
high. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function.
TWD and TWCK pins may be multiplexed with PIO lines. To enable the TWI, the programmer
must perform the following steps:
• Program the PIO controller to:
– Dedicate TWD and TWCK as peripheral lines.
– Define TWD and TWCK as open-drain.
33.5.2
Power Management
• Enable the peripheral clock.
The TWI interface may be clocked through the Power Management Controller (PMC), thus the
programmer must first configure the PMC to enable the TWI clock.
33.5.3
Interrupt
The TWI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). In
order to handle interrupts, the AIC must be programmed before configuring the TWI.
401
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.6
33.6.1
Functional Description
Transfer Format
The data put on the TWD line must be 8 bits long. Data is transferred MSB first; each byte must
be followed by an acknowledgement. The number of bytes per transfer is unlimited (see Figure
33-4).
Each transfer begins with a START condition and terminates with a STOP condition (see Figure
33-3).
• A high-to-low transition on the TWD line while TWCK is high defines the START condition.
• A low-to-high transition on the TWD line while TWCK is high defines a STOP condition.
Figure 33-3.
START and STOP Conditions
TWD
TWCK
Start
Stop
Figure 33-4. Transfer Format
TWD
TWCK
Start
33.6.2
Address
R/W
Ack
Data
Ack
Data
Ack
Stop
Modes of Operation
The TWI has six modes of operations:
• Master transmitter mode
• Master receiver mode
• Multi-master transmitter mode
• Multi-master receiver mode
• Slave transmitter mode
• Slave receiver mode
These modes are described in the following chapters.
402
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.7
Master Mode
33.7.1
Definition
The Master is the device which starts a transfer, generates a clock and stops it.
33.7.2
Application Block Diagram
Figure 33-5. Master Mode Typical Application Block Diagram
VDD
Rp
Host with
TWI
Interface
Rp
TWD
TWCK
Atmel TWI
Serial EEPROM
Slave 1
I²C RTC
I²C LCD
Controller
I²C Temp.
Sensor
Slave 2
Slave 3
Slave 4
Rp: Pull up value as given by the I²C Standard
33.7.3
Programming Master Mode
The following registers have to be programmed before entering Master mode:
1. DADR (+ IADRSZ + IADR if a 10 bit device is addressed): The device address is used
to access slave devices in read or write mode.
2. CKDIV + CHDIV + CLDIV: Clock Waveform.
3. SVDIS: Disable the slave mode.
4. MSEN: Enable the master mode.
33.7.4
Master Transmitter Mode
After the master initiates a Start condition when writing into the Transmit Holding Register,
TWI_THR, it sends a 7-bit slave address, configured in the Master Mode register (DADR in
TWI_MMR), to notify the slave device. The bit following the slave address indicates the transfer
direction, 0 in this case (MREAD = 0 in TWI_MMR).
The TWI transfers require the slave to acknowledge each received byte. During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the Not Acknowledge bit (NACK) in the status register if the slave does not
acknowledge the byte. As with the other status bits, an interrupt can be generated if enabled in
the interrupt enable register (TWI_IER). If the slave acknowledges the byte, the data written in
the TWI_THR, is then shifted in the internal shifter and transferred. When an acknowledge is
detected, the TXRDY bit is set until a new write in the TWI_THR. When no more data is written
into the TWI_THR, the master generates a stop condition to end the transfer. The end of the
complete transfer is marked by the TWI_TXCOMP bit set to one. See Figure 33-6, Figure 33-7,
and Figure 33-8.
403
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
TXRDY is used as Transmit Ready for the PDC transmit channel.
Figure 33-6. Master Write with One Data Byte
S
TWD
DADR
W
A
DATA
A
P
TXCOMP
TXRDY
STOP sent automaticaly
(ACK received and TXRDY = 1)
Write THR (DATA)
Figure 33-7. Master Write with Multiple Data Byte
TWD
S
DADR
W
A
DATA n
A
DATA n+5
A
DATA n+x
A
P
TXCOMP
TXRDY
Write THR (Data n)
Write THR (Data n+1)
Write THR (Data n+x)
Last data sent
STOP sent automaticaly
(ACK received and TXRDY = 1)
Figure 33-8. Master Write with One Byte Internal Address and Multiple Data Bytes
TWD S
DADR
W
A
IADR(7:0)
A
DATA n
A
DATA n+5
A
DATA n+x
A
P
TXCOMP
TXRDY
Write THR (Data n)
33.7.5
Write THR (Data n+1)
Write THR (Data n+x) STOP sent automaticaly
Last data sent (ACK received and TXRDY = 1)
Master Receiver Mode
The read sequence begins by setting the START bit. After the start condition has been sent, the
master sends a 7-bit slave address to notify the slave device. The bit following the slave address
indicates the transfer direction, 1 in this case (MREAD = 1 in TWI_MMR). During the acknowledge clock pulse (9th pulse), the master releases the data line (HIGH), enabling the slave to pull
it down in order to generate the acknowledge. The master polls the data line during this clock
pulse and sets the NACK bit in the status register if the slave does not acknowledge the byte.
If an acknowledge is received, the master is then ready to receive data from the slave. After data
has been received, the master sends an acknowledge condition to notify the slave that the data
has been received except for the last data, after the stop condition. See Figure 33-9. When the
404
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
RXRDY bit is set in the status register, a character has been received in the receive-holding register (TWI_RHR). The RXRDY bit is reset when reading the TWI_RHR.
When a single data byte read is performed, with or without internal address (IADR), the START
and STOP bits must be set at the same time. See Figure 33-9. When a multiple data byte read is
performed, with or without internal address (IADR), the STOP bit must be set after the next-tolast data received. See Figure 33-10. For Internal Address usage see Section 33.7.6.
Figure 33-9. Master Read with One Data Byte
S
TWD
DADR
R
A
DATA
N
P
TXCOMP
Write START &
STOP Bit
RXRDY
Read RHR
Figure 33-10. Master Read with Multiple Data Bytes
TWD
S
DADR
R
A
DATA n
A
DATA (n+1)
A
DATA (n+m)-1
A
DATA (n+m)
N
P
TXCOMP
Write START Bit
RXRDY
Read RHR
DATA n
Read RHR
DATA (n+1)
Read RHR
DATA (n+m)-1
Read RHR
DATA (n+m)
Write STOP Bit
after next-to-last data read
RXRDY is used as Receive Ready for the PDC receive channel.
33.7.6
33.7.6.1
405
Internal Address
The TWI interface can perform various transfer formats: Transfers with 7-bit slave address
devices and 10-bit slave address devices.
7-bit Slave Addressing
When Addressing 7-bit slave devices, the internal address bytes are used to perform random
address (read or write) accesses to reach one or more data bytes, within a memory page location in a serial memory, for example. When performing read operations with an internal address,
the TWI performs a write operation to set the internal address into the slave device, and then
switch to Master Receiver mode. Note that the second start condition (after sending the IADR) is
sometimes called “repeated start” (Sr) in I2C fully-compatible devices. See Figure 33-12. See
Figure 33-11 and Figure 33-13 for Master Write operation with internal address.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
The three internal address bytes are configurable through the Master Mode register
(TWI_MMR).
If the slave device supports only a 7-bit address, i.e. no internal address, IADRSZ must be set to
0.
In the figures below the following abbreviations are used:
Table 33-4.
•S
Start
•P
Stop
•W
Write
•R
Read
•A
Acknowledge
•N
Not Acknowledge
• DADR
Device Address
• IADR
Internal Address
Figure 33-11. Master Write with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address
S
TWD
DADR
W
A
IADR(23:16)
A
IADR(15:8)
A
IADR(7:0)
A
W
A
IADR(15:8)
A
IADR(7:0)
A
DATA
A
W
A
IADR(7:0)
A
DATA
A
DATA
A
P
Two bytes internal address
S
TWD
DADR
P
One byte internal address
S
TWD
DADR
P
Figure 33-12. Master Read with One, Two or Three Bytes Internal Address and One Data Byte
Three bytes internal address
S
TWD
DADR
W
A
IADR(23:16)
A
IADR(15:8)
A
IADR(7:0)
A
S
DADR
R
A
DATA
N
P
Two bytes internal address
S
TWD
DADR
W
A
IADR(15:8)
A
IADR(7:0)
A
S
W
A
IADR(7:0)
A
S
R
A
DADR
R
A
DATA
N
P
One byte internal address
TWD
33.7.6.2
406
S
DADR
DADR
DATA
N
P
10-bit Slave Addressing
For a slave address higher than 7 bits, the user must configure the address size (IADRSZ) and
set the other slave address bits in the internal address register (TWI_IADR). The two remaining
Internal address bytes, IADR[15:8] and IADR[23:16] can be used the same as in 7-bit Slave
Addressing.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)
1. Program IADRSZ = 1,
2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)
3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit
address)
Figure 33-13 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates
the use of internal addresses to access the device.
Figure 33-13. Internal Address Usage
S
T
A
R
T
Device
Address
W
R
I
T
E
FIRST
WORD ADDRESS
SECOND
WORD ADDRESS
S
T
O
P
DATA
0
M
S
B
407
LR A
S / C
BW K
M
S
B
A
C
K
LA
SC
BK
A
C
K
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.7.7
Using the Peripheral DMA Controller (PDC)
The use of the PDC significantly reduces the CPU load.
To assure correct implementation, respect the following programming sequences:
33.7.7.1
Data Transmit with the PDC
1. Initialize the transmit PDC (memory pointers, size, etc.).
2. Configure the master mode (DADR, CKDIV, etc.).
3. Start the transfer by setting the PDC TXTEN bit.
4. Wait for the PDC end TX flag.
5. Disable the PDC by setting the PDC TXDIS bit.
33.7.7.2
Data Receive with the PDC
1. Initialize the receive PDC (memory pointers, size - 1, etc.).
2. Configure the master mode (DADR, CKDIV, etc.).
3. Start the transfer by setting the PDC RXTEN bit.
4. Wait for the PDC end RX flag.
5. Disable the PDC by setting the PDC RXDIS bit.
408
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.7.8
Read/Write Flowcharts
The following flowcharts shown in Figure 33-14, Figure 33-15 on page 410, Figure 33-16 on
page 411, Figure 33-17 on page 412, Figure 33-18 on page 413 and Figure on page 413 give
examples for read and write operations. A polling or interrupt method can be used to check the
status bits. The interrupt method requires that the interrupt enable register (TWI_IER) be configured first.
Figure 33-14. TWI Write Operation with Single Data Byte without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address (DADR)
- Transfer direction bit
Write ==> bit MREAD = 0
Load Transmit register
TWI_THR = Data to send
Read Status register
No
TXRDY = 1?
Yes
Read Status register
No
TXCOMP = 1?
Yes
Transfer finished
409
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-15. TWI Write Operation with Single Data Byte and Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address (DADR)
- Internal address size (IADRSZ)
- Transfer direction bit
Write ==> bit MREAD = 0
Set the internal address
TWI_IADR = address
Load transmit register
TWI_THR = Data to send
Read Status register
No
TXRDY = 1?
Yes
Read Status register
TXCOMP = 1?
No
Yes
Transfer finished
410
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-16. TWI Write Operation with Multiple Data Bytes with or without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Write ==> bit MREAD = 0
No
Internal address size = 0?
Set the internal address
TWI_IADR = address
Yes
Load Transmit register
TWI_THR = Data to send
Read Status register
TWI_THR = data to send
No
TXRDY = 1?
Yes
Data to send?
Yes
Read Status register
Yes
No
TXCOMP = 1?
END
411
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-17. TWI Read Operation with Single Data Byte without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address
- Transfer direction bit
Read ==> bit MREAD = 1
Start the transfer
TWI_CR = START | STOP
Read status register
RXRDY = 1?
No
Yes
Read Receive Holding Register
Read Status register
No
TXCOMP = 1?
Yes
END
412
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-18. TWI Read Operation with Single Data Byte and Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address
- Internal address size (IADRSZ)
- Transfer direction bit
Read ==> bit MREAD = 1
Set the internal address
TWI_IADR = address
Start the transfer
TWI_CR = START | STOP
Read Status register
No
RXRDY = 1?
Yes
Read Receive Holding register
Read Status register
No
TXCOMP = 1?
Yes
END
413
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-19. TWI Read Operation with Multiple Data Bytes with or without Internal Address
BEGIN
Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR
(Needed only once)
Set the Control register:
- Master enable
TWI_CR = MSEN + SVDIS
Set the Master Mode register:
- Device slave address
- Internal address size (if IADR used)
- Transfer direction bit
Read ==> bit MREAD = 1
Internal address size = 0?
Set the internal address
TWI_IADR = address
Yes
Start the transfer
TWI_CR = START
Read Status register
No
RXRDY = 1?
Yes
Read Receive Holding register (TWI_RHR)
No
Last data to read
but one?
Yes
Stop the transfer
TWI_CR = STOP
Read Status register
No
RXRDY = 1?
Yes
Read Receive Holding register (TWI_RHR)
Read status register
TXCOMP = 1?
No
Yes
END
414
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.8
Multi-master Mode
33.8.1
Definition
More than one master may handle the bus at the same time without data corruption by using
arbitration.
Arbitration starts as soon as two or more masters place information on the bus at the same time,
and stops (arbitration is lost) for the master that intends to send a logical one while the other
master sends a logical zero.
As soon as arbitration is lost by a master, it stops sending data and listens to the bus in order to
detect a stop. When the stop is detected, the master who has lost arbitration may put its data on
the bus by respecting arbitration.
Arbitration is illustrated in Figure 33-21 on page 416.
33.8.2
Different Multi-master Modes
Two multi-master modes may be distinguished:
1. TWI is considered as a Master only and will never be addressed.
2. TWI may be either a Master or a Slave and may be addressed.
Note:
33.8.2.1
In both Multi-master modes arbitration is supported.
TWI as Master Only
In this mode, TWI is considered as a Master only (MSEN is always at one) and must be driven
like a Master with the ARBLST (ARBitration Lost) flag in addition.
If arbitration is lost (ARBLST = 1), the programmer must reinitiate the data transfer.
If the user starts a transfer (ex.: DADR + START + W + Write in THR) and if the bus is busy, the
TWI automatically waits for a STOP condition on the bus to initiate the transfer (see Figure 3320 on page 416).
Note:
33.8.2.2
The state of the bus (busy or free) is not indicated in the user interface.
TWI as Master or Slave
The automatic reversal from Master to Slave is not supported in case of a lost arbitration.
Then, in the case where TWI may be either a Master or a Slave, the programmer must manage
the pseudo Multi-master mode described in the steps below.
1. Program TWI in Slave mode (SADR + MSDIS + SVEN) and perform Slave Access (if
TWI is addressed).
2. If TWI has to be set in Master mode, wait until TXCOMP flag is at 1.
3. Program Master mode (DADR + SVDIS + MSEN) and start the transfer (ex: START +
Write in THR).
4. As soon as the Master mode is enabled, TWI scans the bus in order to detect if it is
busy or free. When the bus is considered as free, TWI initiates the transfer.
5. As soon as the transfer is initiated and until a STOP condition is sent, the arbitration
becomes relevant and the user must monitor the ARBLST flag.
6. If the arbitration is lost (ARBLST is set to 1), the user must program the TWI in Slave
mode in the case where the Master that won the arbitration wanted to access the TWI.
415
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
7. If TWI has to be set in Slave mode, wait until TXCOMP flag is at 1 and then program the
Slave mode.
Note:
In the case where the arbitration is lost and TWI is addressed, TWI will not acknowledge even if it
is programmed in Slave mode as soon as ARBLST is set to 1. Then, the Master must repeat
SADR.
Figure 33-20. Programmer Sends Data While the Bus is Busy
TWCK
START sent by the TWI
STOP sent by the master
DATA sent by a master
TWD
DATA sent by the TWI
Bus is busy
Bus is free
Transfer is kept
TWI DATA transfer
A transfer is programmed
(DADR + W + START + Write THR)
Bus is considered as free
Transfer is initiated
Figure 33-21. Arbitration Cases
TWCK
TWD
TWCK
Data from a Master
S
1
0 0 1 1
Data from TWI
S
1
0
TWD
S
1
0 0
1
P
Arbitration is lost
TWI stops sending data
1 1
Data from the master
P
Arbitration is lost
S
1
0
S
1
0 0 1
1
S
1
0
1
1
The master stops sending data
0 1
Data from the TWI
ARBLST
Bus is busy
Bus is free
Transfer is kept
TWI DATA transfer
A transfer is programmed
(DADR + W + START + Write THR)
Transfer is stopped
Transfer is programmed again
(DADR + W + START + Write THR)
Bus is considered as free
Transfer is initiated
The flowchart shown in Figure 33-22 on page 417 gives an example of read and write operations
in Multi-master mode.
416
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-22. Multi-master Flowchart
START
Programm the SLAVE mode:
SADR + MSDIS + SVEN
Read Status Register
SVACC = 1 ?
Yes
GACC = 1 ?
SVREAD = 0 ?
EOSACC = 1 ?
TXRDY= 1 ?
Yes
Yes
Yes
Write in TWI_THR
TXCOMP = 1 ?
RXRDY= 0 ?
Yes
Yes
Read TWI_RHR
Need to perform
a master access ?
GENERAL CALL TREATMENT
Yes
Decoding of the
programming sequence
Prog seq
OK ?
Change SADR
Program the Master mode
DADR + SVDIS + MSEN + CLK + R / W
Read Status Register
Yes
ARBLST = 1 ?
Yes
Yes
Read TWI_RHR
Yes
MREAD = 1 ?
RXRDY= 0 ?
TXRDY= 0 ?
Data to read?
Data to send ?
Yes
Yes
Write in TWI_THR
Stop transfer
Read Status Register
Yes
417
TXCOMP = 0 ?
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9
Slave Mode
33.9.1
Definition
The Slave Mode is defined as a mode where the device receives the clock and the address from
another device called the master.
In this mode, the device never initiates and never completes the transmission (START,
REPEATED_START and STOP conditions are always provided by the master).
33.9.2
Application Block Diagram
Figure 33-23. Slave Mode Typical Application Block Diagram
VDD
R
Master
Host with
TWI
Interface
33.9.3
R
TWD
TWCK
Host with TWI
Interface
Host with TWI
Interface
LCD Controller
Slave 1
Slave 2
Slave 3
Programming Slave Mode
The following fields must be programmed before entering Slave mode:
1. SADR (TWI_SMR): The slave device address is used in order to be accessed by master devices in read or write mode.
2. MSDIS (TWI_CR): Disable the master mode.
3. SVEN (TWI_CR): Enable the slave mode.
As the device receives the clock, values written in TWI_CWGR are not taken into account.
33.9.4
Receiving Data
After a Start or Repeated Start condition is detected and if the address sent by the Master
matches with the Slave address programmed in the SADR (Slave ADdress) field, SVACC (Slave
ACCess) flag is set and SVREAD (Slave READ) indicates the direction of the transfer.
SVACC remains high until a STOP condition or a repeated START is detected. When such a
condition is detected, EOSACC (End Of Slave ACCess) flag is set.
33.9.4.1
Read Sequence
In the case of a Read sequence (SVREAD is high), TWI transfers data written in the TWI_THR
(TWI Transmit Holding Register) until a STOP condition or a REPEATED_START + an address
different from SADR is detected. Note that at the end of the read sequence TXCOMP (Transmission Complete) flag is set and SVACC reset.
As soon as data is written in the TWI_THR, TXRDY (Transmit Holding Register Ready) flag is
reset, and it is set when the shift register is empty and the sent data acknowledged or not. If the
data is not acknowledged, the NACK flag is set.
418
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Note that a STOP or a repeated START always follows a NACK.
See Figure 33-24 on page 420.
33.9.4.2
Write Sequence
In the case of a Write sequence (SVREAD is low), the RXRDY (Receive Holding Register
Ready) flag is set as soon as a character has been received in the TWI_RHR (TWI Receive
Holding Register). RXRDY is reset when reading the TWI_RHR.
TWI continues receiving data until a STOP condition or a REPEATED_START + an address different from SADR is detected. Note that at the end of the write sequence TXCOMP flag is set
and SVACC reset.
See Figure 33-25 on page 420.
33.9.4.3
Clock Synchronization Sequence
In the case where TWI_THR or TWI_RHR is not written/read in time, TWI performs a clock
synchronization.
Clock stretching information is given by the SCLWS (Clock Wait state) bit.
See Figure 33-27 on page 422 and Figure 33-28 on page 423.
33.9.4.4
General Call
In the case where a GENERAL CALL is performed, GACC (General Call ACCess) flag is set.
After GACC is set, it is up to the programmer to interpret the meaning of the GENERAL CALL
and to decode the new address programming sequence.
See Figure 33-26 on page 421.
33.9.4.5
PDC
As it is impossible to know the exact number of data to receive/send, the use of PDC is NOT recommended in SLAVE mode.
33.9.5
33.9.5.1
Data Transfer
Read Operation
The read mode is defined as a data requirement from the master.
After a START or a REPEATED START condition is detected, the decoding of the address
starts. If the slave address (SADR) is decoded, SVACC is set and SVREAD indicates the direction of the transfer.
Until a STOP or REPEATED START condition is detected, TWI continues sending data loaded
in the TWI_THR register.
If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.
Figure 33-24 on page 420 describes the write operation.
419
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
Figure 33-24. Read Access Ordered by a MASTER
SADR matches,
TWI answers with an ACK
SADR does not match,
TWI answers with a NACK
TWD
S
ADR
R
NA
DATA
NA
P/S/RS
SADR R
A
DATA
A
ACK/NACK from the Master
A
DATA
NA
S/RS
TXRDY
Read RHR
Write THR
NACK
SVACC
SVREAD
SVREAD has to be taken into account only while SVACC is active
EOSVACC
Notes:
1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. TXRDY is reset when data has been transmitted from TWI_THR to the shift register and set when this data has been
acknowledged or non acknowledged.
33.9.5.2
Write Operation
The write mode is defined as a data transmission from the master.
After a START or a REPEATED START, the decoding of the address starts. If the slave address
is decoded, SVACC is set and SVREAD indicates the direction of the transfer (SVREAD is low in
this case).
Until a STOP or REPEATED START condition is detected, TWI stores the received data in the
TWI_RHR register.
If a STOP condition or a REPEATED START + an address different from SADR is detected,
SVACC is reset.
Figure 33-25 on page 420 describes the Write operation.
Figure 33-25. Write Access Ordered by a Master
SADR does not match,
TWI answers with a NACK
TWD
S
ADR
W
NA
DATA
NA
SADR matches,
TWI answers with an ACK
P/S/RS
SADR W
A
DATA
A
Read RHR
A
DATA
NA S/RS
RXRDY
SVACC
SVREAD
SVREAD has to be taken into account only while SVACC is active
EOSVACC
Notes:
1. When SVACC is low, the state of SVREAD becomes irrelevant.
2. RXRDY is set when data has been transmitted from the shift register to the TWI_RHR and reset when this data is read.
420
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9.5.3
General Call
The general call is performed in order to change the address of the slave.
If a GENERAL CALL is detected, GACC is set.
After the detection of General Call, it is up to the programmer to decode the commands which
come afterwards.
In case of a WRITE command, the programmer has to decode the programming sequence and
program a new SADR if the programming sequence matches.
Figure 33-26 on page 421 describes the General Call access.
Figure 33-26. Master Performs a General Call
0000000 + W
TXD
S
GENERAL CALL
RESET command = 00000110X
WRITE command = 00000100X
A
Reset or write DADD
A
DATA1
A
DATA2
A
New SADR
A
P
New SADR
Programming sequence
GCACC
Reset after read
SVACC
Note:
421
This method allows the user to create an own programming sequence by choosing the programming bytes and the number of them. The programming sequence has to be provided to the
master.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9.5.4
Clock Synchronization
In both read and write modes, it may happen that TWI_THR/TWI_RHR buffer is not filled /emptied before the emission/reception of a new character. In this case, to avoid sending/receiving
undesired data, a clock stretching mechanism is implemented.
33.9.5.5
Clock Synchronization in Read Mode
The clock is tied low if the shift register is empty and if a STOP or REPEATED START condition
was not detected. It is tied low until the shift register is loaded.
Figure 33-27 on page 422 describes the clock synchronization in Read mode.
Figure 33-27. Clock Synchronization in Read Mode
TWI_THR
DATA0
S
SADR
R
DATA1
1
A
DATA0
A
DATA1
DATA2
A
XXXXXXX
DATA2
NA
S
2
TWCK
Write THR
CLOCK is tied low by the TWI
as long as THR is empty
SCLWS
TXRDY
SVACC
SVREAD
As soon as a START is detected
TXCOMP
TWI_THR is transmitted to the shift register
Notes:
Ack or Nack from the master
1
The data is memorized in TWI_THR until a new value is written
2
The clock is stretched after the ACK, the state of TWD is undefined during clock stretching
1. TXRDY is reset when data has been written in the TWI_TH to the shift register and set when this data has been acknowledged or non acknowledged.
2. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.
3. SCLWS is automatically set when the clock synchronization mechanism is started.
422
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9.5.6
Clock Synchronization in Write Mode
The c lock is tied lo w if the shift register and the TWI_RHR is full. If a STOP or
REPEATED_START condition was not detected, it is tied low until TWI_RHR is read.
Figure 33-28 on page 423 describes the clock synchronization in Read mode.
Figure 33-28. Clock Synchronization in Write Mode
TWCK
CLOCK is tied low by the TWI as long as RHR is full
TWD
S
SADR
W
A
DATA0
TWI_RHR
A
DATA1
A
DATA0 is not read in the RHR
DATA2
DATA1
NA
S
ADR
DATA2
SCLWS
SCL is stretched on the last bit of DATA1
RXRDY
Rd DATA0
Rd DATA1
Rd DATA2
SVACC
SVREAD
TXCOMP
Notes:
As soon as a START is detected
1. At the end of the read sequence, TXCOMP is set after a STOP or after a REPEATED_START + an address different from
SADR.
2. SCLWS is automatically set when the clock synchronization mechanism is started and automatically reset when the mechanism is finished.
423
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9.5.7
Reversal after a Repeated Start
33.9.5.8
Reversal of Read to Write
The master initiates the communication by a read command and finishes it by a write command.
Figure 33-29 on page 424 describes the repeated start + reversal from Read to Write mode.
Figure 33-29. Repeated Start + Reversal from Read to Write Mode
TWI_THR
DATA0
TWD
S
SADR
R
A
DATA0
DATA1
A
DATA1
NA
RS
SADR
W
A
DATA2
A
DATA3
DATA2
TWI_RHR
A
P
DATA3
SVACC
SVREAD
TXRDY
RXRDY
EOSACC
Cleared after read
As soon as a START is detected
TXCOMP
1. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.
33.9.5.9
Reversal of Write to Read
The master initiates the communication by a write command and finishes it by a read command.Figure 33-30 on page 424 describes the repeated start + reversal from Write to Read
mode.
Figure 33-30. Repeated Start + Reversal from Write to Read Mode
DATA2
TWI_THR
TWD
S
SADR
W
A
DATA0
TWI_RHR
A
DATA1
DATA0
A
RS
SADR
R
A
DATA3
DATA2
A
DATA3
NA
P
DATA1
SVACC
SVREAD
TXRDY
RXRDY
EOSACC
TXCOMP
Notes:
Read TWI_RHR
Cleared after read
As soon as a START is detected
1. In this case, if TWI_THR has not been written at the end of the read command, the clock is automatically stretched before
the ACK.
2. TXCOMP is only set at the end of the transmission because after the repeated start, SADR is detected again.
424
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.9.6
Read Write Flowcharts
The flowchart shown in Figure 33-31 on page 425 gives an example of read and write operations
in Slave mode. A polling or interrupt method can be used to check the status bits. The interrupt
method requires that the interrupt enable register (TWI_IER) be configured first.
Figure 33-31. Read Write Flowchart in Slave Mode
Set the SLAVE mode:
SADR + MSDIS + SVEN
Read Status Register
SVACC = 1 ?
GACC = 1 ?
SVREAD = 0 ?
TXRDY= 1 ?
EOSACC = 1 ?
Write in TWI_THR
TXCOMP = 1 ?
RXRDY= 0 ?
END
Read TWI_RHR
GENERAL CALL TREATMENT
Decoding of the
programming sequence
Prog seq
OK ?
Change SADR
425
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10 Two-wire Interface (TWI) User Interface
Table 33-5.
Two-wire Interface (TWI) User Interface
Offset
Register
Name
Access
Reset State
0x00
Control Register
TWI_CR
Write-only
N/A
0x04
Master Mode Register
TWI_MMR
Read/Write
0x00000000
0x08
Slave Mode Register
TWI_SMR
Read/Write
0x00000000
0x0C
Internal Address Register
TWI_IADR
Read/Write
0x00000000
0x10
Clock Waveform Generator Register
TWI_CWGR
Read/Write
0x00000000
0x20
Status Register
TWI_SR
Read-only
0x0000F009
0x24
Interrupt Enable Register
TWI_IER
Write-only
N/A
0x28
Interrupt Disable Register
TWI_IDR
Write-only
N/A
0x2C
Interrupt Mask Register
TWI_IMR
Read-only
0x00000000
0x30
Receive Holding Register
TWI_RHR
Read-only
0x00000000
0x34
Transmit Holding Register
TWI_THR
Write-only
0x00000000
0x38 - 0xFC
Reserved
–
–
–
0x100 - 0x124
Reserved for the PDC
–
–
–
426
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.1
Name:
TWI Control Register
TWI_CR
Access:
Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
SWRST
6
–
5
SVDIS
4
SVEN
3
MSDIS
2
MSEN
1
STOP
0
START
• START: Send a START Condition
0 = No effect.
1 = A frame beginning with a START bit is transmitted according to the features defined in the mode register.
This action is necessary when the TWI peripheral wants to read data from a slave. When configured in Master Mode with a
write operation, a frame is sent as soon as the user writes a character in the Transmit Holding Register (TWI_THR).
• STOP: Send a STOP Condition
0 = No effect.
1 = STOP Condition is sent just after completing the current byte transmission in master read mode.
– In single data byte master read, the START and STOP must both be set.
– In multiple data bytes master read, the STOP must be set after the last data received but one.
– In master read mode, if a NACK bit is received, the STOP is automatically performed.
– In multiple data write operation, when both THR and shift register are empty, a STOP condition is automatically
sent.
• MSEN: TWI Master Mode Enabled
0 = No effect.
1 = If MSDIS = 0, the master mode is enabled.
Note:
Switching from Slave to Master mode is only permitted when TXCOMP = 1.
• MSDIS: TWI Master Mode Disabled
0 = No effect.
1 = The master mode is disabled, all pending data is transmitted. The shifter and holding characters (if it contains data) are
transmitted in case of write operation. In read operation, the character being transferred must be completely received
before disabling.
• SVEN: TWI Slave Mode Enabled
0 = No effect.
427
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
1 = If SVDIS = 0, the slave mode is enabled.
Note:
Switching from Master to Slave mode is only permitted when TXCOMP = 1.
• SVDIS: TWI Slave Mode Disabled
0 = No effect.
1 = The slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read operation. In write operation, the character being transferred must be completely received before disabling.
• SWRST: Software Reset
0 = No effect.
1 = Equivalent to a system reset.
428
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.2
Name:
TWI Master Mode Register
TWI_MMR
Access:
Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
21
20
19
DADR
18
17
16
15
–
14
–
13
–
12
MREAD
11
–
10
–
9
7
–
6
–
5
–
4
–
3
–
2
–
1
–
8
IADRSZ
0
–
• IADRSZ: Internal Device Address Size
IADRSZ[9:8]
0
0
No internal device address
0
1
One-byte internal device address
1
0
Two-byte internal device address
1
1
Three-byte internal device address
• MREAD: Master Read Direction
0 = Master write direction.
1 = Master read direction.
• DADR: Device Address
The device address is used to access slave devices in read or write mode. Those bits are only used in Master mode.
429
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.3
Name:
Access:
TWI Slave Mode Register
TWI_SMR
Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
21
20
19
SADR
18
17
16
15
–
14
–
13
–
12
–
11
–
10
–
9
8
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
–
• SADR: Slave Address
The slave device address is used in Slave mode in order to be accessed by master devices in read or write mode.
SADR must be programmed before enabling the Slave mode or after a general call. Writes at other times have no effect.
430
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.4
Name:
Access:
TWI Internal Address Register
TWI_IADR
Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
23
22
21
20
27
–
26
–
25
–
24
–
19
18
17
16
11
10
9
8
3
2
1
0
IADR
15
14
13
12
IADR
7
6
5
4
IADR
• IADR: Internal Address
0, 1, 2 or 3 bytes depending on IADRSZ.
431
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.5
Name:
Access:
TWI Clock Waveform Generator Register
TWI_CWGR
Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
22
21
20
19
18
17
CKDIV
16
15
14
13
12
11
10
9
8
3
2
1
0
CHDIV
7
6
5
4
CLDIV
TWI_CWGR is only used in Master mode.
• CLDIV: Clock Low Divider
The SCL low period is defined as follows:
T low = ( ( CLDIV × 2
CKDIV
) + 4 ) × T MCK
• CHDIV: Clock High Divider
The SCL high period is defined as follows:
T high = ( ( CHDIV × 2
CKDIV
) + 4 ) × T MCK
• CKDIV: Clock Divider
The CKDIV is used to increase both SCL high and low periods.
432
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.6
Name:
TWI Status Register
TWI_SR
Access:
Read-only
Reset Value: 0x0000F009
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXBUFE
14
RXBUFF
13
ENDTX
12
ENDRX
11
EOSACC
10
SCLWS
9
ARBLST
8
NACK
7
–
6
OVRE
5
GACC
4
SVACC
3
SVREAD
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed (automatically set / reset)
TXCOMP used in Master mode:
0 = During the length of the current frame.
1 = When both holding and shifter registers are empty and STOP condition has been sent.
TXCOMP behavior in Master mode can be seen in Figure 33-8 on page 404 and in Figure 33-10 on page 405.
TXCOMP used in Slave mode:
0 = As soon as a Start is detected.
1 = After a Stop or a Repeated Start + an address different from SADR is detected.
TXCOMP behavior in Slave mode can be seen in Figure 33-27 on page 422, Figure 33-28 on page 423, Figure 33-29 on
page 424 and Figure 33-30 on page 424.
• RXRDY: Receive Holding Register Ready (automatically set / reset)
0 = No character has been received since the last TWI_RHR read operation.
1 = A byte has been received in the TWI_RHR since the last read.
RXRDY behavior in Master mode can be seen in Figure 33-10 on page 405.
RXRDY behavior in Slave mode can be seen in Figure 33-25 on page 420, Figure 33-28 on page 423, Figure 33-29 on
page 424 and Figure 33-30 on page 424.
• TXRDY: Transmit Holding Register Ready (automatically set / reset)
TXRDY used in Master mode:
0 = The transmit holding register has not been transferred into shift register. Set to 0 when writing into TWI_THR register.
1 = As soon as a data byte is transferred from TWI_THR to internal shifter or if a NACK error is detected, TXRDY is set at
the same time as TXCOMP and NACK. TXRDY is also set when MSEN is set (enable TWI).
TXRDY behavior in Master mode can be seen in Figure 33-8 on page 404.
433
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
TXRDY used in Slave mode:
0 = As soon as data is written in the TWI_THR, until this data has been transmitted and acknowledged (ACK or NACK).
1 = It indicates that the TWI_THR is empty and that data has been transmitted and acknowledged.
If TXRDY is high and if a NACK has been detected, the transmission will be stopped. Thus when TRDY = NACK = 1, the
programmer must not fill TWI_THR to avoid losing it.
TXRDY behavior in Slave mode can be seen in Figure 33-24 on page 420, Figure 33-27 on page 422, Figure 33-29 on
page 424 and Figure 33-30 on page 424.
• SVREAD: Slave Read (automatically set / reset)
This bit is only used in Slave mode. When SVACC is low (no Slave access has been detected) SVREAD is irrelevant.
0 = Indicates that a write access is performed by a Master.
1 = Indicates that a read access is performed by a Master.
SVREAD behavior can be seen in Figure 33-24 on page 420, Figure 33-25 on page 420, Figure 33-29 on page 424 and
Figure 33-30 on page 424.
• SVACC: Slave Access (automatically set / reset)
This bit is only used in Slave mode.
0 = TWI is not addressed. SVACC is automatically cleared after a NACK or a STOP condition is detected.
1 = Indicates that the address decoding sequence has matched (A Master has sent SADR). SVACC remains high until a
NACK or a STOP condition is detected.
SVACC behavior can be seen in Figure 33-24 on page 420, Figure 33-25 on page 420, Figure 33-29 on page 424 and Figure 33-30 on page 424.
• GACC: General Call Access (clear on read)
This bit is only used in Slave mode.
0 = No General Call has been detected.
1 = A General Call has been detected. After the detection of General Call, the programmer decoded the commands that follow and the programming sequence.
GACC behavior can be seen in Figure 33-26 on page 421.
• OVRE: Overrun Error (clear on read)
This bit is only used in Master mode.
0 = TWI_RHR has not been loaded while RXRDY was set
1 = TWI_RHR has been loaded while RXRDY was set. Reset by read in TWI_SR when TXCOMP is set.
• NACK: Not Acknowledged (clear on read)
NACK used in Master mode:
0 = Each data byte has been correctly received by the far-end side TWI slave component.
1 = A data byte has not been acknowledged by the slave component. Set at the same time as TXCOMP.
434
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
NACK used in Slave Read mode:
0 = Each data byte has been correctly received by the Master.
1 = In read mode, a data byte has not been acknowledged by the Master. When NACK is set the programmer must not fill
TWI_THR even if TXRDY is set, because it means that the Master will stop the data transfer or re initiate it.
Note that in Slave Write mode all data are acknowledged by the TWI.
• ARBLST: Arbitration Lost (clear on read)
This bit is only used in Master mode.
0: Arbitration won.
1: Arbitration lost. Another master of the TWI bus has won the multi-master arbitration. TXCOMP is set at the same time.
• SCLWS: Clock Wait State (automatically set / reset)
This bit is only used in Slave mode.
0 = The clock is not stretched.
1 = The clock is stretched. TWI_THR / TWI_RHR buffer is not filled / emptied before the emission / reception of a new
character.
SCLWS behavior can be seen in Figure 33-27 on page 422 and Figure 33-28 on page 423.
• EOSACC: End Of Slave Access (clear on read)
This bit is only used in Slave mode.
0 = A slave access is being performing.
1 = The Slave Access is finished. End Of Slave Access is automatically set as soon as SVACC is reset.
EOSACC behavior can be seen in Figure 33-29 on page 424 and Figure 33-30 on page 424
• ENDRX: End of RX buffer
This bit is only used in Master mode.
0 = The Receive Counter Register has not reached 0 since the last write in TWI_RCR or TWI_RNCR.
1 = The Receive Counter Register has reached 0 since the last write in TWI_RCR or TWI_RNCR.
• ENDTX: End of TX buffer
This bit is only used in Master mode.
0 = The Transmit Counter Register has not reached 0 since the last write in TWI_TCR or TWI_TNCR.
1 = The Transmit Counter Register has reached 0 since the last write in TWI_TCR or TWI_TNCR.
• RXBUFF: RX Buffer Full
This bit is only used in Master mode.
0 = TWI_RCR or TWI_RNCR have a value other than 0.
1 = Both TWI_RCR and TWI_RNCR have a value of 0.
435
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
• TXBUFE: TX Buffer Empty
This bit is only used in Master mode.
0 = TWI_TCR or TWI_TNCR have a value other than 0.
1 = Both TWI_TCR and TWI_TNCR have a value of 0.
436
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.7
Name:
TWI Interrupt Enable Register
TWI_IER
Access:
Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXBUFE
14
RXBUFF
13
ENDTX
12
ENDRX
11
EOSACC
10
SCL_WS
9
ARBLST
8
NACK
7
–
6
OVRE
5
GACC
4
SVACC
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed Interrupt Enable
• RXRDY: Receive Holding Register Ready Interrupt Enable
• TXRDY: Transmit Holding Register Ready Interrupt Enable
• SVACC: Slave Access Interrupt Enable
• GACC: General Call Access Interrupt Enable
• OVRE: Overrun Error Interrupt Enable
• NACK: Not Acknowledge Interrupt Enable
• ABRLST: Arbitration Lost Interrupt Enable
• SCL_WS: Clock Wait State Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
437
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.8
Name:
TWI Interrupt Disable Register
TWI_IDR
Access:
Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXBUFE
14
RXBUFF
13
ENDTX
12
ENDRX
11
EOSACC
10
SCL_WS
9
ARBLST
8
NACK
7
–
6
OVRE
5
GACC
4
SVACC
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed Interrupt Disable
• RXRDY: Receive Holding Register Ready Interrupt Disable
• TXRDY: Transmit Holding Register Ready Interrupt Disable
• SVACC: Slave Access Interrupt Disable
• GACC: General Call Access Interrupt Disable
• OVRE: Overrun Error Interrupt Disable
• NACK: Not Acknowledge Interrupt Disable
• ABRLST: Arbitration Lost Interrupt Disable
• SCL_WS: Clock Wait State Interrupt Disable
• EOSACC: End Of Slave Access Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
0 = No effect.
1 = Disables the corresponding interrupt.
438
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.9
Name:
TWI Interrupt Mask Register
TWI_IMR
Access:
Read-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXBUFE
14
RXBUFF
13
ENDTX
12
ENDRX
11
EOSACC
10
SCL_WS
9
ARBLST
8
NACK
7
–
6
OVRE
5
GACC
4
SVACC
3
–
2
TXRDY
1
RXRDY
0
TXCOMP
• TXCOMP: Transmission Completed Interrupt Mask
• RXRDY: Receive Holding Register Ready Interrupt Mask
• TXRDY: Transmit Holding Register Ready Interrupt Mask
• SVACC: Slave Access Interrupt Mask
• GACC: General Call Access Interrupt Mask
• OVRE: Overrun Error Interrupt Mask
• NACK: Not Acknowledge Interrupt Mask
• ABRLST: Arbitration Lost Interrupt Mask
• SCL_WS: Clock Wait State Interrupt Mask
• EOSACC: End Of Slave Access Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
0 = The corresponding interrupt is disabled.
1 = The corresponding interrupt is enabled.
439
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
33.10.10 TWI Receive Holding Register
Name:
TWI_RHR
Access:
Read-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
RXDATA
• RXDATA: Master or Slave Receive Holding Data
33.10.11 TWI Transmit Holding Register
Name:
TWI_THR
Access:
Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
TXDATA
• TXDATA: Master or Slave Transmit Holding Data
440
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34. Universal Synchronous/Asynchronous Receiver/Transceiver (USART)
34.1
Description
The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full
duplex universal synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of stop bits) to support a maximum of standards. The receiver
implements parity error, framing error and overrun error detection. The receiver time-out enables
handling variable-length frames and the transmitter timeguard facilitates communications with
slow remote devices. Multidrop communications are also supported through address bit handling in reception and transmission.
The USART features three test modes: remote loopback, local loopback and automatic echo.
The USART supports specific operating modes providing interfaces on RS485 buses, with
ISO7816 T = 0 or T = 1 smart card slots, infrared transceivers and connection to modem ports.
The hardware handshaking feature enables an out-of-band flow control by automatic management of the pins RTS and CTS.
The USART supports the connection to the Peripheral DMA Controller, which enables data
transfers to the transmitter and from the receiver. The PDC provides chained buffer management without any intervention of the processor.
441
6289C–ATARM–28-May-09
34.2
Block Diagram
Figure 34-1. USART Block Diagram
Peripheral DMA
Controller
Channel
Channel
PIO
Controller
USART
RXD
Receiver
RTS
AIC
TXD
USART
Interrupt
Transmitter
CTS
DTR
PMC
Modem
Signals
Control
MCK
DIV
DSR
DCD
MCK/DIV
RI
SLCK
Baud Rate
Generator
SCK
User Interface
APB
442
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.3
Application Block Diagram
Figure 34-2. Application Block Diagram
IrLAP
PPP
Modem
Driver
Serial
Driver
Field Bus
Driver
EMV
Driver
IrDA
Driver
USART
RS232
Drivers
RS232
Drivers
RS485
Drivers
Serial
Port
Differential
Bus
Smart
Card
Slot
IrDA
Transceivers
Modem
PSTN
34.4
I/O Lines Description
Table 34-1.
I/O Line Description
Name
Description
Type
Active Level
SCK
Serial Clock
I/O
TXD
Transmit Serial Data
I/O
RXD
Receive Serial Data
Input
RI
Ring Indicator
Input
Low
DSR
Data Set Ready
Input
Low
DCD
Data Carrier Detect
Input
Low
DTR
Data Terminal Ready
Output
Low
CTS
Clear to Send
Input
Low
RTS
Request to Send
Output
Low
443
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.5
34.5.1
Product Dependencies
I/O Lines
The pins used for interfacing the USART may be multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the desired USART pins to their peripheral
function. If I/O lines of the USART are not used by the application, they can be used for other
purposes by the PIO Controller.
To prevent the TXD line from falling when the USART is disabled, the use of an internal pull up
is mandatory. If the hardware handshaking feature or Modem mode is used, the internal pull up
on TXD must also be enabled.
All the pins of the modems may or may not be implemented on the USART. Only USART0 is
fully equipped with all the modem signals. On USARTs not equipped with the corresponding pin,
the associated control bits and statuses have no effect on the behavior of the USART.
34.5.2
Power Management
The USART is not continuously clocked. The programmer must first enable the USART Clock in
the Power Management Controller (PMC) before using the USART. However, if the application
does not require USART operations, the USART clock can be stopped when not needed and be
restarted later. In this case, the USART will resume its operations where it left off.
Configuring the USART does not require the USART clock to be enabled.
34.5.3
Interrupt
The USART interrupt line is connected on one of the internal sources of the Advanced Interrupt
Controller. Using the USART interrupt requires the AIC to be programmed first. Note that it is not
recommended to use the USART interrupt line in edge sensitive mode.
444
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6
Functional Description
The USART is capable of managing several types of serial synchronous or asynchronous
communications.
It supports the following communication modes:
• 5- to 9-bit full-duplex asynchronous serial communication
– MSB- or LSB-first
– 1, 1.5 or 2 stop bits
– Parity even, odd, marked, space or none
– By 8 or by 16 over-sampling receiver frequency
– Optional hardware handshaking
– Optional modem signals management
– Optional break management
– Optional multidrop serial communication
• High-speed 5- to 9-bit full-duplex synchronous serial communication
– MSB- or LSB-first
– 1 or 2 stop bits
– Parity even, odd, marked, space or none
– By 8 or by 16 over-sampling frequency
– Optional hardware handshaking
– Optional modem signals management
– Optional break management
– Optional multidrop serial communication
• RS485 with driver control signal
• ISO7816, T0 or T1 protocols for interfacing with smart cards
– NACK handling, error counter with repetition and iteration limit
• InfraRed IrDA Modulation and Demodulation
• Test modes
– Remote loopback, local loopback, automatic echo
34.6.1
Baud Rate Generator
The Baud Rate Generator provides the bit period clock named the Baud Rate Clock to both the
receiver and the transmitter.
The Baud Rate Generator clock source can be selected by setting the USCLKS field in the Mode
Register (US_MR) between:
• the Master Clock MCK
• a division of the Master Clock, the divider being product dependent, but generally set to 8
• the external clock, available on the SCK pin
The Baud Rate Generator is based upon a 16-bit divider, which is programmed with the CD field
of the Baud Rate Generator Register (US_BRGR). If CD is programmed at 0, the Baud Rate
Generator does not generate any clock. If CD is programmed at 1, the divider is bypassed and
becomes inactive.
445
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
If the external SCK clock is selected, the duration of the low and high levels of the signal provided on the SCK pin must be longer than a Master Clock (MCK) period. The frequency of the
signal provided on SCK must be at least 4.5 times lower than MCK.
Figure 34-3. Baud Rate Generator
USCLKS
MCK
MCK/DIV
SCK
Reserved
CD
CD
SCK
0
1
16-bit Counter
2
FIDI
>1
3
1
0
0
0
SYNC
OVER
Sampling
Divider
0
Baud Rate
Clock
1
1
SYNC
Sampling
Clock
USCLKS = 3
34.6.1.1
Baud Rate in Asynchronous Mode
If the USART is programmed to operate in asynchronous mode, the selected clock is first
divided by CD, which is field programmed in the Baud Rate Generator Register (US_BRGR).
The resulting clock is provided to the receiver as a sampling clock and then divided by 16 or 8,
depending on the programming of the OVER bit in US_MR.
If OVER is set to 1, the receiver sampling is 8 times higher than the baud rate clock. If OVER is
cleared, the sampling is performed at 16 times the baud rate clock.
The following formula performs the calculation of the Baud Rate.
SelectedClock
Baudrate = -------------------------------------------( 8 ( 2 – Over )CD )
This gives a maximum baud rate of MCK divided by 8, assuming that MCK is the highest possible clock and that OVER is programmed at 1.
Baud Rate Calculation Example
Table 34-2 shows calculations of CD to obtain a baud rate at 38400 bauds for different source
clock frequencies. This table also shows the actual resulting baud rate and the error.
Table 34-2.
Baud Rate Example (OVER = 0)
Source Clock
Expected Baud
Rate
MHz
Bit/s
3 686 400
38 400
6.00
6
38 400.00
0.00%
4 915 200
38 400
8.00
8
38 400.00
0.00%
5 000 000
38 400
8.14
8
39 062.50
1.70%
7 372 800
38 400
12.00
12
38 400.00
0.00%
Calculation Result
CD
Actual Baud Rate
Error
Bit/s
446
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 34-2.
Baud Rate Example (OVER = 0) (Continued)
Source Clock
Expected Baud
Rate
Calculation Result
CD
Actual Baud Rate
Error
8 000 000
38 400
13.02
13
38 461.54
0.16%
12 000 000
38 400
19.53
20
37 500.00
2.40%
12 288 000
38 400
20.00
20
38 400.00
0.00%
14 318 180
38 400
23.30
23
38 908.10
1.31%
14 745 600
38 400
24.00
24
38 400.00
0.00%
18 432 000
38 400
30.00
30
38 400.00
0.00%
24 000 000
38 400
39.06
39
38 461.54
0.16%
24 576 000
38 400
40.00
40
38 400.00
0.00%
25 000 000
38 400
40.69
40
38 109.76
0.76%
32 000 000
38 400
52.08
52
38 461.54
0.16%
32 768 000
38 400
53.33
53
38 641.51
0.63%
33 000 000
38 400
53.71
54
38 194.44
0.54%
40 000 000
38 400
65.10
65
38 461.54
0.16%
50 000 000
38 400
81.38
81
38 580.25
0.47%
The baud rate is calculated with the following formula:
BaudRate = MCK ⁄ CD × 16
The baud rate error is calculated with the following formula. It is not recommended to work with
an error higher than 5%.
ExpectedBaudRate
Error = 1 – ⎛ ---------------------------------------------------⎞
⎝ ActualBaudRate ⎠
34.6.1.2
Fractional Baud Rate in Asynchronous Mode
The Baud Rate generator previously defined is subject to the following limitation: the output frequency changes by only integer multiples of the reference frequency. An approach to this
problem is to integrate a fractional N clock generator that has a high resolution. The generator
architecture is modified to obtain Baud Rate changes by a fraction of the reference source clock.
This fractional part is programmed with the FP field in the Baud Rate Generator Register
(US_BRGR). If FP is not 0, the fractional part is activated. The resolution is one eighth of the
clock divider. This feature is only available when using USART normal mode. The fractional
Baud Rate is calculated using the following formula:
SelectedClock
Baudrate = ---------------------------------------------------------------⎛ 8 ( 2 – Over ) ⎛ CD + FP
-------⎞ ⎞
⎝
⎝
8 ⎠⎠
The modified architecture is presented below:
447
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-4. Fractional Baud Rate Generator
FP
USCLKS
CD
Modulus
Control
FP
MCK
MCK/DIV
SCK
Reserved
CD
SCK
0
1
16-bit Counter
2
3
glitch-free
logic
1
0
FIDI
>1
0
0
SYNC
OVER
Sampling
Divider
0
Baud Rate
Clock
1
1
SYNC
USCLKS = 3
34.6.1.3
Sampling
Clock
Baud Rate in Synchronous Mode
If the USART is programmed to operate in synchronous mode, the selected clock is simply
divided by the field CD in US_BRGR.
BaudRate = SelectedClock
-------------------------------------CD
In synchronous mode, if the external clock is selected (USCLKS = 3), the clock is provided
directly by the signal on the USART SCK pin. No division is active. The value written in
US_BRGR has no effect. The external clock frequency must be at least 4.5 times lower than the
system clock.
When either the external clock SCK or the internal clock divided (MCK/DIV) is selected, the
value programmed in CD must be even if the user has to ensure a 50:50 mark/space ratio on the
SCK pin. If the internal clock MCK is selected, the Baud Rate Generator ensures a 50:50 duty
cycle on the SCK pin, even if the value programmed in CD is odd.
34.6.1.4
Baud Rate in ISO 7816 Mode
The ISO7816 specification defines the bit rate with the following formula:
Di
B = ------ × f
Fi
where:
• B is the bit rate
• Di is the bit-rate adjustment factor
• Fi is the clock frequency division factor
• f is the ISO7816 clock frequency (Hz)
448
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Di is a binary value encoded on a 4-bit field, named DI, as represented in Table 34-3.
Table 34-3.
Binary and Decimal Values for Di
DI field
0001
0010
0011
0100
0101
0110
1000
1001
1
2
4
8
16
32
12
20
Di (decimal)
Fi is a binary value encoded on a 4-bit field, named FI, as represented in Table 34-4.
Table 34-4.
Binary and Decimal Values for Fi
FI field
0000
0001
0010
0011
0100
0101
0110
1001
1010
1011
1100
1101
Fi (decimal
372
372
558
744
1116
1488
1860
512
768
1024
1536
2048
Table 34-5 shows the resulting Fi/Di Ratio, which is the ratio between the ISO7816 clock and the
baud rate clock.
Table 34-5.
Possible Values for the Fi/Di Ratio
Fi/Di
372
558
774
1116
1488
1806
512
768
1024
1536
2048
1
372
558
744
1116
1488
1860
512
768
1024
1536
2048
2
186
279
372
558
744
930
256
384
512
768
1024
4
93
139.5
186
279
372
465
128
192
256
384
512
8
46.5
69.75
93
139.5
186
232.5
64
96
128
192
256
16
23.25
34.87
46.5
69.75
93
116.2
32
48
64
96
128
32
11.62
17.43
23.25
34.87
46.5
58.13
16
24
32
48
64
12
31
46.5
62
93
124
155
42.66
64
85.33
128
170.6
20
18.6
27.9
37.2
55.8
74.4
93
25.6
38.4
51.2
76.8
102.4
If the USART is configured in ISO7816 Mode, the clock selected by the USCLKS field in the
Mode Register (US_MR) is first divided by the value programmed in the field CD in the Baud
Rate Generator Register (US_BRGR). The resulting clock can be provided to the SCK pin to
feed the smart card clock inputs. This means that the CLKO bit can be set in US_MR.
This clock is then divided by the value programmed in the FI_DI_RATIO field in the FI_DI_Ratio
register (US_FIDI). This is performed by the Sampling Divider, which performs a division by up
to 2047 in ISO7816 Mode. The non-integer values of the Fi/Di Ratio are not supported and the
user must program the FI_DI_RATIO field to a value as close as possible to the expected value.
The FI_DI_RATIO field resets to the value 0x174 (372 in decimal) and is the most common
divider between the ISO7816 clock and the bit rate (Fi = 372, Di = 1).
Figure 34-5 shows the relation between the Elementary Time Unit, corresponding to a bit time,
and the ISO 7816 clock.
449
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-5. Elementary Time Unit (ETU)
FI_DI_RATIO
ISO7816 Clock Cycles
ISO7816 Clock
on SCK
ISO7816 I/O Line
on TXD
1 ETU
34.6.2
Receiver and Transmitter Control
After reset, the receiver is disabled. The user must enable the receiver by setting the RXEN bit
in the Control Register (US_CR). However, the receiver registers can be programmed before the
receiver clock is enabled.
After reset, the transmitter is disabled. The user must enable it by setting the TXEN bit in the
Control Register (US_CR). However, the transmitter registers can be programmed before being
enabled.
The Receiver and the Transmitter can be enabled together or independently.
At any time, the software can perform a reset on the receiver or the transmitter of the USART by
setting the corresponding bit, RSTRX and RSTTX respectively, in the Control Register
(US_CR). The software resets clear the status flag and reset internal state machines but the
user interface configuration registers hold the value configured prior to software reset. Regardless of what the receiver or the transmitter is performing, the communication is immediately
stopped.
The user can also independently disable the receiver or the transmitter by setting RXDIS and
TXDIS respectively in US_CR. If the receiver is disabled during a character reception, the
USART waits until the end of reception of the current character, then the reception is stopped. If
the transmitter is disabled while it is operating, the USART waits the end of transmission of both
the current character and character being stored in the Transmit Holding Register (US_THR). If
a timeguard is programmed, it is handled normally.
34.6.3
34.6.3.1
Synchronous and Asynchronous Modes
Transmitter Operations
The transmitter performs the same in both synchronous and asynchronous operating modes
(SYNC = 0 or SYNC = 1). One start bit, up to 9 data bits, one optional parity bit and up to two
stop bits are successively shifted out on the TXD pin at each falling edge of the programmed
serial clock.
The number of data bits is selected by the CHRL field and the MODE 9 bit in the Mode Register
(US_MR). Nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The
parity bit is set according to the PAR field in US_MR. The even, odd, space, marked or none
parity bit can be configured. The MSBF field in US_MR configures which data bit is sent first. If
written at 1, the most significant bit is sent first. At 0, the less significant bit is sent first. The number of stop bits is selected by the NBSTOP field in US_MR. The 1.5 stop bit is supported in
asynchronous mode only.
450
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-6. Character Transmit
Example: 8-bit, Parity Enabled One Stop
Baud Rate
Clock
TXD
Start
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
The characters are sent by writing in the Transmit Holding Register (US_THR). The transmitter
reports two status bits in the Channel Status Register (US_CSR): TXRDY (Transmitter Ready),
which indicates that US_THR is empty and TXEMPTY, which indicates that all the characters
written in US_THR have been processed. When the current character processing is completed,
the last character written in US_THR is transferred into the Shift Register of the transmitter and
US_THR becomes empty, thus TXRDY raises.
Both TXRDY and TXEMPTY bits are low since the transmitter is disabled. Writing a character in
US_THR while TXRDY is active has no effect and the written character is lost.
Figure 34-7. Transmitter Status
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop Start
D0
Bit Bit Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Write
US_THR
TXRDY
TXEMPTY
34.6.3.2
Manchester Encoder
When the Manchester encoder is in use, characters transmitted through the USART are
encoded based on biphase Manchester II format. To enable this mode, set the MAN field in the
US_MR register to 1. Depending on polarity configuration, a logic level (zero or one), is transmitted as a coded signal one-to-zero or zero-to-one. Thus, a transition always occurs at the
midpoint of each bit time. It consumes more bandwidth than the original NRZ signal (2x) but the
receiver has more error control since the expected input must show a change at the center of a
bit cell. An example of Manchester encoded sequence is: the byte 0xB1 or 10110001 encodes
to 10 01 10 10 01 01 01 10, assuming the default polarity of the encoder. Figure 34-8 illustrates
this coding scheme.
451
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-8. NRZ to Manchester Encoding
NRZ
encoded
data
Manchester
encoded
data
1
0
1
1
0
0
0
1
Txd
The Manchester encoded character can also be encapsulated by adding both a configurable
preamble and a start frame delimiter pattern. Depending on the configuration, the preamble is a
training sequence, composed of a pre-defined pattern with a programmable length from 1 to 15
bit times. If the preamble length is set to 0, the preamble waveform is not generated prior to any
character. The preamble pattern is chosen among the following sequences: ALL_ONE,
ALL_ZERO, ONE_ZERO or ZERO_ONE, writing the field TX_PP in the US_MAN register, the
field TX_PL is used to configure the preamble length. Figure 34-9 illustrates and defines the
valid patterns. To improve flexibility, the encoding scheme can be configured using the
TX_MPOL field in the US_MAN register. If the TX_MPOL field is set to zero (default), a logic
zero is encoded with a zero-to-one transition and a logic one is encoded with a one-to-zero transition. If the TX_MPOL field is set to one, a logic one is encoded with a one-to-zero transition
and a logic zero is encoded with a zero-to-one transition.
Figure 34-9. Preamble Patterns, Default Polarity Assumed
Manchester
encoded
data
Txd
SFD
DATA
SFD
DATA
SFD
DATA
SFD
DATA
8 bit width "ALL_ONE" Preamble
Manchester
encoded
data
Txd
8 bit width "ALL_ZERO" Preamble
Manchester
encoded
data
Txd
8 bit width "ZERO_ONE" Preamble
Manchester
encoded
data
Txd
8 bit width "ONE_ZERO" Preamble
A start frame delimiter is to be configured using the ONEBIT field in the US_MR register. It consists of a user-defined pattern that indicates the beginning of a valid data. Figure 34-10
illustrates these patterns. If the start frame delimiter, also known as start bit, is one bit, (ONEBIT
at 1), a logic zero is Manchester encoded and indicates that a new character is being sent serially on the line. If the start frame delimiter is a synchronization pattern also referred to as sync
(ONEBIT at 0), a sequence of 3 bit times is sent serially on the line to indicate the start of a new
character. The sync waveform is in itself an invalid Manchester waveform as the transition
452
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
occurs at the middle of the second bit time. Two distinct sync patterns are used: the command
sync and the data sync. The command sync has a logic one level for one and a half bit times,
then a transition to logic zero for the second one and a half bit times. If the MODSYNC field in
the US_MR register is set to 1, the next character is a command. If it is set to 0, the next character is a data. When direct memory access is used, the MODSYNC field can be immediately
updated with a modified character located in memory. To enable this mode, VAR_SYNC field in
US_MR register must be set to 1. In this case, the MODSYNC field in US_MR is bypassed and
the sync configuration is held in the TXSYNH in the US_THR register. The USART character format is modified and includes sync information.
Figure 34-10. Start Frame Delimiter
Preamble Length
is set to 0
SFD
Manchester
encoded
data
DATA
Txd
One bit start frame delimiter
SFD
Manchester
encoded
data
DATA
Txd
SFD
Manchester
encoded
data
Txd
Command Sync
start frame delimiter
DATA
Data Sync
start frame delimiter
Drift Compensation
Drift compensation is available only in 16X oversampling mode. An hardware recovery system
allows a larger clock drift. To enable the hardware system, the bit in the USART_MAN register
must be set. If the RXD edge is one 16X clock cycle from the expected edge, this is considered
as normal jitter and no corrective actions is taken. If the RXD event is between 4 and 2 clock
cycles before the expected edge, then the current period is shortened by one clock cycle. If the
RXD event is between 2 and 3 clock cycles after the expected edge, then the current period is
lengthened by one clock cycle. These intervals are considered to be drift and so corrective
actions are automatically taken.
453
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-11. Bit Resynchronization
Oversampling
16x Clock
RXD
Sampling
point
Expected edge
Synchro.
Error
34.6.3.3
Synchro.
Jump
Tolerance
Sync
Jump
Synchro.
Error
Asynchronous Receiver
If the USART is programmed in asynchronous operating mode (SYNC = 0), the receiver oversamples the RXD input line. The oversampling is either 16 or 8 times the Baud Rate clock,
depending on the OVER bit in the Mode Register (US_MR).
The receiver samples the RXD line. If the line is sampled during one half of a bit time at 0, a start
bit is detected and data, parity and stop bits are successively sampled on the bit rate clock.
If the oversampling is 16, (OVER at 0), a start is detected at the eighth sample at 0. Then, data
bits, parity bit and stop bit are sampled on each 16 sampling clock cycle. If the oversampling is 8
(OVER at 1), a start bit is detected at the fourth sample at 0. Then, data bits, parity bit and stop
bit are sampled on each 8 sampling clock cycle.
The number of data bits, first bit sent and parity mode are selected by the same fields and bits
as the transmitter, i.e. respectively CHRL, MODE9, MSBF and PAR. For the synchronization
mechanism only, the number of stop bits has no effect on the receiver as it considers only one
stop bit, regardless of the field NBSTOP, so that resynchronization between the receiver and the
transmitter can occur. Moreover, as soon as the stop bit is sampled, the receiver starts looking
for a new start bit so that resynchronization can also be accomplished when the transmitter is
operating with one stop bit.
Figure 34-12 and Figure 34-13 illustrate start detection and character reception when USART
operates in asynchronous mode.
454
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-12. Asynchronous Start Detection
Baud Rate
Clock
Sampling
Clock (x16)
RXD
Sampling
1
2
3
4
5
6
7
8
1
2
3
4
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16
D0
Sampling
Start
Detection
RXD
Sampling
1
2
3
4
5
6
7
0 1
Start
Rejection
Figure 34-13. Asynchronous Character Reception
Example: 8-bit, Parity Enabled
Baud Rate
Clock
RXD
Start
Detection
16
16
16
16
16
16
16
16
16
16
samples samples samples samples samples samples samples samples samples samples
D0
34.6.3.4
D1
D2
D3
D4
D5
D6
D7
Parity
Bit
Stop
Bit
Manchester Decoder
When the MAN field in US_MR register is set to 1, the Manchester decoder is enabled. The
decoder performs both preamble and start frame delimiter detection. One input line is dedicated
to Manchester encoded input data.
An optional preamble sequence can be defined, its length is user-defined and totally independent of the emitter side. Use RX_PL in US_MAN register to configure the length of the preamble
sequence. If the length is set to 0, no preamble is detected and the function is disabled. In addition, the polarity of the input stream is programmable with RX_MPOL field in US_MAN register.
Depending on the desired application the preamble pattern matching is to be defined via the
RX_PP field in US_MAN. See Figure 34-9 for available preamble patterns.
Unlike preamble, the start frame delimiter is shared between Manchester Encoder and Decoder.
So, if ONEBIT field is set to 1, only a zero encoded Manchester can be detected as a valid start
frame delimiter. If ONEBIT is set to 0, only a sync pattern is detected as a valid start frame
delimiter. Decoder operates by detecting transition on incoming stream. If RXD is sampled during one quarter of a bit time at zero, a start bit is detected. See Figure 34-14.. The sample pulse
rejection mechanism applies.
455
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-14. Asynchronous Start Bit Detection
Sampling
Clock
(16 x)
Manchester
encoded
data
Txd
Start
Detection
1
2
3
4
The receiver is activated and starts Preamble and Frame Delimiter detection, sampling the data
at one quarter and then three quarters. If a valid preamble pattern or start frame delimiter is
detected, the receiver continues decoding with the same synchronization. If the stream does not
match a valid pattern or a valid start frame delimiter, the receiver re-synchronizes on the next
valid edge.The minimum time threshold to estimate the bit value is three quarters of a bit time.
If a valid preamble (if used) followed with a valid start frame delimiter is detected, the incoming
stream is decoded into NRZ data and passed to USART for processing. Figure 34-15 illustrates
Manchester pattern mismatch. When incoming data stream is passed to the USART, the
receiver is also able to detect Manchester code violation. A code violation is a lack of transition
in the middle of a bit cell. In this case, MANE flag in US_CSR register is raised. It is cleared by
writing the Control Register (US_CR) with the RSTSTA bit at 1. See Figure 34-16 for an example of Manchester error detection during data phase.
Figure 34-15. Preamble Pattern Mismatch
Preamble Mismatch
Manchester coding error
Manchester
encoded
data
Preamble Mismatch
invalid pattern
SFD
Txd
DATA
Preamble Length is set to 8
Figure 34-16. Manchester Error Flag
Preamble Length
is set to 4
Elementary character bit time
SFD
Manchester
encoded
data
Txd
Entering USART character area
sampling points
Preamble subpacket
and Start Frame Delimiter
were successfully
decoded
Manchester
Coding Error
detected
When the start frame delimiter is a sync pattern (ONEBIT field at 0), both command and data
delimiter are supported. If a valid sync is detected, the received character is written as RXCHR
456
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
field in the US_RHR register and the RXSYNH is updated. RXCHR is set to 1 when the received
character is a command, and it is set to 0 if the received character is a data. This mechanism
alleviates and simplifies the direct memory access as the character contains its own sync field in
the same register.
As the decoder is setup to be used in unipolar mode, the first bit of the frame has to be a zero-toone transition.
34.6.3.5
Radio Interface: Manchester Encoded USART Application
This section describes low data rate RF transmission systems and their integration with a Manchester encoded USART. These systems are based on transmitter and receiver ICs that support
ASK and FSK modulation schemes.
The goal is to perform full duplex radio transmission of characters using two different frequency
carriers. See the configuration in Figure 34-17.
Figure 34-17. Manchester Encoded Characters RF Transmission
Fup frequency Carrier
ASK/FSK
Upstream Receiver
Upstream
Emitter
LNA
VCO
RF filter
Demod
Serial
Configuration
Interface
control
Fdown frequency Carrier
bi-dir
line
Manchester
decoder
USART
Receiver
Manchester
encoder
USART
Emitter
ASK/FSK
downstream transmitter
Downstream
Receiver
PA
RF filter
Mod
VCO
control
The USART module is configured as a Manchester encoder/decoder. Looking at the downstream communication channel, Manchester encoded characters are serially sent to the RF
emitter. This may also include a user defined preamble and a start frame delimiter. Mostly, preamble is used in the RF receiver to distinguish between a valid data from a transmitter and
signals due to noise. The Manchester stream is then modulated. See Figure 34-18 for an example of ASK modulation scheme. When a logic one is sent to the ASK modulator, the power
amplifier, referred to as PA, is enabled and transmits an RF signal at downstream frequency.
When a logic zero is transmitted, the RF signal is turned off. If the FSK modulator is activated,
two different frequencies are used to transmit data. When a logic 1 is sent, the modulator outputs an RF signal at frequency F0 and switches to F1 if the data sent is a 0. See Figure 34-19.
From the receiver side, another carrier frequency is used. The RF receiver performs a bit check
operation examining demodulated data stream. If a valid pattern is detected, the receiver
457
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
switches to receiving mode. The demodulated stream is sent to the Manchester decoder.
Because of bit checking inside RF IC, the data transferred to the microcontroller is reduced by a
user-defined number of bits. The Manchester preamble length is to be defined in accordance
with the RF IC configuration.
Figure 34-18. ASK Modulator Output
1
0
0
1
0
0
1
NRZ stream
Manchester
encoded
data
default polarity
unipolar output
Txd
ASK Modulator
Output
Uptstream Frequency F0
Figure 34-19. FSK Modulator Output
1
NRZ stream
Manchester
encoded
data
default polarity
unipolar output
Txd
FSK Modulator
Output
Uptstream Frequencies
[F0, F0+offset]
34.6.3.6
Synchronous Receiver
In synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of
the Baud Rate Clock. If a low level is detected, it is considered as a start. All data bits, the parity
bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode
operations provide a high speed transfer capability.
Configuration fields and bits are the same as in asynchronous mode.
Figure 34-20 illustrates a character reception in synchronous mode.
Figure 34-20. Synchronous Mode Character Reception
Example: 8-bit, Parity Enabled 1 Stop
Baud Rate
Clock
RXD
Sampling
Start
D0
D1
D2
D3
D4
D5
D6
Stop Bit
D7
Parity Bit
458
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.3.7
Receiver Operations
When a character reception is completed, it is transferred to the Receive Holding Register
(US_RHR) and the RXRDY bit in the Status Register (US_CSR) rises. If a character is completed while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is
transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing
the Control Register (US_CR) with the RSTSTA (Reset Status) bit at 1.
Figure 34-21. Receiver Status
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop Start
D0
Bit Bit Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
RSTSTA = 1
Write
US_CR
Read
US_RHR
RXRDY
OVRE
459
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.3.8
Parity
The USART supports five parity modes selected by programming the PAR field in the Mode
Register (US_MR). The PAR field also enables the Multidrop mode, see “Multidrop Mode” on
page 461. Even and odd parity bit generation and error detection are supported.
If even parity is selected, the parity generator of the transmitter drives the parity bit at 0 if a number of 1s in the character data bit is even, and at 1 if the number of 1s is odd. Accordingly, the
receiver parity checker counts the number of received 1s and reports a parity error if the sampled parity bit does not correspond. If odd parity is selected, the parity generator of the
transmitter drives the parity bit at 1 if a number of 1s in the character data bit is even, and at 0 if
the number of 1s is odd. Accordingly, the receiver parity checker counts the number of received
1s and reports a parity error if the sampled parity bit does not correspond. If the mark parity is
used, the parity generator of the transmitter drives the parity bit at 1 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 0. If the space parity is
used, the parity generator of the transmitter drives the parity bit at 0 for all characters. The
receiver parity checker reports an error if the parity bit is sampled at 1. If parity is disabled, the
transmitter does not generate any parity bit and the receiver does not report any parity error.
Table 34-6 shows an example of the parity bit for the character 0x41 (character ASCII “A”)
depending on the configuration of the USART. Because there are two bits at 1, 1 bit is added
when a parity is odd, or 0 is added when a parity is even.
Table 34-6.
Parity Bit Examples
Character
Hexa
Binary
Parity Bit
Parity Mode
A
0x41
0100 0001
1
Odd
A
0x41
0100 0001
0
Even
A
0x41
0100 0001
1
Mark
A
0x41
0100 0001
0
Space
A
0x41
0100 0001
None
None
When the receiver detects a parity error, it sets the PARE (Parity Error) bit in the Channel Status
Register (US_CSR). The PARE bit can be cleared by writing the Control Register (US_CR) with
the RSTSTA bit at 1. Figure 34-22 illustrates the parity bit status setting and clearing.
460
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-22. Parity Error
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Bad Stop
Parity Bit
Bit
RSTSTA = 1
Write
US_CR
PARE
RXRDY
34.6.3.9
Multidrop Mode
If the PAR field in the Mode Register (US_MR) is programmed to the value 0x6 or 0x07, the
USART runs in Multidrop Mode. This mode differentiates the data characters and the address
characters. Data is transmitted with the parity bit at 0 and addresses are transmitted with the
parity bit at 1.
If the USART is configured in multidrop mode, the receiver sets the PARE parity error bit when
the parity bit is high and the transmitter is able to send a character with the parity bit high when
the Control Register is written with the SENDA bit at 1.
To handle parity error, the PARE bit is cleared when the Control Register is written with the bit
RSTSTA at 1.
The transmitter sends an address byte (parity bit set) when SENDA is written to US_CR. In this
case, the next byte written to US_THR is transmitted as an address. Any character written in
US_THR without having written the command SENDA is transmitted normally with the parity at
0.
34.6.3.10
Transmitter Timeguard
The timeguard feature enables the USART interface with slow remote devices.
The timeguard function enables the transmitter to insert an idle state on the TXD line between
two characters. This idle state actually acts as a long stop bit.
The duration of the idle state is programmed in the TG field of the Transmitter Timeguard Register (US_TTGR). When this field is programmed at zero no timeguard is generated. Otherwise,
the transmitter holds a high level on TXD after each transmitted byte during the number of bit
periods programmed in TG in addition to the number of stop bits.
As illustrated in Figure 34-23, the behavior of TXRDY and TXEMPTY status bits is modified by
the programming of a timeguard. TXRDY rises only when the start bit of the next character is
sent, and thus remains at 0 during the timeguard transmission if a character has been written in
US_THR. TXEMPTY remains low until the timeguard transmission is completed as the timeguard is part of the current character being transmitted.
461
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-23. Timeguard Operations
TG = 4
TG = 4
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Write
US_THR
TXRDY
TXEMPTY
Table 34-7 indicates the maximum length of a timeguard period that the transmitter can handle
in relation to the function of the Baud Rate.
Table 34-7.
34.6.3.11
Maximum Timeguard Length Depending on Baud Rate
Baud Rate
Bit time
Timeguard
Bit/sec
µs
ms
1 200
833
212.50
9 600
104
26.56
14400
69.4
17.71
19200
52.1
13.28
28800
34.7
8.85
33400
29.9
7.63
56000
17.9
4.55
57600
17.4
4.43
115200
8.7
2.21
Receiver Time-out
The Receiver Time-out provides support in handling variable-length frames. This feature detects
an idle condition on the RXD line. When a time-out is detected, the bit TIMEOUT in the Channel
Status Register (US_CSR) rises and can generate an interrupt, thus indicating to the driver an
end of frame.
The time-out delay period (during which the receiver waits for a new character) is programmed
in the TO field of the Receiver Time-out Register (US_RTOR). If the TO field is programmed at
0, the Receiver Time-out is disabled and no time-out is detected. The TIMEOUT bit in US_CSR
remains at 0. Otherwise, the receiver loads a 16-bit counter with the value programmed in TO.
This counter is decremented at each bit period and reloaded each time a new character is
received. If the counter reaches 0, the TIMEOUT bit in the Status Register rises. Then, the user
can either:
• Stop the counter clock until a new character is received. This is performed by writing the
Control Register (US_CR) with the STTTO (Start Time-out) bit at 1. In this case, the idle state
462
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
on RXD before a new character is received will not provide a time-out. This prevents having
to handle an interrupt before a character is received and allows waiting for the next idle state
on RXD after a frame is received.
• Obtain an interrupt while no character is received. This is performed by writing US_CR with
the RETTO (Reload and Start Time-out) bit at 1. If RETTO is performed, the counter starts
counting down immediately from the value TO. This enables generation of a periodic interrupt
so that a user time-out can be handled, for example when no key is pressed on a keyboard.
If STTTO is performed, the counter clock is stopped until a first character is received. The idle
state on RXD before the start of the frame does not provide a time-out. This prevents having to
obtain a periodic interrupt and enables a wait of the end of frame when the idle state on RXD is
detected.
If RETTO is performed, the counter starts counting down immediately from the value TO. This
enables generation of a periodic interrupt so that a user time-out can be handled, for example
when no key is pressed on a keyboard.
Figure 34-24 shows the block diagram of the Receiver Time-out feature.
Figure 34-24. Receiver Time-out Block Diagram
TO
Baud Rate
Clock
1
D
Q
Clock
16-bit Time-out
Counter
16-bit
Value
=
STTTO
Clear
Character
Received
Load
TIMEOUT
0
RETTO
Table 34-8 gives the maximum time-out period for some standard baud rates.
Table 34-8.
Maximum Time-out Period
Baud Rate
Bit Time
Time-out
bit/sec
µs
ms
600
1 667
109 225
1 200
833
54 613
2 400
417
27 306
4 800
208
13 653
9 600
104
6 827
14400
69
4 551
19200
52
3 413
28800
35
2 276
33400
30
1 962
463
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 34-8.
34.6.3.12
Maximum Time-out Period (Continued)
Baud Rate
Bit Time
Time-out
56000
18
1 170
57600
17
1 138
200000
5
328
Framing Error
The receiver is capable of detecting framing errors. A framing error happens when the stop bit of
a received character is detected at level 0. This can occur if the receiver and the transmitter are
fully desynchronized.
A framing error is reported on the FRAME bit of the Channel Status Register (US_CSR). The
FRAME bit is asserted in the middle of the stop bit as soon as the framing error is detected. It is
cleared by writing the Control Register (US_CR) with the RSTSTA bit at 1.
Figure 34-25. Framing Error Status
Baud Rate
Clock
RXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
RSTSTA = 1
Write
US_CR
FRAME
RXRDY
34.6.3.13
Transmit Break
The user can request the transmitter to generate a break condition on the TXD line. A break condition drives the TXD line low during at least one complete character. It appears the same as a
0x00 character sent with the parity and the stop bits at 0. However, the transmitter holds the
TXD line at least during one character until the user requests the break condition to be removed.
A break is transmitted by writing the Control Register (US_CR) with the STTBRK bit at 1. This
can be performed at any time, either while the transmitter is empty (no character in either the
Shift Register or in US_THR) or when a character is being transmitted. If a break is requested
while a character is being shifted out, the character is first completed before the TXD line is held
low.
Once STTBRK command is requested further STTBRK commands are ignored until the end of
the break is completed.
The break condition is removed by writing US_CR with the STPBRK bit at 1. If the STPBRK is
requested before the end of the minimum break duration (one character, including start, data,
parity and stop bits), the transmitter ensures that the break condition completes.
464
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The transmitter considers the break as though it is a character, i.e. the STTBRK and STPBRK
commands are taken into account only if the TXRDY bit in US_CSR is at 1 and the start of the
break condition clears the TXRDY and TXEMPTY bits as if a character is processed.
Writing US_CR with the both STTBRK and STPBRK bits at 1 can lead to an unpredictable
result. All STPBRK commands requested without a previous STTBRK command are ignored. A
byte written into the Transmit Holding Register while a break is pending, but not started, is
ignored.
After the break condition, the transmitter returns the TXD line to 1 for a minimum of 12 bit times.
Thus, the transmitter ensures that the remote receiver detects correctly the end of break and the
start of the next character. If the timeguard is programmed with a value higher than 12, the TXD
line is held high for the timeguard period.
After holding the TXD line for this period, the transmitter resumes normal operations.
Figure 34-26 illustrates the effect of both the Start Break (STTBRK) and Stop Break (STPBRK)
commands on the TXD line.
Figure 34-26. Break Transmission
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
STTBRK = 1
D6
D7
Parity Stop
Bit Bit
Break Transmission
End of Break
STPBRK = 1
Write
US_CR
TXRDY
TXEMPTY
34.6.3.14
Receive Break
The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a framing error with data at 0x00, but FRAME remains low.
When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may
be cleared by writing the Control Register (US_CR) with the bit RSTSTA at 1.
An end of receive break is detected by a high level for at least 2/16 of a bit period in asynchronous operating mode or one sample at high level in synchronous operating mode. The end of
break detection also asserts the RXBRK bit.
34.6.3.15
Hardware Handshaking
The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins
are used to connect with the remote device, as shown in Figure 34-27.
465
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-27. Connection with a Remote Device for Hardware Handshaking
USART
Remote
Device
TXD
RXD
RXD
TXD
CTS
RTS
RTS
CTS
Setting the USART to operate with hardware handshaking is performed by writing the
USART_MODE field in the Mode Register (US_MR) to the value 0x2.
The USART behavior when hardware handshaking is enabled is the same as the behavior in
standard synchronous or asynchronous mode, except that the receiver drives the RTS pin as
described below and the level on the CTS pin modifies the behavior of the transmitter as
described below. Using this mode requires using the PDC channel for reception. The transmitter
can handle hardware handshaking in any case.
Figure 34-28 shows how the receiver operates if hardware handshaking is enabled. The RTS
pin is driven high if the receiver is disabled and if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the remote device does not start transmitting while
its CTS pin (driven by RTS) is high. As soon as the Receiver is enabled, the RTS falls, indicating
to the remote device that it can start transmitting. Defining a new buffer to the PDC clears the
status bit RXBUFF and, as a result, asserts the pin RTS low.
Figure 34-28. Receiver Behavior when Operating with Hardware Handshaking
RXD
RXEN = 1
RXDIS = 1
Write
US_CR
RTS
RXBUFF
Figure 34-29 shows how the transmitter operates if hardware handshaking is enabled. The CTS
pin disables the transmitter. If a character is being processing, the transmitter is disabled only
after the completion of the current character and transmission of the next character happens as
soon as the pin CTS falls.
Figure 34-29. Transmitter Behavior when Operating with Hardware Handshaking
CTS
TXD
466
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.4
ISO7816 Mode
The USART features an ISO7816-compatible operating mode. This mode permits interfacing
with smart cards and Security Access Modules (SAM) communicating through an ISO7816 link.
Both T = 0 and T = 1 protocols defined by the ISO7816 specification are supported.
Setting the USART in ISO7816 mode is performed by writing the USART_MODE field in the
Mode Register (US_MR) to the value 0x4 for protocol T = 0 and to the value 0x5 for protocol T =
1.
34.6.4.1
ISO7816 Mode Overview
The ISO7816 is a half duplex communication on only one bidirectional line. The baud rate is
determined by a division of the clock provided to the remote device (see “Baud Rate Generator”
on page 445).
The USART connects to a smart card as shown in Figure 34-30. The TXD line becomes bidirectional and the Baud Rate Generator feeds the ISO7816 clock on the SCK pin. As the TXD pin
becomes bidirectional, its output remains driven by the output of the transmitter but only when
the transmitter is active while its input is directed to the input of the receiver. The USART is considered as the master of the communication as it generates the clock.
Figure 34-30. Connection of a Smart Card to the USART
USART
SCK
TXD
CLK
I/O
Smart
Card
When operating in ISO7816, either in T = 0 or T = 1 modes, the character format is fixed. The
configuration is 8 data bits, even parity and 1 or 2 stop bits, regardless of the values programmed in the CHRL, MODE9, PAR and CHMODE fields. MSBF can be used to transmit LSB
or MSB first. Parity Bit (PAR) can be used to transmit in normal or inverse mode. Refer to
“USART Mode Register” on page 479 and “PAR: Parity Type” on page 480.
The USART cannot operate concurrently in both receiver and transmitter modes as the communication is unidirectional at a time. It has to be configured according to the required mode by
enabling or disabling either the receiver or the transmitter as desired. Enabling both the receiver
and the transmitter at the same time in ISO7816 mode may lead to unpredictable results.
The ISO7816 specification defines an inverse transmission format. Data bits of the character
must be transmitted on the I/O line at their negative value. The USART does not support this format and the user has to perform an exclusive OR on the data before writing it in the Transmit
Holding Register (US_THR) or after reading it in the Receive Holding Register (US_RHR).
34.6.4.2
Protocol T = 0
In T = 0 protocol, a character is made up of one start bit, eight data bits, one parity bit and one
guard time, which lasts two bit times. The transmitter shifts out the bits and does not drive the
I/O line during the guard time.
If no parity error is detected, the I/O line remains at 1 during the guard time and the transmitter
can continue with the transmission of the next character, as shown in Figure 34-31.
467
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
If a parity error is detected by the receiver, it drives the I/O line at 0 during the guard time, as
shown in Figure 34-32. This error bit is also named NACK, for Non Acknowledge. In this case,
the character lasts 1 bit time more, as the guard time length is the same and is added to the
error bit time which lasts 1 bit time.
When the USART is the receiver and it detects an error, it does not load the erroneous character
in the Receive Holding Register (US_RHR). It appropriately sets the PARE bit in the Status Register (US_SR) so that the software can handle the error.
Figure 34-31. T = 0 Protocol without Parity Error
Baud Rate
Clock
RXD
Start
Bit
D0
D2
D1
D4
D3
D5
D6
D7
Parity Guard Guard Next
Bit Time 1 Time 2 Start
Bit
Figure 34-32. T = 0 Protocol with Parity Error
Baud Rate
Clock
Error
I/O
Start
Bit
D0
D1
D2
D3
D4
D5
D6
D7
Parity Guard
Bit Time 1
Guard Start
Time 2 Bit
D0
D1
Repetition
Receive Error Counter
The USART receiver also records the total number of errors. This can be read in the Number of
Error (US_NER) register. The NB_ERRORS field can record up to 255 errors. Reading US_NER
automatically clears the NB_ERRORS field.
Receive NACK Inhibit
The USART can also be configured to inhibit an error. This can be achieved by setting the
INACK bit in the Mode Register (US_MR). If INACK is at 1, no error signal is driven on the I/O
line even if a parity bit is detected, but the INACK bit is set in the Status Register (US_SR). The
INACK bit can be cleared by writing the Control Register (US_CR) with the RSTNACK bit at 1.
Moreover, if INACK is set, the erroneous received character is stored in the Receive Holding
Register, as if no error occurred. However, the RXRDY bit does not raise.
Transmit Character Repetition
When the USART is transmitting a character and gets a NACK, it can automatically repeat the
character before moving on to the next one. Repetition is enabled by writing the
MAX_ITERATION field in the Mode Register (US_MR) at a value higher than 0. Each character
can be transmitted up to eight times; the first transmission plus seven repetitions.
If MAX_ITERATION does not equal zero, the USART repeats the character as many times as
the value loaded in MAX_ITERATION.
468
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
When the USART repetition number reaches MAX_ITERATION, the ITERATION bit is set in the
Channel Status Register (US_CSR). If the repetition of the character is acknowledged by the
receiver, the repetitions are stopped and the iteration counter is cleared.
The ITERATION bit in US_CSR can be cleared by writing the Control Register with the RSIT bit
at 1.
Disable Successive Receive NACK
The receiver can limit the number of successive NACKs sent back to the remote transmitter.
This is programmed by setting the bit DSNACK in the Mode Register (US_MR). The maximum
number of NACK transmitted is programmed in the MAX_ITERATION field. As soon as
MAX_ITERATION is reached, the character is considered as correct, an acknowledge is sent on
the line and the ITERATION bit in the Channel Status Register is set.
34.6.4.3
34.6.5
Protocol T = 1
When operating in ISO7816 protocol T = 1, the transmission is similar to an asynchronous format with only one stop bit. The parity is generated when transmitting and checked when
receiving. Parity error detection sets the PARE bit in the Channel Status Register (US_CSR).
IrDA Mode
The USART features an IrDA mode supplying half-duplex point-to-point wireless communication. It embeds the modulator and demodulator which allows a glueless connection to the
infrared transceivers, as shown in Figure 34-33. The modulator and demodulator are compliant
with the IrDA specification version 1.1 and support data transfer speeds ranging from 2.4 Kb/s to
115.2 Kb/s.
The USART IrDA mode is enabled by setting the USART_MODE field in the Mode Register
(US_MR) to the value 0x8. The IrDA Filter Register (US_IF) allows configuring the demodulator
filter. The USART transmitter and receiver operate in a normal asynchronous mode and all
parameters are accessible. Note that the modulator and the demodulator are activated.
Figure 34-33. Connection to IrDA Transceivers
USART
IrDA
Transceivers
Receiver
Demodulator
RXD
Transmitter
Modulator
TXD
RX
TX
The receiver and the transmitter must be enabled or disabled according to the direction of the
transmission to be managed.
469
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.5.1
IrDA Modulation
For baud rates up to and including 115.2 Kbits/sec, the RZI modulation scheme is used. “0” is
represented by a light pulse of 3/16th of a bit time. Some examples of signal pulse duration are
shown in Table 34-9.
Table 34-9.
IrDA Pulse Duration
Baud Rate
Pulse Duration (3/16)
2.4 Kb/s
78.13 µs
9.6 Kb/s
19.53 µs
19.2 Kb/s
9.77 µs
38.4 Kb/s
4.88 µs
57.6 Kb/s
3.26 µs
115.2 Kb/s
1.63 µs
Figure 34-34 shows an example of character transmission.
Figure 34-34. IrDA Modulation
Start
Bit
Transmitter
Output
0
Stop
Bit
Data Bits
1
0
1
0
1
0
1
0
1
TXD
3
16 Bit Period
Bit Period
34.6.5.2
IrDA Baud Rate
Table 34-10 gives some examples of CD values, baud rate error and pulse duration. Note that
the requirement on the maximum acceptable error of ±1.87% must be met.
Table 34-10. IrDA Baud Rate Error
Peripheral Clock
Baud Rate
CD
Baud Rate Error
Pulse Time
3 686 400
115 200
2
0.00%
1.63
20 000 000
115 200
11
1.38%
1.63
32 768 000
115 200
18
1.25%
1.63
40 000 000
115 200
22
1.38%
1.63
3 686 400
57 600
4
0.00%
3.26
20 000 000
57 600
22
1.38%
3.26
32 768 000
57 600
36
1.25%
3.26
40 000 000
57 600
43
0.93%
3.26
3 686 400
38 400
6
0.00%
4.88
20 000 000
38 400
33
1.38%
4.88
470
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 34-10. IrDA Baud Rate Error (Continued)
Peripheral Clock
34.6.5.3
Baud Rate
CD
Baud Rate Error
Pulse Time
32 768 000
38 400
53
0.63%
4.88
40 000 000
38 400
65
0.16%
4.88
3 686 400
19 200
12
0.00%
9.77
20 000 000
19 200
65
0.16%
9.77
32 768 000
19 200
107
0.31%
9.77
40 000 000
19 200
130
0.16%
9.77
3 686 400
9 600
24
0.00%
19.53
20 000 000
9 600
130
0.16%
19.53
32 768 000
9 600
213
0.16%
19.53
40 000 000
9 600
260
0.16%
19.53
3 686 400
2 400
96
0.00%
78.13
20 000 000
2 400
521
0.03%
78.13
32 768 000
2 400
853
0.04%
78.13
IrDA Demodulator
The demodulator is based on the IrDA Receive filter comprised of an 8-bit down counter which is
loaded with the value programmed in US_IF. When a falling edge is detected on the RXD pin,
the Filter Counter starts counting down at the Master Clock (MCK) speed. If a rising edge is
detected on the RXD pin, the counter stops and is reloaded with US_IF. If no rising edge is
detected when the counter reaches 0, the input of the receiver is driven low during one bit time.
Figure 34-35 illustrates the operations of the IrDA demodulator.
Figure 34-35. IrDA Demodulator Operations
MCK
RXD
Counter
Value
6
Receiver
Input
5
4 3
Pulse
Rejected
2
6
6
5
4
3
2
1
0
Pulse
Accepted
As the IrDA mode uses the same logic as the ISO7816, note that the FI_DI_RATIO field in
US_FIDI must be set to a value higher than 0 in order to assure IrDA communications operate
correctly.
471
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.6
RS485 Mode
The USART features the RS485 mode to enable line driver control. While operating in RS485
mode, the USART behaves as though in asynchronous or synchronous mode and configuration
of all the parameters is possible. The difference is that the RTS pin is driven high when the
transmitter is operating. The behavior of the RTS pin is controlled by the TXEMPTY bit. A typical
connection of the USART to a RS485 bus is shown in Figure 34-36.
Figure 34-36. Typical Connection to a RS485 Bus
USART
RXD
Differential
Bus
TXD
RTS
The USART is set in RS485 mode by programming the USART_MODE field in the Mode Register (US_MR) to the value 0x1.
The RTS pin is at a level inverse to the TXEMPTY bit. Significantly, the RTS pin remains high
when a timeguard is programmed so that the line can remain driven after the last character completion. Figure 34-37 gives an example of the RTS waveform during a character transmission
when the timeguard is enabled.
Figure 34-37. Example of RTS Drive with Timeguard
TG = 4
Baud Rate
Clock
TXD
Start
D0
Bit
D1
D2
D3
D4
D5
D6
D7
Parity Stop
Bit Bit
Write
US_THR
TXRDY
TXEMPTY
RTS
472
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.6.7
Modem Mode
The USART features modem mode, which enables control of the signals: DTR (Data Terminal
Ready), DSR (Data Set Ready), RTS (Request to Send), CTS (Clear to Send), DCD (Data Carrier Detect) and RI (Ring Indicator). While operating in modem mode, the USART behaves as a
DTE (Data Terminal Equipment) as it drives DTR and RTS and can detect level change on DSR,
DCD, CTS and RI.
Setting the USART in modem mode is performed by writing the USART_MODE field in the Mode
Register (US_MR) to the value 0x3. While operating in modem mode the USART behaves as
though in asynchronous mode and all the parameter configurations are available.
Table 34-11 gives the correspondence of the USART signals with modem connection standards.
Table 34-11. Circuit References
USART Pin
V24
CCITT
Direction
TXD
2
103
From terminal to modem
RTS
4
105
From terminal to modem
DTR
20
108.2
From terminal to modem
RXD
3
104
From modem to terminal
CTS
5
106
From terminal to modem
DSR
6
107
From terminal to modem
DCD
8
109
From terminal to modem
RI
22
125
From terminal to modem
The control of the DTR output pin is performed by writing the Control Register (US_CR) with the
DTRDIS and DTREN bits respectively at 1. The disable command forces the corresponding pin
to its inactive level, i.e. high. The enable command forces the corresponding pin to its active
level, i.e. low. RTS output pin is automatically controlled in this mode
The level changes are detected on the RI, DSR, DCD and CTS pins. If an input change is
detected, the RIIC, DSRIC, DCDIC and CTSIC bits in the Channel Status Register (US_CSR)
are set respectively and can trigger an interrupt. The status is automatically cleared when
US_CSR is read. Furthermore, the CTS automatically disables the transmitter when it is
detected at its inactive state. If a character is being transmitted when the CTS rises, the character transmission is completed before the transmitter is actually disabled.
34.6.8
Test Modes
The USART can be programmed to operate in three different test modes. The internal loopback
capability allows on-board diagnostics. In the loopback mode the USART interface pins are disconnected or not and reconfigured for loopback internally or externally.
34.6.8.1
Normal Mode
Normal mode connects the RXD pin on the receiver input and the transmitter output on the TXD
pin.
473
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-38. Normal Mode Configuration
RXD
Receiver
TXD
Transmitter
34.6.8.2
Automatic Echo Mode
Automatic echo mode allows bit-by-bit retransmission. When a bit is received on the RXD pin, it
is sent to the TXD pin, as shown in Figure 34-39. Programming the transmitter has no effect on
the TXD pin. The RXD pin is still connected to the receiver input, thus the receiver remains
active.
Figure 34-39. Automatic Echo Mode Configuration
RXD
Receiver
TXD
Transmitter
34.6.8.3
Local Loopback Mode
Local loopback mode connects the output of the transmitter directly to the input of the receiver,
as shown in Figure 34-40. The TXD and RXD pins are not used. The RXD pin has no effect on
the receiver and the TXD pin is continuously driven high, as in idle state.
Figure 34-40. Local Loopback Mode Configuration
RXD
Receiver
Transmitter
34.6.8.4
1
TXD
Remote Loopback Mode
Remote loopback mode directly connects the RXD pin to the TXD pin, as shown in Figure 34-41.
The transmitter and the receiver are disabled and have no effect. This mode allows bit-by-bit
retransmission.
474
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 34-41. Remote Loopback Mode Configuration
Receiver
1
RXD
TXD
Transmitter
475
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7
USART User Interface
Table 34-12.
USART Memory Map
Offset
Register
Name
Access
Reset State
0x0000
Control Register
US_CR
Write-only
–
0x0004
Mode Register
US_MR
Read/Write
–
0x0008
Interrupt Enable Register
US_IER
Write-only
–
0x000C
Interrupt Disable Register
US_IDR
Write-only
–
0x0010
Interrupt Mask Register
US_IMR
Read-only
0x0
0x0014
Channel Status Register
US_CSR
Read-only
–
0x0018
Receiver Holding Register
US_RHR
Read-only
0x0
0x001C
Transmitter Holding Register
US_THR
Write-only
–
0x0020
Baud Rate Generator Register
US_BRGR
Read/Write
0x0
0x0024
Receiver Time-out Register
US_RTOR
Read/Write
0x0
0x0028
Transmitter Timeguard Register
US_TTGR
Read/Write
0x0
–
–
–
0x2C - 0x3C
Reserved
0x0040
FI DI Ratio Register
US_FIDI
Read/Write
0x174
0x0044
Number of Errors Register
US_NER
Read-only
–
0x0048
Reserved
–
–
–
0x004C
IrDA Filter Register
US_IF
Read/Write
0x0
0x0050
Manchester Encoder Decoder Register
US_MAN
Read/Write
0x30011004
Reserved
–
–
–
Reserved for PDC Registers
–
–
–
0x5C - 0xFC
0x100 - 0x128
476
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.1
Name:
USART Control Register
US_CR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
RTSDIS
18
RTSEN
17
DTRDIS
16
DTREN
15
RETTO
14
RSTNACK
13
RSTIT
12
SENDA
11
STTTO
10
STPBRK
9
STTBRK
8
RSTSTA
7
TXDIS
6
TXEN
5
RXDIS
4
RXEN
3
RSTTX
2
RSTRX
1
–
0
–
• RSTRX: Reset Receiver
0: No effect.
1: Resets the receiver.
• RSTTX: Reset Transmitter
0: No effect.
1: Resets the transmitter.
• RXEN: Receiver Enable
0: No effect.
1: Enables the receiver, if RXDIS is 0.
• RXDIS: Receiver Disable
0: No effect.
1: Disables the receiver.
• TXEN: Transmitter Enable
0: No effect.
1: Enables the transmitter if TXDIS is 0.
• TXDIS: Transmitter Disable
0: No effect.
1: Disables the transmitter.
• RSTSTA: Reset Status Bits
0: No effect.
1: Resets the status bits PARE, FRAME, OVRE, MANERR and RXBRK in US_CSR.
• STTBRK: Start Break
0: No effect.
1: Starts transmission of a break after the characters present in US_THR and the Transmit Shift Register have been transmitted. No effect if a break is already being transmitted.
477
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• STPBRK: Stop Break
0: No effect.
1: Stops transmission of the break after a minimum of one character length and transmits a high level during 12-bit periods.
No effect if no break is being transmitted.
• STTTO: Start Time-out
0: No effect.
1: Starts waiting for a character before clocking the time-out counter. Resets the status bit TIMEOUT in US_CSR.
• SENDA: Send Address
0: No effect.
1: In Multidrop Mode only, the next character written to the US_THR is sent with the address bit set.
• RSTIT: Reset Iterations
0: No effect.
1: Resets ITERATION in US_CSR. No effect if the ISO7816 is not enabled.
• RSTNACK: Reset Non Acknowledge
0: No effect
1: Resets NACK in US_CSR.
• RETTO: Rearm Time-out
0: No effect
1: Restart Time-out
• DTREN: Data Terminal Ready Enable
0: No effect.
1: Drives the pin DTR at 0.
• DTRDIS: Data Terminal Ready Disable
0: No effect.
1: Drives the pin DTR to 1.
• RTSEN: Request to Send Enable
0: No effect.
1: Drives the pin RTS to 0.
• RTSDIS: Request to Send Disable
0: No effect.
1: Drives the pin RTS to 1.
478
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.2
Name:
USART Mode Register
US_MR
Access Type:
Read/Write
31
ONEBIT
30
MODSYNC–
29
MAN
28
FILTER
27
–
26
25
MAX_ITERATION
24
23
–
22
VAR_SYNC
21
DSNACK
20
INACK
19
OVER
18
CLKO
17
MODE9
16
MSBF
15
14
13
12
11
10
PAR
9
8
SYNC
4
3
2
1
0
CHMODE
7
NBSTOP
6
5
CHRL
USCLKS
USART_MODE
• USART_MODE
USART_MODE
Mode of the USART
0
0
0
0
Normal
0
0
0
1
RS485
0
0
1
0
Hardware Handshaking
0
0
1
1
Modem
0
1
0
0
IS07816 Protocol: T = 0
0
1
0
1
Reserved
0
1
1
0
IS07816 Protocol: T = 1
0
1
1
1
Reserved
1
0
0
0
IrDA
1
1
x
x
Reserved
• USCLKS: Clock Selection
USCLKS
Selected Clock
0
0
MCK
0
1
MCK/DIV (DIV = 8)
1
0
Reserved
1
1
SCK
• CHRL: Character Length.
CHRL
0
Character Length
0
5 bits
479
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
0
1
6 bits
1
0
7 bits
1
1
8 bits
• SYNC: Synchronous Mode Select
0: USART operates in Asynchronous Mode.
1: USART operates in Synchronous Mode.
• PAR: Parity Type
PAR
Parity Type
0
0
0
Even parity
0
0
1
Odd parity
0
1
0
Parity forced to 0 (Space)
0
1
1
Parity forced to 1 (Mark)
1
0
x
No parity
1
1
x
Multidrop mode
• NBSTOP: Number of Stop Bits
NBSTOP
Asynchronous (SYNC = 0)
Synchronous (SYNC = 1)
0
0
1 stop bit
1 stop bit
0
1
1.5 stop bits
Reserved
1
0
2 stop bits
2 stop bits
1
1
Reserved
Reserved
• CHMODE: Channel Mode
CHMODE
Mode Description
0
0
Normal Mode
0
1
Automatic Echo. Receiver input is connected to the TXD pin.
1
0
Local Loopback. Transmitter output is connected to the Receiver Input..
1
1
Remote Loopback. RXD pin is internally connected to the TXD pin.
• MSBF: Bit Order
0: Least Significant Bit is sent/received first.
1: Most Significant Bit is sent/received first.
• MODE9: 9-bit Character Length
0: CHRL defines character length.
1: 9-bit character length.
480
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• CLKO: Clock Output Select
0: The USART does not drive the SCK pin.
1: The USART drives the SCK pin if USCLKS does not select the external clock SCK.
• OVER: Oversampling Mode
0: 16x Oversampling.
1: 8x Oversampling.
• INACK: Inhibit Non Acknowledge
0: The NACK is generated.
1: The NACK is not generated.
• DSNACK: Disable Successive NACK
0: NACK is sent on the ISO line as soon as a parity error occurs in the received character (unless INACK is set).
1: Successive parity errors are counted up to the value specified in the MAX_ITERATION field. These parity errors generate a NACK on the ISO line. As soon as this value is reached, no additional NACK is sent on the ISO line. The flag
ITERATION is asserted.
• VAR_SYNC: Variable Synchronization of Command/Data Sync Start Frame Delimiter
0: User defined configuration of command or data sync field depending on SYNC value.
1: The sync field is updated when a character is written into US_THR register.
• MAX_ITERATION
Defines the maximum number of iterations in mode ISO7816, protocol T= 0.
• FILTER: Infrared Receive Line Filter
0: The USART does not filter the receive line.
1: The USART filters the receive line using a three-sample filter (1/16-bit clock) (2 over 3 majority).
• MAN: Manchester Encoder/Decoder Enable
0: Manchester Encoder/Decoder are disabled.
1: Manchester Encoder/Decoder are enabled.
• MODSYNC: Manchester Synchronization Mode
0:The Manchester Start bit is a 0 to 1 transition
1: The Manchester Start bit is a 1 to 0 transition.
• ONEBIT: Start Frame Delimiter Selector
0: Start Frame delimiter is COMMAND or DATA SYNC.
1: Start Frame delimiter is One Bit.
481
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.3
Name:
USART Interrupt Enable Register
US_IER
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
MANE
19
CTSIC
18
DCDIC
17
DSRIC
16
RIIC
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITERATION
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Enable
• TXRDY: TXRDY Interrupt Enable
• RXBRK: Receiver Break Interrupt Enable
• ENDRX: End of Receive Transfer Interrupt Enable
• ENDTX: End of Transmit Interrupt Enable
• OVRE: Overrun Error Interrupt Enable
• FRAME: Framing Error Interrupt Enable
• PARE: Parity Error Interrupt Enable
• TIMEOUT: Time-out Interrupt Enable
• TXEMPTY: TXEMPTY Interrupt Enable
• ITERATION: Iteration Interrupt Enable
• TXBUFE: Buffer Empty Interrupt Enable
• RXBUFF: Buffer Full Interrupt Enable
• NACK: Non Acknowledge Interrupt Enable
• RIIC: Ring Indicator Input Change Enable
• DSRIC: Data Set Ready Input Change Enable
• DCDIC: Data Carrier Detect Input Change Interrupt Enable
• CTSIC: Clear to Send Input Change Interrupt Enable
• MANE: Manchester Error Interrupt Enable
0: No effect.
1: Enables the corresponding interrupt.
482
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.4
Name:
USART Interrupt Disable Register
US_IDR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
MANE
19
CTSIC
18
DCDIC
17
DSRIC
16
RIIC
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITERATION
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Disable
• TXRDY: TXRDY Interrupt Disable
• RXBRK: Receiver Break Interrupt Disable
• ENDRX: End of Receive Transfer Interrupt Disable
• ENDTX: End of Transmit Interrupt Disable
• OVRE: Overrun Error Interrupt Disable
• FRAME: Framing Error Interrupt Disable
• PARE: Parity Error Interrupt Disable
• TIMEOUT: Time-out Interrupt Disable
• TXEMPTY: TXEMPTY Interrupt Disable
• ITERATION: Iteration Interrupt Disable
• TXBUFE: Buffer Empty Interrupt Disable
• RXBUFF: Buffer Full Interrupt Disable
• NACK: Non Acknowledge Interrupt Disable
• RIIC: Ring Indicator Input Change Disable
• DSRIC: Data Set Ready Input Change Disable
• DCDIC: Data Carrier Detect Input Change Interrupt Disable
• CTSIC: Clear to Send Input Change Interrupt Disable
• MANE: Manchester Error Interrupt Disable
0: No effect.
1: Disables the corresponding interrupt.
483
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.5
Name:
USART Interrupt Mask Register
US_IMR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
MANE
19
CTSIC
18
DCDIC
17
DSRIC
16
RIIC
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITERATION
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: RXRDY Interrupt Mask
• TXRDY: TXRDY Interrupt Mask
• RXBRK: Receiver Break Interrupt Mask
• ENDRX: End of Receive Transfer Interrupt Mask
• ENDTX: End of Transmit Interrupt Mask
• OVRE: Overrun Error Interrupt Mask
• FRAME: Framing Error Interrupt Mask
• PARE: Parity Error Interrupt Mask
• TIMEOUT: Time-out Interrupt Mask
• TXEMPTY: TXEMPTY Interrupt Mask
• ITERATION: Iteration Interrupt Mask
• TXBUFE: Buffer Empty Interrupt Mask
• RXBUFF: Buffer Full Interrupt Mask
• NACK: Non Acknowledge Interrupt Mask
• RIIC: Ring Indicator Input Change Mask
• DSRIC: Data Set Ready Input Change Mask
• DCDIC: Data Carrier Detect Input Change Interrupt Mask
• CTSIC: Clear to Send Input Change Interrupt Mask
• MANE: Manchester Error Interrupt Mask
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
484
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.6
Name:
USART Channel Status Register
US_CSR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
MANERR
23
CTS
22
DCD
21
DSR
20
RI
19
CTSIC
18
DCDIC
17
DSRIC
16
RIIC
15
–
14
–
13
NACK
12
RXBUFF
11
TXBUFE
10
ITERATION
9
TXEMPTY
8
TIMEOUT
7
PARE
6
FRAME
5
OVRE
4
ENDTX
3
ENDRX
2
RXBRK
1
TXRDY
0
RXRDY
• RXRDY: Receiver Ready
0: No complete character has been received since the last read of US_RHR or the receiver is disabled. If characters were
being received when the receiver was disabled, RXRDY changes to 1 when the receiver is enabled.
1: At least one complete character has been received and US_RHR has not yet been read.
• TXRDY: Transmitter Ready
0: A character is in the US_THR waiting to be transferred to the Transmit Shift Register, or an STTBRK command has been
requested, or the transmitter is disabled. As soon as the transmitter is enabled, TXRDY becomes 1.
1: There is no character in the US_THR.
• RXBRK: Break Received/End of Break
0: No Break received or End of Break detected since the last RSTSTA.
1: Break Received or End of Break detected since the last RSTSTA.
• ENDRX: End of Receiver Transfer
0: The End of Transfer signal from the Receive PDC channel is inactive.
1: The End of Transfer signal from the Receive PDC channel is active.
• ENDTX: End of Transmitter Transfer
0: The End of Transfer signal from the Transmit PDC channel is inactive.
1: The End of Transfer signal from the Transmit PDC channel is active.
• OVRE: Overrun Error
0: No overrun error has occurred since the last RSTSTA.
1: At least one overrun error has occurred since the last RSTSTA.
• FRAME: Framing Error
0: No stop bit has been detected low since the last RSTSTA.
1: At least one stop bit has been detected low since the last RSTSTA.
485
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• PARE: Parity Error
0: No parity error has been detected since the last RSTSTA.
1: At least one parity error has been detected since the last RSTSTA.
• TIMEOUT: Receiver Time-out
0: There has not been a time-out since the last Start Time-out command (STTTO in US_CR) or the Time-out Register is 0.
1: There has been a time-out since the last Start Time-out command (STTTO in US_CR).
• TXEMPTY: Transmitter Empty
0: There are characters in either US_THR or the Transmit Shift Register, or the transmitter is disabled.
1: There are no characters in US_THR, nor in the Transmit Shift Register.
• ITERATION: Max number of Repetitions Reached
0: Maximum number of repetitions has not been reached since the last RSIT.
1: Maximum number of repetitions has been reached since the last RSIT.
• TXBUFE: Transmission Buffer Empty
0: The signal Buffer Empty from the Transmit PDC channel is inactive.
1: The signal Buffer Empty from the Transmit PDC channel is active.
• RXBUFF: Reception Buffer Full
0: The signal Buffer Full from the Receive PDC channel is inactive.
1: The signal Buffer Full from the Receive PDC channel is active.
• NACK: Non Acknowledge
0: No Non Acknowledge has not been detected since the last RSTNACK.
1: At least one Non Acknowledge has been detected since the last RSTNACK.
• RIIC: Ring Indicator Input Change Flag
0: No input change has been detected on the RI pin since the last read of US_CSR.
1: At least one input change has been detected on the RI pin since the last read of US_CSR.
• DSRIC: Data Set Ready Input Change Flag
0: No input change has been detected on the DSR pin since the last read of US_CSR.
1: At least one input change has been detected on the DSR pin since the last read of US_CSR.
• DCDIC: Data Carrier Detect Input Change Flag
0: No input change has been detected on the DCD pin since the last read of US_CSR.
1: At least one input change has been detected on the DCD pin since the last read of US_CSR.
• CTSIC: Clear to Send Input Change Flag
0: No input change has been detected on the CTS pin since the last read of US_CSR.
1: At least one input change has been detected on the CTS pin since the last read of US_CSR.
• RI: Image of RI Input
0: RI is at 0.
1: RI is at 1.
486
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• DSR: Image of DSR Input
0: DSR is at 0
1: DSR is at 1.
• DCD: Image of DCD Input
0: DCD is at 0.
1: DCD is at 1.
• CTS: Image of CTS Input
0: CTS is at 0.
1: CTS is at 1.
• MANERR: Manchester Error
0: No Manchester error has been detected since the last RSTSTA.
1: At least one Manchester error has been detected since the last RSTSTA.
487
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.7
Name:
USART Receive Holding Register
US_RHR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
RXSYNH
14
–
13
–
12
–
11
–
10
–
9
–
8
RXCHR
7
6
5
4
3
2
1
0
RXCHR
• RXCHR: Received Character
Last character received if RXRDY is set.
• RXSYNH: Received Sync
0: Last Character received is a Data.
1: Last Character received is a Command.
488
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.8
Name:
USART Transmit Holding Register
US_THR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
TXSYNH
14
–
13
–
12
–
11
–
10
–
9
–
8
TXCHR
7
6
5
4
3
2
1
0
TXCHR
• TXCHR: Character to be Transmitted
Next character to be transmitted after the current character if TXRDY is not set.
• TXSYNH: Sync Field to be transmitted
0: The next character sent is encoded as a data. Start Frame Delimiter is DATA SYNC.
1: The next character sent is encoded as a command. Start Frame Delimiter is COMMAND SYNC.
489
6289C–ATARM–28-May-09
34.7.9
Name:
USART Baud Rate Generator Register
US_BRGR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
17
FP
16
15
14
13
12
11
10
9
8
3
2
1
0
CD
7
6
5
4
CD
• CD: Clock Divider
USART_MODE ≠ ISO7816
SYNC = 0
CD
OVER = 0
USART_MODE =
ISO7816
OVER = 1
0
1 to 65535
SYNC = 1
Baud Rate Clock Disabled
Baud Rate =
Selected Clock/16/CD
Baud Rate =
Selected Clock/8/CD
Baud Rate =
Selected Clock /CD
Baud Rate = Selected
Clock/CD/FI_DI_RATIO
• FP: Fractional Part
0: Fractional divider is disabled.
1 - 7: Baudrate resolution, defined by FP x 1/8.
490
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.10
Name:
USART Receiver Time-out Register
US_RTOR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TO
7
6
5
4
TO
• TO: Time-out Value
0: The Receiver Time-out is disabled.
1 - 65535: The Receiver Time-out is enabled and the Time-out delay is TO x Bit Period.
491
6289C–ATARM–28-May-09
34.7.11
Name:
USART Transmitter Timeguard Register
US_TTGR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
TG
• TG: Timeguard Value
0: The Transmitter Timeguard is disabled.
1 - 255: The Transmitter timeguard is enabled and the timeguard delay is TG x Bit Period.
492
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
34.7.12
Name:
USART FI DI RATIO Register
US_FIDI
Access Type:
Read/Write
Reset Value :
0x174
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
9
FI_DI_RATIO
8
7
6
5
4
3
2
1
0
FI_DI_RATIO
• FI_DI_RATIO: FI Over DI Ratio Value
0: If ISO7816 mode is selected, the Baud Rate Generator generates no signal.
1 - 2047: If ISO7816 mode is selected, the Baud Rate is the clock provided on SCK divided by FI_DI_RATIO.
34.7.13
Name:
USART Number of Errors Register
US_NER
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
NB_ERRORS
• NB_ERRORS: Number of Errors
Total number of errors that occurred during an ISO7816 transfer. This register automatically clears when read.
493
6289C–ATARM–28-May-09
34.7.14
Name:
USART Manchester Configuration Register
US_MAN
Access Type:
Read/Write
31
–
30
DRIFT
29
–
28
RX_MPOL
27
–
26
–
25
24
23
–
22
–
21
–
20
–
19
18
17
16
15
–
14
–
13
–
12
TX_MPOL
11
–
10
–
9
8
7
–
6
–
5
–
4
–
3
2
1
RX_PP
RX_PL
TX_PP
0
TX_PL
• TX_PL: Transmitter Preamble Length
0: The Transmitter Preamble pattern generation is disabled
1 - 15: The Preamble Length is TX_PL x Bit Period
• TX_PP: Transmitter Preamble Pattern
TX_PP
Preamble Pattern default polarity assumed (TX_MPOL field not set)
0
0
ALL_ONE
0
1
ALL_ZERO
1
0
ZERO_ONE
1
1
ONE_ZERO
• TX_MPOL: Transmitter Manchester Polarity
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.
1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.
• RX_PL: Receiver Preamble Length
0: The receiver preamble pattern detection is disabled
1 - 15: The detected preamble length is RX_PL x Bit Period
• RX_PP: Receiver Preamble Pattern detected
RX_PP
Preamble Pattern default polarity assumed (RX_MPOL field not set)
0
0
ALL_ONE
0
1
ALL_ZERO
1
0
ZERO_ONE
1
1
ONE_ZERO
• RX_MPOL: Receiver Manchester Polarity
494
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
0: Logic Zero is coded as a zero-to-one transition, Logic One is coded as a one-to-zero transition.
1: Logic Zero is coded as a one-to-zero transition, Logic One is coded as a zero-to-one transition.
• DRIFT: Drift compensation
0: The USART can not recover from an important clock drift
1: The USART can recover from clock drift. The 16X clock mode must be enabled.
495
6289C–ATARM–28-May-09
34.7.15
Name:
USART IrDA FILTER Register
US_IF
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
6
5
4
3
2
1
0
IRDA_FILTER
• IRDA_FILTER: IrDA Filter
Sets the filter of the IrDA demodulator.
496
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35. Serial Synchronous Controller (SSC)
35.1
Description
The Atmel Synchronous Serial Controller (SSC) provides a synchronous communication link
with external devices. It supports many serial synchronous communication protocols generally
used in audio and telecom applications such as I2S, Short Frame Sync, Long Frame Sync, etc.
The SSC contains an independent receiver and transmitter and a common clock divider. The
receiver and the transmitter each interface with three signals: the TD/RD signal for data, the
TK/RK signal for the clock and the TF/RF signal for the Frame Sync. The transfers can be programmed to start automatically or on different events detected on the Frame Sync signal.
The SSC’s high-level of programmability and its two dedicated PDC channels of up to 32 bits
permit a continuous high bit rate data transfer without processor intervention.
Featuring connection to two PDC channels, the SSC permits interfacing with low processor
overhead to the following:
• CODEC’s in master or slave mode
• DAC through dedicated serial interface, particularly I2S
• Magnetic card reader
497
6289C–ATARM–28-May-09
35.2
Block Diagram
Figure 35-1. Block Diagram
System
Bus
APB Bridge
PDC
Peripheral
Bus
TF
TK
PMC
TD
MCK
PIO
SSC Interface
RF
RK
Interrupt Control
RD
SSC Interrupt
35.3
Application Block Diagram
Figure 35-2. Application Block Diagram
OS or RTOS Driver
Power
Management
Interrupt
Management
Test
Management
SSC
Serial AUDIO
498
Codec
Time Slot
Management
Frame
Management
Line Interface
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.4
Pin Name List
Table 35-1.
I/O Lines Description
Pin Name
Pin Description
RF
Receiver Frame Synchro
Input/Output
RK
Receiver Clock
Input/Output
RD
Receiver Data
Input
TF
Transmitter Frame Synchro
Input/Output
TK
Transmitter Clock
Input/Output
TD
Transmitter Data
Output
35.5
35.5.1
Type
Product Dependencies
I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the SSC receiver, the PIO controller must be configured to dedicate the SSC
receiver I/O lines to the SSC peripheral mode.
Before using the SSC transmitter, the PIO controller must be configured to dedicate the SSC
transmitter I/O lines to the SSC peripheral mode.
35.5.2
Power Management
The SSC is not continuously clocked. The SSC interface may be clocked through the Power
Management Controller (PMC), therefore the programmer must first configure the PMC to
enable the SSC clock.
35.5.3
Interrupt
The SSC interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling interrupts requires programming the AIC before configuring the SSC.
All SSC interrupts can be enabled/disabled configuring the SSC Interrupt mask register. Each
pending and unmasked SSC interrupt will assert the SSC interrupt line. The SSC interrupt service routine can get the interrupt origin by reading the SSC interrupt status register.
35.6
Functional Description
This chapter contains the functional description of the following: SSC Functional Block, Clock
Management, Data format, Start, Transmitter, Receiver and Frame Sync.
The receiver and transmitter operate separately. However, they can work synchronously by programming the receiver to use the transmit clock and/or to start a data transfer when transmission
starts. Alternatively, this can be done by programming the transmitter to use the receive clock
and/or to start a data transfer when reception starts. The transmitter and the receiver can be programmed to operate with the clock signals provided on either the TK or RK pins. This allows the
SSC to support many slave-mode data transfers. The maximum clock speed allowed on the TK
and RK pins is the master clock divided by 2.
499
6289C–ATARM–28-May-09
Figure 35-3. SSC Functional Block Diagram
Transmitter
MCK
TK Input
Clock
Divider
Transmit Clock
Controller
RX clock
TF
RF
Start
Selector
TX clock
Clock Output
Controller
TK
Frame Sync
Controller
TF
Transmit Shift Register
TX PDC
APB
Transmit Holding
Register
TD
Transmit Sync
Holding Register
Load Shift
User
Interface
Receiver
RK Input
Receive Clock RX Clock
Controller
TX Clock
RF
TF
Start
Selector
Interrupt Control
RK
Frame Sync
Controller
RF
RD
Receive Shift Register
RX PDC
PDC
Clock Output
Controller
Receive Holding
Register
Receive Sync
Holding Register
Load Shift
AIC
35.6.1
Clock Management
The transmitter clock can be generated by:
• an external clock received on the TK I/O pad
• the receiver clock
• the internal clock divider
The receiver clock can be generated by:
• an external clock received on the RK I/O pad
• the transmitter clock
• the internal clock divider
Furthermore, the transmitter block can generate an external clock on the TK I/O pad, and the
receiver block can generate an external clock on the RK I/O pad.
This allows the SSC to support many Master and Slave Mode data transfers.
500
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.6.1.1
Clock Divider
Figure 35-4. Divided Clock Block Diagram
Clock Divider
SSC_CMR
MCK
/2
12-bit Counter
Divided Clock
The Master Clock divider is determined by the 12-bit field DIV counter and comparator (so its
maximal value is 4095) in the Clock Mode Register SSC_CMR, allowing a Master Clock division
by up to 8190. The Divided Clock is provided to both the Receiver and Transmitter. When this
field is programmed to 0, the Clock Divider is not used and remains inactive.
When DIV is set to a value equal to or greater than 1, the Divided Clock has a frequency of Master Clock divided by 2 times DIV. Each level of the Divided Clock has a duration of the Master
Clock multiplied by DIV. This ensures a 50% duty cycle for the Divided Clock regardless of
whether the DIV value is even or odd.
Figure 35-5.
Divided Clock Generation
Master Clock
Divided Clock
DIV = 1
Divided Clock Frequency = MCK/2
Master Clock
Divided Clock
DIV = 3
Divided Clock Frequency = MCK/6
Table 35-2.
35.6.1.2
Maximum
Minimum
MCK / 2
MCK / 8190
Transmitter Clock Management
The transmitter clock is generated from the receiver clock or the divider clock or an external
clock scanned on the TK I/O pad. The transmitter clock is selected by the CKS field in
SSC_TCMR (Transmit Clock Mode Register). Transmit Clock can be inverted independently by
the CKI bits in SSC_TCMR.
The transmitter can also drive the TK I/O pad continuously or be limited to the actual data transfer. The clock output is configured by the SSC_TCMR register. The Transmit Clock Inversion
(CKI) bits have no effect on the clock outputs. Programming the TCMR register to select TK pin
501
6289C–ATARM–28-May-09
(CKS field) and at the same time Continuous Transmit Clock (CKO field) might lead to unpredictable results.
Figure 35-6. Transmitter Clock Management
TK (pin)
Clock
Output
Tri_state
Controller
MUX
Receiver
Clock
Divider
Clock
Data Transfer
CKO
CKS
35.6.1.3
INV
MUX
Tri-state
Controller
CKI
CKG
Transmitter
Clock
Receiver Clock Management
The receiver clock is generated from the transmitter clock or the divider clock or an external
clock scanned on the RK I/O pad. The Receive Clock is selected by the CKS field in
SSC_RCMR (Receive Clock Mode Register). Receive Clocks can be inverted independently by
the CKI bits in SSC_RCMR.
The receiver can also drive the RK I/O pad continuously or be limited to the actual data transfer.
The clock output is configured by the SSC_RCMR register. The Receive Clock Inversion (CKI)
bits have no effect on the clock outputs. Programming the RCMR register to select RK pin (CKS
field) and at the same time Continuous Receive Clock (CKO field) can lead to unpredictable
results.
Figure 35-7. Receiver Clock Management
RK (pin)
Tri-state
Controller
MUX
Clock
Output
Transmitter
Clock
Divider
Clock
Data Transfer
CKO
CKS
502
INV
MUX
Tri-state
Controller
CKI
CKG
Receiver
Clock
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.6.1.4
Serial Clock Ratio Considerations
The Transmitter and the Receiver can be programmed to operate with the clock signals provided
on either the TK or RK pins. This allows the SSC to support many slave-mode data transfers. In
this case, the maximum clock speed allowed on the RK pin is:
– Master Clock divided by 2 if Receiver Frame Synchro is input
– Master Clock divided by 3 if Receiver Frame Synchro is output
In addition, the maximum clock speed allowed on the TK pin is:
– Master Clock divided by 6 if Transmit Frame Synchro is input
– Master Clock divided by 2 if Transmit Frame Synchro is output
35.6.2
Transmitter Operations
A transmitted frame is triggered by a start event and can be followed by synchronization data
before data transmission.
The start event is configured by setting the Transmit Clock Mode Register (SSC_TCMR). See
“Start” on page 504.
The frame synchronization is configured setting the Transmit Frame Mode Register
(SSC_TFMR). See “Frame Sync” on page 506.
To transmit data, the transmitter uses a shift register clocked by the transmitter clock signal and
the start mode selected in the SSC_TCMR. Data is written by the application to the SSC_THR
register then transferred to the shift register according to the data format selected.
When both the SSC_THR and the transmit shift register are empty, the status flag TXEMPTY is
set in SSC_SR. When the Transmit Holding register is transferred in the Transmit shift register,
the status flag TXRDY is set in SSC_SR and additional data can be loaded in the holding
register.
Figure 35-8. Transmitter Block Diagram
SSC_CR.TXEN
SSC_SR.TXEN
SSC_CR.TXDIS
SSC_TFMR.DATDEF
1
RF
Transmitter Clock
TF
Start
Selector
TD
0
SSC_TFMR.MSBF
Transmit Shift Register
SSC_TFMR.FSDEN
SSC_TCMR.STTDLY
SSC_TFMR.DATLEN
SSC_TCMR.STTDLY
SSC_TFMR.FSDEN
SSC_TFMR.DATNB
0
SSC_THR
1
SSC_TSHR
SSC_TFMR.FSLEN
503
6289C–ATARM–28-May-09
35.6.3
Receiver Operations
A received frame is triggered by a start event and can be followed by synchronization data
before data transmission.
The start event is configured setting the Receive Clock Mode Register (SSC_RCMR). See
“Start” on page 504.
The frame synchronization is configured setting the Receive Frame Mode Register
(SSC_RFMR). See “Frame Sync” on page 506.
The receiver uses a shift register clocked by the receiver clock signal and the start mode
selected in the SSC_RCMR. The data is transferred from the shift register depending on the
data format selected.
When the receiver shift register is full, the SSC transfers this data in the holding register, the status flag RXRDY is set in SSC_SR and the data can be read in the receiver holding register. If
another transfer occurs before read of the RHR register, the status flag OVERUN is set in
SSC_SR and the receiver shift register is transferred in the RHR register.
Figure 35-9. Receiver Block Diagram
SSC_CR.RXEN
SSC_SR.RXEN
SSC_CR.RXDIS
RF
Receiver Clock
TF
Start
Selector
SSC_RFMR.MSBF
SSC_RFMR.DATNB
Receive Shift Register
SSC_RSHR
SSC_RHR
SSC_RFMR.FSLEN
SSC_RFMR.DATLEN
RD
SSC_RCMR.STTDLY
35.6.4
Start
The transmitter and receiver can both be programmed to start their operations when an event
occurs, respectively in the Transmit Start Selection (START) field of SSC_TCMR and in the
Receive Start Selection (START) field of SSC_RCMR.
Under the following conditions the start event is independently programmable:
• Continuous. In this case, the transmission starts as soon as a word is written in SSC_THR
and the reception starts as soon as the Receiver is enabled.
• Synchronously with the transmitter/receiver
• On detection of a falling/rising edge on TF/RF
• On detection of a low level/high level on TF/RF
• On detection of a level change or an edge on TF/RF
504
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
A start can be programmed in the same manner on either side of the Transmit/Receive Clock
Register (RCMR/TCMR). Thus, the start could be on TF (Transmit) or RF (Receive).
Moreover, the Receiver can start when data is detected in the bit stream with the Compare
Functions.
Detection on TF/RF input/output is done by the field FSOS of the Transmit/Receive Frame Mode
Register (TFMR/RFMR).
Figure 35-10. Transmit Start Mode
TK
TF
(Input)
Start = Low Level on TF
Start = Falling Edge on TF
Start = High Level on TF
Start = Rising Edge on TF
Start = Level Change on TF
Start = Any Edge on TF
TD
(Output)
TD
(Output)
X
BO
STTDLY
BO
X
B1
STTDLY
BO
X
TD
(Output)
B1
STTDLY
TD
(Output)
BO
X
B1
STTDLY
TD
(Output)
TD
(Output)
B1
BO
X
B1
BO
B1
STTDLY
X
B1
BO
BO
B1
STTDLY
Figure 35-11. Receive Pulse/Edge Start Modes
RK
RF
(Input)
Start = Low Level on RF
Start = Falling Edge on RF
Start = High Level on RF
Start = Rising Edge on RF
Start = Level Change on RF
Start = Any Edge on RF
RD
(Input)
RD
(Input)
X
BO
STTDLY
BO
X
B1
STTDLY
BO
X
RD
(Input)
B1
STTDLY
RD
(Input)
BO
X
B1
STTDLY
RD
(Input)
RD
(Input)
B1
BO
X
B1
BO
B1
STTDLY
X
BO
B1
BO
B1
STTDLY
505
6289C–ATARM–28-May-09
35.6.5
Frame Sync
The Transmitter and Receiver Frame Sync pins, TF and RF, can be programmed to generate
different kinds of frame synchronization signals. The Frame Sync Output Selection (FSOS) field
in the Receive Frame Mode Register (SSC_RFMR) and in the Transmit Frame Mode Register
(SSC_TFMR) are used to select the required waveform.
• Programmable low or high levels during data transfer are supported.
• Programmable high levels before the start of data transfers or toggling are also supported.
If a pulse waveform is selected, the Frame Sync Length (FSLEN) field in SSC_RFMR and
SSC_TFMR programs the length of the pulse, from 1 bit time up to 256 bit time.
The periodicity of the Receive and Transmit Frame Sync pulse output can be programmed
through the Period Divider Selection (PERIOD) field in SSC_RCMR and SSC_TCMR.
35.6.5.1
Frame Sync Data
Frame Sync Data transmits or receives a specific tag during the Frame Sync signal.
During the Frame Sync signal, the Receiver can sample the RD line and store the data in the
Receive Sync Holding Register and the transmitter can transfer Transmit Sync Holding Register
in the Shifter Register. The data length to be sampled/shifted out during the Frame Sync signal
is programmed by the FSLEN field in SSC_RFMR/SSC_TFMR and has a maximum value of 16.
Concerning the Receive Frame Sync Data operation, if the Frame Sync Length is equal to or
lower than the delay between the start event and the actual data reception, the data sampling
operation is performed in the Receive Sync Holding Register through the Receive Shift Register.
The Transmit Frame Sync Operation is performed by the transmitter only if the bit Frame Sync
Data Enable (FSDEN) in SSC_TFMR is set. If the Frame Sync length is equal to or lower than
the delay between the start event and the actual data transmission, the normal transmission has
priority and the data contained in the Transmit Sync Holding Register is transferred in the Transmit Register, then shifted out.
35.6.5.2
35.6.6
Frame Sync Edge Detection
The Frame Sync Edge detection is programmed by the FSEDGE field in
SSC_RFMR/SSC_TFMR. This sets the corresponding flags RXSYN/TXSYN in the SSC Status
Register (SSC_SR) on frame synchro edge detection (signals RF/TF).
Receive Compare Modes
Figure 35-12. Receive Compare Modes
RK
RD
(Input)
CMP0
CMP1
CMP2
CMP3
Ignored
B0
B1
B2
Start
FSLEN
Up to 16 Bits
(4 in This Example)
506
STDLY
DATLEN
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.6.6.1
35.6.7
Compare Functions
Length of the comparison patterns (Compare 0, Compare 1) and thus the number of bits they
are compared to is defined by FSLEN, but with a maximum value of 16 bits. Comparison is
always done by comparing the last bits received with the comparison pattern. Compare 0 can be
one start event of the Receiver. In this case, the receiver compares at each new sample the last
bits received at the Compare 0 pattern contained in the Compare 0 Register (SSC_RC0R).
When this start event is selected, the user can program the Receiver to start a new data transfer
either by writing a new Compare 0, or by receiving continuously until Compare 1 occurs. This
selection is done with the bit (STOP) in SSC_RCMR.
Data Format
The data framing format of both the transmitter and the receiver are programmable through the
Transmitter Frame Mode Register (SSC_TFMR) and the Receiver Frame Mode Register
(SSC_RFMR). In either case, the user can independently select:
• the event that starts the data transfer (START)
• the delay in number of bit periods between the start event and the first data bit (STTDLY)
• the length of the data (DATLEN)
• the number of data to be transferred for each start event (DATNB).
• the length of synchronization transferred for each start event (FSLEN)
• the bit sense: most or lowest significant bit first (MSBF)
Additionally, the transmitter can be used to transfer synchronization and select the level driven
on the TD pin while not in data transfer operation. This is done respectively by the Frame Sync
Data Enable (FSDEN) and by the Data Default Value (DATDEF) bits in SSC_TFMR.
507
6289C–ATARM–28-May-09
Table 35-3.
Data Frame Registers
Transmitter
Receiver
Field
Length
Comment
SSC_TFMR
SSC_RFMR
DATLEN
Up to 32
Size of word
SSC_TFMR
SSC_RFMR
DATNB
Up to 16
Number of words transmitted in frame
SSC_TFMR
SSC_RFMR
MSBF
SSC_TFMR
SSC_RFMR
FSLEN
Up to 16
Size of Synchro data register
SSC_TFMR
DATDEF
0 or 1
Data default value ended
SSC_TFMR
FSDEN
Most significant bit first
Enable send SSC_TSHR
SSC_TCMR
SSC_RCMR
PERIOD
Up to 512
Frame size
SSC_TCMR
SSC_RCMR
STTDLY
Up to 255
Size of transmit start delay
Figure 35-13. Transmit and Receive Frame Format in Edge/Pulse Start Modes
Start
Start
PERIOD
TF/RF
(1)
FSLEN
TD
(If FSDEN = 1)
TD
(If FSDEN = 0)
RD
Sync Data
Default
From SSC_TSHR FromDATDEF
Default
Data
From SSC_THR
Ignored
To SSC_RSHR
STTDLY
From SSC_THR
Default
From SSC_THR
Data
Data
To SSC_RHR
To SSC_RHR
DATLEN
DATLEN
Sync Data
FromDATDEF
Data
Data
From DATDEF
Sync Data
Data
From SSC_THR
Default
From DATDEF
Ignored
Sync Data
DATNB
Note:
508
1. Example of input on falling edge of TF/RF.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 35-14. Transmit Frame Format in Continuous Mode
Start
Data
TD
Default
Data
From SSC_THR
From SSC_THR
DATLEN
DATLEN
Start: 1. TXEMPTY set to 1
2. Write into the SSC_THR
Note:
1. STTDLY is set to 0. In this example, SSC_THR is loaded twice. FSDEN value has no effect on
the transmission. SyncData cannot be output in continuous mode.
Figure 35-15. Receive Frame Format in Continuous Mode
Start = Enable Receiver
RD
Note:
35.6.8
Data
Data
To SSC_RHR
To SSC_RHR
DATLEN
DATLEN
1. STTDLY is set to 0.
Loop Mode
The receiver can be programmed to receive transmissions from the transmitter. This is done by
setting the Loop Mode (LOOP) bit in SSC_RFMR. In this case, RD is connected to TD, RF is
connected to TF and RK is connected to TK.
35.6.9
Interrupt
Most bits in SSC_SR have a corresponding bit in interrupt management registers.
The SSC can be programmed to generate an interrupt when it detects an event. The interrupt is
controlled by writing SSC_IER (Interrupt Enable Register) and SSC_IDR (Interrupt Disable Register) These registers enable and disable, respectively, the corresponding interrupt by setting
and clearing the corresponding bit in SSC_IMR (Interrupt Mask Register), which controls the
generation of interrupts by asserting the SSC interrupt line connected to the AIC.
509
6289C–ATARM–28-May-09
Figure 35-16. Interrupt Block Diagram
SSC_IMR
SSC_IER
PDC
SSC_IDR
Set
Clear
TXBUFE
ENDTX
Transmitter
TXRDY
TXEMPTY
TXSYNC
Interrupt
Control
RXBUFF
ENDRX
SSC Interrupt
Receiver
RXRDY
OVRUN
RXSYNC
35.7
SSC Application Examples
The SSC can support several serial communication modes used in audio or high speed serial
links. Some standard applications are shown in the following figures. All serial link applications
supported by the SSC are not listed here.
Figure 35-17. Audio Application Block Diagram
Clock SCK
TK
Word Select WS
TF
I2S
RECEIVER
Data SD
SSC
TD
RD
Clock SCK
RF
Word Select WS
RK
Data SD
MSB
LSB
Left Channel
510
MSB
Right Channel
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 35-18. Codec Application Block Diagram
Serial Data Clock (SCLK)
TK
Frame sync (FSYNC)
TF
CODEC
Serial Data Out
TD
SSC
Serial Data In
RD
RF
RK
Serial Data Clock (SCLK)
Frame sync (FSYNC)
First Time Slot
Dstart
Dend
Serial Data Out
Serial Data In
Figure 35-19. Time Slot Application Block Diagram
SCLK
TK
FSYNC
TF
CODEC
First
Time Slot
Data Out
TD
SSC
RD
Data in
RF
RK
CODEC
Second
Time Slot
Serial Data Clock (SCLK)
Frame sync (FSYNC)
First Time Slot
Dstart
Second Time Slot
Dend
Serial Data Out
Serial Data in
511
6289C–ATARM–28-May-09
35.8
Synchronous Serial Controller (SSC) User Interface
Table 35-4.
Register Mapping
Offset
Register Name
Access
Reset
SSC_CR
Write
–
SSC_CMR
Read/Write
0x0
0x0
Control Register
0x4
Clock Mode Register
0x8
Reserved
–
–
–
0xC
Reserved
–
–
–
0x10
Receive Clock Mode Register
SSC_RCMR
Read/Write
0x0
0x14
Receive Frame Mode Register
SSC_RFMR
Read/Write
0x0
0x18
Transmit Clock Mode Register
SSC_TCMR
Read/Write
0x0
0x1C
Transmit Frame Mode Register
SSC_TFMR
Read/Write
0x0
0x20
Receive Holding Register
SSC_RHR
Read
0x0
0x24
Transmit Holding Register
SSC_THR
Write
–
0x28
Reserved
–
–
–
0x2C
Reserved
–
–
–
0x30
Receive Sync. Holding Register
SSC_RSHR
Read
0x0
0x34
Transmit Sync. Holding Register
SSC_TSHR
Read/Write
0x0
0x38
Receive Compare 0 Register
SSC_RC0R
Read/Write
0x0
0x3C
Receive Compare 1 Register
SSC_RC1R
Read/Write
0x0
0x40
Status Register
SSC_SR
Read
0x000000CC
0x44
Interrupt Enable Register
SSC_IER
Write
–
0x48
Interrupt Disable Register
SSC_IDR
Write
–
0x4C
Interrupt Mask Register
SSC_IMR
Read
0x0
Reserved
–
–
–
Reserved for Peripheral Data Controller (PDC)
–
–
–
0x50-0xFC
0x100- 0x124
512
Register
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.1
Name:
SSC Control Register
SSC_CR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
SWRST
14
–
13
–
12
–
11
–
10
–
9
TXDIS
8
TXEN
7
–
6
–
5
–
4
–
3
–
2
–
1
RXDIS
0
RXEN
• RXEN: Receive Enable
0: No effect.
1: Enables Receive if RXDIS is not set.
• RXDIS: Receive Disable
0: No effect.
1: Disables Receive. If a character is currently being received, disables at end of current character reception.
• TXEN: Transmit Enable
0: No effect.
1: Enables Transmit if TXDIS is not set.
• TXDIS: Transmit Disable
0: No effect.
1: Disables Transmit. If a character is currently being transmitted, disables at end of current character transmission.
• SWRST: Software Reset
0: No effect.
1: Performs a software reset. Has priority on any other bit in SSC_CR.
513
6289C–ATARM–28-May-09
35.8.2
Name:
SSC Clock Mode Register
SSC_CMR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
10
9
8
7
6
5
4
1
0
DIV
3
2
DIV
• DIV: Clock Divider
0: The Clock Divider is not active.
Any Other Value: The Divided Clock equals the Master Clock divided by 2 times DIV. The maximum bit rate is MCK/2. The
minimum bit rate is MCK/2 x 4095 = MCK/8190.
514
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.3
Name:
SSC Receive Clock Mode Register
SSC_RCMR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
10
9
8
PERIOD
23
22
21
20
STDDLY
15
–
7
14
–
13
–
12
STOP
11
6
5
CKI
4
3
CKO
CKG
START
2
1
0
CKS
• CKS: Receive Clock Selection
CKS
Selected Receive Clock
0x0
Divided Clock
0x1
TK Clock signal
0x2
RK pin
0x3
Reserved
• CKO: Receive Clock Output Mode Selection
CKO
Receive Clock Output Mode
0x0
None
0x1
Continuous Receive Clock
Output
0x2
Receive Clock only during data transfers
Output
0x3-0x7
RK Pin
Input-only
Reserved
• CKI: Receive Clock Inversion
0: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock falling edge. The Frame Sync signal output is shifted out on Receive Clock rising edge.
1: The data inputs (Data and Frame Sync signals) are sampled on Receive Clock rising edge. The Frame Sync signal output is shifted out on Receive Clock falling edge.
CKI affects only the Receive Clock and not the output clock signal.
515
6289C–ATARM–28-May-09
• CKG: Receive Clock Gating Selection
CKG
Receive Clock Gating
0x0
None, continuous clock
0x1
Receive Clock enabled only if RF Low
0x2
Receive Clock enabled only if RF High
0x3
Reserved
• START: Receive Start Selection
START
Receive Start
0x0
Continuous, as soon as the receiver is enabled, and immediately after the end of transfer of the previous data.
0x1
Transmit start
0x2
Detection of a low level on RF signal
0x3
Detection of a high level on RF signal
0x4
Detection of a falling edge on RF signal
0x5
Detection of a rising edge on RF signal
0x6
Detection of any level change on RF signal
0x7
Detection of any edge on RF signal
0x8
Compare 0
0x9-0xF
Reserved
• STOP: Receive Stop Selection
0: After completion of a data transfer when starting with a Compare 0, the receiver stops the data transfer and waits for a
new compare 0.
1: After starting a receive with a Compare 0, the receiver operates in a continuous mode until a Compare 1 is detected.
• STTDLY: Receive Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of reception.
When the Receiver is programmed to start synchronously with the Transmitter, the delay is also applied.
Note: It is very important that STTDLY be set carefully. If STTDLY must be set, it should be done in relation to TAG
(Receive Sync Data) reception.
• PERIOD: Receive Period Divider Selection
This field selects the divider to apply to the selected Receive Clock in order to generate a new Frame Sync Signal. If 0, no
PERIOD signal is generated. If not 0, a PERIOD signal is generated each 2 x (PERIOD+1) Receive Clock.
516
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.4
Name:
SSC Receive Frame Mode Register
SSC_RFMR
Access Type:
Read/Write
31
FSLEN_EXT
30
FSLEN_EXT
29
FSLEN_EXT
FSLEN_EXT
23
–
22
15
–
7
MSBF
28
27
–
26
–
25
–
24
FSEDGE
21
FSOS
20
19
18
17
16
14
–
13
–
12
–
11
9
8
6
–
5
LOOP
4
3
1
0
FSLEN
10
DATNB
2
DATLEN
• DATLEN: Data Length
0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Receiver. If DATLEN is lower or equal to 7, data transfers are in bytes. If DATLEN is between 8 and
15 (included), half-words are transferred, and for any other value, 32-bit words are transferred.
• LOOP: Loop Mode
0: Normal operating mode.
1: RD is driven by TD, RF is driven by TF and TK drives RK.
• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is sampled first in the bit stream.
1: The most significant bit of the data register is sampled first in the bit stream.
• DATNB: Data Number per Frame
This field defines the number of data words to be received after each transfer start, which is equal to (DATNB + 1).
• FSLEN: Receive Frame Sync Length
This field defines the number of bits sampled and stored in the Receive Sync Data Register. When this mode is selected by
the START field in the Receive Clock Mode Register, it also determines the length of the sampled data to be compared to
the Compare 0 or Compare 1 register.
This field is used with FSLEN_EXT to determine the pulse length of the Receive Frame Sync signal.
Pulse length is equal to FSLEN + (FSLEN_EXT * 16) + 1 Receive Clock periods.
517
6289C–ATARM–28-May-09
• FSOS: Receive Frame Sync Output Selection
FSOS
Selected Receive Frame Sync Signal
RF Pin
0x0
None
0x1
Negative Pulse
Output
0x2
Positive Pulse
Output
0x3
Driven Low during data transfer
Output
0x4
Driven High during data transfer
Output
0x5
Toggling at each start of data transfer
Output
0x6-0x7
Input-only
Reserved
Undefined
• FSEDGE: Frame Sync Edge Detection
Determines which edge on Frame Sync will generate the interrupt RXSYN in the SSC Status Register.
FSEDGE
Frame Sync Edge Detection
0x0
Positive Edge Detection
0x1
Negative Edge Detection
• FSLEN_EXT: FSLEN Field Extension
Extends FSLEN field. For details, refer to FSLEN bit description on page 517.
518
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.5
Name:
SSC Transmit Clock Mode Register
SSC_TCMR
Access Type:
31
Read/Write
30
29
28
27
26
25
24
19
18
17
16
10
9
8
PERIOD
23
22
21
20
STTDLY
15
–
7
14
–
13
–
12
–
11
6
5
CKI
4
3
CKO
CKG
START
2
1
0
CKS
• CKS: Transmit Clock Selection
CKS
Selected Transmit Clock
0x0
Divided Clock
0x1
RK Clock signal
0x2
TK Pin
0x3
Reserved
• CKO: Transmit Clock Output Mode Selection
CKO
Transmit Clock Output Mode
0x0
None
0x1
Continuous Transmit Clock
Output
0x2
Transmit Clock only during data transfers
Output
0x3-0x7
TK pin
Input-only
Reserved
• CKI: Transmit Clock Inversion
0: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock falling edge. The Frame sync signal
input is sampled on Transmit clock rising edge.
1: The data outputs (Data and Frame Sync signals) are shifted out on Transmit Clock rising edge. The Frame sync signal
input is sampled on Transmit clock falling edge.
CKI affects only the Transmit Clock and not the output clock signal.
519
6289C–ATARM–28-May-09
• CKG: Transmit Clock Gating Selection
CKG
Transmit Clock Gating
0x0
None, continuous clock
0x1
Transmit Clock enabled only if TF Low
0x2
Transmit Clock enabled only if TF High
0x3
Reserved
• START: Transmit Start Selection
START
Transmit Start
0x0
Continuous, as soon as a word is written in the SSC_THR Register (if Transmit is enabled), and
immediately after the end of transfer of the previous data.
0x1
Receive start
0x2
Detection of a low level on TF signal
0x3
Detection of a high level on TF signal
0x4
Detection of a falling edge on TF signal
0x5
Detection of a rising edge on TF signal
0x6
Detection of any level change on TF signal
0x7
Detection of any edge on TF signal
0x8 - 0xF
Reserved
• STTDLY: Transmit Start Delay
If STTDLY is not 0, a delay of STTDLY clock cycles is inserted between the start event and the actual start of transmission
of data. When the Transmitter is programmed to start synchronously with the Receiver, the delay is also applied.
Note: STTDLY must be set carefully. If STTDLY is too short in respect to TAG (Transmit Sync Data) emission, data is emitted instead of the end of TAG.
• PERIOD: Transmit Period Divider Selection
This field selects the divider to apply to the selected Transmit Clock to generate a new Frame Sync Signal. If 0, no period
signal is generated. If not 0, a period signal is generated at each 2 x (PERIOD+1) Transmit Clock.
520
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.6
Name:
SSC Transmit Frame Mode Register
SSC_TFMR
Access Type:
Read/Write
31
FSLEN_EXT
30
FSLEN_EXT
29
FSLEN_EXT
FSLEN_EXT
23
FSDEN
22
15
–
7
MSBF
28
27
–
26
–
25
–
24
FSEDGE
21
FSOS
20
19
18
17
16
14
–
13
–
12
–
11
9
8
6
–
5
DATDEF
4
3
1
0
FSLEN
10
DATNB
2
DATLEN
• DATLEN: Data Length
0: Forbidden value (1-bit data length not supported).
Any other value: The bit stream contains DATLEN + 1 data bits. Moreover, it defines the transfer size performed by the
PDC2 assigned to the Transmit. If DATLEN is lower or equal to 7, data transfers are bytes, if DATLEN is between 8 and 15
(included), half-words are transferred, and for any other value, 32-bit words are transferred.
• DATDEF: Data Default Value
This bit defines the level driven on the TD pin while out of transmission. Note that if the pin is defined as multi-drive by the
PIO Controller, the pin is enabled only if the SCC TD output is 1.
• MSBF: Most Significant Bit First
0: The lowest significant bit of the data register is shifted out first in the bit stream.
1: The most significant bit of the data register is shifted out first in the bit stream.
• DATNB: Data Number per frame
This field defines the number of data words to be transferred after each transfer start, which is equal to (DATNB +1).
• FSLEN: Transmit Frame Sync Length
This field defines the length of the Transmit Frame Sync signal and the number of bits shifted out from the Transmit Sync
Data Register if FSDEN is 1.
This field is used with FSLEN_EXT to determine the pulse length of the Transmit Frame Sync signal.
Pulse length is equal to FSLEN + (FSLEN_EXT * 16) + 1 Transmit Clock periods.
521
6289C–ATARM–28-May-09
• FSOS: Transmit Frame Sync Output Selection
FSOS
Selected Transmit Frame Sync Signal
TF Pin
0x0
None
0x1
Negative Pulse
Output
0x2
Positive Pulse
Output
0x3
Driven Low during data transfer
Output
0x4
Driven High during data transfer
Output
0x5
Toggling at each start of data transfer
Output
0x6-0x7
Reserved
Input-only
Undefined
• FSDEN: Frame Sync Data Enable
0: The TD line is driven with the default value during the Transmit Frame Sync signal.
1: SSC_TSHR value is shifted out during the transmission of the Transmit Frame Sync signal.
• FSEDGE: Frame Sync Edge Detection
Determines which edge on frame sync will generate the interrupt TXSYN (Status Register).
FSEDGE
Frame Sync Edge Detection
0x0
Positive Edge Detection
0x1
Negative Edge Detection
• FSLEN_EXT: FSLEN Field Extension
Extends FSLEN field. For details, refer to FSLEN bit description on page 521.
522
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.7
Name:
SSC Receive Holding Register
SSC_RHR
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RDAT
23
22
21
20
RDAT
15
14
13
12
RDAT
7
6
5
4
RDAT
• RDAT: Receive Data
Right aligned regardless of the number of data bits defined by DATLEN in SSC_RFMR.
35.8.8
Name:
SSC Transmit Holding Register
SSC_THR
Access Type:
31
Write-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
TDAT
23
22
21
20
TDAT
15
14
13
12
TDAT
7
6
5
4
TDAT
• TDAT: Transmit Data
Right aligned regardless of the number of data bits defined by DATLEN in SSC_TFMR.
523
6289C–ATARM–28-May-09
35.8.9
Name:
SSC Receive Synchronization Holding Register
SSC_RSHR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
RSDAT
7
6
5
4
RSDAT
• RSDAT: Receive Synchronization Data
35.8.10
Name:
SSC Transmit Synchronization Holding Register
SSC_TSHR
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
TSDAT
7
6
5
4
TSDAT
• TSDAT: Transmit Synchronization Data
524
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.11
Name:
SSC Receive Compare 0 Register
SSC_RC0R
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
CP0
7
6
5
4
CP0
• CP0: Receive Compare Data 0
525
6289C–ATARM–28-May-09
35.8.12
Name:
SSC Receive Compare 1 Register
SSC_RC1R
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
14
13
12
11
10
9
8
3
2
1
0
CP1
7
6
5
4
CP1
• CP1: Receive Compare Data 1
526
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.13
Name:
SSC Status Register
SSC_SR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
RXEN
16
TXEN
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready
0: Data has been loaded in SSC_THR and is waiting to be loaded in the Transmit Shift Register (TSR).
1: SSC_THR is empty.
• TXEMPTY: Transmit Empty
0: Data remains in SSC_THR or is currently transmitted from TSR.
1: Last data written in SSC_THR has been loaded in TSR and last data loaded in TSR has been transmitted.
• ENDTX: End of Transmission
0: The register SSC_TCR has not reached 0 since the last write in SSC_TCR or SSC_TNCR.
1: The register SSC_TCR has reached 0 since the last write in SSC_TCR or SSC_TNCR.
• TXBUFE: Transmit Buffer Empty
0: SSC_TCR or SSC_TNCR have a value other than 0.
1: Both SSC_TCR and SSC_TNCR have a value of 0.
• RXRDY: Receive Ready
0: SSC_RHR is empty.
1: Data has been received and loaded in SSC_RHR.
• OVRUN: Receive Overrun
0: No data has been loaded in SSC_RHR while previous data has not been read since the last read of the Status Register.
1: Data has been loaded in SSC_RHR while previous data has not yet been read since the last read of the Status Register.
• ENDRX: End of Reception
0: Data is written on the Receive Counter Register or Receive Next Counter Register.
1: End of PDC transfer when Receive Counter Register has arrived at zero.
• RXBUFF: Receive Buffer Full
0: SSC_RCR or SSC_RNCR have a value other than 0.
527
6289C–ATARM–28-May-09
1: Both SSC_RCR and SSC_RNCR have a value of 0.
• CP0: Compare 0
0: A compare 0 has not occurred since the last read of the Status Register.
1: A compare 0 has occurred since the last read of the Status Register.
• CP1: Compare 1
0: A compare 1 has not occurred since the last read of the Status Register.
1: A compare 1 has occurred since the last read of the Status Register.
• TXSYN: Transmit Sync
0: A Tx Sync has not occurred since the last read of the Status Register.
1: A Tx Sync has occurred since the last read of the Status Register.
• RXSYN: Receive Sync
0: An Rx Sync has not occurred since the last read of the Status Register.
1: An Rx Sync has occurred since the last read of the Status Register.
• TXEN: Transmit Enable
0: Transmit is disabled.
1: Transmit is enabled.
• RXEN: Receive Enable
0: Receive is disabled.
1: Receive is enabled.
528
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.14
Name:
SSC Interrupt Enable Register
SSC_IER
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Enable
0: No effect.
1: Enables the Transmit Ready Interrupt.
• TXEMPTY: Transmit Empty Interrupt Enable
0: No effect.
1: Enables the Transmit Empty Interrupt.
• ENDTX: End of Transmission Interrupt Enable
0: No effect.
1: Enables the End of Transmission Interrupt.
• TXBUFE: Transmit Buffer Empty Interrupt Enable
0: No effect.
1: Enables the Transmit Buffer Empty Interrupt
• RXRDY: Receive Ready Interrupt Enable
0: No effect.
1: Enables the Receive Ready Interrupt.
• OVRUN: Receive Overrun Interrupt Enable
0: No effect.
1: Enables the Receive Overrun Interrupt.
• ENDRX: End of Reception Interrupt Enable
0: No effect.
1: Enables the End of Reception Interrupt.
• RXBUFF: Receive Buffer Full Interrupt Enable
0: No effect.
529
6289C–ATARM–28-May-09
1: Enables the Receive Buffer Full Interrupt.
• CP0: Compare 0 Interrupt Enable
0: No effect.
1: Enables the Compare 0 Interrupt.
• CP1: Compare 1 Interrupt Enable
0: No effect.
1: Enables the Compare 1 Interrupt.
• TXSYN: Tx Sync Interrupt Enable
0: No effect.
1: Enables the Tx Sync Interrupt.
• RXSYN: Rx Sync Interrupt Enable
0: No effect.
1: Enables the Rx Sync Interrupt.
530
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.15
Name:
SSC Interrupt Disable Register
SSC_IDR
Access Type:
Write-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUFF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Disable
0: No effect.
1: Disables the Transmit Ready Interrupt.
• TXEMPTY: Transmit Empty Interrupt Disable
0: No effect.
1: Disables the Transmit Empty Interrupt.
• ENDTX: End of Transmission Interrupt Disable
0: No effect.
1: Disables the End of Transmission Interrupt.
• TXBUFE: Transmit Buffer Empty Interrupt Disable
0: No effect.
1: Disables the Transmit Buffer Empty Interrupt.
• RXRDY: Receive Ready Interrupt Disable
0: No effect.
1: Disables the Receive Ready Interrupt.
• OVRUN: Receive Overrun Interrupt Disable
0: No effect.
1: Disables the Receive Overrun Interrupt.
• ENDRX: End of Reception Interrupt Disable
0: No effect.
1: Disables the End of Reception Interrupt.
• RXBUFF: Receive Buffer Full Interrupt Disable
0: No effect.
531
6289C–ATARM–28-May-09
1: Disables the Receive Buffer Full Interrupt.
• CP0: Compare 0 Interrupt Disable
0: No effect.
1: Disables the Compare 0 Interrupt.
• CP1: Compare 1 Interrupt Disable
0: No effect.
1: Disables the Compare 1 Interrupt.
• TXSYN: Tx Sync Interrupt Enable
0: No effect.
1: Disables the Tx Sync Interrupt.
• RXSYN: Rx Sync Interrupt Enable
0: No effect.
1: Disables the Rx Sync Interrupt.
532
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
35.8.16
Name:
SSC Interrupt Mask Register
SSC_IMR
Access Type:
Read-only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
RXSYN
10
TXSYN
9
CP1
8
CP0
7
RXBUF
6
ENDRX
5
OVRUN
4
RXRDY
3
TXBUFE
2
ENDTX
1
TXEMPTY
0
TXRDY
• TXRDY: Transmit Ready Interrupt Mask
0: The Transmit Ready Interrupt is disabled.
1: The Transmit Ready Interrupt is enabled.
• TXEMPTY: Transmit Empty Interrupt Mask
0: The Transmit Empty Interrupt is disabled.
1: The Transmit Empty Interrupt is enabled.
• ENDTX: End of Transmission Interrupt Mask
0: The End of Transmission Interrupt is disabled.
1: The End of Transmission Interrupt is enabled.
• TXBUFE: Transmit Buffer Empty Interrupt Mask
0: The Transmit Buffer Empty Interrupt is disabled.
1: The Transmit Buffer Empty Interrupt is enabled.
• RXRDY: Receive Ready Interrupt Mask
0: The Receive Ready Interrupt is disabled.
1: The Receive Ready Interrupt is enabled.
• OVRUN: Receive Overrun Interrupt Mask
0: The Receive Overrun Interrupt is disabled.
1: The Receive Overrun Interrupt is enabled.
• ENDRX: End of Reception Interrupt Mask
0: The End of Reception Interrupt is disabled.
1: The End of Reception Interrupt is enabled.
• RXBUFF: Receive Buffer Full Interrupt Mask
0: The Receive Buffer Full Interrupt is disabled.
533
6289C–ATARM–28-May-09
1: The Receive Buffer Full Interrupt is enabled.
• CP0: Compare 0 Interrupt Mask
0: The Compare 0 Interrupt is disabled.
1: The Compare 0 Interrupt is enabled.
• CP1: Compare 1 Interrupt Mask
0: The Compare 1 Interrupt is disabled.
1: The Compare 1 Interrupt is enabled.
• TXSYN: Tx Sync Interrupt Mask
0: The Tx Sync Interrupt is disabled.
1: The Tx Sync Interrupt is enabled.
• RXSYN: Rx Sync Interrupt Mask
0: The Rx Sync Interrupt is disabled.
1: The Rx Sync Interrupt is enabled.
534
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36. Timer Counter (TC)
36.1
Description
The Timer Counter (TC) includes three identical 16-bit Timer Counter channels.
Each channel can be independently programmed to perform a wide range of functions including
frequency measurement, event counting, interval measurement, pulse generation, delay timing
and pulse width modulation.
Each channel has three external clock inputs, five internal clock inputs and two multi-purpose
input/output signals which can be configured by the user. Each channel drives an internal interrupt signal which can be programmed to generate processor interrupts.
The Timer Counter block has two global registers which act upon all three TC channels.
The Block Control Register allows the three channels to be started simultaneously with the same
instruction.
The Block Mode Register defines the external clock inputs for each channel, allowing them to be
chained.
Table 36-1 gives the assignment of the device Timer Counter clock inputs common to Timer
Counter 0 to 2
Table 36-1.
Timer Counter Clock Assignment
Name
Definition
TIMER_CLOCK1
MCK/2
TIMER_CLOCK2
MCK/8
TIMER_CLOCK3
MCK/32
TIMER_CLOCK4
MCK/128
TIMER_CLOCK5
SLCK
535
6289C–ATARM–28-May-09
36.2
Block Diagram
Figure 36-1. Timer Counter Block Diagram
Parallel I/O
Controller
TIMER_CLOCK1
TCLK0
TIMER_CLOCK2
TIOA1
XC0
TIOA2
TIMER_CLOCK3
XC1
TCLK1
TIMER_CLOCK4
Timer/Counter
Channel 0
TIOA
TIOA0
TIOB0
TIOA0
TIOB
XC2
TCLK2
TIMER_CLOCK5
TC0XC0S
TIOB0
SYNC
TCLK0
TCLK1
TCLK2
INT0
TCLK0
XC0
TCLK1
TIOA0
XC1
Timer/Counter
Channel 1
TIOA
TIOA1
TIOB1
TIOA1
TIOB
XC2
TIOA2
TCLK2
TC1XC1S
TCLK0
XC0
TCLK1
XC1
TCLK2
XC2
TIOB1
SYNC
Timer/Counter
Channel 2
INT1
TIOA
TIOA2
TIOB2
TIOA2
TIOB
TIOA0
TIOA1
TC2XC2S
TIOB2
SYNC
INT2
Timer Counter
Advanced
Interrupt
Controller
Table 36-2.
Signal Name Description
Block/Channel
Signal Name
XC0, XC1, XC2
Channel Signal
External Clock Inputs
TIOA
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Output
TIOB
Capture Mode: Timer Counter Input
Waveform Mode: Timer Counter Input/Output
INT
SYNC
536
Description
Interrupt Signal Output
Synchronization Input Signal
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.3
Pin Name List
Table 36-3.
36.4
36.4.1
TC Pin List
Pin Name
Description
Type
TCLK0-TCLK2
External Clock Input
Input
TIOA0-TIOA2
I/O Line A
I/O
TIOB0-TIOB2
I/O Line B
I/O
Product Dependencies
I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
The programmer must first program the PIO controllers to assign the TC pins to their peripheral
functions.
36.4.2
Power Management
The TC is clocked through the Power Management Controller (PMC), thus the programmer must
first configure the PMC to enable the Timer Counter clock.
36.4.3
Interrupt
The TC has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling the
TC interrupt requires programming the AIC before configuring the TC.
537
6289C–ATARM–28-May-09
36.5
Functional Description
36.5.1
TC Description
The three channels of the Timer Counter are independent and identical in operation. The registers for channel programming are listed in Table 36-5 on page 551.
36.5.2
16-bit Counter
Each channel is organized around a 16-bit counter. The value of the counter is incremented at
each positive edge of the selected clock. When the counter has reached the value 0xFFFF and
passes to 0x0000, an overflow occurs and the COVFS bit in TC_SR (Status Register) is set.
The current value of the counter is accessible in real time by reading the Counter Value Register, TC_CV. The counter can be reset by a trigger. In this case, the counter value passes to
0x0000 on the next valid edge of the selected clock.
36.5.3
Clock Selection
At block level, input clock signals of each channel can either be connected to the external inputs
TCLK0, TCLK1 or TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2
for chaining by programming the TC_BMR (Block Mode). See Figure 36-2 on page 539.
Each channel can independently select an internal or external clock source for its counter:
• Internal clock signals: TIMER_CLOCK1, TIMER_CLOCK2, TIMER_CLOCK3,
TIMER_CLOCK4, TIMER_CLOCK5
• External clock signals: XC0, XC1 or XC2
This selection is made by the TCCLKS bits in the TC Channel Mode Register.
The selected clock can be inverted with the CLKI bit in TC_CMR. This allows counting on the
opposite edges of the clock.
The burst function allows the clock to be validated when an external signal is high. The BURST
parameter in the Mode Register defines this signal (none, XC0, XC1, XC2). See Figure 36-3 on
page 539
Note:
538
In all cases, if an external clock is used, the duration of each of its levels must be longer than the
master clock period. The external clock frequency must be at least 2.5 times lower than the master clock
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 36-2. Clock Chaining Selection
TC0XC0S
Timer/Counter
Channel 0
TCLK0
TIOA1
XC0
TIOA2
TIOA0
XC1 = TCLK1
XC2 = TCLK2
TIOB0
SYNC
TC1XC1S
Timer/Counter
Channel 1
TCLK1
XC0 = TCLK2
TIOA0
TIOA1
XC1
TIOA2
XC2 = TCLK2
TIOB1
SYNC
Timer/Counter
Channel 2
TC2XC2S
XC0 = TCLK0
TCLK2
TIOA2
XC1 = TCLK1
TIOA0
XC2
TIOB2
TIOA1
SYNC
Figure 36-3. Clock Selection
TCCLKS
TIMER_CLOCK1
TIMER_CLOCK2
CLKI
TIMER_CLOCK3
TIMER_CLOCK4
TIMER_CLOCK5
Selected
Clock
XC0
XC1
XC2
BURST
1
539
6289C–ATARM–28-May-09
36.5.4
Clock Control
The clock of each counter can be controlled in two different ways: it can be enabled/disabled
and started/stopped. See Figure 36-4.
• The clock can be enabled or disabled by the user with the CLKEN and the CLKDIS
commands in the Control Register. In Capture Mode it can be disabled by an RB load event if
LDBDIS is set to 1 in TC_CMR. In Waveform Mode, it can be disabled by an RC Compare
event if CPCDIS is set to 1 in TC_CMR. When disabled, the start or the stop actions have no
effect: only a CLKEN command in the Control Register can re-enable the clock. When the
clock is enabled, the CLKSTA bit is set in the Status Register.
• The clock can also be started or stopped: a trigger (software, synchro, external or compare)
always starts the clock. The clock can be stopped by an RB load event in Capture Mode
(LDBSTOP = 1 in TC_CMR) or a RC compare event in Waveform Mode (CPCSTOP = 1 in
TC_CMR). The start and the stop commands have effect only if the clock is enabled.
Figure 36-4. Clock Control
Selected
Clock
Trigger
CLKSTA
Q
Q
S
CLKEN
CLKDIS
S
R
R
Counter
Clock
36.5.5
Stop
Event
Disable
Event
TC Operating Modes
Each channel can independently operate in two different modes:
• Capture Mode provides measurement on signals.
• Waveform Mode provides wave generation.
The TC Operating Mode is programmed with the WAVE bit in the TC Channel Mode Register.
In Capture Mode, TIOA and TIOB are configured as inputs.
In Waveform Mode, TIOA is always configured to be an output and TIOB is an output if it is not
selected to be the external trigger.
36.5.6
Trigger
A trigger resets the counter and starts the counter clock. Three types of triggers are common to
both modes, and a fourth external trigger is available to each mode.
The following triggers are common to both modes:
540
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• Software Trigger: Each channel has a software trigger, available by setting SWTRG in
TC_CCR.
• SYNC: Each channel has a synchronization signal SYNC. When asserted, this signal has the
same effect as a software trigger. The SYNC signals of all channels are asserted
simultaneously by writing TC_BCR (Block Control) with SYNC set.
• Compare RC Trigger: RC is implemented in each channel and can provide a trigger when the
counter value matches the RC value if CPCTRG is set in TC_CMR.
The channel can also be configured to have an external trigger. In Capture Mode, the external
trigger signal can be selected between TIOA and TIOB. In Waveform Mode, an external event
can be programmed on one of the following signals: TIOB, XC0, XC1 or XC2. This external
event can then be programmed to perform a trigger by setting ENETRG in TC_CMR.
If an external trigger is used, the duration of the pulses must be longer than the master clock
period in order to be detected.
Regardless of the trigger used, it will be taken into account at the following active edge of the
selected clock. This means that the counter value can be read differently from zero just after a
trigger, especially when a low frequency signal is selected as the clock.
36.5.7
Capture Operating Mode
This mode is entered by clearing the WAVE parameter in TC_CMR (Channel Mode Register).
Capture Mode allows the TC channel to perform measurements such as pulse timing, frequency, period, duty cycle and phase on TIOA and TIOB signals which are considered as
inputs.
Figure 36-5 shows the configuration of the TC channel when programmed in Capture Mode.
36.5.8
Capture Registers A and B
Registers A and B (RA and RB) are used as capture registers. This means that they can be
loaded with the counter value when a programmable event occurs on the signal TIOA.
The LDRA parameter in TC_CMR defines the TIOA edge for the loading of register A, and the
LDRB parameter defines the TIOA edge for the loading of Register B.
RA is loaded only if it has not been loaded since the last trigger or if RB has been loaded since
the last loading of RA.
RB is loaded only if RA has been loaded since the last trigger or the last loading of RB.
Loading RA or RB before the read of the last value loaded sets the Overrun Error Flag (LOVRS)
in TC_SR (Status Register). In this case, the old value is overwritten.
36.5.9
Trigger Conditions
In addition to the SYNC signal, the software trigger and the RC compare trigger, an external trigger can be defined.
The ABETRG bit in TC_CMR selects TIOA or TIOB input signal as an external trigger. The
ETRGEDG parameter defines the edge (rising, falling or both) detected to generate an external
trigger. If ETRGEDG = 0 (none), the external trigger is disabled.
541
6289C–ATARM–28-May-09
542
MTIOA
MTIOB
1
If RA is not loaded
or RB is Loaded
Edge
Detector
ETRGEDG
SWTRG
Timer/Counter Channel
ABETRG
BURST
CLKI
S
R
OVF
LDRB
Edge
Detector
Edge
Detector
Capture
Register A
LDBSTOP
R
S
CLKEN
LDRA
If RA is Loaded
CPCTRG
16-bit Counter
RESET
Trig
CLK
Q
Q
CLKSTA
LDBDIS
Capture
Register B
CLKDIS
TC1_SR
TIOA
TIOB
SYNC
XC2
XC1
XC0
TIMER_CLOCK5
TIMER_CLOCK4
TIMER_CLOCK3
TIMER_CLOCK2
TIMER_CLOCK1
TCCLKS
Compare RC =
Register C
COVFS
INT
Figure 36-5. Capture Mode
LOVRS
CPCS
LDRBS
LDRAS
ETRGS
TC1_IMR
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.5.10
Waveform Operating Mode
Waveform operating mode is entered by setting the WAVE parameter in TC_CMR (Channel
Mode Register).
In Waveform Operating Mode the TC channel generates 1 or 2 PWM signals with the same frequency and independently programmable duty cycles, or generates different types of one-shot
or repetitive pulses.
In this mode, TIOA is configured as an output and TIOB is defined as an output if it is not used
as an external event (EEVT parameter in TC_CMR).
Figure 36-6 shows the configuration of the TC channel when programmed in Waveform Operating Mode.
36.5.11
Waveform Selection
Depending on the WAVSEL parameter in TC_CMR (Channel Mode Register), the behavior of
TC_CV varies.
With any selection, RA, RB and RC can all be used as compare registers.
RA Compare is used to control the TIOA output, RB Compare is used to control the TIOB output
(if correctly configured) and RC Compare is used to control TIOA and/or TIOB outputs.
543
6289C–ATARM–28-May-09
544
TIOB
SYNC
TIMER_CLOCK1
XC2
XC1
XC0
TIMER_CLOCK5
TIMER_CLOCK4
TIMER_CLOCK3
TIMER_CLOCK2
1
EEVT
BURST
Timer/Counter Channel
Edge
Detector
EEVTEDG
SWTRG
ENETRG
CLKI
Trig
CLK
R
S
OVF
WAVSEL
RESET
16-bit Counter
WAVSEL
Q
Compare RA =
Register A
Q
CLKSTA
Compare RC =
Compare RB =
CPCSTOP
CPCDIS
Register C
CLKDIS
Register B
R
S
CLKEN
CPAS
INT
BSWTRG
BEEVT
BCPB
BCPC
ASWTRG
AEEVT
ACPA
ACPC
Output Controller
Output Controller
TCCLKS
TIOB
MTIOB
TIOA
MTIOA
Figure 36-6. Waveform Mode
CPCS
CPBS
COVFS
TC1_SR
ETRGS
TC1_IMR
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.5.11.1
WAVSEL = 00
When WAVSEL = 00, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF has
been reached, the value of TC_CV is reset. Incrementation of TC_CV starts again and the cycle
continues. See Figure 36-7.
An external event trigger or a software trigger can reset the value of TC_CV. It is important to
note that the trigger may occur at any time. See Figure 36-8.
RC Compare cannot be programmed to generate a trigger in this configuration. At the same
time, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the
counter clock (CPCDIS = 1 in TC_CMR).
Figure 36-7. WAVSEL= 00 without trigger
Counter Value
Counter cleared by compare match with 0xFFFF
0xFFFF
RC
RB
RA
Waveform Examples
Time
TIOB
TIOA
545
6289C–ATARM–28-May-09
Figure 36-8. WAVSEL= 00 with trigger
Counter cleared by compare match with 0xFFFF
Counter Value
0xFFFF
Counter cleared by trigger
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
36.5.11.2
WAVSEL = 10
When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a RC Compare. Once the value of TC_CV has been reset, it is then
incremented and so on. See Figure 36-9.
It is important to note that TC_CV can be reset at any time by an external event or a software
trigger if both are programmed correctly. See Figure 36-10.
In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable
the counter clock (CPCDIS = 1 in TC_CMR).
Figure 36-9. WAVSEL = 10 Without Trigger
Counter Value
0xFFFF
Counter cleared by compare match with RC
RC
RB
RA
Waveform Examples
Time
TIOB
TIOA
546
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 36-10. WAVSEL = 10 With Trigger
Counter Value
0xFFFF
Counter cleared by compare match with RC
Counter cleared by trigger
RC
RB
RA
Waveform Examples
Time
TIOB
TIOA
36.5.11.3
WAVSEL = 01
When WAVSEL = 01, the value of TC_CV is incremented from 0 to 0xFFFF. Once 0xFFFF is
reached, the value of TC_CV is decremented to 0, then re-incremented to 0xFFFF and so on.
See Figure 36-11.
A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 36-12.
RC Compare cannot be programmed to generate a trigger in this configuration.
At the same time, RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the
counter clock (CPCDIS = 1).
547
6289C–ATARM–28-May-09
Figure 36-11. WAVSEL = 01 Without Trigger
Counter decremented by compare match with 0xFFFF
Counter Value
0xFFFF
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 36-12. WAVSEL = 01 With Trigger
Counter Value
Counter decremented by compare match with 0xFFFF
0xFFFF
Counter decremented
by trigger
RC
RB
Counter incremented
by trigger
RA
Time
Waveform Examples
TIOB
TIOA
36.5.11.4
WAVSEL = 11
When WAVSEL = 11, the value of TC_CV is incremented from 0 to RC. Once RC is reached, the
value of TC_CV is decremented to 0, then re-incremented to RC and so on. See Figure 36-13.
A trigger such as an external event or a software trigger can modify TC_CV at any time. If a trigger occurs while TC_CV is incrementing, TC_CV then decrements. If a trigger is received while
TC_CV is decrementing, TC_CV then increments. See Figure 36-14.
RC Compare can stop the counter clock (CPCSTOP = 1) and/or disable the counter clock
(CPCDIS = 1).
548
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 36-13. WAVSEL = 11 Without Trigger
Counter Value
0xFFFF
Counter decremented by compare match with RC
RC
RB
RA
Time
Waveform Examples
TIOB
TIOA
Figure 36-14. WAVSEL = 11 With Trigger
Counter Value
0xFFFF
Counter decremented by compare match with RC
RC
RB
Counter decremented
by trigger
Counter incremented
by trigger
RA
Waveform Examples
Time
TIOB
TIOA
549
6289C–ATARM–28-May-09
36.5.12
External Event/Trigger Conditions
An external event can be programmed to be detected on one of the clock sources (XC0, XC1,
XC2) or TIOB. The external event selected can then be used as a trigger.
The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines
the trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is
cleared (none), no external event is defined.
If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output
and the compare register B is not used to generate waveforms and subsequently no IRQs. In
this case the TC channel can only generate a waveform on TIOA.
When an external event is defined, it can be used as a trigger by setting bit ENETRG in
TC_CMR.
As in Capture Mode, the SYNC signal and the software trigger are also available as triggers. RC
Compare can also be used as a trigger depending on the parameter WAVSEL.
36.5.13
Output Controller
The output controller defines the output level changes on TIOA and TIOB following an event.
TIOB control is used only if TIOB is defined as output (not as an external event).
The following events control TIOA and TIOB: software trigger, external event and RC compare.
RA compare controls TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the output as defined in the corresponding parameter in
TC_CMR.
550
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6
Timer Counter (TC) User Interface
Table 36-4.
Offset
TC Global Memory Map
Channel/Register
Name
Access
Reset Value
0x00
TC Channel 0
See Table 36-5
0x40
TC Channel 1
See Table 36-5
0x80
TC Channel 2
See Table 36-5
0xC0
TC Block Control Register
TC_BCR
Write-only
–
0xC4
TC Block Mode Register
TC_BMR
Read/Write
0
TC_BCR (Block Control Register) and TC_BMR (Block Mode Register) control the whole TC
block. TC channels are controlled by the registers listed in Table 36-5. The offset of each of the
channel registers in Table 36-5 is in relation to the offset of the corresponding channel as mentioned in Table 36-5.
Table 36-5.
Offset
TC Channel Memory Map
Register
Name
Access
Reset Value
0x00
Channel Control Register
TC_CCR
Write-only
–
0x04
Channel Mode Register
TC_CMR
Read/Write
0
0x08
Reserved
–
0x0C
Reserved
–
0x10
Counter Value
TC_CV
Read-only
0
0x14
Register A
TC_RA
Read/Write(1)
0
(1)
0
0x18
Register B
TC_RB
0x1C
Register C
TC_RC
Read/Write
0
0x20
Status Register
TC_SR
Read-only
0
0x24
Interrupt Enable Register
TC_IER
Write-only
–
0x28
Interrupt Disable Register
TC_IDR
Write-only
–
0x2C
Interrupt Mask Register
TC_IMR
Read-only
0
0xFC
Reserved
–
–
–
Notes:
Read/Write
1. Read-only if WAVE = 0
551
6289C–ATARM–28-May-09
36.6.1
TC Block Control Register
Register Name:
TC_BCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
–
–
SYNC
• SYNC: Synchro Command
0 = No effect.
1 = Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.
552
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.2
TC Block Mode Register
Register Name:
TC_BMR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
–
–
TC2XC2S
TCXC1S
0
TC0XC0S
• TC0XC0S: External Clock Signal 0 Selection
TC0XC0S
Signal Connected to XC0
0
0
TCLK0
0
1
none
1
0
TIOA1
1
1
TIOA2
• TC1XC1S: External Clock Signal 1 Selection
TC1XC1S
Signal Connected to XC1
0
0
TCLK1
0
1
none
1
0
TIOA0
1
1
TIOA2
• TC2XC2S: External Clock Signal 2 Selection
TC2XC2S
Signal Connected to XC2
0
0
TCLK2
0
1
none
1
0
TIOA0
1
1
TIOA1
553
6289C–ATARM–28-May-09
36.6.3
TC Channel Control Register
Register Name:
TC_CCR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
–
–
–
–
SWTRG
CLKDIS
CLKEN
• CLKEN: Counter Clock Enable Command
0 = No effect.
1 = Enables the clock if CLKDIS is not 1.
• CLKDIS: Counter Clock Disable Command
0 = No effect.
1 = Disables the clock.
• SWTRG: Software Trigger Command
0 = No effect.
1 = A software trigger is performed: the counter is reset and the clock is started.
554
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.4
TC Channel Mode Register: Capture Mode
Register Name:
TC_CMR
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
–
–
–
–
15
14
13
12
11
10
WAVE = 0
CPCTRG
–
–
–
ABETRG
7
6
5
3
2
LDBDIS
LDBSTOP
16
LDRB
4
BURST
CLKI
LDRA
9
8
ETRGEDG
1
0
TCCLKS
• TCCLKS: Clock Selection
TCCLKS
Clock Selected
0
0
0
TIMER_CLOCK1
0
0
1
TIMER_CLOCK2
0
1
0
TIMER_CLOCK3
0
1
1
TIMER_CLOCK4
1
0
0
TIMER_CLOCK5
1
0
1
XC0
1
1
0
XC1
1
1
1
XC2
• CLKI: Clock Invert
0 = Counter is incremented on rising edge of the clock.
1 = Counter is incremented on falling edge of the clock.
• BURST: Burst Signal Selection
BURST
0
0
The clock is not gated by an external signal.
0
1
XC0 is ANDed with the selected clock.
1
0
XC1 is ANDed with the selected clock.
1
1
XC2 is ANDed with the selected clock.
• LDBSTOP: Counter Clock Stopped with RB Loading
0 = Counter clock is not stopped when RB loading occurs.
1 = Counter clock is stopped when RB loading occurs.
• LDBDIS: Counter Clock Disable with RB Loading
0 = Counter clock is not disabled when RB loading occurs.
1 = Counter clock is disabled when RB loading occurs.
555
6289C–ATARM–28-May-09
• ETRGEDG: External Trigger Edge Selection
ETRGEDG
Edge
0
0
none
0
1
rising edge
1
0
falling edge
1
1
each edge
• ABETRG: TIOA or TIOB External Trigger Selection
0 = TIOB is used as an external trigger.
1 = TIOA is used as an external trigger.
• CPCTRG: RC Compare Trigger Enable
0 = RC Compare has no effect on the counter and its clock.
1 = RC Compare resets the counter and starts the counter clock.
• WAVE
0 = Capture Mode is enabled.
1 = Capture Mode is disabled (Waveform Mode is enabled).
• LDRA: RA Loading Selection
LDRA
Edge
0
0
none
0
1
rising edge of TIOA
1
0
falling edge of TIOA
1
1
each edge of TIOA
• LDRB: RB Loading Selection
LDRB
556
Edge
0
0
none
0
1
rising edge of TIOA
1
0
falling edge of TIOA
1
1
each edge of TIOA
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.5
TC Channel Mode Register: Waveform Mode
Register Name:
TC_CMR
Access Type:
Read/Write
31
30
29
BSWTRG
23
22
21
ASWTRG
15
28
27
BEEVT
20
19
AEEVT
14
WAVE = 1
13
7
6
CPCDIS
CPCSTOP
24
BCPB
18
11
ENETRG
5
25
17
16
ACPC
12
WAVSEL
26
BCPC
ACPA
10
9
EEVT
4
3
BURST
CLKI
8
EEVTEDG
2
1
0
TCCLKS
• TCCLKS: Clock Selection
TCCLKS
Clock Selected
0
0
0
TIMER_CLOCK1
0
0
1
TIMER_CLOCK2
0
1
0
TIMER_CLOCK3
0
1
1
TIMER_CLOCK4
1
0
0
TIMER_CLOCK5
1
0
1
XC0
1
1
0
XC1
1
1
1
XC2
• CLKI: Clock Invert
0 = Counter is incremented on rising edge of the clock.
1 = Counter is incremented on falling edge of the clock.
• BURST: Burst Signal Selection
BURST
0
0
The clock is not gated by an external signal.
0
1
XC0 is ANDed with the selected clock.
1
0
XC1 is ANDed with the selected clock.
1
1
XC2 is ANDed with the selected clock.
• CPCSTOP: Counter Clock Stopped with RC Compare
0 = Counter clock is not stopped when counter reaches RC.
1 = Counter clock is stopped when counter reaches RC.
• CPCDIS: Counter Clock Disable with RC Compare
0 = Counter clock is not disabled when counter reaches RC.
1 = Counter clock is disabled when counter reaches RC.
557
6289C–ATARM–28-May-09
• EEVTEDG: External Event Edge Selection
EEVTEDG
Edge
0
0
none
0
1
rising edge
1
0
falling edge
1
1
each edge
• EEVT: External Event Selection
EEVT
Signal selected as external event
TIOB Direction
0
0
TIOB
input (1)
0
1
XC0
output
1
0
XC1
output
1
1
XC2
output
Note:
1. If TIOB is chosen as the external event signal, it is configured as an input and no longer generates waveforms and subsequently no IRQs.
• ENETRG: External Event Trigger Enable
0 = The external event has no effect on the counter and its clock. In this case, the selected external event only controls the
TIOA output.
1 = The external event resets the counter and starts the counter clock.
• WAVSEL: Waveform Selection
WAVSEL
Effect
0
0
UP mode without automatic trigger on RC Compare
1
0
UP mode with automatic trigger on RC Compare
0
1
UPDOWN mode without automatic trigger on RC Compare
1
1
UPDOWN mode with automatic trigger on RC Compare
• WAVE = 1
0 = Waveform Mode is disabled (Capture Mode is enabled).
1 = Waveform Mode is enabled.
• ACPA: RA Compare Effect on TIOA
ACPA
558
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• ACPC: RC Compare Effect on TIOA
ACPC
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• AEEVT: External Event Effect on TIOA
AEEVT
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• ASWTRG: Software Trigger Effect on TIOA
ASWTRG
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BCPB: RB Compare Effect on TIOB
BCPB
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BCPC: RC Compare Effect on TIOB
BCPC
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
559
6289C–ATARM–28-May-09
• BEEVT: External Event Effect on TIOB
BEEVT
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
• BSWTRG: Software Trigger Effect on TIOB
BSWTRG
560
Effect
0
0
none
0
1
set
1
0
clear
1
1
toggle
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.6
TC Counter Value Register
Register Name:
TC_CV
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
CV
7
6
5
4
CV
• CV: Counter Value
CV contains the counter value in real time.
561
6289C–ATARM–28-May-09
36.6.7
TC Register A
Register Name:
TC_RA
Access Type:
Read-only if WAVE = 0, Read/Write if WAVE = 1
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RA
7
6
5
4
RA
• RA: Register A
RA contains the Register A value in real time.
36.6.8
TC Register B
Register Name:
TC_RB
Access Type:
Read-only if WAVE = 0, Read/Write if WAVE = 1
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RB
7
6
5
4
RB
• RB: Register B
RB contains the Register B value in real time.
562
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.9
TC Register C
Register Name:
TC_RC
Access Type:
Read/Write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
3
2
1
0
RC
7
6
5
4
RC
• RC: Register C
RC contains the Register C value in real time.
563
6289C–ATARM–28-May-09
36.6.10 TC Status Register
Register Name:
TC_SR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
MTIOB
MTIOA
CLKSTA
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow Status
0 = No counter overflow has occurred since the last read of the Status Register.
1 = A counter overflow has occurred since the last read of the Status Register.
• LOVRS: Load Overrun Status
0 = Load overrun has not occurred since the last read of the Status Register or WAVE = 1.
1 = RA or RB have been loaded at least twice without any read of the corresponding register since the last read of the Status Register, if WAVE = 0.
• CPAS: RA Compare Status
0 = RA Compare has not occurred since the last read of the Status Register or WAVE = 0.
1 = RA Compare has occurred since the last read of the Status Register, if WAVE = 1.
• CPBS: RB Compare Status
0 = RB Compare has not occurred since the last read of the Status Register or WAVE = 0.
1 = RB Compare has occurred since the last read of the Status Register, if WAVE = 1.
• CPCS: RC Compare Status
0 = RC Compare has not occurred since the last read of the Status Register.
1 = RC Compare has occurred since the last read of the Status Register.
• LDRAS: RA Loading Status
0 = RA Load has not occurred since the last read of the Status Register or WAVE = 1.
1 = RA Load has occurred since the last read of the Status Register, if WAVE = 0.
• LDRBS: RB Loading Status
0 = RB Load has not occurred since the last read of the Status Register or WAVE = 1.
1 = RB Load has occurred since the last read of the Status Register, if WAVE = 0.
• ETRGS: External Trigger Status
0 = External trigger has not occurred since the last read of the Status Register.
1 = External trigger has occurred since the last read of the Status Register.
564
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• CLKSTA: Clock Enabling Status
0 = Clock is disabled.
1 = Clock is enabled.
• MTIOA: TIOA Mirror
0 = TIOA is low. If WAVE = 0, this means that TIOA pin is low. If WAVE = 1, this means that TIOA is driven low.
1 = TIOA is high. If WAVE = 0, this means that TIOA pin is high. If WAVE = 1, this means that TIOA is driven high.
• MTIOB: TIOB Mirror
0 = TIOB is low. If WAVE = 0, this means that TIOB pin is low. If WAVE = 1, this means that TIOB is driven low.
1 = TIOB is high. If WAVE = 0, this means that TIOB pin is high. If WAVE = 1, this means that TIOB is driven high.
565
6289C–ATARM–28-May-09
36.6.11 TC Interrupt Enable Register
Register Name:
TC_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0 = No effect.
1 = Enables the Counter Overflow Interrupt.
• LOVRS: Load Overrun
0 = No effect.
1 = Enables the Load Overrun Interrupt.
• CPAS: RA Compare
0 = No effect.
1 = Enables the RA Compare Interrupt.
• CPBS: RB Compare
0 = No effect.
1 = Enables the RB Compare Interrupt.
• CPCS: RC Compare
0 = No effect.
1 = Enables the RC Compare Interrupt.
• LDRAS: RA Loading
0 = No effect.
1 = Enables the RA Load Interrupt.
• LDRBS: RB Loading
0 = No effect.
1 = Enables the RB Load Interrupt.
• ETRGS: External Trigger
0 = No effect.
1 = Enables the External Trigger Interrupt.
566
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
36.6.12 TC Interrupt Disable Register
Register Name:
TC_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0 = No effect.
1 = Disables the Counter Overflow Interrupt.
• LOVRS: Load Overrun
0 = No effect.
1 = Disables the Load Overrun Interrupt (if WAVE = 0).
• CPAS: RA Compare
0 = No effect.
1 = Disables the RA Compare Interrupt (if WAVE = 1).
• CPBS: RB Compare
0 = No effect.
1 = Disables the RB Compare Interrupt (if WAVE = 1).
• CPCS: RC Compare
0 = No effect.
1 = Disables the RC Compare Interrupt.
• LDRAS: RA Loading
0 = No effect.
1 = Disables the RA Load Interrupt (if WAVE = 0).
• LDRBS: RB Loading
0 = No effect.
1 = Disables the RB Load Interrupt (if WAVE = 0).
• ETRGS: External Trigger
0 = No effect.
1 = Disables the External Trigger Interrupt.
567
6289C–ATARM–28-May-09
36.6.13 TC Interrupt Mask Register
Register Name:
TC_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
ETRGS
LDRBS
LDRAS
CPCS
CPBS
CPAS
LOVRS
COVFS
• COVFS: Counter Overflow
0 = The Counter Overflow Interrupt is disabled.
1 = The Counter Overflow Interrupt is enabled.
• LOVRS: Load Overrun
0 = The Load Overrun Interrupt is disabled.
1 = The Load Overrun Interrupt is enabled.
• CPAS: RA Compare
0 = The RA Compare Interrupt is disabled.
1 = The RA Compare Interrupt is enabled.
• CPBS: RB Compare
0 = The RB Compare Interrupt is disabled.
1 = The RB Compare Interrupt is enabled.
• CPCS: RC Compare
0 = The RC Compare Interrupt is disabled.
1 = The RC Compare Interrupt is enabled.
• LDRAS: RA Loading
0 = The Load RA Interrupt is disabled.
1 = The Load RA Interrupt is enabled.
• LDRBS: RB Loading
0 = The Load RB Interrupt is disabled.
1 = The Load RB Interrupt is enabled.
• ETRGS: External Trigger
0 = The External Trigger Interrupt is disabled.
1 = The External Trigger Interrupt is enabled.
568
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37. DMA Controller (DMAC)
37.1
Description
The DMA Controller (DMAC) is an AHB-central DMA controller core that transfers data from a
source peripheral to a destination peripheral over one or more AMBA buses. One channel is
required for each source/destination pair. In the most basic configuration, the DMAC has one
master interface and one channel. The master interface reads the data from a source and writes
it to a destination. Two AMBA transfers are required for each DMAC data transfer. This is also
known as a dual-access transfer.
The DMAC is programmed via the APB interface.
569
6289C–ATARM–28-May-09
37.2
Block Diagram
Figure 37-1. DMA Controller (DMAC) Block Diagram
AMBA AHB Layer 1
DMA AHB Lite Master Interface 1
DMA Global
Request Arbiter
DMA Global Control
and Data Mux
DMA Destination
Requests Pool
DMA Write
Datapath Bundles
DMA Channel n
DMA Destination
DMA Channel 2
Status
Registers
DMA Channel 1
DMA Channel 0
DMA Channel 0
Write data path
to destination
Atmel APB rev2 Interface
DMA
Atmel
APB
Interface
Configuration
Registers
DMA Destination
Control State Machine
Destination Pointer
Management
DMA Interrupt
Controller
DMA Interrupt
DMA FIFO Controller
DMA FIFO
Up to 64 bytes
DMA Channel 0
Read data path
from source
DMA Source
Control State Machine
Source Pointer
Management
DMA Source
Requests Pool
DMA Read
Datapath Bundles
DMA Global Control
and Data Mux
DMA Global
Request Arbiter
DMA AHB Lite Master Interface 0
AMBA AHB Layer 0
570
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.3
37.3.1
Functional Description
Basic Definitions
Source peripheral: Device on an AMBA layer from where the DMAC reads data, which is then
stored in the channel FIFO. The source peripheral teams up with a destination peripheral to form
a channel.
Destination peripheral: Device to which the DMAC writes the stored data from the FIFO (previously read from the source peripheral).
Memory: Source or destination that is always “ready” for a DMAC transfer and does not require
a handshaking interface to interact with the DMAC.
Channel: Read/write datapath between a source peripheral on one configured AMBA layer and
a destination peripheral on the same or different AMBA layer that occurs through the channel
FIFO.
Master interface: DMAC is a master on the AHB bus reading data from the source and writing it
to the destination over the AHB bus.
Slave interface: The APB interface over which the DMAC is programmed. The slave interface
in practice could be on the same layer as any of the master interfaces or on a separate layer.
Figure 37-2. DMAC Transfer Hierarchy for Memory
HDMA Transfer
Buffer
AMBA
Burst
Transfer
Buffer
AMBA
Burst
Transfer
DMA Transfer
Level
Buffer
AMBA
Burst
Transfer
AMBA
Single
Transfer
Buffer Transfer
Level
AMBA Transfer
Level
Buffer: A buffer of DMAC data. The amount of data (length) is determined by the flow controller.
For transfers between the DMAC and memory, a buffer is broken directly into a sequence of
AMBA bursts and AMBA single transfers.
DMAC transfer: Software controls the number of buffers in a DMAC transfer. Once the DMAC
transfer has completed, then hardware within the DMAC disables the channel and can generate
an interrupt to signal the completion of the DMAC transfer. You can then re-program the channel
for a new DMAC transfer.
Single-buffer DMAC transfer: Consists of a single buffer.
Multi-buffer DMAC transfer: A DMAC transfer may consist of multiple DMAC buffers. Multi-buffer DMAC transfers are supported through buffer chaining (linked list pointers), auto-reloading of
channel registers, and contiguous buffers. The source and destination can independently select
which method to use.
571
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– Linked lists (buffer chaining) – A descriptor pointer (DSCR) points to the location
in system memory where the next linked list item (LLI) exists. The LLI is a set of
registers that describe the next buffer (buffer descriptor) and a descriptor pointer
register. The DMAC fetches the LLI at the beginning of every buffer when buffer
chaining is enabled.
– Replay – The DMAC automatically reloads the channel registers at the end of each
buffers to the value when the channel was first enabled.
– Contiguous buffers – Where the address of the next buffer is selected to be a
continuation from the end of the previous buffer.
Picture-in-Picture Mode: DMAC contains a picture-in-picture mode support. When this mode is
enabled, addresses are automatically incremented by a programmable value when the DMAC
channel transfer count reaches a user defined boundary.
Figure 37-3 on page 572 illustrates a memory mapped image 4:2:2 encoded located at
image_base_address in memory. A user defined start address is defined at
Picture_start_address. The incremented value is set to memory_hole_size = image_width picture_width, and the boundary is set to picture_width.
Figure 37-3. Picture-In-Picture Mode Support
Bus locking: Software can program a channel to maintain control of the AMBA bus by asserting
hmastlock for the duration of a DMAC transfer. Channel locking is asserted for the duration of
bus locking at a minimum.
37.3.2
Memory Peripherals
Figure 37-2 on page 571 shows the DMAC transfer hierarchy of the DMAC for a memory peripheral. There is no handshaking interface with the DMAC, and therefore the memory peripheral
can never be a flow controller. Once the channel is enabled, the transfer proceeds immediately
without waiting for a transaction request. The alternative to not having a transaction-level hand-
572
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
shaking interface is to allow the DMAC to attempt AMBA transfers to the peripheral once the
channel is enabled. If the peripheral slave cannot accept these AMBA transfers, it inserts wait
states onto the bus until it is ready; it is not recommended that more than 16 wait states be
inserted onto the bus.
37.3.3
DMAC Transfer Types
A DMAC transfer may consist of single or multi-buffers transfers. On successive buffers of a
multi-buffer transfer, the DMAC_SADDRx/DMAC_DADDRx registers in the DMAC are reprogrammed using either of the following methods:
• Buffer chaining using linked lists
• Replay mode
• Contiguous address between buffers
On successive buffers of a multi-buffer transfer, the DMAC_CTRLAx and DMAC_CTRLBx registers in the DMAC are re-programmed using either of the following methods:
• Buffer chaining using linked lists
• Replay mode
When buffer chaining, using linked lists is the multi-buffer method of choice, and on successive
buffers, the DMAC_DSCRx register in the DMAC is re-programmed using the following method:
• Buffer chaining using linked lists
A buffer descriptor (LLI) consists of following registers, DMAC_SADDRx, DMAC_DADDRx,
DMAC_DSCRx, DMAC_CTRLAx, DMAC_CTRLBx.These registers, along with the
DMAC_CFGx register, are used by the DMAC to set up and describe the buffer transfer.
37.3.3.1
Multi-buffer Transfers
37.3.3.2
Buffer Chaining Using Linked Lists
In this case, the DMAC re-programs the channel registers prior to the start of each buffer by
fetching the buffer descriptor for that buffer from system memory. This is known as an LLI
update.
DMAC buffer chaining is supported by using a Descriptor Pointer register (DMAC_DSCRx) that
stores the address in memory of the next buffer descriptor. Each buffer descriptor contains the
corresponding buffer descriptor (DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,
DMAC_CTRLAx DMAC_CTRLBx).
To set up buffer chaining, a sequence of linked lists must be programmed in memory.
The DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLAx and DMAC_CTRLBx
registers are fetched from system memory on an LLI update. The updated content of the
DMAC_CTRLAx register is written back to memory on buffer completion. Figure 37-4 on page
574 shows how to use chained linked lists in memory to define multi-buffer transfers using buffer
chaining.
The Linked List multi-buffer transfer is initiated by programming DMAC_DSCRx with DSCRx(0)
(LLI(0) base address) and DMAC_CTRLBx register with both SRC_DSCR and DST_DSCR set
to 0. Other fields and registers are ignored and overwritten when the descriptor is retrieved from
memory.
The last transfer descriptor must be written to memory with its next descriptor address set to 0.
573
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-4. Multi Buffer Transfer Using Linked List
System Memory
LLI(0)
DSCRx(0)
LLI(1)
DSCRx(1)= DSCRx(0) + 0x10
DSCRx(2)= DSCRx(1) + 0x10
CTRLBx= DSCRx(0) + 0xC
CTRLBx= DSCRx(1) + 0xC
CTRLAx= DSCRx(0) + 0x8
CTRLBx= DSCRx(1) + 0x8
DADDRx= DSCRx(0) + 0x4
DADDRx= DSCRx(1) + 0x4
SADDRx= DSCRx(1) + 0x0
SADDRx= DSCRx(0) + 0x0
DSCRx(1)
DSCRx(2)
(points to 0 if
LLI(1) is the last
transfer descriptor
574
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.3.3.3
Table 37-1.
Programming DMAC for Multiple Buffer Transfers
Multiple Buffers Transfer Management Table
Transfer Type
AUTO
SRC_REP
DST_REP
SRC_DSCR
DST_DSCR
BTSIZE
SADDR
DADDR
Other
Fields
1) Single Buffer or Last
buffer of a multiple buffer
transfer
0
–
–
1
1
USR
USR
USR
USR
2) Multi Buffer transfer
with contiguous DADDR
0
–
0
0
1
LLI
LLI
CONT
LLI
3) Multi Buffer transfer
with contiguous SADDR
0
0
–
1
0
LLI
CONT
LLI
LLI
4) Multi Buffer transfer
with LLI support
0
–
–
0
0
LLI
LLI
LLI
LLI
5) Multi Buffer transfer
with DADDR reloaded
0
–
1
0
1
LLI
LLI
REP
LLI
6) Multi Buffer transfer
with SADDR reloaded
0
1
–
1
0
LLI
REP
LLI
LLI
7) Multi Buffer transfer
with BTSIZE reloaded and
contiguous DADDR
1
–
0
0
1
REP
LLI
CONT
LLI
8) Multi Buffer transfer
with BTSIZE reloaded and
contiguous SADDR
1
0
–
1
0
REP
CONT
LLI
LLI
9) Automatic mode
channel is stalling
BTsize is reloaded
1
0
0
1
1
REP
CONT
CONT
REP
10) Automatic mode
BTSIZE, SADDR and
DADDR reloaded
1
1
1
1
1
REP
REP
REP
REP
11) Automatic mode
BTSIZE, SADDR reloaded
and DADDR contiguous
1
1
0
1
1
REP
REP
CONT
REP
Notes:
1. USR means that the register field is manually programmed by the user.
2. CONT means that address are contiguous.
3. REP means that the register field is updated with its previous value. If the transfer is the first one, then the user must manually program the value.
4. Channel stalled is true if the relevant BTC interrupt is not masked.
5. LLI means that the register field is updated with the content of the linked list item.
37.3.3.4
Replay Mode of Channel Registers
During automatic replay mode, the channel registers are reloaded with their initial values at the
completion of each buffer and the new values used for the new buffer. Depending on the row
number in Table 37-1 on page 575, some or all of the DMAC_SADDRx, DMAC_DADDRx,
DMAC_CTRLAx and DMAC_CTRLBx channel registers are reloaded from their initial value at
the start of a buffer transfer.
37.3.3.5
Contiguous Address Between Buffers
In this case, the address between successive buffers is selected to be a continuation from the
end of the previous buffer. Enabling the source or destination address to be contiguous between
575
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
buffers is a function of DMAC_CTRLAx.SRC_DSCR, DMAC_CFGx.SRC_REP,
DMAC_CTRLAx.DST_DSCR and DMAC_CFGx.DST_REP registers.
37.3.3.6
Suspension of Transfers Between buffers
At the end of every buffer transfer, an end of buffer interrupt is asserted if:
• the channel buffer interrupt is unmasked, DMAC_EBCIMR.BTC[n] = ‘1’, where n is the
channel number.
Note:
The buffer complete interrupt is generated at the completion of the buffer transfer to the
destination.
At the end of a chain of multiple buffers, an end of linked list interrupt is asserted if:
• the channel end of chained buffer interrupt is unmasked, DMAC_EBCIMR.CBTC[n] = ‘1’,
when n is the channel number.
37.3.3.7
Ending Multi-buffer Transfers
All multi-buffer transfers must end as shown in Row 1 of Table 37-1 on page 575. At the end of
every buffer transfer, the DMAC samples the row number, and if the DMAC is in Row 1 state,
then the previous buffer transferred was the last buffer and the DMAC transfer is terminated.
For rows 9, 10 and 11 of Table 37-1 on page 575, (DMAC_DSCRx = 0 and
DMAC_CTRLBx.AUTO is set), multi-buffer DMAC transfers continue until the automatic mode is
disabled by writing a ‘1’ in DMAC_CTRLBx.AUTO bit. This bit should be programmed to zero in
the end of buffer interrupt service routine that services the next-to-last buffer transfer. This puts
the DMAC into Row 1 state.
For rows 2, 3, 4, 5, and 6 (DMAC_CRTLBx.AUTO cleared) the user must setup the last buffer
descriptor in memory such that both LLI.DMAC_CTRLBx.SRC_DSCR and
LLI.DMAC_CTRLBx.DST_DSCR are one and LLI.DMAC_DSCRx is set to 0.
576
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.3.4
Programming a Channel
Four registers, the DMAC_DSCRx, the DMAC_CTRLAx, the DMAC_CTRLBx and
DMAC_CFGx, need to be programmed to set up whether single or multi-buffer transfers take
place, and which type of multi-buffer transfer is used. The different transfer types are shown in
Table 37-1 on page 575.
The “BTSIZE, SADDR and DADDR” columns indicate where the values of DMAC_SARx,
DMAC_DARx, DMAC_CTLx, and DMAC_LLPx are obtained for the next buffer transfer when
multi-buffer DMAC transfers are enabled.
37.3.4.1
Programming Examples
37.3.4.2
Single-buffer Transfer (Row 1)
1. Read the Channel Handler Status Register DMAC_CHSR.ENABLE Field to choose a
free (disabled) channel.
2. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the interrupt status register, DMAC_EBCISR.
3. Program the following channel registers:
a. Write the starting source address in the DMAC_SADDRx register for channel x.
b.
Write the starting destination address in the DMAC_DADDRx register for channel
x.
c.
Program DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx according to Row 1
as shown in Table 37-1 on page 575. Program the DMAC_CTRLBx register with
both DST_DSCR and SRC_DSCR fields set to one and AUTO field set to 0.
d. Write the control information for the DMAC transfer in the DMAC_CTRLAx and
DMAC_CTRLBx registers for channel x. For example, in the register, you can program the following:
– Set up the transfer characteristics, such as:
– Transfer width for the source in the SRC_WIDTH field.
– Transfer width for the destination in the DST_WIDTH field.
– Source AHB Master interface layer in the SIF field where source resides.
– Destination AHB Master Interface layer in the DIF field where destination resides.
– Incrementing/decrementing or fixed address for source in SRC_INC field.
– Incrementing/decrementing or fixed address for destination in DST_INC field.
e. Write the channel configuration information into the DMAC_CFGx register for channel x.
f.
If source picture-in-picture mode is enabled (DMAC_CTRLBx.SRC_PIP is
enabled), program the DMAC_SPIPx register for channel x.
g. If destination picture-in-picture mode is enabled (DMAC_CTRLBx.DST_PIP is
enabled), program the DMAC_DPIPx register for channel x.
4. After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the DMAC_CHER.ENABLE[n] bit, where n is the channel number. Make sure
that bit 0 of DMAC_EN.ENABLE register is enabled.
5. Once the transfer completes, hardware sets the interrupts and disables the channel. At
this time you can either respond to the buffer Complete or Transfer Complete interrupts,
or poll for the Channel Handler Status Register (DMAC_CHSR.ENABLE[n]) bit until it is
cleared by hardware, to detect when the transfer is complete.
577
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.3.4.3
Multi-buffer Transfer with Linked List for Source and Linked List for Destination (Row 4)
1. Read the Channel Enable register to choose a free (disabled) channel.
2. Set up the chain of Linked List Items (otherwise known as buffer descriptors) in memory. Write the control information in the LLI.DMAC_CTRLAx and LLI.DMAC_CTRLBx
registers location of the buffer descriptor for each LLI in memory (see Figure 37-5 on
page 579) for channel x. For example, in the register, you can program the following:
h. Set up the transfer characteristics, such as:
– i. Transfer width for the source in the SRC_WIDTH field.
– ii. Transfer width for the destination in the DST_WIDTH field.
– iii. Source AHB master interface layer in the SIF field where source resides.
– iv. Destination AHB master interface layer in the DIF field where destination resides.
– v. Incrementing/decrementing or fixed address for source in SRC_INCR field.
– vi. Incrementing/decrementing or fixed address for destination DST_INCR field.
3. Write the channel configuration information into the DMAC_CFGx register for channel
x.
4. Make sure that the LLI.DMAC_CTRLBx register locations of all LLI entries in memory
(except the last) are set as shown in Row 4 of Table 37-1 on page 575. The
LLI.DMAC_CTRLBx register of the last Linked List Item must be set as described in
Row 1 of Table 37-1. Figure 37-4 on page 574 shows a Linked List example with two
list items.
5. Make sure that the LLI.DMAC_DSCRx register locations of all LLI entries in memory
(except the last) are non-zero and point to the base address of the next Linked List
Item.
6. Make sure that the LLI.DMAC_SADDRx/LLI.DMAC_DADDRx register locations of all
LLI entries in memory point to the start source/destination buffer address preceding
that LLI fetch.
7. Make sure that the LLI.DMAC_CTRLAx.DONE field of the LLI.DMAC_CTRLAx register
locations of all LLI entries in memory are cleared.
8. If source picture-picture mode is enabled (DMAC_CTRLBx.SRC_PIP is enabled), program the DMAC_SPIPx register for channel x.
9. If destination picture-in-picture is enabled (DMAC_CTRLBx.DST_PIP is enabled), program the DMAC_DPIPx register for channel x.
10. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the status register: DMAC_EBCISR.
11. Program the DMAC_CTRLBx, DMAC_CFGx registers according to Row 4 as shown in
Table 37-1 on page 575.
12. Program the DMAC_DSCRx register with DMAC_DSCRx(0), the pointer to the first
Linked List item.
13. Finally, enable the channel by writing a ‘1’ to the DMAC_CHER.ENABLE[n] bit, where n
is the channel number. The transfer is performed.
14. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0).
Note:
The LLI.DMAC_SADDRx, LLI. DMAC_DADDRx, LLI.DMAC_DSCRx, LLI.DMAC_CTRLAx and
LLI.DMAC_CTRLBx registers are fetched. The DMAC automatically reprograms the
DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx, DMAC_CTRLBx and DMAC_CTRLAx channel registers from the DMAC_DSCRx(0).
15. Once the buffer of data is transferred, the DMAC_CTRLAx register is written out to system memory at the same location and on the same layer (DMAC_DSCRx.DSCR_IF)
where it was originally fetched, that is, the location of the DMAC_CTRLAx register of
578
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
the linked list item fetched prior to the start of the buffer transfer. Only DMAC_CTRLAx
register is written out because only the DMAC_CTRLAx.BTSIZE and
DMAC_CTRLAX.DONE bits have been updated by DMAC hardware. Additionally, the
DMAC_CTRLAx.DONE bit is asserted when the buffer transfer has completed.
Note:
Do not poll the DMAC_CTRLAx.DONE bit in the DMAC memory map. Instead, poll the
LLI.DMAC_CTRLAx.DONE bit in the LLI for that buffer. If the poll LLI.DMAC_CTRLAx.DONE bit is
asserted, then this buffer transfer has completed. This LLI.DMAC_CTRLAx.DONE bit was cleared
at the start of the transfer.
16. The DMAC does not wait for the buffer interrupt to be cleared, but continues fetching
the next LLI from the memory location pointed to by current DMAC_DSCRx register
and automatically reprograms the DMAC_SADDRx, DMAC_DADDRx, DMAC_DSCRx,
DMAC_CTRLAx and DMAC_CTRLBx channel registers. The DMAC transfer continues
until the DMAC determines that the DMAC_CTRLBx and DMAC_DSCRx registers at
the end of a buffer transfer match described in Row 1 of Table 37-1 on page 575. The
DMAC then knows that the previous buffer transferred was the last buffer in the DMAC
transfer. The DMAC transfer might look like that shown in Figure 37-5 on page 579.
Figure 37-5. Multi-buffer with Linked List Address for Source and Destination
Address of
Destination Layer
Address of
Source Layer
Buffer 2
SADDR(2)
Buffer 2
DADDR(2)
Buffer 1
SADDR(1)
Buffer 1
DADDR(1)
Buffer 0
Buffer 0
DADDR(0)
SADDR(0)
Source Buffers
Destination Buffers
If the user needs to execute a DMAC transfer where the source and destination address are
contiguous but the amount of data to be transferred is greater than the maximum buffer size
DMAC_CTRLAx.BTSIZE, then this can be achieved using the type of multi-buffer transfer as
shown in Figure 37-6 on page 580.
579
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-6. Multi-buffer with Linked Address for Source and Destination Buffers are Contiguous
Address of
Source Layer
Address of
Destination Layer
Buffer 2
DADDR(3)
Buffer 2
Buffer 2
SADDR(3)
DADDR(2)
Buffer 2
Buffer 1
SADDR(2)
DADDR(1)
Buffer 1
SADDR(1)
Buffer 0
DADDR(0)
Buffer 0
SADDR(0)
Source Buffers
Destination Buffers
The DMAC transfer flow is shown in Figure 37-7 on page 581.
580
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-7. DMAC Transfer Flow for Source and Destination Linked List Address
Channel enabled by
software
LLI Fetch
Hardware reprograms
SADDRx, DADDRx, CTRLA/Bx, DSCRx
DMAC buffer transfer
Writeback of HDMA_CTRLAx
register in system memory
Buffer Complete interrupt
generated here
Is HDMA in
Row1 of
HDMA State Machine Table?
HDMA Transfer Complete
interrupt generated here
no
yes
Channel Disabled by
hardware
37.3.4.4
Multi-buffer Transfer with Source Address Auto-reloaded and Destination Address Auto-reloaded (Row 10)
1. Read the Channel Enable register to choose an available (disabled) channel.
2. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the interrupt status register. Program the following channel registers:
581
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
a. Write the starting source address in the DMAC_SADDRx register for channel x.
b.
Write the starting destination address in the DMAC_DADDRx register for channel
x.
c.
Program DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx according to Row
10 as shown in Table 37-1 on page 575. Program the DMAC_DSCRx register with
‘0’.
d. Write the control information for the DMAC transfer in the DMAC_CTRLAx and
DMAC_CTRLBx register for channel x. For example, in the register, you can program the following:
– Set up the transfer characteristics, such as:
– Transfer width for the source in the SRC_WIDTH field.
– Transfer width for the destination in the DST_WIDTH field.
– Source AHB master interface layer in the SIF field where source resides.
– Destination AHB master interface layer in the DIF field where destination resides.
– Incrementing/decrementing or fixed address for source in SRC_INCR field.
– Incrementing/decrementing or fixed address for destination in DST_INCR field.
e. If source picture-in-picture mode is enabled (DMAC_CTRLBx.SPIP is enabled),
program the DMAC_SPIPx register for channel x.
f.
If destination picture-in-picture is enabled (DMAC_CTRLBx.DPIP), program the
DMAC_DPIPx register for channel x.
g. Write the channel configuration information into the DMAC_CFGx register for channel x. Ensure that the reload bits, DMAC_CFGx.SRC_REP,
DMAC_CFGx.DST_REP and DMAC_CTRLBx.AUTO are enabled.
3. After the DMAC selected channel has been programmed, enable the channel by writing
a ‘1’ to the DMAC_CHER.ENABLE[n] bit where is the channel number. Make sure that
bit 0 of the DMAC_EN register is enabled.
4. When the buffer transfer has completed, the DMAC reloads the DMAC_SADDRx,
DMAC_DADDRx and DMAC_CTRLAx registers. Hardware sets the buffer Complete
interrupt. The DMAC then samples the row number as shown in Table 37-1 on page
575. If the DMAC is in Row 1, then the DMAC transfer has completed. Hardware sets
the transfer complete interrupt and disables the channel. So you can either respond to
the Buffer Complete or Chained buffer transfer Complete interrupts, or poll for the
Channel Enable in the Channel Status Register (DMAC_CHSR.ENABLE[n]) until it is
disabled, to detect when the transfer is complete. If the DMAC is not in Row 1, the next
step is performed.
5. The DMAC transfer proceeds as follows:
a. If interrupts is un-masked (DMAC_EBCIMR.BTC[x] = ‘1’, where x is the channel
number) hardware sets the buffer complete interrupt when the buffer transfer has
completed. It then stalls until the STALLED[n] bit of DMAC_CHSR register is
cleared by software, writing ‘1’ to DMAC_CHER.KEEPON[n] bit where n is the
channel number. If the next buffer is to be the last buffer in the DMAC transfer, then
the buffer complete ISR (interrupt service routine) should clear the automatic mode
bit in the DMAC_CTRLBx.AUTO bit. This put the DMAC into Row 1 as shown in
Table 37-1 on page 575. If the next buffer is not the last buffer in the DMAC transfer, then the reload bits should remain enabled to keep the DMAC in Row 4.
b.
If the buffer complete interrupt is masked (DMAC_EBCIMR.BTC[x] = ‘1’, where x is
the channel number), then hardware does not stall until it detects a write to the buffer complete interrupt enable register DMAC_EBCIER register but starts the next
buffer transfer immediately. In this case software must clear the automatic mode bit
582
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
in the DMAC_CTRLB to put the DMAC into ROW 1 of Table 37-1 on page 575
before the last buffer of the DMAC transfer has completed. The transfer is similar to
that shown in Figure 37-8 on page 583. The DMAC transfer flow is shown in Figure
37-9 on page 584.
Figure 37-8. Multi-buffer DMAC Transfer with Source and Destination Address Auto-reloaded
Address of
Source Layer
Address of
Destination Layer
Block0
Block1
Block2
SADDR
DADDR
BlockN
Source Buffers
Destination Buffers
583
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-9. DMAC Transfer Flow for Source and Destination Address Auto-reloaded
Channel Enabled by
software
Buffer Transfer
Replay mode for SADDRx,
DADDRx, CTRLAx, CTRLBx
Buffer Complete interrupt
generated here
HDMA Transfer Complete
Interrupt generated here
Channel Disabled by
hardware
yes
Is HDMA in Row1 of
HDMA State Machine table?
no
EBCIMR[x]=1?
no
yes
Stall until STALLED is cleared
by writing to KEEPON field
37.3.4.5
Multi-buffer Transfer with Source Address Auto-reloaded and Linked List Destination Address (Row 6)
1. Read the Channel Enable register to choose a free (disabled) channel.
2. Set up the chain of linked list items (otherwise known as buffer descriptors) in memory.
Write the control information in the LLI.DMAC_CTRLAx and DMAC_CTRLBx registers
location of the buffer descriptor for each LLI in memory for channel x. For example, in
the register you can program the following:
c.
Set up the transfer characteristics, such as:
– i. Transfer width for the source in the SRC_WIDTH field.
– ii. Transfer width for the destination in the DST_WIDTH field.
– iii. Source AHB master interface layer in the SIF field where source resides.
– iv. Destination AHB master interface layer in the DIF field where destination resides.
– v. Incrementing/decrementing or fixed address for source in SRC_INCR field.
– vi. Incrementing/decrementing or fixed address for destination DST_INCR field.
3. Write the starting source address in the DMAC_SADDRx register for channel x.
Note:
The values in the LLI.DMAC_SADDRx register locations of each of the Linked List Items (LLIs)
setup up in memory, although fetched during a LLI fetch, are not used.
584
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
4. Write the channel configuration information into the DMAC_CFGx register for channel
x.
5. Make sure that the LLI.DMAC_CTRLBx register locations of all LLIs in memory (except
the last) are set as shown in Row 6 of Table 37-1 on page 575 while the
LLI.DMAC_CTRLBx register of the last Linked List item must be set as described in
Row 1 of Table 37-1. Figure 37-4 on page 574 shows a Linked List example with two
list items.
6. Make sure that the LLI.DMAC_DSCRx register locations of all LLIs in memory (except
the last) are non-zero and point to the next Linked List Item.
7. Make sure that the LLI.DMAC_DADDRx register location of all LLIs in memory point to
the start destination buffer address proceeding that LLI fetch.
8. Make sure that the LLI.DMAC_CTLx.DONE field of the LLI.DMAC_CTRLA register
locations of all LLIs in memory is cleared.
9. If source picture-in-picture is enabled (DMAC_CTRLBx.SPIP is enabled), program the
DMAC_SPIPx register for channel x.
10. If destination picture-in-picture is enabled (DMAC_CTRLBx.DPIP is enabled), program
the DMAC_DPIPx register for channel x.
11. Clear any pending interrupts on the channel from the previous DMAC transfer by reading to the DMAC_EBCISR register.
12. Program the DMAC_CTLx, DMAC_CFGx registers according to Row 6 as shown in
Table 37-1 on page 575.
13. Program the DMAC_DSCRx register with DMAC_DSCRx(0), the pointer to the first
Linked List item.
14. Finally, enable the channel by writing a ‘1’ to the DMAC_CHER.ENABLE[n] bit where n
is the channel number. The transfer is performed. Make sure that bit 0 of the DMAC_EN
register is enabled.
15. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0).
Note:
The LLI.DMAC_SADDRx, LLI.DMAC_DADDRx, LLI. DMAC_LLPx LLI.DMAC_CTRLAx and
LLI.DMAC_CTRLBx registers are fetched. The LLI.DMAC_SADDRx register although fetched is
not used.
16. The DMAC_CTRLAx register is written out to system memory. The DMAC_CTRLAx
register is written out to the same location on the same layer
(DMAC_DSCRx.DSCR_IF) where it was originally fetched, that is the location of the
DMAC_CTRLAx register of the linked list item fetched prior to the start of the buffer
transfer. Only DMAC_CTRLAx register is written out, because only the
DMAC_CTRLAx.BTSIZE and DMAC_CTRLAx.DONE fields have been updated by
hardware within the DMAC. The LLI.DMAC_CTRLAx.DONE bit is asserted to indicate
buffer completion Therefore, software can poll the LLI.DMAC_CTRLAx.DONE field of
the DMAC_CTRLAx register in the LLi to ascertain when a buffer transfer has
completed.
Note:
Do not poll the DMAC_CTRLAx.DONE bit in the DMAC memory map. Instead poll the
LLI.DMAC_CTRLAx.DONE bit in the LLI for that buffer. If the polled LLI.DMAC_CTRLAx.DONE bit
is asserted, then this buffer transfer has completed. This LLI.DMAC_CTRLA.DONE bit was
cleared at the start of the transfer.
17. The DMAC reloads the DMAC_SADDRx register from the initial value. Hardware sets
the buffer complete interrupt. The DMAC samples the row number as shown in Table
37-1 on page 575. If the DMAC is in Row 1, then the DMAC transfer has completed.
Hardware sets the transfer complete interrupt and disables the channel. You can either
respond to the Buffer Complete or Chained buffer Transfer Complete interrupts, or poll
for the Channel Enable (DMAC_CHSR.ENABLE) bit until it is cleared by hardware, to
585
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
detect when the transfer is complete. If the DMAC is not in Row 1 as shown in Table 371 on page 575, the following step is performed.
18. The DMAC fetches the next LLI from memory location pointed to by the current
DMAC_DSCRx register, and automatically reprograms the DMAC_DADDRx,
DMAC_CTRLAx, DMAC_CTRLBx and DMAC_DSCRx channel registers. Note that the
DMAC_SADDRx is not re-programmed as the reloaded value is used for the next
DMAC buffer transfer. If the next buffer is the last buffer of the DMAC transfer then the
DMAC_CTRLBx and DMAC_DSCRx registers just fetched from the LLI should match
Row 1 of Table 37-1 on page 575. The DMAC transfer might look like that shown in Figure 37-10 on page 586.
Figure 37-10. Multi-buffer DMAC Transfer with Source Address Auto-reloaded and Linked List Destination Address
Address of
Destination Layer
Address of
Source Layer
Buffer0
DADDR(0)
Buffer1
DADDR(1)
SADDR
Buffer2
DADDR(2)
BufferN
DADDR(N)
Source Buffers
Destination Buffers
The DMAC Transfer flow is shown in Figure 37-11 on page 587.
586
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-11. DMAC Transfer Flow for Replay Mode at Source and Linked List Destination Address
Channel Enabled by
software
LLI Fetch
Hardware reprograms
DADDRx, CTRLAx, CTRLBx, DSCRx
DMA buffer transfer
Writeback of control
status information in LLI
Reload SADDRx
Buffer Complete interrupt
generated here
yes
HDMA Transfer Complete
interrupt generated here
Is HDMA in
Row1 of
HDMA State Machine Table?
Channel Disabled by
hardware
37.3.4.6
no
Multi-buffer Transfer with Source Address Auto-reloaded and Contiguous Destination Address (Row 11)
1. Read the Channel Enable register to choose a free (disabled) channel.
2. Clear any pending interrupts on the channel from the previous DMAC transfer by reading to the Interrupt Status Register.
3. Program the following channel registers:
a. Write the starting source address in the DMAC_SADDRx register for channel x.
b.
Write the starting destination address in the DMAC_DADDRx register for channel
x.
c.
Program DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx according to Row
11 as shown in Table 37-1 on page 575. Program the DMAC_DSCRx register with
‘0’. DMAC_CTRLBx.AUTO field is set to ‘1’ to enable automatic mode support.
d. Write the control information for the DMAC transfer in the DMAC_CTRLBx and
DMAC_CTRLAx register for channel x. For example, in this register, you can program the following:
– Set up the transfer characteristics, such as:
– Transfer width for the source in the SRC_WIDTH field.
– Transfer width for the destination in the DST_WIDTH field.
587
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– Source AHB master interface layer in the SIF field where source resides.
– Destination AHB master interface master layer in the DIF field where destination
resides.
– Incrementing/decrementing or fixed address for source in SRC_INCR field.
– Incrementing/decrementing or fixed address for destination in DST_INCR field.
e. If source picture-in-picture is enabled (DMAC_CTRLBx.SPIP is enabled), program
the DMAC_SPIPx register for channel x.
f.
If destination picture-in-picture is enabled (DMAC_CTRLBx.DPIP), program the
DMAC_DPIPx register for channel x.
g. Write the channel configuration information into the DMAC_CFGx register for channel x.
4. After the DMAC channel has been programmed, enable the channel by writing a ‘1’ to
the DMAC_CHER.ENABLE[n] bit where n is the channel number. Make sure that bit 0
of the DMAC_EN.ENABLE register is enabled.
5. When the buffer transfer has completed, the DMAC reloads the DMAC_SADDRx register. The DMAC_DADDRx register remains unchanged. Hardware sets the buffer
complete interrupt. The DMAC then samples the row number as shown in Table 37-1
on page 575. If the DMAC is in Row 1, then the DMAC transfer has completed. Hardware sets the transfer complete interrupt and disables the channel. So you can either
respond to the Buffer Complete or Transfer Complete interrupts, or poll for ENABLE
field in the Channel Status Register (DMAC_CHSR.ENABLE[n] bit) until it is cleared by
hardware, to detect when the transfer is complete. If the DMAC is not in Row 1, the next
step is performed.
6. The DMAC transfer proceeds as follows:
a. If the buffer complete interrupt is un-masked (DMAC_EBCIMR.BTC[x] = ‘1’, where
x is the channel number) hardware sets the buffer complete interrupt when the buffer transfer has completed. It then stalls until STALLED[n] bit of DMAC_CHSR is
cleared by writing in the KEEPON[n] field of DMAC_CHER register where n is the
channel number. If the next buffer is to be the last buffer in the DMAC transfer, then
the buffer complete ISR (interrupt service routine) should clear the automatic mode
bit, DMAC_CTRLBx.AUTO. This puts the DMAC into Row 1 as shown in Table 371 on page 575. If the next buffer is not the last buffer in the DMAC transfer then the
automatic transfer mode bit should remain enabled to keep the DMAC in Row 11 as
shown in Table 37-1 on page 575.
b.
If the buffer complete interrupt is masked (DMAC_EBCIMR.BTC[x] = ‘1’, where x is
the channel number) then hardware does not stall until it detects a write to the buffer transfer completed interrupt enable register but starts the next buffer transfer
immediately. In this case software must clear the automatic mode bit,
DMAC_CTRLBx.AUTO, to put the device into ROW 1 of Table 37-1 on page 575
before the last buffer of the DMAC transfer has completed.
The transfer is similar to that shown in Figure 37-12 on page 589.
The DMAC Transfer flow is shown in Figure 37-13 on page 590.
588
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-12. Multi-buffer Transfer with Source Address Auto-reloaded and Contiguous Destination Address
Address of
Destination Layer
Address of
Source Layer
Buffer2
DADDR(2)
Buffer1
DADDR(1)
Buffer0
SADDR
DADDR(0)
Source Buffers
Destination Buffers
589
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-13. DMAC Transfer Replay Mode is Enabled for the Source and Contiguous Destination Address
Channel Enabled by
software
Buffer Transfer
Replay mode for SADDRx,
Contiguous mode for DADDRx
CTRLAx, CTRLBx
Buffer Complete interrupt
generated here
Buffer Transfer Complete
interrupt generated here
yes
Is HDMA in Row1of
HDMA State Machine Table?
Channel Disabled by
hardware
no
no
DMA_EBCIMR[x]=1?
yes
Stall until STALLED field is
cleared by software writing
KEEPON Field
37.3.4.7
Multi-buffer DMAC Transfer with Linked List for Source and Contiguous Destination Address (Row 2)
1. Read the Channel Enable register to choose a free (disabled) channel.
2. Set up the linked list in memory. Write the control information in the
LLI.DMAC_CTRLAx and LLI.DMAC_CTRLBx register location of the buffer descriptor
for each LLI in memory for channel x. For example, in the register, you can program the
following:
c.
Set up the transfer characteristics, such as:
– i. Transfer width for the source in the SRC_WIDTH field.
– ii. Transfer width for the destination in the DST_WIDTH field.
– iii. Source AHB master interface layer in the SIF field where source resides.
– iv. Destination AHB master interface layer in the DIF field where destination resides.
– v. Incrementing/decrementing or fixed address for source in SRC_INCR field.
– vi. Incrementing/decrementing or fixed address for destination DST_INCR field.
590
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
3. Write the starting destination address in the DMAC_DADDRx register for channel x.
Note:
The values in the LLI.DMAC_DADDRx register location of each Linked List Item (LLI) in memory,
although fetched during an LLI fetch, are not used.
4. Write the channel configuration information into the DMAC_CFGx register for channel
x.
5. Make sure that all LLI.DMAC_CTRLBx register locations of the LLI (except the last) are
set as shown in Row 2 of Table 37-1 on page 575, while the LLI.DMAC_CTRLBx register of the last Linked List item must be set as described in Row 1 of Table 37-1. Figure
37-4 on page 574 shows a Linked List example with two list items.
6. Make sure that the LLI.DMAC_DSCRx register locations of all LLIs in memory (except
the last) are non-zero and point to the next Linked List Item.
7. Make sure that the LLI.DMAC_SADDRx register location of all LLIs in memory point to
the start source buffer address proceeding that LLI fetch.
8. Make sure that the LLI.DMAC_CTRLAx.DONE field of the LLI.DMAC_CTRLAx register
locations of all LLIs in memory is cleared.
9. If source picture-in-picture is enabled (DMAC_CTRLBx.SPIP is enabled), program the
DMAC_SPIPx register for channel x.
10. If destination picture-in-picture is enabled (DMAC_CTRLBx.DPIP is enabled), program
the DMAC_DPIPx register for channel x.
11. Clear any pending interrupts on the channel from the previous DMAC transfer by reading the interrupt status register.
12. Program the DMAC_CTRLAx, DMAC_CTRLBx and DMAC_CFGx registers according
to Row 2 as shown in Table 37-1 on page 575
13. Program the DMAC_DSCRx register with DMAC_DSCRx(0), the pointer to the first
Linked List item.
14. Finally, enable the channel by writing a ‘1’ to the DMAC_CHER.ENABLE[n] bit. The
transfer is performed. Make sure that bit 0 of the DMAC_EN register is enabled.
15. The DMAC fetches the first LLI from the location pointed to by DMAC_DSCRx(0).
Note:
The LLI.DMAC_SADDRx, LLI.DMAC_DADDRx, LLI.DMAC_DSCRx and LLI.DMAC_CTRLA/Bx
registers are fetched. The LLI.DMAC_DADDRx register location of the LLI although fetched is not
used. The DMAC_DADDRx register in the DMAC remains unchanged.
16. Once the buffer of data is transferred, the DMAC_CTRLAx register is written out to system memory at the same location and on the same layer (DMAC_DSCRx.DSCR_IF)
where it was originally fetched, that is, the location of the DMAC_CTRLAx register of
the linked list item fetched prior to the start of the buffer transfer. Only DMAC_CTRLAx
register is written out because only the DMAC_CTRLAx.BTSIZE and
DMAC_CTRLAX.DONE fields have been updated by DMAC hardware. Additionally, the
DMAC_CTRLAx.DONE bit is asserted when the buffer transfer has completed.
Note:
Do not poll the DMAC_CTRLAx.DONE bit in the DMAC memory map. Instead, poll the
LLI.DMAC_CTRLAx.DONE bit in the LLI for that buffer. If the poll LLI.DMAC_CTRLAx.DONE bit is
asserted, then this buffer transfer has completed. This LLI.DMAC_CTRLAx.DONE bit was cleared
at the start of the transfer.
17. The DMAC does not wait for the buffer interrupt to be cleared, but continues and
fetches the next LLI from the memory location pointed to by current DMAC_DSCRx
register and automatically reprograms the DMAC_SADDRx, DMAC_CTRLAx,
DMAC_CTRLBx and DMAC_DSCRx channel registers. The DMAC_DADDRx register
is left unchanged. The DMAC transfer continues until the DMAC samples the
DMAC_CTRLAx, DMAC_CTRLBx and DMAC_DSCRx registers at the end of a buffer
transfer match that described in Row 1 of Table 37-1 on page 575. The DMAC then
knows that the previous buffer transferred was the last buffer in the DMAC transfer.
591
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The DMAC transfer might look like that shown in Figure 37-14 on page 592 Note that the destination address is decrementing.
Figure 37-14. DMAC Transfer with Linked List Source Address and Contiguous Destination Address
Address of
Source Layer
Address of
Destination Layer
Buffer 2
SADDR(2)
Buffer 2
DADDR(2)
Buffer 1
Buffer 1
SADDR(1)
DADDR(1)
Buffer 0
DADDR(0)
Buffer 0
SADDR(0)
Source Buffers
Destination Buffers
The DMAC transfer flow is shown in Figure 37-15 on page 593.
592
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 37-15. DMAC Transfer Flow for Linked List Source Address and Contiguous Destination Address
Channel Enabled by
software
LLI Fetch
Hardware reprograms
SADDRx, CTRLAx,CTRLBx, DSCRx
HDMA buffer transfer
Writeback of control
information of LLI
Buffer Complete interrupt
generated here
Is HDMA in
Row 1 ?
HDMA Transfer Complete
interrupt generated here
no
yes
Channel Disabled by
hardware
37.3.5
Disabling a Channel Prior to Transfer Completion
Under normal operation, software enables a channel by writing a ‘1’ to the Channel Handler
Enable Register, DMAC_CHER.ENABLE[n], and hardware disables a channel on transfer completion by clearing the DMAC_CHSR.ENABLE[n] register bit.
The recommended way for software to disable a channel without losing data is to use the SUSPEND[n] bit in conjunction with the EMPTY[n] bit in the Channel Handler Status Register.
593
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
1. If software wishes to disable a channel n prior to the DMAC transfer completion, then it
can set the DMAC_CHER.SUSPEND[n] bit to tell the DMAC to halt all transfers from
the source peripheral. Therefore, the channel FIFO receives no new data.
2. Software can now poll the DMAC_CHSR.EMPTY[n] bit until it indicates that the channel
n FIFO is empty, where n is the channel number.
3. The DMAC_CHER.ENABLE[n] bit can then be cleared by software once the channel n
FIFO is empty, where n is the channel number.
When DMAC_CTRLAx.SRC_WIDTH is less than DMAC_CTRLAx.DST_WIDTH and the
DMAC_CHSRx.SUSPEND[n] bit is high, the DMAC_CHSRx.EMPTY[n] is asserted once the
contents of the FIFO do not permit a single word of DMAC_CTRLAx.DST_WIDTH to be formed.
However, there may still be data in the channel FIFO but not enough to form a single transfer of
DMAC_CTLx.DST_WIDTH width. In this configuration, once the channel is disabled, the remaining data in the channel FIFO are not transferred to the destination peripheral. It is permitted to
remove the channel from the suspension state by writing a ‘1’ to the DMAC_CHER.RESUME[n]
field register. The DMAC transfer completes in the normal manner. n defines the channel
number.
37.3.5.1
Abnormal Transfer Termination
A DMAC transfer may be terminated abruptly by software by clearing the channel enable bit,
DMAC_CHDR.ENABLE[n] where n is the channel number. This does not mean that the channel
is disabled immediately after the DMAC_CHSR.ENABLE[n] bit is cleared over the APB interface. Consider this as a request to disable the channel. The DMAC_CHSR.ENABLE[n] must be
polled and then it must be confirmed that the channel is disabled by reading back 0.
Software may terminate all channels abruptly by clearing the global enable bit in the DMAC Configuration Register (DMAC_EN.ENABLE bit). Again, this does not mean that all channels are
disabled immediately after the DMAC_EN.ENABLE is cleared over the APB slave interface.
Consider this as a request to disable all channels. The DMAC_CHSR.ENABLE must be polled
and then it must be confirmed that all channels are disabled by reading back ‘0’.
Note:
37.4
If the channel enable bit is cleared while there is data in the channel FIFO, this data is not sent to
the destination peripheral and is not present when the channel is re-enabled. For read sensitive
source peripherals, such as a source FIFO, this data is therefore lost. When the source is not a
read sensitive device (i.e., memory), disabling a channel without waiting for the channel FIFO to
empty may be acceptable as the data is available from the source peripheral upon request and is
not lost.
DMAC Software Requirements
• There must not be any write operation to Channel registers in an active channel after the
channel enable is made HIGH. If any channel parameters must be reprogrammed, this can
only be done after disabling the DMAC channel.
• You must program the DMAC_SADDRx and DMAC_DADDRx channel registers with a byte,
half-word and word aligned address depending on the source width and destination width.
• After the software disables a channel by writing into the channel disable register, it must reenable the channel only after it has polled a 0 in the corresponding channel enable status
register. This is because the current AHB Burst must terminate properly.
• If you program the BTSIZE field in the DMAC_CTRLA, as zero, and the DMAC is defined as
the flow controller, then the channel is automatically disabled.
• When AUTO Field is set to TRUE, then the BTSIZE Field is automatically reloaded from its
previous value. BTSIZE must be initialized to a non zero value if the first transfer is initiated
594
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
with AUTO field set to TRUE even if LLI mode is enabled because the LLI fetch operation will
not update this field.
595
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5
DMA Controller (DMAC) User Interface
Table 37-2.
Register Mapping
Offset
Register
Name
Access
Reset State
0x000
DMAC Global Configuration Register
DMAC_GCFG
Read/Write
0x10
0x004
DMAC Enable Register
DMAC_EN
Read/Write
0x0
0x008
Reserved
–
–
–
0x00C
Reserved
–
–
–
0x010
Reserved
–
–
–
0x014
Reserved
–
–
–
0x018
DMAC Error, Chained Buffer transfer completed and
Buffer transfer completed Interrupt Enable register.
DMAC_EBCIER
Write-only
–
0x01C
DMAC Error, Chained Buffer transfer completed and
Buffer transfer completed Interrupt Disable register.
DMAC_EBCIDR
Write-only
–
0x020
DMAC Error, Chained Buffer transfer completed and
Buffer transfer completed Mask Register.
DMAC_EBCIMR
Read-only
0x0
0x024
DMAC Error, Chained Buffer transfer completed and
Buffer transfer completed Status Register.
DMAC_EBCISR
Read-only
0x0
0x028
DMAC Channel Handler Enable Register
DMAC_CHER
Write-only
–
0x02C
DMAC Channel Handler Disable Register
DMAC_CHDR
Write-only
–
0x030
DMAC Channel Handler Status Register
DMAC_CHSR
Read-only
0x034
Reserved
–
–
–
0x038
Reserved
–
–
–
0x03C
DMAC Channel 0 Source Address Register
DMAC_SADDR0
Read/Write
0x0
0x040
DMAC Channel 0 Destination Address Register
DMAC_DADDR0
Read/Write
0x0
0x044
DMAC Channel 0 Descriptor Address Register
DMAC_DSCR0
Read/Write
0x0
0x048
DMAC Channel 0 Control A Register
DMAC_CTRLA0
Read/Write
0x0
0x04C
DMAC Channel 0 Control B Register
DMAC_CTRLB0
Read/Write
0x0
0x050
DMAC Channel 0 Configuration Register
DMAC_CFG0
Read/Write
0x01000000
0x054
DMAC Channel 0 Source Picture in Picture
Configuration Register
DMAC_SPIP0
Read/Write
0x0
0x058
DMAC Channel 0 Destination Picture in Picture
Configuration Register
DMAC_DPIP0
Read/Write
0x0
0x05C
Reserved
–
–
–
0x060
Reserved
–
–
–
0x064
DMAC Channel 1 Source Address Register
DMAC_SADDR1
Read/Write
0x0
0x068
DMAC Channel 1 Destination Address Register
DMAC_DADDR1
Read/Write
0x0
0x06C
DMAC Channel 1 Descriptor Address Register
DMAC_DSCR1
Read/Write
0x0
0x070
DMAC Channel 1 Control A Register
DMAC_CTRLA1
Read/Write
0x0
0x074
DMAC Channel 1 Control B Register
DMAC_CTRLB1
Read/Write
0x0
0x00FF0000
596
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 37-2.
Register Mapping
Offset
Register
Name
Access
Reset State
0x078
DMAC Channel 1 Configuration Register
DMAC_CFG1
Read/Write
0x01000000
0x07C
DMAC Channel 1 Source Picture in Picture
Configuration Register
DMAC_SPIP1
Read/Write
0x0
0x080
DMAC Channel 1 Destination Picture in Picture
Configuration Register
DMAC_DPIP1
Read/Write
0x0
597
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.1
DMAC Global Configuration Register
Name: DMAC_GCFG
Access: Read/Write
Reset Value: 0x00000010
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
ARB_CFG
3
–
2
–
1
–
0
IF0_BIGEND
• IF0_BIGEND
0: AHB-Lite Interface 0 is little endian.
1: AHB-Lite Interface 0 is big endian.
• ARB_CFG
0: Fixed priority arbiter.
1: Modified round robin arbiter.
598
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.2
DMAC Enable Register
Name: DMAC_EN
Access: Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
ENABLE
• ENABLE
0: DMA Controller is disabled.
1: DMA Controller is enabled.
599
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.3
DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Enable Register
Name: DMAC_EBCIER
Access: Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
ERR1
16
ERR0
15
–
14
–
13
–
12
–
11
–
10
–
9
CBTC1
8
CBTC0
7
–
6
–
5
–
4
–
3
–
2
–
1
BTC1
0
BTC0
• BTC[1:0]
Buffer Transfer Completed Interrupt Enable Register. Set the relevant bit in the BTC field to enable the interrupt for channel
i.
• CBTC[1:0]
Chained Buffer Transfer Completed Interrupt Enable Register. Set the relevant bit in the CBTC field to enable the interrupt
for channel i.
• ERR[1:0]
Access Error Interrupt Enable Register. Set the relevant bit in the ERR field to enable the interrupt for channel i.
600
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.4
DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Disable Register
Name: DMAC_EBCIDR
Access: Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
ERR1
16
ERR0
15
–
14
–
13
–
12
–
11
–
10
–
9
CBTC1
8
CBTC0
7
–
6
–
5
–
4
–
3
–
2
–
1
BTC1
0
BTC0
• BTC[1:0]
Buffer transfer completed Disable Interrupt Register. When set, a bit of the BTC field disables the interrupt from the relevant DMAC channel.
• CBTC[1:0]
Chained Buffer transfer completed Disable Register. When set, a bit of the CBTC field disables the interrupt from the relevant DMAC channel.
• ERR[1:0]
Access Error Interrupt Disable Register. When set, a bit of the ERR field disables the interrupt from the relevant DMAC
channel.
601
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.5
DMAC Error, Buffer Transfer and Chained Buffer Transfer Interrupt Mask Register
Name: DMAC_EBCIMR
Access: Read-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
ERR1
16
ERR0
15
–
14
–
13
–
12
–
11
–
10
–
9
CBTC1
8
CBTC0
7
–
6
–
5
–
4
–
3
–
2
–
1
BTC1
0
BTC0
• BTC[1:0]
0: Buffer Transfer completed interrupt is disabled for channel i.
1: Buffer Transfer completed interrupt is enabled for channel i.
• CBTC[1:0]
0: Chained Buffer Transfer interrupt is disabled for channel i.
1: Chained Buffer Transfer interrupt is enabled for channel i.
• ERR[1:0]
0: Transfer Error Interrupt is disabled for channel i.
1: Transfer Error Interrupt is enabled for channel i.
602
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.6
DMAC Error, Buffer Transfer and Chained Buffer Transfer Status Register
Name: DMAC_EBCISR
Access: Read-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
ERR1
16
ERR0
15
–
14
–
13
–
12
–
11
–
10
–
9
CBTC1
8
CBTC0
7
–
6
–
5
–
4
–
3
–
2
–
1
BTC1
0
BTC0
• BTC[1:0]
When BTC[i] is set, Channel i buffer transfer has terminated.
• CBTC[1:0]
When CBTC[i] is set, Channel i Chained buffer has terminated. LLI Fetch operation is disabled.
• ERR[1:0]
When ERR[i] is set, Channel i has detected an AHB Read or Write Error Access.
603
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.7
DMAC Channel Handler Enable Register
Name: DMAC_CHER
Access: Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
KEEP1
24
KEEP0
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
SUSP1
8
SUSP0
7
–
6
–
5
–
4
–
3
–
2
–
1
ENA1
0
ENA0
• ENA[1:0]
When set, a bit of the ENA field enables the relevant channel.
• SUSP[1:0]
When set, a bit of the SUSP field freezes the relevant channel and its current context.
• KEEP[1:0]
When set, a bit of the KEEP field resumes the current channel from an automatic stall state.
604
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.8
DMAC Channel Handler Disable Register
Name: DMAC_CHDR
Access: Write-only
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
RES1
8
RES0
7
–
6
–
5
–
4
–
3
–
2
–
1
DIS1
0
DIS0
• DIS[1:0]
Write one to this field to disable the relevant DMAC Channel. The content of the FIFO is lost and the current AHB access is
terminated. Software must poll DIS[1:0] field in the DMAC_CHSR register to be sure that the channel is disabled.
• RES[1:0]
Write one to this field to resume the channel transfer restoring its context.
605
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.9
DMAC Channel Handler Status Register
Name: DMAC_CHSR
Access: Read-only
Reset Value: 0x00FF0000
31
–
30
–
29
–
28
–
27
–
26
–
25
STAL1
24
STAL0
23
–
22
–
21
–
20
–
19
–
18
–
17
EMPT1
16
EMPT0
15
–
14
–
13
–
12
–
11
–
10
–
9
SUSP1
8
SUSP0
7
–
6
–
5
–
4
–
3
–
2
–
1
ENA1
0
ENA0
• ENA[1:0]
A one in any position of this field indicates that the relevant channel is enabled.
• SUSP[1:0]
A one in any position of this field indicates that the channel transfer is suspended.
• EMPT[1:0]
A one in any position of this field indicates that the relevant channel is empty.
• STAL[1:0]
A one in any position of this field indicates that the relevant channel is stalling.
606
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.10 DMAC Channel x [x = 0..1] Source Address Register
Name: DMAC_SADDRx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
SADDRx
23
22
21
20
SADDRx
15
14
13
12
SADDRx
7
6
5
4
SADDRx
• SADDRx
Channel x source address. This register must be aligned with the source transfer width.
37.5.11 DMAC Channel x [x = 0..1] Destination Address Register
Name: DMAC_DADDRx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DADDRx
23
22
21
20
DADDRx
15
14
13
12
DADDRx
7
6
5
4
DADDRx
• DADDRx
Channel x destination address. This register must be aligned with the destination transfer width.
607
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.12 DMAC Channel x [x = 0..1] Descriptor Address Register
Name: DMAC_DSCRx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
DSCRx
23
22
21
20
DSCRx
15
14
13
12
DSCRx
7
6
5
4
DSCRx
0
DSCRx_IF
• DSCRx_IF
00: The Buffer Transfer descriptor is fetched via AHB-Lite Interface 0.
01: Reserved.
10: Reserved.
11: Reserved.
• DSCRx
Buffer Transfer descriptor address. This address is word aligned.
608
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.13 DMAC Channel x [x = 0..1] Control A Register
Name: DMAC_CTRLAx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
DONE
30
–
29
28
23
–
22
–
21
–
20
–
15
14
13
12
DST_WIDTH
27
–
26
–
25
24
19
–
18
–
17
–
16
–
11
10
9
8
3
2
1
0
SRC_WIDTH
BTSIZE
7
6
5
4
BTSIZE
• BTSIZE
Buffer Transfer Size. The transfer size relates to the number of transfers to be performed, that is, for writes it refers to the
number of source width transfers to perform when DMAC is flow controller. For Reads, BTSIZE refers to the number of
transfers completed on the Source Interface. When this field is set to 0, the DMAC module is automatically disabled when
the relevant channel is enabled.
• SRC_WIDTH
SRC_WIDTH
Single Transfer Size
00
BYTE
01
HALF-WORD
1X
WORD
• DST_WIDTH
DST_WIDTH
Single Transfer Size
00
BYTE
01
HALF-WORD
1X
WORD
• DONE
0: The transfer is performed.
1: If SOD field of DMAC_CFG register is set to true, then the DMAC is automatically disabled when an LLI updates the content of this register.
The DONE field is written back to memory at the end of the transfer.
609
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.14 DMAC Channel x [x = 0..1] Control B Register
Name: DMAC_CTRLBx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
AUTO
30
–
29
23
–
22
–
21
–
15
–
14
–
13
7
–
6
–
5
28
27
–
26
–
25
20
DST_DSCR
19
–
18
–
17
–
16
SRC_DSCR
12
DST_PIP
11
–
10
–
9
–
8
SRC_PIP
4
3
–
2
–
1
DST_INCR
DIF
24
SRC_INCR
0
SIF
• SIF
Source Interface Selection Field.
00: The source transfer is done via AHB-Lite Interface 0.
01: Reserved.
10: Reserved.
11: Reserved.
• DIF
Destination Interface Selection Field.
00: The destination transfer is done via AHB-Lite Interface 0.
01: Reserved.
10: Reserved.
11: Reserved.
• SRC_PIP
0: Picture-in-Picture mode is disabled. The source data area is contiguous.
1: Picture-in-Picture mode is enabled. When the source PIP counter reaches the programmable boundary, the address is
automatically increment of a user defined amount.
• DST_PIP
0: Picture-in-Picture mode is disabled. The Destination data area is contiguous.
1: Picture-in-Picture mode is enabled. When the Destination PIP counter reaches the programmable boundary the address
is automatically incremented by a user-defined amount.
• SRC_DSCR
0: Source address is updated when the descriptor is fetched from the memory.
1: Buffer Descriptor Fetch operation is disabled for the source.
610
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• DST_DSCR
0: Destination address is updated when the descriptor is fetched from the memory.
1: Buffer Descriptor Fetch operation is disabled for the destination.
• SRC_INCR
SRC_INCR
Type of addressing mode
00
INCREMENTING
01
DECREMENTING
10
FIXED
DST_INCR
Type of addressing scheme
00
INCREMENTING
01
DECREMENTING
10
FIXED
• DST_INCR
• AUTO
Automatic multiple buffer transfer is enabled. When set, this bit enables replay mode or contiguous mode when several buffers are transferred.
611
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.15 DMAC Channel x [x = 0..1] Configuration Register
Name: DMAC_CFGx [x = 0..1]
Access: Read/Write
Reset Value: 0x0100000000
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
SOD
15
–
14
–
13
–
12
DST_REP
11
–
10
–
9
–
8
SRC_REP
7
–
6
–
5
–
4
–
3
–
2
–
1
–
0
–
• SRC_REP
0: When automatic mode is activated, source address is contiguous between two buffers.
1: When automatic mode is activated, the source address and the control register are reloaded from previous transfer.
• DST_REP
0: When automatic mode is activated, destination address is contiguous between two buffers.
1: When automatic mode is activated, the destination and the control register are reloaded from the previous transfer.
• SOD
0: STOP ON DONE disabled, the descriptor fetch operation ignores DONE Field of CTRLA register.
1: STOP ON DONE activated, the DMAC module is automatically disabled if DONE FIELD is set to 1.
612
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.16 DMAC Channel x [x = 0..1] Source Picture in Picture Configuration Register
Name: DMAC_SPIPx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
24
SPIP_BOUNDARY
23
22
21
20
19
SPIP_BOUNDARY
18
17
16
15
14
13
12
11
10
9
8
3
2
1
0
SPIP_HOLE
7
6
5
4
SPIP_HOLE
• SPIP_HOLE
This field indicates the value to add to the address when the programmable boundary has been reached.
• SPIP_BOUNDARY
This field indicates the number of source transfers to perform before the automatic address increment operation.
613
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
37.5.17 DMAC Channel x [x = 0..1] Destination Picture in Picture Configuration Register
Name: DMAC_DPIPx [x = 0..1]
Access: Read/Write
Reset Value: 0x00000000
31
–
30
–
29
–
28
–
27
–
26
–
25
24
DPIP_BOUNDARY
23
22
21
20
19
DPIP_BOUNDARY
18
17
16
15
14
13
12
11
10
9
8
3
2
1
0
DPIPE_HOLE
7
6
5
4
DPIPE_HOLE
• DPIP_HOLE
This field indicates the value to add to the address when the programmable boundary has been reached.
• DPIP_BOUNDARY
This field indicates the number of source transfers to perform before the automatic address increment operation.
614
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38. MultiMedia Card Interface (MCI)
38.1
Description
The MultiMedia Card Interface (MCI) supports the MultiMedia Card (MMC) Specification V3.11,
the SDIO Specification V1.1 and the SD Memory Card Specification V1.0.
The MCI includes a command register, response registers, data registers, timeout counters and
error detection logic that automatically handle the transmission of commands and, when
required, the reception of the associated responses and data with a limited processor overhead.
The MCI supports stream, block and multi-block data read and write, and is compatible with the
Peripheral DMA Controller (PDC) channels, minimizing processor intervention for large buffer
transfers.
The MCI operates at a rate of up to Master Clock divided by 2 and supports the interfacing of 2
slot(s). Each slot may be used to interface with a MultiMediaCard bus (up to 30 Cards) or with a
SD Memory Card. Only one slot can be selected at a time (slots are multiplexed). A bit field in
the SD Card Register performs this selection.
The SD Memory Card communication is based on a 9-pin interface (clock, command, four data
and three power lines) and the MultiMedia Card on a 7-pin interface (clock, command, one data,
three power lines and one reserved for future use).
The SD Memory Card interface also supports MultiMedia Card operations. The main differences
between SD and MultiMedia Cards are the initialization process and the bus topology.
615
6289C–ATARM–28-May-09
38.2
Block Diagram
Figure 38-1. Block Diagram
APB Bridge
PDC
APB
MCCK(1)
MCCDA(1)
MCDA0(1)
PMC
MCK
MCDA1(1)
MCDA2(1)
MCDA3(1)
MCI Interface
PIO
MCCDB(1)
MCDB0(1)
MCDB1(1)
MCDB2(1)
Interrupt Control
MCDB3(1)
MCI Interrupt
Note:
616
1. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to
MCIx_CDB,MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.3
Application Block Diagram
Figure 38-2. Application Block Diagram
Application Layer
ex: File System, Audio, Security, etc.
Physical Layer
MCI Interface
1 2 3 4 5 6 78
1234567
9
SDCard
MMC
38.4
Pin Name List
Table 38-1.
I/O Lines Description
Pin Name(2)
Pin Description
Type(1)
Comments
MCCDA/MCCDB
Command/response
I/O/PP/OD
CMD of an MMC or SDCard/SDIO
MCCK
Clock
I/O
CLK of an MMC or SD Card/SDIO
MCDA0 - MCDA3
Data 0..3 of Slot A
I/O/PP
DAT0 of an MMC
DAT[0..3] of an SD Card/SDIO
MCDB0 - MCDB3
Data 0..3 of Slot B
I/O/PP
DAT0 of an MMC
DAT[0..3] of an SD Card/SDIO
Notes:
1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.
2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCCDB to
MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
38.5
Product Dependencies
38.5.1
I/O Lines
The pins used for interfacing the MultiMedia Cards or SD Cards may be multiplexed with PIO
lines. The programmer must first program the PIO controllers to assign the peripheral functions
to MCI pins.
38.5.2
Power Management
The MCI may be clocked through the Power Management Controller (PMC), so the programmer
must first configure the PMC to enable the MCI clock.
617
6289C–ATARM–28-May-09
38.5.3
Interrupt
The MCI interface has an interrupt line connected to the Advanced Interrupt Controller (AIC).
Handling the MCI interrupt requires programming the AIC before configuring the MCI.
38.6
Bus Topology
Figure 38-3. Multimedia Memory Card Bus Topology
1234567
MMC
The MultiMedia Card communication is based on a 7-pin serial bus interface. It has three communication lines and four supply lines.
Table 38-2.
Bus Topology
Pin
Number
Name
Type(1)
Description
MCI Pin Name(2)
(Slot z)
1
RSV
NC
Not connected
-
2
CMD
I/O/PP/OD
Command/response
MCCDz
3
VSS1
S
Supply voltage ground
VSS
4
VDD
S
Supply voltage
VDD
5
CLK
I/O
Clock
MCCK
6
VSS2
S
Supply voltage ground
VSS
7
DAT[0]
I/O/PP
Data 0
MCDz0
Notes:
1. I: Input, O: Output, PP: Push/Pull, OD: Open Drain.
2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to
MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
Figure 38-4. MMC Bus Connections (One Slot)
MCI
MCDA0
MCCDA
MCCK
Note:
618
1234567
1234567
1234567
MMC1
MMC2
MMC3
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to MCIx_DAy.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 38-5. SD Memory Card Bus Topology
1 2 3 4 5 6 78
9
SD CARD
The SD Memory Card bus includes the signals listed in Table 38-3.
Table 38-3.
SD Memory Card Bus Signals
Pin
Number
Name
Type
Description
MCI Pin Name(2)
(Slot z)
1
CD/DAT[3]
I/O/PP
Card detect/ Data line Bit 3
MCDz3
2
CMD
PP
Command/response
MCCDz
3
VSS1
S
Supply voltage ground
VSS
4
VDD
S
Supply voltage
VDD
5
CLK
I/O
Clock
MCCK
6
VSS2
S
Supply voltage ground
VSS
7
DAT[0]
I/O/PP
Data line Bit 0
MCDz0
8
DAT[1]
I/O/PP
Data line Bit 1 or Interrupt
MCDz1
9
DAT[2]
I/O/PP
Data line Bit 2
MCDz2
Notes:
(1)
1. I: input, O: output, PP: Push Pull, OD: Open Drain.
2. When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to
MCIx_CDA, MCCDB to MCIx_CDB, MCDAy to MCIx_DAy, MCDBy to MCIx_DBy.
MCDA0 - MCDA3
MCCK
SD CARD
9
MCCDA
1 2 3 4 5 6 78
Figure 38-6. SD Card Bus Connections with One Slot
Note:
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA MCDAy to MCIx_DAy.
619
6289C–ATARM–28-May-09
1 2 3 4 5 6 78
Figure 38-7. SD Card Bus Connections with Two Slots
MCDA0 - MCDA3
MCCK
1 2 3 4 5 6 78
9
MCCDA
SD CARD 1
MCDB0 - MCDB3
9
MCCDB
SD CARD 2
Note:
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK,MCCDA to MCIx_CDA, MCDAy to MCIx_DAy,
MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.
Figure 38-8. Mixing MultiMedia and SD Memory Cards with Two Slots
MCDA0
MCCDA
MCCK
1234567
MMC1
MMC2
MMC3
SD CARD
9
MCCDB
1234567
1 2 3 4 5 6 78
MCDB0 - MCDB3
1234567
Note:
When several MCI (x MCI) are embedded in a product, MCCK refers to MCIx_CK, MCCDA to MCIx_CDA, MCDAy to
MCIx_DAy, MCCDB to MCIx_CDB, MCDBy to MCIx_DBy.
When the MCI is configured to operate with SD memory cards, the width of the data bus can be
selected in the MCI_SDCR register. Clearing the SDCBUS bit in this register means that the
width is one bit; setting it means that the width is four bits. In the case of multimedia cards, only
the data line 0 is used. The other data lines can be used as independent PIOs.
620
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.7
MultiMedia Card Operations
After a power-on reset, the cards are initialized by a special message-based MultiMedia Card
bus protocol. Each message is represented by one of the following tokens:
• Command: A command is a token that starts an operation. A command is sent from the host
either to a single card (addressed command) or to all connected cards (broadcast
command). A command is transferred serially on the CMD line.
• Response: A response is a token which is sent from an addressed card or (synchronously)
from all connected cards to the host as an answer to a previously received command. A
response is transferred serially on the CMD line.
• Data: Data can be transferred from the card to the host or vice versa. Data is transferred via
the data line.
Card addressing is implemented using a session address assigned during the initialization
phase by the bus controller to all currently connected cards. Their unique CID number identifies
individual cards.
The structure of commands, responses and data blocks is described in the MultiMedia-Card
System Specification. See also Table 38-4 on page 622.
MultiMediaCard bus data transfers are composed of these tokens.
There are different types of operations. Addressed operations always contain a command and a
response token. In addition, some operations have a data token; the others transfer their information directly within the command or response structure. In this case, no data token is present
in an operation. The bits on the DAT and the CMD lines are transferred synchronous to the clock
MCI Clock.
Two types of data transfer commands are defined:
• Sequential commands: These commands initiate a continuous data stream. They are
terminated only when a stop command follows on the CMD line. This mode reduces the
command overhead to an absolute minimum.
• Block-oriented commands: These commands send a data block succeeded by CRC bits.
Both read and write operations allow either single or multiple block transmission. A multiple
block transmission is terminated when a stop command follows on the CMD line similarly to the
sequential read or when a multiple block transmission has a pre-defined block count (See “Data
Transfer Operation” on page 623.).
The MCI provides a set of registers to perform the entire range of MultiMedia Card operations.
38.7.1
Command - Response Operation
After reset, the MCI is disabled and becomes valid after setting the MCIEN bit in the MCI_CR
Control Register.
The PWSEN bit saves power by dividing the MCI clock by 2PWSDIV + 1 when the bus is inactive.
The two bits, RDPROOF and WRPROOF in the MCI Mode Register (MCI_MR) allow stopping
the MCI Clock during read or write access if the internal FIFO is full. This guarantees data integrity, not bandwidth.
The command and the response of the card are clocked out with the rising edge of the MCI
Clock.
All the timings for MultiMedia Card are defined in the MultiMediaCard System Specification.
621
6289C–ATARM–28-May-09
The two bus modes (open drain and push/pull) needed to process all the operations are defined
in the MCI command register. The MCI_CMDR allows a command to be carried out.
For example, to perform an ALL_SEND_CID command:
Host Command
CMD
S
T
Content
CRC
NID Cycles
E
Z
******
CID
Z
S
T
Content
Z
Z
Z
The command ALL_SEND_CID and the fields and values for the MCI_CMDR Control Register
are described in Table 38-4 and Table 38-5.
Table 38-4.
CMD Index
CMD2
Note:
ALL_SEND_CID Command Description
Type
bcr
Argument
[31:0] stuff bits
Resp
R2
Abbreviation
ALL_SEND_CID
Command
Description
Asks all cards to
send their CID
numbers on the
CMD line
bcr means broadcast command with response.
Table 38-5.
Fields and Values for MCI_CMDR Command Register
Field
Value
CMDNB (command number)
2 (CMD2)
RSPTYP (response type)
2 (R2: 136 bits response)
SPCMD (special command)
0 (not a special command)
OPCMD (open drain command)
1
MAXLAT (max latency for command to
response)
0 (NID cycles ==> 5 cycles)
TRCMD (transfer command)
0 (No transfer)
TRDIR (transfer direction)
X (available only in transfer command)
TRTYP (transfer type)
X (available only in transfer command)
IOSPCMD (SDIO special command)
0 (not a special command)
The MCI_ARGR contains the argument field of the command.
To send a command, the user must perform the following steps:
• Fill the argument register (MCI_ARGR) with the command argument.
• Set the command register (MCI_CMDR) (see Table 38-5).
The command is sent immediately after writing the command register. The status bit CMDRDY
in the status register (MCI_SR) is asserted when the command is completed. If the command
requires a response, it can be read in the MCI response register (MCI_RSPR). The response
size can be from 48 bits up to 136 bits depending on the command. The MCI embeds an error
detection to prevent any corrupted data during the transfer.
The following flowchart shows how to send a command to the card and read the response if
needed. In this example, the status register bits are polled but setting the appropriate bits in the
interrupt enable register (MCI_IER) allows using an interrupt method.
622
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 38-9. Command/Response Functional Flow Diagram
Set the command argument
MCI_ARGR = Argument(1)
Set the command
MCI_CMDR = Command
Read MCI_SR
Wait for command
ready status flag
0
CMDRDY
1
Check error bits in the
status register (1)
Yes
Status error flags?
Read response if required
RETURN ERROR(1)
RETURN OK
Note:
38.7.2
1. If the command is SEND_OP_COND, the CRC error flag is always present (refer to R3 response in the MultiMedia Card
specification).
Data Transfer Operation
The MultiMedia Card allows several read/write operations (single block, multiple blocks, stream,
etc.). These kind of transfers can be selected setting the Transfer Type (TRTYP) field in the MCI
Command Register (MCI_CMDR).
These operations can be done using the features of the Peripheral DMA Controller (PDC). If the
PDCMODE bit is set in MCI_MR, then all reads and writes use the PDC facilities.
In all cases, the block length (BLKLEN field) must be defined either in the mode register
MCI_MR, or in the Block Register MCI_BLKR. This field determines the size of the data block.
Enabling PDC Force Byte Transfer (PDCFBYTE bit in the MCI_MR) allows the PDC to manage
with internal byte transfers, so that transfer of blocks with a size different from modulo 4 can be
supported. When PDC Force Byte Transfer is disabled, the PDC type of transfers are in words,
otherwise the type of transfers are in bytes.
623
6289C–ATARM–28-May-09
Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions
are defined (the host can use either one at any time):
• Open-ended/Infinite Multiple block read (or write):
The number of blocks for the read (or write) multiple block operation is not defined. The card
continuously transfers (or programs) data blocks until a stop transmission command is
received.
• Multiple block read (or write) with pre-defined block count (since version 3.1 and higher):
The card transfers (or programs) the requested number of data blocks and terminate the
transaction. The stop command is not required at the end of this type of multiple block read
(or write), unless terminated with an error. In order to start a multiple block read (or write)
with pre-defined block count, the host must correctly program the MCI Block Register
(MCI_BLKR). Otherwise the card starts an open-ended multiple block read. The BCNT field
of the Block Register defines the number of blocks to transfer (from 1 to 65535 blocks). Programming the value 0 in the BCNT field corresponds to an infinite block transfer.
38.7.3
624
Read Operation
The following flowchart shows how to read a single block with or without use of PDC facilities. In
this example (see Figure 38-10), a polling method is used to wait for the end of read. Similarly,
the user can configure the interrupt enable register (MCI_IER) to trigger an interrupt at the end
of read.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 38-10. Read Functional Flow Diagram
Send SELECT/DESELECT_CARD
command(1) to select the card
(1)
Send SET_BLOCKLEN command
No
Yes
Read with PDC
Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLenght <<16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
(2)
MCI_MR |= (BlockLength << 16)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_RPR = Data Buffer Address
MCI_RCR = BlockLength/4
MCI_PTCR = RXTEN
Send READ_SINGLE_BLOCK
command(1)
Number of words to read = BlockLength/4
Send READ_SINGLE_BLOCK
command(1)
Yes
Number of words to read = 0 ?
Read status register MCI_SR
No
Read status register MCI_SR
Poll the bit
ENDRX = 0?
Poll the bit
RXRDY = 0?
Yes
Yes
No
No
RETURN
Read data = MCI_RDR
Number of words to read =
Number of words to read -1
RETURN
Note:
1. It is assumed that this command has been correctly sent (see Figure 38-9).
2. This field is also accessible in the MCI Block Register (MCI_BLKR).
625
6289C–ATARM–28-May-09
38.7.4
Write Operation
In write operation, the MCI Mode Register (MCI_MR) is used to define the padding value when
writing non-multiple block size. If the bit PDCPADV is 0, then 0x00 value is used when padding
data, otherwise 0xFF is used.
If set, the bit PDCMODE enables PDC transfer.
The following flowchart shows how to write a single block with or without use of PDC facilities
(see Figure 38-11). Polling or interrupt method can be used to wait for the end of write according
to the contents of the Interrupt Mask Register (MCI_IMR).
626
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 38-11. Write Functional Flow Diagram
Send SELECT/DESELECT_CARD
command(1) to select the card
Send SET_BLOCKLEN command(1)
Yes
No
Write using PDC
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
(2)
MCI_MR |= (BlockLength << 16)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Reset the PDCMODE bit
MCI_MR &= ~PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLenght <<16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4
Send WRITE_SINGLE_BLOCK
command(1)
Number of words to write = BlockLength/4
Send WRITE_SINGLE_BLOCK
command(1)
MCI_PTCR = TXTEN
Yes
Number of words to write = 0 ?
Read status register MCI_SR
No
Read status register MCI_SR
Poll the bit
NOTBUSY= 0?
Poll the bit
TXRDY = 0?
Yes
Yes
No
No
RETURN
MCI_TDR = Data to write
Number of words to write =
Number of words to write -1
RETURN
Note:
1. It is assumed that this command has been correctly sent (see Figure 38-9).
2. This field is also accessible in the MCI Block Register (MCI_BLKR).
627
6289C–ATARM–28-May-09
The following flowchart shows how to manage a multiple write block transfer with the PDC (see
Figure 38-12). Polling or interrupt method can be used to wait for the end of write according to
the contents of the Interrupt Mask Register (MCI_IMR).
628
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 38-12. Multiple Write Functional Flow Diagram
Send SELECT/DESELECT_CARD
command(1) to select the card
(1)
Send SET_BLOCKLEN command
Set the PDCMODE bit
MCI_MR |= PDCMODE
Set the block length (in bytes)
MCI_MR |= (BlockLength << 16)(2)
Set the block count (if necessary)
MCI_BLKR |= (BlockCount << 0)
Configure the PDC channel
MCI_TPR = Data Buffer Address to write
MCI_TCR = BlockLength/4
Send WRITE_MULTIPLE_BLOCK
command(1)
MCI_PTCR = TXTEN
Read status register MCI_SR
Poll the bit
BLKE = 0?
Yes
No
Send STOP_TRANSMISSION
(1)
command
Poll the bit
NOTBUSY = 0?
Yes
No
RETURN
Note:
1. It is assumed that this command has been correctly sent (see Figure 38-9).
2. This field is also accessible in the MCI Block Register (MCI_BLKR).
629
6289C–ATARM–28-May-09
38.8
SD/SDIO Card Operations
The MultiMedia Card Interface allows processing of SD Memory (Secure Digital Memory Card)
and SDIO (SD Input Output) Card commands.
SD/SDIO cards are based on the Multi Media Card (MMC) format, but are physically slightly
thicker and feature higher data transfer rates, a lock switch on the side to prevent accidental
overwriting and security features. The physical form factor, pin assignment and data transfer
protocol are forward-compatible with the MultiMedia Card with some additions. SD slots can
actually be used for more than flash memory cards. Devices that support SDIO can use small
devices designed for the SD form factor, such as GPS receivers, Wi-Fi or Bluetooth® adapters,
modems, barcode readers, IrDA adapters, FM radio tuners, RFID readers, digital cameras and
more.
SD/SDIO is covered by numerous patents and trademarks, and licensing is only available
through the Secure Digital Card Association.
The SD/SDIO Card communication is based on a 9-pin interface (Clock, Command, 4 x Data
and 3 x Power lines). The communication protocol is defined as a part of this specification. The
main difference between the SD/SDIO Card and the MultiMedia Card is the initialization
process.
The SD/SDIO Card Register (MCI_SDCR) allows selection of the Card Slot and the data bus
width.
The SD/SDIO Card bus allows dynamic configuration of the number of data lines. After power
up, by default, the SD/SDIO Card uses only DAT0 for data transfer. After initialization, the host
can change the bus width (number of active data lines).
38.8.1
SDIO Data Transfer Type
SDIO cards may transfer data in either a multi-byte (1 to 512 bytes) or an optional block format
(1 to 511 blocks), while the SD memory cards are fixed in the block transfer mode. The TRTYP
field in the MCI Command Register (MCI_CMDR) allows to choose between SDIO Byte or SDIO
Block transfer.
The number of bytes/blocks to transfer is set through the BCNT field in the MCI Block Register
(MCI_BLKR). In SDIO Block mode, the field BLKLEN must be set to the data block size while
this field is not used in SDIO Byte mode.
An SDIO Card can have multiple I/O or combined I/O and memory (called Combo Card). Within
a multi-function SDIO or a Combo card, there are multiple devices (I/O and memory) that share
access to the SD bus. In order to allow the sharing of access to the host among multiple devices,
SDIO and combo cards can implement the optional concept of suspend/resume (Refer to the
SDIO Specification for more details). To send a suspend or a resume command, the host must
set the SDIO Special Command field (IOSPCMD) in the MCI Command Register.
38.8.2
630
SDIO Interrupts
Each function within an SDIO or Combo card may implement interrupts (Refer to the SDIO
Specification for more details). In order to allow the SDIO card to interrupt the host, an interrupt
function is added to a pin on the DAT[1] line to signal the card’s interrupt to the host. An SDIO
interrupt on each slot can be enabled through the MCI Interrupt Enable Register. The SDIO
interrupt is sampled regardless of the currently selected slot.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9
MultiMedia Card Interface (MCI) User Interface
Table 38-6.
Register Mapping
Offset
Register Name
Read/Write
Reset
0x00
Control Register
MCI_CR
Write
–
0x04
Mode Register
MCI_MR
Read/write
0x0
0x08
Data Timeout Register
MCI_DTOR
Read/write
0x0
0x0C
SD/SDIO Card Register
MCI_SDCR
Read/write
0x0
0x10
Argument Register
MCI_ARGR
Read/write
0x0
0x14
Command Register
MCI_CMDR
Write
–
0x18
Block Register
MCI_BLKR
Read/write
0x0
0x1C
Reserved
–
–
–
(1)
MCI_RSPR
Read
0x0
(1)
MCI_RSPR
Read
0x0
0x28
(1)
Response Register
MCI_RSPR
Read
0x0
0x2C
Response Register(1)
MCI_RSPR
Read
0x0
0x30
Receive Data Register
MCI_RDR
Read
0x0
0x34
Transmit Data Register
MCI_TDR
Write
–
–
–
–
0x20
0x24
0x38 - 0x3C
Response Register
Response Register
Reserved
0x40
Status Register
MCI_SR
Read
0xC0E5
0x44
Interrupt Enable Register
MCI_IER
Write
–
0x48
Interrupt Disable Register
MCI_IDR
Write
–
0x4C
Interrupt Mask Register
MCI_IMR
Read
0x0
Reserved
–
–
–
Reserved for the PDC
–
–
–
0x50-0xFC
0x100-0x124
Note:
Register
1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.
631
6289C–ATARM–28-May-09
38.9.1
Name:
MCI Control Register
MCI_CR
Access Type:
Write-only
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
SWRST
–
–
–
PWSDIS
PWSEN
MCIDIS
MCIEN
• MCIEN: Multi-Media Interface Enable
0 = No effect.
1 = Enables the Multi-Media Interface if MCDIS is 0.
• MCIDIS: Multi-Media Interface Disable
0 = No effect.
1 = Disables the Multi-Media Interface.
• PWSEN: Power Save Mode Enable
0 = No effect.
1 = Enables the Power Saving Mode if PWSDIS is 0.
Warning: Before enabling this mode, the user must set a value different from 0 in the PWSDIV field (Mode Register
MCI_MR).
• PWSDIS: Power Save Mode Disable
0 = No effect.
1 = Disables the Power Saving Mode.
• SWRST: Software Reset
0 = No effect.
1 = Resets the MCI. A software triggered hardware reset of the MCI interface is performed.
632
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.2
Name:
MCI Mode Register
MCI_MR
Access Type:
Read/write
31
30
29
28
27
26
25
24
19
18
17
16
10
9
8
BLKLEN
23
22
21
20
BLKLEN
15
14
13
12
11
PDCMODE
PDCPADV
PDCFBYTE
WRPROOF
RDPROOF
7
6
5
4
3
PWSDIV
2
1
0
CLKDIV
• CLKDIV: Clock Divider
Multimedia Card Interface clock (MCCK or MCI_CK) is Master Clock (MCK) divided by (2*(CLKDIV+1)).
• PWSDIV: Power Saving Divider
Multimedia Card Interface clock is divided by 2(PWSDIV) + 1 when entering Power Saving Mode.
Warning: This value must be different from 0 before enabling the Power Save Mode in the MCI_CR (MCI_PWSEN bit).
• RDPROOF Read Proof Enable
Enabling Read Proof allows to stop the MCI Clock during read access if the internal FIFO is full. This guarantees data
integrity, not bandwidth.
0 = Disables Read Proof.
1 = Enables Read Proof.
• WRPROOF Write Proof Enable
Enabling Write Proof allows to stop the MCI Clock during write access if the internal FIFO is full. This guarantees data
integrity, not bandwidth.
0 = Disables Write Proof.
1 = Enables Write Proof.
• PDCFBYTE: PDC Force Byte Transfer
Enabling PDC Force Byte Transfer allows the PDC to manage with internal byte transfers, so that transfer of blocks with a
size different from modulo 4 can be supported.
Warning: BLKLEN value depends on PDCFBYTE.
0 = Disables PDC Force Byte Transfer. PDC type of transfer are in words.
1 = Enables PDC Force Byte Transfer. PDC type of transfer are in bytes.
• PDCPADV: PDC Padding Value
0 = 0x00 value is used when padding data in write transfer (not only PDC transfer).
1 = 0xFF value is used when padding data in write transfer (not only PDC transfer).
633
6289C–ATARM–28-May-09
• PDCMODE: PDC-oriented Mode
0 = Disables PDC transfer
1 = Enables PDC transfer. In this case, UNRE and OVRE flags in the MCI Mode Register (MCI_SR) are deactivated after
the PDC transfer has been completed.
• BLKLEN: Data Block Length
This field determines the size of the data block.
This field is also accessible in the MCI Block Register (MCI_BLKR).
Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled.
Note:
634
In SDIO Byte mode, BLKLEN field is not used.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.3
Name:
MCI Data Timeout Register
MCI_DTOR
Access Type:
Read/write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
7
6
5
4
3
2
1
0
–
DTOMUL
DTOCYC
• DTOCYC: Data Timeout Cycle Number
• DTOMUL: Data Timeout Multiplier
These fields determine the maximum number of Master Clock cycles that the MCI waits between two data block transfers.
It equals (DTOCYC x Multiplier).
Multiplier is defined by DTOMUL as shown in the following table:
DTOMUL
Multiplier
0
0
0
1
0
0
1
16
0
1
0
128
0
1
1
256
1
0
0
1024
1
0
1
4096
1
1
0
65536
1
1
1
1048576
If the data time-out set by DTOCYC and DTOMUL has been exceeded, the Data Time-out Error flag (DTOE) in the MCI
Status Register (MCI_SR) raises.
635
6289C–ATARM–28-May-09
38.9.4
Name:
MCI SDCard/SDIO Register
MCI_SDCR
Access Type:
Read/write
31
30
29
28
27
26
25
24
–
–
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
–
–
–
–
–
–
–
15
14
13
12
11
10
9
8
–
–
–
–
–
–
–
–
1
7
6
5
4
3
2
SDCBUS
–
–
–
–
–
0
SDCSEL
• SDCSEL: SDCard/SDIO Slot
SDCSEL
SDCard/SDIO Slot
0
0
Slot A is selected.
0
1
Slot B selected
1
0
Reserved
1
1
Reserved
• SDCBUS: SDCard/SDIO Bus Width
0 = 1-bit data bus
1 = 4-bit data bus
636
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.5
Name:
MCI Argument Register
MCI_ARGR
Access Type:
Read/write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
ARG
23
22
21
20
ARG
15
14
13
12
ARG
7
6
5
4
ARG
• ARG: Command Argument
637
6289C–ATARM–28-May-09
38.9.6
Name:
MCI Command Register
MCI_CMDR
Access Type:
Write-only
31
30
29
28
27
26
–
–
–
–
–
–
23
22
21
20
19
–
–
15
14
13
12
11
–
–
–
MAXLAT
OPDCMD
6
5
4
3
7
25
18
TRTYP
24
IOSPCMD
17
16
TRDIR
RSPTYP
TRCMD
10
9
8
SPCMD
2
1
0
CMDNB
This register is write-protected while CMDRDY is 0 in MCI_SR. If an Interrupt command is sent, this register is only writeable by an interrupt response (field SPCMD). This means that the current command execution cannot be interrupted or
modified.
• CMDNB: Command Number
• RSPTYP: Response Type
RSP
Response Type
0
0
No response.
0
1
48-bit response.
1
0
136-bit response.
1
1
Reserved.
• SPCMD: Special Command
SPCMD
Command
0
0
0
Not a special CMD.
0
0
1
Initialization CMD:
74 clock cycles for initialization sequence.
0
1
0
Synchronized CMD:
Wait for the end of the current data block transfer before sending the
pending command.
0
1
1
Reserved.
1
0
0
Interrupt command:
Corresponds to the Interrupt Mode (CMD40).
1
0
1
Interrupt response:
Corresponds to the Interrupt Mode (CMD40).
• OPDCMD: Open Drain Command
0 = Push pull command
1 = Open drain command
638
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• MAXLAT: Max Latency for Command to Response
0 = 5-cycle max latency
1 = 64-cycle max latency
• TRCMD: Transfer Command
TRCMD
Transfer Type
0
0
No data transfer
0
1
Start data transfer
1
0
Stop data transfer
1
1
Reserved
• TRDIR: Transfer Direction
0 = Write
1 = Read
• TRTYP: Transfer Type
TRTYP
Transfer Type
0
0
0
MMC/SDCard Single Block
0
0
1
MMC/SDCard Multiple Block
0
1
0
MMC Stream
0
1
1
Reserved
1
0
0
SDIO Byte
1
0
1
SDIO Block
1
1
0
Reserved
1
1
1
Reserved
• IOSPCMD: SDIO Special Command
IOSPCMD
SDIO Special Command Type
0
0
Not a SDIO Special Command
0
1
SDIO Suspend Command
1
0
SDIO Resume Command
1
1
Reserved
639
6289C–ATARM–28-May-09
38.9.7
Name:
MCI Block Register
MCI_BLKR
Access Type:
Read/write
31
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
BLKLEN
23
22
21
20
BLKLEN
15
14
13
12
BCNT
7
6
5
4
BCNT
• BCNT: MMC/SDIO Block Count - SDIO Byte Count
This field determines the number of data byte(s) or block(s) to transfer.
The transfer data type and the authorized values for BCNT field are determined by the TRTYP field in the MCI Command
Register (MCI_CMDR):
TRTYP
Type of Transfer
BCNT Authorized Values
0
0
1
MMC/SDCard Multiple Block
From 1 to 65536: Value 0 corresponds to an infinite block transfer.
1
0
0
SDIO Byte
From 1 to 512 bytes: value 0 corresponds to a 512-byte transfer.
Values from 0x200 to 0xFFFF are forbidden.
1
0
1
SDIO Block
From 1 to 511 blocks: value 0 corresponds to an infinite block transfer.
Values from 0x200 to 0xFFFF are forbidden.
-
Reserved.
Other values
Warning: In SDIO Byte and Block modes, writing to the 7 last bits of BCNT field, is forbidden and may lead to unpredictable results.
• BLKLEN: Data Block Length
This field determines the size of the data block.
This field is also accessible in the MCI Mode Register (MCI_MR).
Bits 16 and 17 must be set to 0 if PDCFBYTE is disabled.
Note:
640
In SDIO Byte mode, BLKLEN field is not used.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.8
Name:
MCI Response Register
MCI_RSPR
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
RSP
23
22
21
20
RSP
15
14
13
12
RSP
7
6
5
4
RSP
• RSP: Response
Note:
1. The response register can be read by N accesses at the same MCI_RSPR or at consecutive addresses (0x20 to 0x2C).
N depends on the size of the response.
641
6289C–ATARM–28-May-09
38.9.9
Name:
MCI Receive Data Register
MCI_RDR
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DATA
23
22
21
20
DATA
15
14
13
12
DATA
7
6
5
4
DATA
• DATA: Data to Read
38.9.10
Name:
MCI Transmit Data Register
MCI_TDR
Access Type:
31
Write-only
30
29
28
DATA
23
22
21
20
DATA
15
14
13
12
DATA
7
6
5
4
DATA
• DATA: Data to Write
642
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.11
Name:
MCI Status Register
MCI_SR
Access Type:
Read-only
31
30
29
28
27
26
25
24
UNRE
OVRE
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
DTOE
DCRCE
RTOE
RENDE
RCRCE
RDIRE
RINDE
15
14
13
12
11
10
9
8
TXBUFE
RXBUFF
–
–
–
–
SDIOIRQB
SDIOIRQA
7
6
5
4
3
2
1
0
ENDTX
ENDRX
NOTBUSY
DTIP
BLKE
TXRDY
RXRDY
CMDRDY
• CMDRDY: Command Ready
0 = A command is in progress.
1 = The last command has been sent. Cleared when writing in the MCI_CMDR.
• RXRDY: Receiver Ready
0 = Data has not yet been received since the last read of MCI_RDR.
1 = Data has been received since the last read of MCI_RDR.
• TXRDY: Transmit Ready
0= The last data written in MCI_TDR has not yet been transferred in the Shift Register.
1= The last data written in MCI_TDR has been transferred in the Shift Register.
• BLKE: Data Block Ended
This flag must be used only for Write Operations.
0 = A data block transfer is not yet finished. Cleared when reading the MCI_SR.
1 = A data block transfer has ended, including the CRC16 Status transmission.
In PDC mode (PDCMODE=1), the flag is set when the CRC Status of the last block has been transmitted (TXBUFE already
set).
Otherwise (PDCMODE=0), the flag is set for each transmitted CRC Status.
Refer to the MMC or SD Specification for more details concerning the CRC Status.
• DTIP: Data Transfer in Progress
0 = No data transfer in progress.
1 = The current data transfer is still in progress, including CRC16 calculation. Cleared at the end of the CRC16 calculation.
• NOTBUSY: MCI Not Busy
This flag must be used only for Write Operations.
A block write operation uses a simple busy signalling of the write operation duration on the data (DAT0) line: during a data
transfer block, if the card does not have a free data receive buffer, the card indicates this condition by pulling down the data
line (DAT0) to LOW. The card stops pulling down the data line as soon as at least one receive buffer for the defined data
transfer block length becomes free.
The NOTBUSY flag allows to deal with these different states.
643
6289C–ATARM–28-May-09
0 = The MCI is not ready for new data transfer. Cleared at the end of the card response.
1 = The MCI is ready for new data transfer. Set when the busy state on the data line has ended. This corresponds to a free
internal data receive buffer of the card.
Refer to the MMC or SD Specification for more details concerning the busy behavior.
• ENDRX: End of RX Buffer
0 = The Receive Counter Register has not reached 0 since the last write in MCI_RCR or MCI_RNCR.
1 = The Receive Counter Register has reached 0 since the last write in MCI_RCR or MCI_RNCR.
• ENDTX: End of TX Buffer
0 = The Transmit Counter Register has not reached 0 since the last write in MCI_TCR or MCI_TNCR.
1 = The Transmit Counter Register has reached 0 since the last write in MCI_TCR or MCI_TNCR.
Note:
BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.
• RXBUFF: RX Buffer Full
0 = MCI_RCR or MCI_RNCR has a value other than 0.
1 = Both MCI_RCR and MCI_RNCR have a value of 0.
• TXBUFE: TX Buffer Empty
0 = MCI_TCR or MCI_TNCR has a value other than 0.
1 = Both MCI_TCR and MCI_TNCR have a value of 0.
Note:
BLKE and NOTBUSY flags can be used to check that the data has been successfully transmitted on the data lines and not only
transferred from the PDC to the MCI Controller.
• RINDE: Response Index Error
0 = No error.
1 = A mismatch is detected between the command index sent and the response index received. Cleared when writing in
the MCI_CMDR.
• RDIRE: Response Direction Error
0 = No error.
1 = The direction bit from card to host in the response has not been detected.
• RCRCE: Response CRC Error
0 = No error.
1 = A CRC7 error has been detected in the response. Cleared when writing in the MCI_CMDR.
• RENDE: Response End Bit Error
0 = No error.
1 = The end bit of the response has not been detected. Cleared when writing in the MCI_CMDR.
• RTOE: Response Time-out Error
0 = No error.
1 = The response time-out set by MAXLAT in the MCI_CMDR has been exceeded. Cleared when writing in the
MCI_CMDR.
644
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• DCRCE: Data CRC Error
0 = No error.
1 = A CRC16 error has been detected in the last data block. Reset by reading in the MCI_SR register.
• DTOE: Data Time-out Error
0 = No error.
1 = The data time-out set by DTOCYC and DTOMUL in MCI_DTOR has been exceeded. Reset by reading in the MCI_SR
register.
• OVRE: Overrun
0 = No error.
1 = At least one 8-bit received data has been lost (not read). Cleared when sending a new data transfer command.
• UNRE: Underrun
0 = No error.
1 = At least one 8-bit data has been sent without valid information (not written). Cleared when sending a new data transfer
command.
• SDIOIRQA: SDIO Interrupt for Slot A
0 = No interrupt detected on SDIO Slot A.
1 = A SDIO Interrupt on Slot A has reached. Cleared when reading the MCI_SR.
• SDIOIRQB: SDIO Interrupt for Slot B
0 = No interrupt detected on SDIO Slot B.
1 = A SDIO Interrupt on Slot B has reached. Cleared when reading the MCI_SR.
• RXBUFF: RX Buffer Full
0 = MCI_RCR or MCI_RNCR has a value other than 0.
1 = Both MCI_RCR and MCI_RNCR have a value of 0.
• TXBUFE: TX Buffer Empty
0 = MCI_TCR or MCI_TNCR has a value other than 0.
1 = Both MCI_TCR and MCI_TNCR have a value of 0.
645
6289C–ATARM–28-May-09
38.9.12
Name:
MCI Interrupt Enable Register
MCI_IER
Access Type:
Write-only
31
30
29
28
27
26
25
24
UNRE
OVRE
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
DTOE
DCRCE
RTOE
RENDE
RCRCE
RDIRE
RINDE
15
14
13
12
11
10
9
8
TXBUFE
RXBUFF
–
–
–
–
SDIOIRQB
SDIOIRQA
7
6
5
4
3
2
1
0
ENDTX
ENDRX
NOTBUSY
DTIP
BLKE
TXRDY
RXRDY
CMDRDY
• CMDRDY: Command Ready Interrupt Enable
• RXRDY: Receiver Ready Interrupt Enable
• TXRDY: Transmit Ready Interrupt Enable
• BLKE: Data Block Ended Interrupt Enable
• DTIP: Data Transfer in Progress Interrupt Enable
• NOTBUSY: Data Not Busy Interrupt Enable
• ENDRX: End of Receive Buffer Interrupt Enable
• ENDTX: End of Transmit Buffer Interrupt Enable
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Enable
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Enable
• RXBUFF: Receive Buffer Full Interrupt Enable
• TXBUFE: Transmit Buffer Empty Interrupt Enable
• RINDE: Response Index Error Interrupt Enable
• RDIRE: Response Direction Error Interrupt Enable
• RCRCE: Response CRC Error Interrupt Enable
• RENDE: Response End Bit Error Interrupt Enable
• RTOE: Response Time-out Error Interrupt Enable
• DCRCE: Data CRC Error Interrupt Enable
• DTOE: Data Time-out Error Interrupt Enable
• OVRE: Overrun Interrupt Enable
• UNRE: UnderRun Interrupt Enable
0 = No effect.
1 = Enables the corresponding interrupt.
646
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
38.9.13
Name:
MCI Interrupt Disable Register
MCI_IDR
Access Type:
Write-only
31
30
29
28
27
26
25
24
UNRE
OVRE
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
DTOE
DCRCE
RTOE
RENDE
RCRCE
RDIRE
RINDE
15
14
13
12
11
10
9
8
TXBUFE
RXBUFF
–
–
–
–
SDIOIRQB
SDIOIRQA
7
6
5
4
3
2
1
0
ENDTX
ENDRX
NOTBUSY
DTIP
BLKE
TXRDY
RXRDY
CMDRDY
• CMDRDY: Command Ready Interrupt Disable
• RXRDY: Receiver Ready Interrupt Disable
• TXRDY: Transmit Ready Interrupt Disable
• BLKE: Data Block Ended Interrupt Disable
• DTIP: Data Transfer in Progress Interrupt Disable
• NOTBUSY: Data Not Busy Interrupt Disable
• ENDRX: End of Receive Buffer Interrupt Disable
• ENDTX: End of Transmit Buffer Interrupt Disable
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Disable
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Disable
• RXBUFF: Receive Buffer Full Interrupt Disable
• TXBUFE: Transmit Buffer Empty Interrupt Disable
• RINDE: Response Index Error Interrupt Disable
• RDIRE: Response Direction Error Interrupt Disable
• RCRCE: Response CRC Error Interrupt Disable
• RENDE: Response End Bit Error Interrupt Disable
• RTOE: Response Time-out Error Interrupt Disable
• DCRCE: Data CRC Error Interrupt Disable
• DTOE: Data Time-out Error Interrupt Disable
• OVRE: Overrun Interrupt Disable
• UNRE: UnderRun Interrupt Disable
0 = No effect.
1 = Disables the corresponding interrupt.
647
6289C–ATARM–28-May-09
38.9.14
Name:
MCI Interrupt Mask Register
MCI_IMR
Access Type:
Read-only
31
30
29
28
27
26
25
24
UNRE
OVRE
–
–
–
–
–
–
23
22
21
20
19
18
17
16
–
DTOE
DCRCE
RTOE
RENDE
RCRCE
RDIRE
RINDE
15
14
13
12
11
10
9
8
TXBUFE
RXBUFF
–
–
–
–
SDIOIRQB
SDIOIRQA
7
6
5
4
3
2
1
0
ENDTX
ENDRX
NOTBUSY
DTIP
BLKE
TXRDY
RXRDY
CMDRDY
• CMDRDY: Command Ready Interrupt Mask
• RXRDY: Receiver Ready Interrupt Mask
• TXRDY: Transmit Ready Interrupt Mask
• BLKE: Data Block Ended Interrupt Mask
• DTIP: Data Transfer in Progress Interrupt Mask
• NOTBUSY: Data Not Busy Interrupt Mask
• ENDRX: End of Receive Buffer Interrupt Mask
• ENDTX: End of Transmit Buffer Interrupt Mask
• SDIOIRQA: SDIO Interrupt for Slot A Interrupt Mask
• SDIOIRQB: SDIO Interrupt for Slot B Interrupt Mask
• RXBUFF: Receive Buffer Full Interrupt Mask
• TXBUFE: Transmit Buffer Empty Interrupt Mask
• RINDE: Response Index Error Interrupt Mask
• RDIRE: Response Direction Error Interrupt Mask
• RCRCE: Response CRC Error Interrupt Mask
• RENDE: Response End Bit Error Interrupt Mask
• RTOE: Response Time-out Error Interrupt Mask
• DCRCE: Data CRC Error Interrupt Mask
• DTOE: Data Time-out Error Interrupt Mask
• OVRE: Overrun Interrupt Mask
• UNRE: UnderRun Interrupt Mask
0 = The corresponding interrupt is not enabled.
1 = The corresponding interrupt is enabled.
648
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39. LCD Controller (LCDC)
39.1
Description
The LCD Controller (LCDC) consists of logic for transferring LCD image data from an external
display buffer to an LCD module with integrated common and segment drivers.
The LCD Controller supports single and double scan monochrome and color passive STN LCD
modules and single scan active TFT LCD modules. On monochrome STN displays, up to 16
gray shades are supported using a time-based dithering algorithm and Frame Rate Control
(FRC) method. This method is also used in color STN displays to generate up to 4096 colors.
The LCD Controller has a display input buffer (FIFO) to allow a flexible connection of the external AHB master interface, and a lookup table to allow palletized display configurations.
The LCD Controller is programmable in order to support many different requirements such as
resolutions up to 2048 x 2048; pixel depth (1, 2, 4, 8, 16, 24 bits per pixel); data line width (4, 8,
16 or 24 bits) and interface timing.
The LCD Controller is connected to the ARM Advanced High Performance Bus (AHB) as a master for reading pixel data. However, the LCD Controller interfaces with the AHB as a slave in
order to configure its registers.
649
6289C–ATARM–28-May-09
39.2
Block Diagram
Figure 39-1. LCD Macrocell Block Diagram
AHB SLAVE
AHB MASTER
SPLIT
DMA Controller
AHB IF
CFG
AHB SLAVE
DMA Data
Dvalid
Dvalid
CH-U
CTRL
CH-L
Lower Push
Upper Push
Input Interface
FIFO
LCD Controller Core
Configuration IF
CFG
AHB SLAVE
DATAPATH
SERIALIZER
LUT Mem Interface
LUT Mem Interface
PALETTE
FIFO Mem Interface
Control Interface
DITHERING
FIFO
MEM
OUTPUT
SHIFTER
LUT
MEM
Timegen
DISPLAY IF
Control signals
LCDD
Display
PWM
DISPLAY IF
650
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.3
I/O Lines Description
Table 39-1.
I/O Lines Description
Name
Description
Type
LCDCC
Contrast control signal
Output
LCDHSYNC
Line synchronous signal (STN) or Horizontal synchronous signal (TFT)
Output
LCDDOTCK
LCD clock signal (STN/TFT)
Output
LCDVSYNC
Frame synchronous signal (STN) or Vertical synchronization signal (TFT)
Output
LCDDEN
Data enable signal
Output
LCDD[23:0]
LCD Data Bus output
Output
39.4
Product Dependencies
39.4.1
I/O Lines
The pins used for interfacing the LCD Controller may be multiplexed with PIO lines. The programmer must first program the PIO Controller to assign the pins to their peripheral function. If
I/O lines of the LCD Controller are not used by the application, they can be used for other purposes by the PIO Controller.
39.4.2
Power Management
The LCD Controller is not continuously clocked. The user must first enable the LCD Controller
clock in the Power Management Controller before using it (PMC_PCER).
39.4.3
Interrupt Sources
The LCD Controller interrupt line is connected to one of the internal sources of the Advanced
Interrupt Controller. Using the LCD Controller interrupt requires prior programming of the AIC.
39.5
Functional Description
The LCD Controller consists of two main blocks (Figure 39-1 on page 650), the DMA controller
and the LCD controller core (LCDC core). The DMA controller reads the display data from an
external memory through a AHB master interface. The LCD controller core formats the display
data. The LCD controller core continuously pumps the pixel data into the LCD module via the
LCD data bus (LCDD[23:0]); this bus is timed by the LCDDOTCK, LCDDEN, LCDHSYNC, and
LCDVSYNC signals.
39.5.1
39.5.1.1
DMA Controller
Configuration Block
The configuration block is a set of programmable registers that are used to configure the DMA
controller operation. These registers are written via the AHB slave interface. Only word access is
allowed.
For details on the configuration registers, see “LCD Controller (LCDC) User Interface” on page
677.
39.5.1.2
AHB Interface
This block generates the AHB transactions. It generates undefined-length incrementing bursts
as well as 4-, 8- or 16-beat incrementing bursts. The size of the transfer can be configured in the
651
6289C–ATARM–28-May-09
BRSTLN field of the DMAFRMCFG register. For details on this register, see “DMA Frame Configuration Register” on page 682.
39.5.1.3
Channel-U
This block stores the base address and the number of words transferred for this channel (frame
in single scan mode and Upper Panel in dual scan mode) since the beginning of the frame. It
also generates the end of frame signal.
It has two pointers, the base address and the number of words to transfer. When the module
receives a new_frame signal, it reloads the number of words to transfer pointer with the size of
the frame/panel. When the module receives the new_frame signal, it also reloads the base
address with the base address programmed by the host.
The size of the frame/panel can be programmed in the FRMSIZE field of the DMAFRMCFG
Register. This size is calculated as follows:
X_size*Y_size
Frame_size = -------------------------------------32
X_size = ((LINESIZE+1)*Bpp+PIXELOFF)/32
Y_size = (LINEVAL+1)
• LINESIZE is the horizontal size of the display in pixels, minus 1, as programmed in the
LINESIZE field of the LCDFRMCFG register of the LCD Controller.
• Bpp is the number of bits per pixel configured.
• PIXELOFF is the pixel offset for 2D addressing, as programmed in the DMA2DCFG register.
Applicable only if 2D addressing is being used.
• LINEVAL is the vertical size of the display in pixels, minus 1, as programmed in the LINEVAL
field of the LCDFRMCFG register of the LCD Controller.
Note:
39.5.1.4
X_size is calculated as an up-rounding of a division by 32. (This can also be done adding 31 to the
dividend before using an integer division by 32). When using the 2D-addressing mode (see “2D
Memory Addressing” on page 674), it is important to note that the above calculation must be executed and the FRMSIZE field programmed with every movement of the displaying window, since a
change in the PIXELOFF field can change the resulting FRMSIZE value.
Channel-L
This block has the same functionality as Channel-U, but for the Lower Panel in dual scan mode
only.
39.5.1.5
Control
This block receives the request signals from the LCDC core and generates the requests for the
channels.
652
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.5.2
39.5.2.1
LCD Controller Core
Configuration Block
The configuration block is a set of programmable registers that are used to configure the LCDC
core operation. These registers are written via the AHB slave interface. Only word access is
allowed.
The description of the configuration registers can be found in “LCD Controller (LCDC) User
Interface” on page 677.
39.5.2.2
Datapath
The datapath block contains five submodules: FIFO, Serializer, Palette, Dithering and Shifter.
The structure of the datapath is shown in Figure 39-2.
Figure 39-2. Datapath Structure
Input Interface
FIFO
Serializer
Configuration IF
Palette
Control Interface
Dithering
Output
Shifter
Output Interface
This module transforms the data read from the memory into a format according to the LCD module used. It has four different interfaces: the input interface, the output interface, the
configuration interface and the control interface.
• The input interface connects the datapath with the DMA controller. It is a dual FIFO interface
with a data bus and two push lines that are used by the DMA controller to fill the FIFOs.
653
6289C–ATARM–28-May-09
• The output interface is a 24-bit data bus. The configuration of this interface depends on the
type of LCD used (TFT or STN, Single or Dual Scan, 4-bit, 8-bit, 16-bit or 24-bit interface).
• The configuration interface connects the datapath with the configuration block. It is used to
select between the different datapath configurations.
• The control interface connects the datapath with the timing generation block. The main
control signal is the data-request signal, used by the timing generation module to request
new data from the datapath.
The datapath can be characterized by two parameters: initial_latency and cycles_per_data. The
parameter initial_latency is defined as the number of LCDC Core Clock cycles until the first data
is available at the output of the datapath. The parameter cycles_per_data is the minimum number of LCDC Core clock cycles between two consecutive data at the output interface.
These parameters are different for the different configurations of the LCD Controller and are
shown in Table 39-2.
Table 39-2.
Datapath Parameters
Configuration
DISTYPE
SCAN
IFWIDTH
TFT
39.5.2.3
initial_latency
cycles_per_data
9
1
STN Mono
Single
4
13
4
STN Mono
Single
8
17
8
STN Mono
Dual
8
17
8
STN Mono
Dual
16
25
16
STN Color
Single
4
11
2
STN Color
Single
8
12
3
STN Color
Dual
8
14
4
STN Color
Dual
16
15
6
FIFO
The FIFO block buffers the input data read by the DMA module. It contains two input FIFOs to
be used in Dual Scan configuration that are configured as a single FIFO when used in single
scan configuration.
The size of the FIFOs allows a wide range of architectures to be supported.
The upper threshold of the FIFOs can be configured in the FIFOTH field of the LCDFIFO register. The LCDC core will request a DMA transfer when the number of words in each FIFO is less
than FIFOTH words. To avoid overwriting in the FIFO and to maximize the FIFO utilization, the
FIFOTH should be programmed with:
FIFOTH (in words) = 512 - (2 x DMA_BURST_LENGTH + 3)
where:
• 512 is the effective size of the FIFO in words. It is the total FIFO memory size in single scan
mode and half that size in dual scan mode.
• DMA_burst_length is the burst length of the transfers made by the DMA in words.
654
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.5.2.4
Serializer
This block serializes the data read from memory. It reads words from the FIFO and outputs pixels (1 bit, 2 bits, 4 bits, 8 bits, 16 bits or 24 bits wide) depending on the format specified in the
PIXELSIZE field of the LCDCON2 register. It also adapts the memory-ordering format. Both bigendian and little-endian formats are supported. They are configured in the MEMOR field of the
LCDCON2 register.
The organization of the pixel data in the memory depends on the configuration and is shown in
Table 39-3 and Table 39-4.
Note:
Table 39-3.
For a color depth of 24 bits per pixel there are two different formats supported: packed and
unpacked. The packed format needs less memory but has some limitations when working in 2D
addressing mode (See “2D Memory Addressing” on page 674.).
Little Endian Memory Organization
Mem Addr
0x3
0x2
0x1
0x0
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
Pixel 1bpp 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
0
Pixel 2bpp
Pixel 4bpp
15
14
13
7
Pixel 8bpp
11
6
10
9
5
3
Pixel
16bpp
Pixel
24bpp
12
8
4
7
6
5
3
4
2
2
2
1
1
1
1
3
0
0
0
0
1
0
packed
Pixel
24bpp
2
1
packed
Pixel
24bpp
3
2
packed
Pixel
24bpp
not used
0
unpacked
655
6289C–ATARM–28-May-09
Table 39-4.
Big Endian Memory Organization
Mem
Addr
0x3
0x2
0x1
0x0
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
Pixel
1bpp
Pixel
2bpp
Pixel
4bpp
Pixel
8bpp
0
1
2
0
3
4
1
5
6
2
0
7
8
3
5
6
2
0
7
3
8
9
10
4
1
11
6
5
12
5
4
3
13
2
1
14
6
2
0
Pixel
24bpp
7
0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
4
1
Pixel
16bpp
9
8
15
7
3
1
0
1
packed
Pixel
24bpp
1
2
packed
Pixel
24bpp
2
3
packed
Pixel
24bpp
4
5
packed
Pixel
24bpp
not used
0
unpacked
656
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 39-5.
WinCE Pixel Memory Organization
Mem
Addr
0x3
0x2
0x1
0x0
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9
Pixel
1bpp
Pixel
2bpp
Pixel
4bpp
24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8
12
13
14
6
15
8
7
Pixel
8bpp
9
10
4
3
11
5
9
7
6
5
4
3
2
1
0
10 11 12 13 14 15 0
1
2
3
4
5
6
7
4
5
2
0
1
3
0
1
1
Pixel
24bpp
7
3
2
Pixel
16bpp
6
8
3
1
0
0
1
0
packed
Pixel
24bpp
2
1
packed
Pixel
24bpp
3
2
packed
Pixel
24bpp
not used
0
unpacked
39.5.2.5
Palette
This block is used to generate the pixel gray or color information in palletized configurations. The
different modes with the palletized/non-palletized configuration can be found in Table 39-6. In
these modes, 1, 2, 4 or 8 input bits index an entry in the lookup table. The corresponding entry in
the lookup table contains the color or gray shade information for the pixel.
Table 39-6.
Palette Configurations
Configuration
DISTYPE
PIXELSIZE
Palette
TFT
1, 2, 4, 8
Palletized
TFT
16, 24
Non-palletized
STN Mono
1, 2
Palletized
STN Mono
4
Non-palletized
STN Color
1, 2, 4, 8
Palletized
STN Color
16
Non-palletized
The lookup table can be accessed by the host in R/W mode to allow the host to program and
check the values stored in the palette. It is mapped in the LCD controller configuration memory
map. The LUT is mapped as 16-bit half-words aligned at word boundaries, only word write
657
6289C–ATARM–28-May-09
access is allowed (the 16 MSB of the bus are not used). For the detailed memory map, see
Table 39-13 on page 677.
The lookup table contains 256 16-bit wide entries. The 256 entries are chosen by the programmer from the 216 possible combinations.
For the structure of each LUT entry, see Table 39-7.
Table 39-7.
Lookup Table Structure in the Memory
Address
Data Output [15:0]
00
Intensity_bit_0
Blue_value_0[4:0]
Green_value_0[4:0]
Red_value_0[4:0]
01
Intensity_bit_1
Blue_value_1[4:0]
Green_value_1[4:0]
Red_value_1[4:0]
FE
Intensity_bit_254
Blue_value_254[4:0]
Green_value_254[4:0]
Red_value_254[4:0]
FF
Intensity_bit_255
Blue_value_255[4:0]
Green_value_255[4:0]
Red_value_255[4:0]
...
In STN Monochrome, only the four most significant bits of the red value are used (16 gray
shades). In STN Color, only the four most significant bits of the blue, green and red value are
used (4096 colors).
In TFT mode, all the bits in the blue, green and red values are used (32768 colors). In this mode,
there is also a common intensity bit that can be used to double the possible colors. This bit is the
least significant bit of each color component in the LCDD interface (LCDD[18], LCDD[10],
LCDD[2]). The LCDD unused bits are tied to 0 when TFT palletized configurations are used
(LCDD[17:16], LCDD[9:8], LCDD[1:0]).
39.5.2.6
Dithering
The dithering block is used to generate the shades of gray or color when the LCD Controller is
used with an STN LCD Module. It uses a time-based dithering algorithm and Frame Rate Control method.
The Frame Rate Control varies the duty cycle for which a given pixel is turned on, giving the display an appearance of multiple shades. In order to reduce the flicker noise caused by turning on
and off adjacent pixels at the same time, a time-based dithering algorithm is used to vary the
pattern of adjacent pixels every frame. This algorithm is expressed in terms of Dithering Pattern
registers (DP_i) and considers not only the pixel gray level number, but also its horizontal
coordinate.
Table 39-8 shows the correspondences between the gray levels and the duty cycle.
Table 39-8.
658
Dithering Duty Cycle
Gray Level
Duty Cycle
Pattern Register
15
1
-
14
6/7
DP6_7
13
4/5
DP4_5
12
3/4
DP3_4
11
5/7
DP5_7
10
2/3
DP2_3
9
3/5
DP3_5
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 39-8.
Dithering Duty Cycle
Gray Level
Duty Cycle
Pattern Register
8
4/7
DP4_7
7
1/2
~DP1_2
6
3/7
~DP4_7
5
2/5
~DP3_5
4
1/3
~DP2_3
3
1/4
~DP3_4
2
1/5
~DP4_5
1
1/7
~DP6_7
0
0
-
The duty cycles for gray levels 0 and 15 are 0 and 1, respectively.
The same DP_i register can be used for the pairs for which the sum of duty cycles is 1 (e.g., 1/7
and 6/7). The dithering pattern for the first pair member is the inversion of the one for the
second.
The DP_i registers contain a series of 4-bit patterns. The (3-m)th bit of the pattern determines if a
pixel with horizontal coordinate x = 4n + m (n is an integer and m ranges from 0 to 3) should be
turned on or off in the current frame. The operation is shown by the examples below.
Consider the pixels a, b, c and d with the horizontal coordinates 4*n+0, 4*n+1, 4*n+2 and 4*n+3,
respectively. The four pixels should be displayed in gray level 9 (duty cycle 3/5) so the register
used is DP3_5 =”1010 0101 1010 0101 1111”.
The output sequence obtained in the data output for monochrome mode is shown in Table 39-9.
Table 39-9.
Dithering Algorithm for Monochrome Mode
Frame
Number
Pattern
Pixel a
Pixel b
Pixel c
Pixel d
N
1010
ON
OFF
ON
OFF
N+1
0101
OFF
ON
OFF
ON
N+2
1010
ON
OFF
ON
OFF
N+3
0101
OFF
ON
OFF
ON
N+4
1111
ON
ON
ON
ON
N+5
1010
ON
OFF
ON
OFF
N+6
0101
OFF
ON
OFF
ON
N+7
1010
ON
OFF
ON
OFF
...
...
...
...
...
...
Consider now color display mode and two pixels p0 and p1 with the horizontal coordinates
4*n+0, and 4*n+1. A color pixel is composed of three components: {R, G, B}. Pixel p0 will be displayed sending the color components {R0, G0, B0} to the display. Pixel p1 will be displayed
sending the color components {R1, G1, B1}. Suppose that the data read from memory and
mapped to the lookup tables corresponds to shade level 10 for the three color components of
659
6289C–ATARM–28-May-09
both pixels, with the dithering pattern to apply to all of them being DP2_3 = “1101 1011 0110”.
Table 39-10 shows the output sequence in the data output bus for single scan configurations. (In
Dual Scan Configuration, each panel data bus acts like in the equivalent single scan
configuration.)
Table 39-10. Dithering Algorithm for Color Mode
Frame
Signal
Shadow Level
Bit used
Dithering Pattern
4-bit LCDD
8-bit LCDD
Output
N
red_data_0
1010
3
1101
LCDD[3]
LCDD[7]
R0
N
green_data_0
1010
2
1101
LCDD[2]
LCDD[6]
G0
N
blue_data_0
1010
1
1101
LCDD[1]
LCDD[5]
b0
N
red_data_1
1010
0
1101
LCDD[0]
LCDD[4]
R1
N
green_data_1
1010
3
1101
LCDD[3]
LCDD[3]
G1
N
blue_data_1
1010
2
1101
LCDD[2]
LCDD[2]
B1
…
…
…
…
…
…
…
…
N+1
red_data_0
1010
3
1011
LCDD[3]
LCDD[7]
R0
N+1
green_data_0
1010
2
1011
LCDD[2]
LCDD[6]
g0
N+1
blue_data_0
1010
1
1011
LCDD[1]
LCDD[5]
B0
N+1
red_data_1
1010
0
1011
LCDD[0]
LCDD[4]
R1
N+1
green_data_1
1010
3
1011
LCDD[3]
LCDD[3]
G1
N+1
blue_data_1
1010
2
1011
LCDD[2]
LCDD[2]
b1
…
…
…
…
…
…
…
…
N+2
red_data_0
1010
3
0110
LCDD[3]
LCDD[7]
r0
N+2
green_data_0
1010
2
0110
LCDD[2]
LCDD[6]
G0
N+2
blue_data_0
1010
1
0110
LCDD[1]
LCDD[5]
B0
N+2
red_data_1
1010
0
0110
LCDD[0]
LCDD[4]
r1
N+2
green_data_1
1010
3
0110
LCDD[3]
LCDD[3]
g1
N+2
blue_data_1
1010
2
0110
LCDD[2]
LCDD[2]
B1
…
…
…
…
…
…
…
…
Note:
Ri = red pixel component ON. Gi = green pixel component ON. Bi = blue pixel component ON. ri = red pixel component OFF.
gi = green pixel component OFF. bi = blue pixel component OFF.
39.5.2.7
Shifter
The FIFO, Serializer, Palette and Dithering modules process one pixel at a time in monochrome
mode and three sub-pixels at a time in color mode (R,G,B components). This module packs the
data according to the output interface. This interface can be programmed in the DISTYPE,
SCANMOD, and IFWIDTH fields of the LDCCON3 register.
The DISTYPE field selects between TFT, STN monochrome and STN color display. The SCANMODE field selects between single and dual scan modes; in TFT mode, only single scan is
supported. The IFWIDTH field configures the width of the interface in STN mode: 4-bit (in single
scan mode only), 8-bit and 16-bit (in dual scan mode only).
For a more detailed description of the fields, see “LCD Controller (LCDC) User Interface” on
page 677.
660
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
For a more detailed description of the LCD Interface, see “LCD Interface” on page 666.
39.5.2.8
Timegen
The time generator block generates the control signals LCDDOTCK, LCDHSYNC, LCDVSYNC,
LCDDEN, used by the LCD module. This block is programmable in order to support different
types of LCD modules and obtain the output clock signals, which are derived from the LCDC
Core clock.
The LCDDOTCK signal is used to clock the data into the LCD drivers' shift register. The data is
sent through LCDD[23:0] synchronized by default with LCDDOTCK falling edge (rising edge can
be selected). The CLKVAL field of LCDCON1 register controls the rate of this signal. The divisor
can also be bypassed with the BYPASS bit in the LCDCON1 register. In this case, the rate of
LCDDOTCK is equal to the frequency of the LCDC Core clock. The minimum period of the LCDDOTCK signal depends on the configuration. This information can be found in Table 39-11.
f LCDC_clock
f LCDDOTCK = -------------------------------2 × CLKVAL
The LCDDOTCK signal has two different timings that are selected with the CLKMOD field of the
LCDCON2 register:
• Always Active (used with TFT LCD Modules)
• Active only when data is available (used with STN LCD Modules)
Table 39-11. Minimum LCDDOTCK Period in LCDC Core Clock Cycles
Configuration
DISTYPE
SCAN
IFWIDTH
TFT
LCDDOTCK Period
1
STN Mono
Single
4
4
STN Mono
Single
8
8
STN Mono
Dual
8
8
STN Mono
Dual
16
16
STN Color
Single
4
2
STN Color
Single
8
2
STN Color
Dual
8
4
STN Color
Dual
16
6
The LCDDEN signal indicates valid data in the LCD Interface.
After each horizontal line of data has been shifted into the LCD, the LCDHSYNC is asserted to
cause the line to be displayed on the panel.
The following timing parameters can be configured:
661
6289C–ATARM–28-May-09
• Vertical to Horizontal Delay (VHDLY): The delay between begin_of_line and the generation of
LCDHSYNC is configurable in the VHDLY field of the LCDTIM1 register. The delay is equal to
(VHDLY+1) LCDDOTCK cycles.
• Horizontal Pulse Width (HPW): The LCDHSYNC pulse width is configurable in HPW field of
LCDTIM2 register. The width is equal to (HPW + 1) LCDDOTCK cycles.
• Horizontal Back Porch (HBP): The delay between the LCDHSYNC falling edge and the first
LCDDOTCK rising edge with valid data at the LCD Interface is configurable in the HBP field
of the LCDTIM2 register. The delay is equal to (HBP+1) LCDDOTCK cycles.
• Horizontal Front Porch (HFP): The delay between end of valid data and the end of the line is
configurable in the HFP field of the LCDTIM2 register. The delay is equal to (HFP+1)
LCDDOTCK cycles.
There is a limitation in the minimum values of VHDLY, HPW and HBP parameters imposed by
the initial latency of the datapath. The total delay in LCDC clock cycles must be higher than or
equal to the latency column in Table 39-2 on page 654. This limitation is given by the following
formula:
39.5.2.9
Equation 1
( VHDLY + HPW + HBP + 3 ) × PCLK_PERIOD ≥ DPATH_LATENCY
where:
• VHDLY, HPW, HBP are the value of the fields of LCDTIM1 and LCDTIM2 registers
• PCLK_PERIOD is the period of LCDDOTCK signal measured in LCDC Clock cycles
• DPATH_LATENCY is the datapath latency of the configuration, given in Table 39-2 on page
654
The LCDVSYNC is asserted once per frame. This signal is asserted to cause the LCD's line
pointer to start over at the top of the display. The timing of this signal depends on the type of
LCD: STN or TFT LCD.
In STN mode, the high phase corresponds to the complete first line of the frame. In STN mode,
this signal is synchronized with the first active LCDDOTCK rising edge in a line.
In TFT mode, the high phase of this signal starts at the beginning of the first line. The following
timing parameters can be selected:
• Vertical Pulse Width (VPW): LCDVSYNC pulse width is configurable in VPW field of the
LCDTIM1 register. The pulse width is equal to (VPW+1) lines.
• Vertical Back Porch: Number of inactive lines at the beginning of the frame is configurable in
VBP field of LCDTIM1 register. The number of inactive lines is equal to VBP. This field should
be programmed with 0 in STN Mode.
• Vertical Front Porch: Number of inactive lines at the end of the frame is configurable in VFP
field of LCDTIM2 register. The number of inactive lines is equal to VFP. This field should be
programmed with 0 in STN mode.
There are two other parameters to configure in this module, the HOZVAL and the LINEVAL
fields of the LCDFRMCFG:
• HOZVAL configures the number of active LCDDOTCK cycles in each line. The number of
active cycles in each line is equal to (HOZVAL+1) cycles. The minimum value of this
parameter is 1.
662
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• LINEVAL configures the number of active lines per frame. This number is equal to
(LINEVAL+1) lines. The minimum value of this parameter is 1.
Figure 39-3, Figure 39-4 and Figure 39-5 show the timing of LCDDOTCK, LCDDEN, LCDHSYNC and LCDVSYNC signals:
Figure 39-3. STN Panel Timing, CLKMOD 0
Frame Period
LCDVSYNC
LCDHSYNC
LCDDEN
LCDDOTCK
LCDD
Line Period
VHDLY+
HPW+1
HBP+1
HOZVAL+1
HFP+1
LCDVSYNC
LCDHSYNC
LCDDEN
LCDDOTCK
LCDD
1 PCLK
1/2 PCLK 1/2 PCLK
663
6289C–ATARM–28-May-09
Figure 39-4. TFT Panel Timing, CLKMOD = 0, VPW = 2, VBP = 2, VFP = 1
Frame Period
(VPW+1) Lines
LCDVSYNC
Vertical Fron t Porch = VFP Lines
Vertical Back Porch = VBP Lines
VHDLY+1
LCDHSYNC
LCDDEN
LCDDOTCK
LCDD
Line Period
VHDLY+1
HPW+1
HOZVAL+1
HBP+1
HFP+1
LCDVSYNC
LCDHSYNC
LCDDEN
LCDDOTCK
LCDD
1 PCLK
1/2 PCLK 1/2 PCLK
Figure 39-5. TFT Panel Timing (Line Expanded View), CLKMOD=1
Line Period
VHDLY+1
HPW+1
HOZVAL+1
HBP+1
HFP+1
LCDVSYNC
LCDHSYNC
LCDDEN
LCDDOTCK
LCDD
1 PCLK
1/2 PCLK 1/2 PCLK
Usually the LCD_FRM rate is about 70 Hz to 75 Hz. It is given by the following equation:
VHDLY + HPW + HBP + HOZVAL + HFP + 5
1
--------------------------- = ⎛ ---------------------------------------------------------------------------------------------------------------------⎞ ( VBP + LINEVAL + VFP + 1 )
⎝
⎠
f LCDDOTCK
f LCDVSYNC
where:
• HOZVAL determines de number of LCDDOTCK cycles per line
• LINEVAL determines the number of LCDHSYNC cycles per frame, according to the
expressions shown below:
In STN Mode:
Horizontal_display_size
HOZVAL = --------------------------------------------------------------- – 1
Number_data_lines
664
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
LINEVAL = Vertical_display_size – 1
In monochrome mode, Horizontal_display_size is equal to the number of horizontal pixels. The
number_data_lines is equal to the number of bits of the interface in single scan mode;
number_data_lines is equal to half the bits of the interface in dual scan mode.
In color mode, Horizontal_display_size equals three times the number of horizontal pixels.
In TFT Mode:
HOZVAL = Horizontal_display_size – 1
LINEVAL = Vertical_display_size – 1
The frame rate equation is used first without considering the clock periods added at the end
beginning or at the end of each line to determine, approximately, the LCDDOTCK rate:
f lcd_pclk = ( HOZVAL + 5 ) × ( f lcd_vsync × ( LINEVAL + 1 ) )
With this value, the CLKVAL is fixed, as well as the corresponding LCDDOTCK rate.
Then select VHDLY, HPW and HBP according to the type of LCD used and “Equation 1” on
page 662.
Finally, the frame rate is adjusted to 70 Hz - 75 Hz with the HFP value:
1
HFP = f LCDDOTCK × --------------------------------------------------------------------------------------------------------------- – ( VHDLY + VPW + VBP + HOZVAL + 5 )
f LCDVSYNC × ( LINEVAL + VBP + VFP + 1 )
The line counting is controlled by the read-only field LINECNT of LCDCON1 register. The LINECNT field decreases by one unit at each falling edge of LCDHSYNC.
39.5.2.10
Display
This block is used to configure the polarity of the data and control signals. The polarity of all
clock signals can be configured by LCDCON2[12:8] register setting.
This block also generates the lcd_pwr signal internally used to control the state of the LCD pins
and to turn on and off by software the LCD module.
This signal is controlled by the PWRCON register and respects the number of frames configured
in the GUARD_TIME field of PWRCON register (PWRCON[7:1]) between the write access to
LCD_PWR field (PWRCON[0]) and the activation/deactivation of lcd_pwr signal.
The minimum value for the GUARD_TIME field is one frame. This gives the DMA Controller
enough time to fill the FIFOs before the start of data transfer to the LCD.
39.5.2.11
PWM
This block generates the LCD contrast control signal (LCDCC) to make possible the control of
the display's contrast by software. This is an 8-bit PWM (Pulse Width Modulation) signal that can
be converted to an analog voltage with a simple passive filter.
The PWM module has a free-running counter whose value is compared against a compare register (CONSTRAST_VAL register). If the value in the counter is less than that in the register, the
665
6289C–ATARM–28-May-09
output brings the value of the polarity (POL) bit in the PWM control register: CONTRAST_CTR.
Otherwise, the opposite value is output. Thus, a periodic waveform with a pulse width proportional to the value in the compare register is generated.
Due to the comparison mechanism, the output pulse has a width between zero and 255 PWM
counter cycles. Thus by adding a simple passive filter outside the chip, an analog voltage
between 0 and (255/256) × VDD can be obtained (for the positive polarity case, or between
(1/256) × VDD and VDD for the negative polarity case). Other voltage values can be obtained by
adding active external circuitry.
For PWM mode, the frequency of the counter can be adjusted to four different values using field
PS of CONTRAST_CTR register.
39.5.3
LCD Interface
The LCD Controller interfaces with the LCD Module through the LCD Interface (Table 39-12 on
page 671). The Controller supports the following interface configurations: 24-bit TFT single
scan, 16-bit STN Dual Scan Mono (Color), 8-bit STN Dual (Single) Scan Mono (Color), 4-bit single scan Mono (Color).
A 4-bit single scan STN display uses 4 parallel data lines to shift data to successive single horizontal lines one at a time until the entire frame has been shifted and transferred. The 4 LSB pins
of LCD Data Bus (LCDD [3:0]) can be directly connected to the LCD driver; the 20 MSB pins
(LCDD [23:4]) are not used.
An 8-bit single scan STN display uses 8 parallel data lines to shift data to successive single horizontal lines one at a time until the entire frame has been shifted and transferred. The 8 LSB pins
of LCD Data Bus (LCDD [7:0]) can be directly connected to the LCD driver; the 16 MSB pins
(LCDD [23:8]) are not used.
An 8-bit Dual Scan STN display uses two sets of 4 parallel data lines to shift data to successive
upper and lower panel horizontal lines one at a time until the entire frame has been shifted and
transferred. The bus LCDD[3:0] is connected to the upper panel data lines and the bus
LCDD[7:4] is connected to the lower panel data lines. The rest of the LCD Data Bus lines
(LCDD[23:8]) are not used.
A 16-bit Dual Scan STN display uses two sets of 8 parallel data lines to shift data to successive
upper and lower panel horizontal lines one at a time until the entire frame has been shifted and
transferred. The bus LCDD[7:0] is connected to the upper panel data lines and the bus
LCDD[15:8] is connected to the lower panel data lines. The rest of the LCD Data Bus lines
(LCDD[23:16]) are not used.
STN Mono displays require one bit of image data per pixel. STN Color displays require three bits
(Red, Green and Blue) of image data per pixel, resulting in a horizontal shift register of length
three times the number of pixels per horizontal line. This RGB or Monochrome data is shifted to
the LCD driver as consecutive bits via the parallel data lines.
A TFT single scan display uses up to 24 parallel data lines to shift data to successive horizontal
lines one at a time until the entire frame has been shifted and transferred. The 24 data lines are
divided in three bytes that define the color shade of each color component of each pixel. The
LCDD bus is split as LCDD[23:16] for the blue component, LCDD[15:8] for the green component
and LCDD[7:0] for the red component. If the LCD Module has lower color resolution (fewer bits
per color component), only the most significant bits of each component are used.
666
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
All these interfaces are shown in Figure 39-6 to Figure 39-10. Figure 39-6 on page 667 shows
the 24-bit single scan TFT display timing; Figure 39-7 on page 667 shows the 4-bit single scan
STN display timing for monochrome and color modes; Figure 39-8 on page 668 shows the 8-bit
single scan STN display timing for monochrome and color modes; Figure 39-9 on page 669
shows the 8-bit Dual Scan STN display timing for monochrome and color modes; Figure 39-10
on page 670 shows the 16-bit Dual Scan STN display timing for monochrome and color modes.
Figure 39-6. TFT Timing (First Line Expanded View)
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
LCDD [24:16]
B0
B1
LCDD [15:8]
G0
G1
LCDD [7:0]
R0
R1
Figure 39-7. Single Scan Monochrome and Color 4-bit Panel Timing (First Line Expanded View)
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
LCDD [3]
P0
P4
LCDD [2]
P1
P5
LCDD [1]
P2
P6
LCDD [0]
P3
P7
LCDD [3]
R0
G1
LCDD [2]
G0
B1
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
LCDD [1]
B0
R2
LCDD [0]
R1
G2
667
6289C–ATARM–28-May-09
Figure 39-8. Single Scan Monochrome and Color 8-bit Panel Timing (First Line Expanded View)
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
LCDD [7]
P0
P8
LCDD [6]
P1
P9
LCDD [5]
P2
P10
LCDD [4]
P3
P11
LCDD [3]
P4
P12
LCDD [2]
P5
P13
LCDD [1]
P6
P14
LCDD [0]
P7
P15
LCDD [7]
R0
B2
LCDD [6]
G0
R3
LCDD [5]
B0
G3
LCDD [4]
R1
B3
LCDD [3]
G1
R4
LCDD [2]
B1
G4
LCDD [1]
R2
B4
LCDD [0]
G2
R5
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
668
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 39-9. Dual Scan Monochrome and Color 8-bit Panel Timing (First Line Expanded View)
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
Lower Pane
LCDD [7]
LP0
LP4
LCDD [6]
LP1
LP5
LCDD [5]
L2
LP6
L3
LP7
LCDD [4]
Upper Pane
LCDD [3]
UP0 UP4
LCDD [2]
UP1 UP5
LCDD [1]
UP2 UP6
LCDD [0]
UP3 UP7
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
Lower Pane
LCDD [7]
LR0
LG1
LCDD [6]
LG0
LB1
LCDD [5]
LB0
LR2
LR1
LG2
LCDD [4]
Upper Pane
LCDD [3]
UR0 UG1
LCDD [2]
UG0 UB1
LCDD [1]
UB0 UR2
LCDD [0]
UR1 UG2
669
6289C–ATARM–28-May-09
Figure 39-10. Dual Scan Monochrome and Color 16-bit Panel Timing (First Line Expanded View)
LCDVSYNC
LCDDEN
LCDHSYNC
LCDDOTCK
Lower Panel
LCDD [15]
LP0
LP8
LCDD [14]
LP1
LP9
LCDD [13]
LP2 LP10
LCDD [12]
LP3 LP11
LCDD [11]
LP4 LP12
LCDD [10]
LP5 LP13
LCDD [9]
LP6 LP14
LCDD [8]
LP7 LP15
Upper Panel
LC DD [7]
UP0 UP8
LCDD [6]
UP1 UP9
LCDD [5]
UP2 UP10
LCDD [4]
UP3 UP11
LCDD [3]
UP4 UP12
LCDD [2]
UP5 UP13
LCDD [1]
UP6 UP14
LCDD [0]
UP7 UP15
LCDVSYNC
LCDDEN
LC DHSYNC
LCDDOTCK
Lower Panel
LCDD [15]
LR0
LCDD [14]
LG0 LR3
LCDD [13]
LB0
LG3
LCDD [12]
LR1
LB3
LCDD [11]
LG1 LR4
LCDD [10]
LB1
LG4
LCDD [9]
LR2
LB4
LCDD [8]
LG2 LR5
LB2
Upper Panel
670
LCDD [7]
UR0 UB2
LCDD [6]
UG0 UR3
LCDD [5]
UB0 UG3
LCDD [4]
UR1 UB3
LCDD [3]
UG1 UR4
LCDD [2]
UB1 UG4
LCDD [1]
UR2 UB4
LCDD [0]
UG2 UR5
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Table 39-12. LCD Signal Multiplexing
LCD Data
Bus
4-bit STN Single
Scan
(mono, color)
8-bit STN Single
Scan
(mono, color)
8-bit STN Dual
Scan
(mono, color)
16-bit STN Dual
Scan
(mono, color)
24-bit TFT
16-bit TFT
LCDD[23]
LCD_BLUE7
LCD_BLUE4
LCDD[22]
LCD_BLUE6
LCD_BLUE3
LCDD[21]
LCD_BLUE5
LCD_BLUE2
LCDD[20]
LCD_BLUE4
LCD_BLUE1
LCDD[19]
LCD_BLUE3
LCD_BLUE0
LCDD[18]
LCD_BLUE2
Intensity Bit
LCDD[17]
LCD_BLUE1
LCDD[16]
LCD_BLUE0
LCDD[15]
LCDLP7
LCD_GREEN7
LCD_GREEN4
LCDD[14]
LCDLP6
LCD_GREEN6
LCD_GREEN3
LCDD[13]
LCDLP5
LCD_GREEN5
LCD_GREEN2
LCDD[12]
LCDLP4
LCD_GREEN4
LCD_GREEN1
LCDD[11]
LCDLP3
LCD_GREEN3
LCD_GREEN0
LCDD[10]
LCDLP2
LCD_GREEN2
Intensity Bit
LCDD[9]
LCDLP1
LCD_GREEN1
LCDD[8]
LCDLP0
LCD_GREEN0
LCDD[7]
LCD7
LCDLP3
LCDUP7
LCD_RED7
LCD_RED4
LCDD[6]
LCD6
LCDLP2
LCDUP6
LCD_RED6
LCD_RED3
LCDD[5]
LCD5
LCDLP1
LCDUP5
LCD_RED5
LCD_RED2
LCDD[4]
LCD4
LCDLP0
LCDUP4
LCD_RED4
LCD_RED1
LCDD[3]
LCD3
LCD3
LCDUP3
LCDUP3
LCD_RED3
LCD_RED0
LCDD[2]
LCD2
LCD2
LCDUP2
LCDUP2
LCD_RED2
Intensity Bit
LCDD[1]
LCD1
LCD1
LCDUP1
LCDUP1
LCD_RED1
LCDD[0]
LCD0
LCD0
LCDUP0
LCDUP0
LCD_RED0
671
6289C–ATARM–28-May-09
39.6
Interrupts
The LCD Controller generates six different IRQs. All the IRQs are synchronized with the internal
LCD Core Clock. The IRQs are:
• DMA Memory error IRQ. Generated when the DMA receives an error response from an AHB
slave while it is doing a data transfer.
• FIFO underflow IRQ. Generated when the Serializer tries to read a word from the FIFO when
the FIFO is empty.
• FIFO overwrite IRQ. Generated when the DMA Controller tries to write a word in the FIFO
while the FIFO is full.
• DMA end of frame IRQ. Generated when the DMA controller updates the Frame Base
Address pointers. This IRQ can be used to implement a double-buffer technique. For more
information, see “Double-buffer Technique” on page 673.
• End of Line IRQ. This IRQ is generated when the LINEBLANK period of each line is reached
and the DMA Controller is in inactive state.
• End of Last Line IRQ. This IRQ is generated when the LINEBLANK period of the last line of
the current frame is reached and the DMA Controller is in inactive state.
Each IRQ can be individually enabled, disabled or cleared, in the LCD_IER (Interrupt Enable
Register), LCD_IDR (Interrupt Disable Register) and LCD_ICR (Interrupt Clear Register) registers. The LCD_IMR register contains the mask value for each IRQ source and the LDC_ISR
contains the status of each IRQ source. A more detailed description of these registers can be
found in “LCD Controller (LCDC) User Interface” on page 677.
39.7
Configuration Sequence
The DMA Controller starts to transfer image data when the LCDC Core is activated (Write to
LCD_PWR field of PWRCON register). Thus, the user should configure the LCDC Core and
configure and enable the DMA Controller prior to activation of the LCD Controller. In addition,
the image data to be shows should be available when the LCDC Core is activated, regardless of
the value programmed in the GUARD_TIME field of the PWRCON register.
To disable the LCD Controller, the user should disable the LCDC Core and then disable the
DMA Controller. The user should not enable LIP again until the LCDC Core is in IDLE state. This
is checked by reading the LCD_BUSY bit in the PWRCON register.
The initialization sequence that the user should follow to make the LCDC work is:
• Create or copy the first image to show in the display buffer memory.
• If a palletized mode is used, create and store a palette in the internal LCD Palette
memory(See “Palette” on page 657.
• Configure the LCD Controller Core without enabling it:
– LCDCON1 register: Program the CLKVAL and BYPASS fields: these fields control the
pixel clock divisor that is used to generate the pixel clock LCDDOTCK. The value to
program depends on the LCD Core clock and on the type and size of the LCD
Module used. There is a minimum value of the LCDDOTCK clock period that
depends on the LCD Controller Configuration, this minimum value can be found in
Table 39-11 on page 661. The equations that are used to calculate the value of the
pixel clock divisor can be found at the end of the section “Timegen” on page 661
672
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– LCDCON2 register: Program its fields following their descriptions in the LCD
Controller User Interface section below and considering the type of LCD module
used and the desired working mode. Consider that not all combinations are possible.
– LCDTIM1 and LCDTIM2 registers: Program their fields according to the datasheet of
the LCD module used and with the help of the Timegen section in page 10. Note that
some fields are not applicable to STN modules and must be programmed with 0
values. Note also that there is a limitation on the minimum value of VHDLY, HPW,
HBP that depends on the configuration of the LCDC.
– LCDFRMCFG register: program the dimensions of the LCD module used.
– LCDFIFO register: To program it, use the formula in section “FIFO” on page 654
– DP1_2 to DP6_7 registers: they are only used for STN displays. They contain the
dithering patterns used to generate gray shades or colors in these modules. They
are loaded with recommended patterns at reset, so it is not necessary to write
anything on them. They can be used to improve the image quality in the display by
tuning the patterns in each application.
– PWRCON Register: this register controls the power-up sequence of the LCD, so
take care to use it properly. Do not enable the LCD (writing a 1 in LCD_PWR field)
until the previous steps and the configuration of the DMA have been finished.
– CONTRAST_CTR and CONTRAST_VAL: use this registers to adjust the contrast of
the display, when the LCDCC line is used.
• Configure the DMA Controller. The user should configure the base address of the display
buffer memory, the size of the AHB transaction and the size of the display image in memory.
When the DMA is configured the user should enable the DMA. To do so the user should
configure the following registers:
– DMABADDR1 and DMABADDR2 registers: In single scan mode only DMABADDR1
register must be configured with the base address of the display buffer in memory. In
dual scan mode DMABADDR1 should be configured with the base address of the
Upper Panel display buffer and DMABADDR2 should be configured with the base
address of the Lower Panel display buffer.
– DMAFRMCFG register: Program the FRMSIZE field. Note that in dual scan mode
the vertical size to use in the calculation is that of each panel. Respect to the
BRSTLN field, a recommended value is a 4-word burst.
– DMACON register: Once both the LCD Controller Core and the DMA Controller have
been configured, enable the DMA Controller by writing a “1” to the DMAEN field of
this register. If using a dual scan module or the 2D addressing feature, do not forget
to write the DMAUPDT bit after every change to the set of DMA configuration values.
– DMA2DCFG register: Required only in 2D memory addressing mode (see “2D
Memory Addressing” on page 674).
• Finally, enable the LCD Controller Core by writing a “1” in the LCD_PWR field of the
PWRCON register and do any other action that may be required to turn the LCD module on.
39.8
Double-buffer Technique
The double-buffer technique is used to avoid flickering while the frame being displayed is
updated. Instead of using a single buffer, there are two different buffers, the backbuffer (background buffer) and the primary buffer (the buffer being displayed).
673
6289C–ATARM–28-May-09
The host updates the backbuffer while the LCD Controller is displaying the primary buffer. When
the backbuffer has been updated the host updates the DMA Base Address registers.
When using a Dual Panel LCD Module, both base address pointers should be updated in the
same frame. There are two possibilities:
• Check the DMAFRMPTx register to ensure that there is enough time to update the DMA
Base Address registers before the end of frame.
• Update the Frame Base Address Registers when the End Of Frame IRQ is generated.
Once the host has updated the Frame Base Address Registers and the next DMA end of frame
IRQ arrives, the backbuffer and the primary buffer are swapped and the host can work with the
new backbuffer.
When using a dual-panel LCD module, both base address pointers should be updated in the
same frame. In order to achieve this, the DMAUPDT bit in DMACON register must be used to
validate the new base address.
39.9
2D Memory Addressing
The LCDC can be configured to work on a frame buffer larger than the actual screen size. By
changing the values in a few registers, it is easy to move the displayed area along the frame buffer width and height.
Figure 39-11. Frame Buffer Addressing
Frame Buffer
Displayed Image
Base word address &
pixel offset
Line-to-line
address increment
In order to locate the displayed window within a larger frame buffer, the software must:
• Program the DMABADDR1 (DMABADDR2) register(s) to make them point to the word
containing the first pixel of the area of interest.
• Program the PIXELOFF field of DMA2DCFG register to specify the offset of this first pixel
within the 32-bit memory word that contains it.
• Define the width of the complete frame buffer by programming in the field ADDRINC of
DMA2DCFG register the address increment between the last word of a line and the first word
of the next line (in number of 32-bit words).
• Enable the 2D addressing mode by writing the DMA2DEN bit in DMACON register. If this bit
is not activated, the values in the DMA2DCFG register are not considered and the controller
assumes that the displayed area occupies a continuous portion of the memory.
674
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The above configuration can be changed frame to frame, so the displayed window can be
moved rapidly. Note that the FRMSIZE field of DMAFRMCFG register must be updated with any
movement of the displaying window. Note also that the software must write bit DMAUPDT in
DMACON register after each configuration for it to be accepted by LCDC.
Note:
In 24 bpp packed mode, the DMA base address must point to a word containing a complete pixel
(possible values of PIXELOFF are 0 and 8). This means that the horizontal origin of the displaying
window must be a multiple of 4 pixels or a multiple of 4 pixels minus 1 (x = 4n or x = 4n-1, valid origins are pixel 0,3,4,7,8,11,12, etc.).
675
6289C–ATARM–28-May-09
39.10 Register Configuration Guide
Program the PIO Controller to enable LCD signals.
Enable the LCD controller clock in the Power Management Controller.
39.10.1
STN Mode Example
STN color(R,G,B) 320*240, 8-bit single scan, 70 frames/sec, Master clock = 60 Mhz
Data rate: 320*240*70*3/8 = 2.016 MHz
HOZVAL= ((3*320)/8) - 1
LINEVAL= 240 -1
CLKVAL = (60 MHz/ (2*2.016 MHz)) - 1= 14
LCDCON1= CLKVAL << 12
LCDCON2 = LITTLEENDIAN | SINGLESCAN | STNCOLOR | DISP8BIT| PS8BPP;
LCDTIM1 = 0;
LCDTIM2 = 10 | (10 << 21);
LCDFRMCFG = (HOZVAL << 21) | LINEVAL;
DMAFRMCFG = (7 << 24) + (320 * 240 * 8) / 32;
39.10.2
TFT Mode Example
This example is based on the NEC TFT color LCD module NL6448BC20-08.
TFT 640*480, 16-bit single scan, 60 frames/sec, pixel clock frequency = [21MHz..29MHz] with a
typical value = 25.175 MHz.
The Master clock must be (2*(n + 1))*pixel clock frequency
HOZVAL = 640 - 1
LINEVAL = 480 - 1
If Master clock is 50 MHz
CLKVAL = (50 MHz/ (2*25.175 MHz)) - 1= 0
VFP = (12 -1), VBP = (31-1), VPW = (2-1), VHDLY= (2-1)
HFP = (16-1), HBP = (48 -1), HPW= (96-1)
LCDCON1= CLKVAL << 12
LCDCON2 = LITTLEENDIAN | CLKMOD | INVERT_CLK | INVERT_LINE | INVERT_FRM |
PS16BPP | SINGLESCAN | TFT
LCDTIM1 = VFP | (VBP << 8) | (VPW << 16) | (VHDLY << 24)
LCDTIM2 = HBP | (HPW << 8) | (HFP << 21)
LCDFRMCFG = (HOZVAL << 21) | LINEVAL
DMAFRMCFG = (7 << 24) + (640 * 480* 16) / 32;
676
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11 LCD Controller (LCDC) User Interface
Table 39-13. LCD Controller (LCDC) User Interface
Offset
Register
Register Name
Access
Reset Value
0x0
DMA Base Address Register 1
DMABADDR1
R/W
0x00000000
0x4
DMA Base Address Register 2
DMABADDR2
R/W
0x00000000
0x8
DMA Frame Pointer Register 1
DMAFRMPT1
Read-only
0x00000000
0xC
DMA Frame Pointer Register 2
DMAFRMPT2
Read-only
0x00000000
0x10
DMA Frame Address Register 1
DMAFRMADD1
Read-only
0x00000000
0x14
DMA Frame Address Register 2
DMAFRMADD2
Read-only
0x00000000
0x18
DMA Frame Configuration Register
DMAFRMCFG
R/W
0x00000000
0x1C
DMA Control Register
DMACON
R/W
0x00000000
0x20
DMA Control Register
DMA2DCFG
R/W
0x00000000
0x800
LCD Control Register 1
LCDCON1
R/W
0x00002000
0x804
LCD Control Register 2
LCDCON2
R/W
0x00000000
0x808
LCD Timing Register 1
LCDTIM1
R/W
0x00000000
0x80C
LCD Timing Register 2
LCDTIM2
R/W
0x00000000
0x810
LCD Frame Configuration Register
LCDFRMCFG
R/W
0x00000000
0x814
LCD FIFO Register
LCDFIFO
R/W
0x00000000
0x818
Reserved
–
–
–
0x81C
Dithering Pattern DP1_2
DP1_2
R/W
0xA5
0x820
Dithering Pattern DP4_7
DP4_7
R/W
0x5AF0FA5
0x824
Dithering Pattern DP3_5
DP3_5
R/W
0xA5A5F
0x828
Dithering Pattern DP2_3
DP2_3
R/W
0xA5F
0x82C
Dithering Pattern DP5_7
DP5_7
R/W
0xFAF5FA5
0x830
Dithering Pattern DP3_4
DP3_4
R/W
0xFAF5
0x834
Dithering Pattern DP4_5
DP4_5
R/W
0xFAF5F
0x838
Dithering Pattern DP6_7
DP6_7
R/W
0xF5FFAFF
0x83C
Power Control Register
PWRCON
R/W
0x0000000e
0x840
Contrast Control Register
CONTRAST_CTR
R/W
0x00000000
0x844
Contrast Value Register
CONTRAST_VAL
R/W
0x00000000
0x848
LCD Interrupt Enable Register
LCD_IER
Write-only
0x0
0x84C
LCD Interrupt Disable Register
LCD_IDR
Write-only
0x0
0x850
LCD Interrupt Mask Register
LCD_IMR
Read-only
0x0
0x854
LCD Interrupt Status Register
LCD_ISR
Read-only
0x0
0x858
LCD Interrupt Clear Register
LCD_ICR
Write-only
0x0
0x860
LCD Interrupt Test Register
LCD_ITR
Write-only
0
0x864
LCD Interrupt Raw Status Register
LCD_IRR
Read-only
0
677
6289C–ATARM–28-May-09
Table 39-13. LCD Controller (LCDC) User Interface (Continued)
Offset
Register
Register Name
Access
0xC00
Palette entry 0
LUT ENTRY 0
R/W
0xC04
Palette entry 1
LUT ENTRY 1
R/W
0xC08
Palette entry 2
LUT ENTRY 2
R/W
0xC0C
Palette entry 3
LUT ENTRY 3
R/W
…
0xFFC
678
Reset Value
…
Palette entry 255
LUT ENTRY 255
R/W
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.1 DMA Base Address Register 1
Name: DMABADDR1
Access: Read/Write
Reset value: 0x00000000
31
30
29
28
23
22
21
20
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
BADDR-U
BADDR-U
15
14
13
12
7
6
5
4
BADDR-U
BADDR-U
• BADDR-U
Base Address for the upper panel in dual scan mode. Base Address for the complete frame in single scan mode.
If a dual scan configuration is selected in LCDCON2 register or bit DMA2DEN in register DMACON is set, the bit
DMAUPDT in that same register must be written after writing any new value to this field in order to make the DMA controller
use this new value.
39.11.2 DMA Base Address Register 2
Name: DMABADDR2
Access: Read/Write
Reset value: 0x00000000
31
30
29
28
23
22
21
20
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
BADDR-L
BADDR-L
15
14
13
12
7
6
5
4
BADDR-L
BADDR-L
• BADDR-L
Base Address for the lower panel in dual scan mode only.
If a dual scan configuration is selected in LCDCON2 register or bit DMA2DEN in register DMACON is set, the bit
DMAUPDT in that same register must be written after writing any new value to this field in order to make the DMA controller
use this new value.
679
6289C–ATARM–28-May-09
39.11.3 DMA Frame Pointer Register 1
Name: DMAFRMPT1
Access: Read-only
Reset value: 0x00000000
31
–
23
–
15
30
–
22
29
–
21
28
–
20
14
13
12
7
6
5
4
27
–
19
FRMPT-U
11
FRMPT-U
3
FRMPT-U
26
–
18
25
–
17
24
–
16
10
9
8
2
1
0
• FRMPT-U
Current value of frame pointer for the upper panel in dual scan mode. Current value of frame pointer for the complete frame
in single scan mode. Down count from FRMSIZE to 0.
Note:
This register is read-only and contains the current value of the frame pointer (number of words to the end of the frame). It can be
used as an estimation of the number of words transferred from memory for the current frame.
39.11.4 DMA Frame Pointer Register 2
Name: DMAFRMPT2
Access: Read-only
Reset value: 0x00000000
31
–
23
15
30
–
22
29
–
21
28
–
20
14
13
12
7
6
5
4
27
–
19
FRMPT-L
11
FRMPT-L
3
FRMPT-L
26
–
18
25
–
17
24
–
16
10
9
8
2
1
0
• FRMPT-L
Current value of frame pointer for the Lower panel in dual scan mode only. Down count from FRMSIZE to 0.
Note:
680
This register is read-only and contains the current value of the frame pointer (number of words to the end of the frame). It can be
used as an estimation of the number of words transferred from memory for the current frame.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.5 DMA Frame Address Register 1
Name: DMAFRMADD1
Access: Read-only
Reset value: 0x00000000
31
30
29
28
23
22
21
20
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
FRMADD-U
FRMADD-U
15
14
13
12
7
6
5
4
FRMADD-U
FRMADD-U
• FRMADD-U
Current value of frame address for the upper panel in dual scan mode. Current value of frame address for the complete
frame in single scan.
Note:
This register is read-only and contains the current value of the last DMA transaction in the bus for the panel/frame.
39.11.6 DMA Frame Address Register 2
Name: DMAFRMADD2
Access: Read-only
Reset value: 0x00000000
31
30
29
28
23
22
21
20
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
FRMADD-L
FRMADD-L
15
14
13
12
FRMADD-L
7
6
5
4
FRMADD-L
• FRMADD-L
Current value of frame address for the lower panel in single scan mode only.
Note:
This register is read-only and contains the current value of the last DMA transaction in the bus for the panel.
681
6289C–ATARM–28-May-09
39.11.7 DMA Frame Configuration Register
Name: DMAFRMCFG
Access: Read/Write
Reset value: 0x00000000
31
–
23
–
15
30
29
22
21
14
13
7
6
5
28
27
BRSTLN
20
19
FRMSIZE
12
11
FRMSIZE
4
3
FRMSIZE
26
25
24
18
17
16
10
9
8
2
1
0
• FRMSIZE: Frame Size
In single scan mode, this is the frame size in words. In dual scan mode, this is the size of each panel. If a dual scan configuration is selected in LCDCON2 register or bit DMA2DEN in register DMACON is set, the bit DMAUPDT in that same
register must be written after writing any new value to this field in order to make the DMA controller use this new value.
• BRSTLN: Burst Length in words
Program with the desired burst length - 1
682
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.8 DMA Control Register
Name: DMACON
Access: Read/Write
Reset value: 0x00000000
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
DMA2DEN
27
–
19
–
11
–
3
DMAUPDT
26
–
18
–
10
–
2
DMABUSY
25
–
17
–
9
–
1
DMARST
24
–
16
–
8
–
0
DMAEN
• DMAEN: DMA Enable
0: DMA is disabled.
1: DMA is enabled.
• DMARST: DMA Reset (Write-only)
0: No effect.
1: Reset DMA module. DMA Module should be reset only when disabled and in idle state.
• DMABUSY: DMA Busy
0: DMA module is idle.
1: DMA module is busy (doing a transaction on the AHB bus).
• DMAUPDT: DMA Configuration Update
0: No effect
1: Update DMA Configuration. Used for simultaneous updating of DMA parameters in dual scan mode or when using 2D
addressing. The values written in the registers DMABADDR1, DMABADDR2 and DMA2DCFG, and in the field FRMSIZE of
register DMAFRMCFG, are accepted by the DMA controller and are applied at the next frame. This bit is used only if a dual
scan configuration is selected (bit SCANMOD of LCDCON2 register) or 2D addressing is enabled (bit DMA2DEN in this
register). Otherwise, the LCD controller accepts immediately the values written in the registers referred to above.
• DMA2DEN: DMA 2D Addressing Enable
0: 2D addressing is disabled (values in register DMA2DCFG are “don’t care”).
1: 2D addressing is enabled.
683
6289C–ATARM–28-May-09
39.11.9 LCD DMA 2D Addressing Register
Name: DMA2DCFG
Access: Read/Write
Reset value: 0x00000000
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
27
25
24
19
–
11
26
PIXELOFF
18
–
10
20
–
12
17
–
9
16
–
8
7
6
5
4
3
2
1
0
ADDRINC
ADDRINC
• ADDRINC: DMA 2D Addressing Address increment
When 2-D DMA addressing is enabled (bit DMA2DEN is set in register DMACON), this field specifies the number of bytes
that the DMA controller must jump between screen lines. Itb must be programmed as: [({address of first 32-bit word in a
screen line} - {address of last 32-bit word in previous line})]. In other words, it is equal to 4*[number of 32-bit words occupied by each line in the complete frame buffer minus the number of 32-bit words occupied by each displayed line]. Bit
DMAUPDT in register DMACON must be written after writing any new value to this field in order to make the DMA controller use this new value.
• PIXELOFF: DAM2D Addressing Pixel offset
When 2D DMA addressing is enabled (bit DMA2DEN is set in register DMACON), this field specifies the offset of the first
pixel in each line within the memory word that contains this pixel. The offset is specified in number of bits in the range 0-31,
so for example a value of 4 indicates that the first pixel in the screen starts at bit 4 of the 32-bit word pointed by register
DMABADDR1. Bits 0 to 3 of that word are not used. This example is valid for little endian memory organization. When
using big endian memory organization, this offset is considered from bit 31 downwards, or equivalently, a given value of
this field always selects the pixel in the same relative position within the word, independently of the memory ordering configuration. Bit DMAUPDT in register DMACON must be written after writing any new value to this field in order to make the
DMA controller use this new value.
684
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.10 LCD Control Register 1
Name: LCDCON1
Access: Read/Write, except LINECNT: Read-only
Reset value: 0x00002000
31
30
29
28
27
26
25
24
21
20
19
17
16
13
12
5
–
4
–
11
–
3
–
18
CLKVAL
10
–
2
–
9
–
1
–
8
–
0
BYPASS
LINECNT
23
15
7
–
22
LINECNT
14
CLKVAL
6
–
• BYPASS: Bypass LCDDOTCK divider
0: The divider is not bypassed. LCDDOTCK frequency defined by the CLKVAL field.
1: The LCDDOTCK divider is bypassed. LCDDOTCK frequency is equal to the LCDC Clock frequency.
• CLKVAL: Clock divider
9-bit divider for pixel clock (LCDDOTCK) frequency.
Pixel_clock = system_clock ⁄ ( CLKVAL + 1 ) × 2
• LINECNT: Line Counter (Read-only)
Current Value of 11-bit line counter. Down count from LINEVAL to 0.
685
6289C–ATARM–28-May-09
39.11.11 LCD Control Register 2
Name: LCDCON2
Access: Read/Write
Reset value: 0x0000000
31
30
MEMOR
23
22
–
–
15
14
CLKMOD
–
7
6
PIXELSIZE
29
–
21
–
13
–
5
28
27
–
–
20
19
–
–
12
11
INVDVAL
INVCLK
4
3
IFWIDTH
26
–
18
–
10
INVLINE
2
SCANMOD
25
24
–
–
17
16
–
–
9
8
INVFRAME
INVVD
1
0
DISTYPE
• DISTYPE: Display Type
DISTYPE
0
0
STN Monochrome
0
1
STN Color
1
0
TFT
1
1
Reserved
• SCANMOD: Scan Mode
0: Single Scan
1: Dual Scan
• IFWIDTH: Interface width (STN)
IFWIDTH
686
0
0
4-bit (Only valid in single scan STN mono or color)
0
1
8-bit (Only valid in STN mono or Color)
1
0
16-bit (Only valid in dual scan STN mono or color)
1
1
Reserved
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• PIXELSIZE: Bits per pixel
PIXELSIZE
0
0
0
1 bit per pixel
0
0
1
2 bits per pixel
0
1
0
4 bits per pixel
0
1
1
8 bits per pixel
1
0
0
16 bits per pixel
1
0
1
24 bits per pixel, packed (Only valid in TFT mode)
1
1
0
24 bits per pixel, unpacked (Only valid in TFT mode)
1
1
1
Reserved
• INVVD: LCDD polarity
0: Normal
1: Inverted
• INVFRAME: LCDVSYNC polarity
0: Normal (active high)
1: Inverted (active low)
• INVLINE: LCDHSYNC polarity
0: Normal (active high)
1: Inverted (active low)
• INVCLK: LCDDOTCK polarity
0: Normal (LCDD fetched at LCDDOTCK falling edge)
1: Inverted (LCDD fetched at LCDDOTCK rising edge)
• INVDVAL: LCDDEN polarity
0: Normal (active high)
1: Inverted (active low)
• CLKMOD: LCDDOTCK mode
0: LCDDOTCK only active during active display period
1: LCDDOTCK always active
• MEMOR: Memory Ordering Format
00: Big Endian
10: Little Endian
11: WinCE format
687
6289C–ATARM–28-May-09
39.11.12 LCD Timing Configuration Register 1
Name: LCDTIM1
Access: Read/Write
Reset value: 0x0000000
31
–
23
–
15
30
–
22
–
14
29
–
21
28
–
20
13
12
7
6
5
4
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
VHDLY
VPW
VBP
VFP
• VFP: Vertical Front Porch
In TFT mode, these bits equal the number of idle lines at the end of the frame.
In STN mode, these bits should be set to 0.
• VBP: Vertical Back Porch
In TFT mode, these bits equal the number of idle lines at the beginning of the frame.
In STN mode, these bits should be set to 0.
• VPW: Vertical Synchronization pulse width
In TFT mode, these bits equal the vertical synchronization pulse width, given in number of lines. LCDVSYNC width is equal
to (VPW+1) lines.
In STN mode, these bits should be set to 0.
• VHDLY: Vertical to horizontal delay
In TFT mode, this is the delay between LCDVSYNC rising or falling edge and LCDHSYNC rising edge. Delay is
(VHDLY+1) LCDDOTCK cycles.
In STN mode, these bits should be set to 0.
688
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.13 LCD Timing Configuration Register 2
Name: LCDTIM2
Access: Read/Write
Reset value: 0x0000000
31
30
29
28
27
26
25
24
23
22
HFP
14
–
6
21
13
20
–
12
19
–
11
18
–
10
17
–
9
16
–
8
5
4
3
2
1
0
HFP
15
–
7
HPW
HBP
• HBP: Horizontal Back Porch
Number of idle LCDDOTCK cycles at the beginning of the line. Idle period is (HBP+1) LCDDOTCK cycles.
• HPW: Horizontal synchronization pulse width
Width of the LCDHSYNC pulse, given in LCDDOTCK cycles. Width is (HPW+1) LCDDOTCK cycles.
• HFP: Horizontal Front Porch
Number of idle LCDDOTCK cycles at the end of the line. Idle period is (HFP+1) LCDDOTCK cycles.
689
6289C–ATARM–28-May-09
39.11.14 LCD Frame Configuration Register
Name: LCDFRMCFG
Access: Read/Write
Reset value: 0x0000000
31
30
29
28
23
22
LINESIZE
14
–
6
21
20
–
12
–
4
27
26
25
24
19
–
11
–
3
18
–
10
17
–
9
LINEVAL
1
16
–
8
LINESIZE
15
–
7
13
–
5
2
0
LINEVAL
• LINEVAL: Vertical size of LCD module
In single scan mode: vertical size of LCD Module, in pixels, minus 1
In dual scan mode: vertical display size of each LCD panel, in pixels, minus 1
• LINESIZE: Horizontal size of LCD module, in pixels, minus 1
690
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.15 LCD FIFO Register
Name: LCDFIFO
Access: Read/Write
Reset value: 0x0000000
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
FIFOTH
FIFOTH
• FIFOTH: FIFO Threshold
Must be programmed with:
FIFOTH (in words) = 512 - (2 x DMA_BURST_LENGTH + 3)
where:
• 512 is the effective size of the FIFO in words. It is the total FIFO memory size in single scan mode and half that size in
dual scan mode.
• DMA_burst_length is the burst length of the transfers made by the DMA in words. Refer to “BRSTLN: Burst Length in
words” on page 682.
691
6289C–ATARM–28-May-09
39.11.16 Dithering Pattern DP1_2 Register
Name: DP1_2
Access: Read/Write
Reset value: 0xA5
31
–
23
–
15
–
7
30
–
22
–
14
–
6
29
–
21
–
13
–
5
28
–
20
–
12
–
4
27
–
19
–
11
–
3
26
–
18
–
10
–
2
25
–
17
–
9
–
1
24
–
16
–
8
–
0
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
DP1_2
• DP1_2: Pattern value for ½ duty cycle
39.11.17 Dithering Pattern DP4_7 Register
Name: DP4_7
Access: Read/Write
Reset value: 0x5AF0FA5
31
–
23
30
–
22
29
–
21
28
–
20
DP4_7
DP4_7
15
14
13
12
7
6
5
4
DP4_7
DP4_7
• DP4_7: Pattern value for 4/7 duty cycle
39.11.18 Dithering Pattern DP3_5 Register
Name: DP3_5
Access: Read/Write
Reset value: 0xA5A5F
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
DP3_5
DP3_5
7
6
5
4
DP3_5
• DP3_5: Pattern value for 3/5 duty cycle
692
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.19 Dithering Pattern DP2_3 Register
Name: DP2_3: Dithering Pattern DP2_3 Register
Access: Read/Write
Reset value: 0xA5F
31
–
23
–
15
–
7
30
–
22
–
14
–
6
29
–
21
–
13
–
5
28
–
20
–
12
–
4
27
–
19
–
11
26
–
18
–
10
3
2
27
26
25
–
17
–
9
24
–
16
–
8
1
0
25
24
DP2_3
DP2_3
• DP2_3: Pattern value for 2/3 duty cycle
39.11.20 Dithering Pattern DP5_7 Register
Name: DP5_7:
Access: Read/Write
Reset value: 0xFAF5FA5
31
–
23
30
–
22
29
–
21
28
–
20
DP5_7
19
18
17
16
11
10
9
8
3
2
1
0
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
DP5_7
15
14
13
12
DP5_7
7
6
5
4
DP5_7
• DP5_7: Pattern value for 5/7 duty cycle
39.11.21 Dithering Pattern DP3_4 Register
Name: DP3_4
Access: Read/Write
Reset value: 0xFAF5
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
DP3_4
DP3_4
• DP3_4: Pattern value for 3/4 duty cycle
693
6289C–ATARM–28-May-09
39.11.22 Dithering Pattern DP4_5 Register
Name: DP4_5
Access: Read/Write
Reset value: 0xFAF5F
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
DP4_5
DP4_5
DP4_5
• DP4_5: Pattern value for 4/5 duty cycle
39.11.23 Dithering Pattern DP6_7 Register
Name: DP6_7
Access: Read/Write
Reset value: 0xF5FFAFF
31
–
23
30
–
22
29
–
21
28
–
20
DP6_7
DP6_7
15
14
13
12
7
6
5
4
DP6_7
DP6_7
• DP6_7: Pattern value for 6/7 duty cycle
694
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.24 Power Control Register
Name: PWRCON
Access: Read/Write
Reset value: 0x0000000e
31
LCD_BUSY
23
–
15
–
7
30
–
22
–
14
–
6
29
–
21
–
13
–
5
28
–
20
–
12
–
4
GUARD_TIME
27
–
19
–
11
–
3
26
–
18
–
10
–
2
25
–
17
–
9
–
1
24
–
16
–
8
–
0
LCD_PWR
• LCD_PWR: LCD module power control
0 = lcd_pwr signal is low, other lcd_* signals are low.
0->1 = lcd_* signals activated, lcd_pwr is set high with the delay of GUARD_TIME frame periods.
1 = lcd_pwr signal is high, other lcd_* signals are active.
1->0 = lcd_pwr signal is low, other lcd_* signals are active, but are set low after GUARD_TIME frame periods.
• GUARD_TIME
Delay in frame periods between applying control signals to the LCD module and setting LCD_PWR high, and between setting LCD_PWR low and removing control signals from LCD module
• LCD_BUSY
Read-only field. If 1, it indicates that the LCD is busy (active and displaying data, in power on sequence or in power off
sequence).
695
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.25 Contrast Control Register
Name: CONTRAST_CTR
Access: Read/Write
Reset value: 0x00000000
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
ENA
26
–
18
–
10
–
2
POL
25
–
17
–
9
–
1
24
–
16
–
8
–
0
PS
• PS
This 2-bit value selects the configuration of a counter prescaler. The meaning of each combination is as follows:
PS
0
0
The counter advances at a rate of fCOUNTER = fLCDC_CLOCK.
0
1
The counter advances at a rate of fCOUNTER = fLCDC_CLOCK/2.
1
0
The counter advances at a rate of fCOUNTER = fLCDC_CLOCK/4.
1
1
The counter advances at a rate of fCOUNTER = fLCDC_CLOCK/8.
• POL
This bit defines the polarity of the output. If 1, the output pulses are high level (the output will be high whenever the value in
the counter is less than the value in the compare register CONSTRAST_VAL). If 0, the output pulses are low level.
• ENA
When 1, this bit enables the operation of the PWM generator. When 0, the PWM counter is stopped.
696
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.26 Contrast Value Register
Name: CONSTRAST_VAL
Access: Read/Write
Reset value: 0x00000000
31
–
23
–
15
–
7
30
–
22
–
14
–
6
29
–
21
–
13
–
5
28
–
20
–
12
–
4
27
–
19
–
11
–
3
26
–
18
–
10
–
2
25
–
17
–
9
–
1
24
–
16
–
8
–
0
CVAL
• CVAL
PWM compare value. Used to adjust the analog value obtained after an external filter to control the contrast of the display.
697
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.27 LCD Interrupt Enable Register
Name: LCD_IER
Access: Write-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIE
29
–
21
–
13
–
5
OWRIE
28
–
20
–
12
–
4
UFLWIE
27
–
19
–
11
–
3
-
26
–
18
–
10
–
2
EOFIE
25
–
17
–
9
–
1
LSTLNIE
24
–
16
–
8
–
0
LNIE
• LNIE: Line interrupt enable
0: No effect
1: Enable each line interrupt
• LSTLNIE: Last line interrupt enable
0: No effect
1: Enable last line interrupt
• EOFIE: DMA End of frame interrupt enable
0: No effect
1: Enable End Of Frame interrupt
• UFLWIE: FIFO underflow interrupt enable
0: No effect
1: Enable FIFO underflow interrupt
• OWRIE: FIFO overwrite interrupt enable
0: No effect
1: Enable FIFO overwrite interrupt
• MERIE: DMA memory error interrupt enable
0: No effect
1: Enable DMA memory error interrupt
698
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.28 LCD Interrupt Disable Register
Name: LCD_IDR
Access: Write-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERID
29
–
21
–
13
–
5
OWRID
28
–
20
–
12
–
4
UFLWID
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFID
25
–
17
–
9
–
1
LSTLNID
24
–
16
–
8
–
0
LNID
• LNID: Line interrupt disable
0: No effect
1: Disable each line interrupt
• LSTLNID: Last line interrupt disable
0: No effect
1: Disable last line interrupt
• EOFID: DMA End of frame interrupt disable
0: No effect
1: Disable End Of Frame interrupt
• UFLWID: FIFO underflow interrupt disable
0: No effect
1: Disable FIFO underflow interrupt
• OWRID: FIFO overwrite interrupt disable
0: No effect
1: Disable FIFO overwrite interrupt
• MERID: DMA Memory error interrupt disable
0: No effect
1: Disable DMA Memory error interrupt
699
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.29 LCD Interrupt Mask Register
Name: LCD_IMR
Access: Read-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIM
29
–
21
–
13
–
5
OWRIM
28
–
20
–
12
–
4
UFLWIM
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFIM
25
–
17
–
9
–
1
LSTLNIM
24
–
16
–
8
–
0
LNIM
• LNIM: Line interrupt mask
0: Line Interrupt disabled
1: Line interrupt enabled
• LSTLNIM: Last line interrupt mask
0: Last Line Interrupt disabled
1: Last Line Interrupt enabled
• EOFIM: DMA End of frame interrupt mask
0: End Of Frame interrupt disabled
1: End Of Frame interrupt enabled
• UFLWIM: FIFO underflow interrupt mask
0: FIFO underflow interrupt disabled
1: FIFO underflow interrupt enabled
• OWRIM: FIFO overwrite interrupt mask
0: FIFO overwrite interrupt disabled
1: FIFO overwrite interrupt enabled
• MERIM: DMA Memory error interrupt mask
0: DMA Memory error interrupt disabled
1: DMA Memory error interrupt enabled
700
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.30 LCD Interrupt Status Register
Name: LCD_ISR
Access: Read-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIS
29
–
21
–
13
–
5
OWRIS
28
–
20
–
12
–
4
UFLWIS
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFIS
25
–
17
–
9
–
1
LSTLNIS
24
–
16
–
8
–
0
LNIS
• LNIS: Line interrupt status
0: Line Interrupt not active
1: Line Interrupt active
• LSTLNIS: Last line interrupt status
0: Last Line Interrupt not active
1: Last Line Interrupt active
• EOFIS: DMA End of frame interrupt status
0: End Of Frame interrupt not active
1: End Of Frame interrupt active
• UFLWIS: FIFO underflow interrupt status
0: FIFO underflow interrupt not active
1: FIFO underflow interrupt active
• OWRIS: FIFO overwrite interrupt status
0: FIFO overwrite interrupt not active
1: FIFO overwrite interrupt active
• MERIS: DMA Memory error interrupt status
0: DMA Memory error interrupt not active
1: DMA Memory error interrupt active
701
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.31 LCD Interrupt Clear Register
Name: LCD_ICR
Access: Write-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIC
29
–
21
–
13
–
5
OWRIC
28
–
20
–
12
–
4
UFLWIC
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFIC
25
–
17
–
9
–
1
LSTLNIC
24
–
16
–
8
–
0
LNIC
• LNIC: Line interrupt clear
0: No effect
1: Clear each line interrupt
• LSTLNIC: Last line interrupt clear
0: No effect
1: Clear Last line Interrupt
• EOFIC: DMA End of frame interrupt clear
0: No effect
1: Clear End Of Frame interrupt
• UFLWIC: FIFO underflow interrupt clear
0: No effect
1: Clear FIFO underflow interrupt
• OWRIC: FIFO overwrite interrupt clear
0: No effect
1: Clear FIFO overwrite interrupt
• MERIC: DMA Memory error interrupt clear
0: No effect
1: Clear DMA Memory error interrupt
702
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.32 LCD Interrupt Test Register
Name: LCD_ITR
Access: Write-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIT
29
–
21
–
13
–
5
OWRIT
28
–
20
–
12
–
4
UFLWIT
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFIT
25
–
17
–
9
–
1
LSTLNIT
24
–
16
–
8
–
0
LNIT
• LNIT: Line interrupt test
0: No effect
1: Set each line interrupt
• LSTLNIT: Last line interrupt test
0: No effect
1: Set Last line interrupt
• EOFIT: DMA End of frame interrupt test
0: No effect
1: Set End Of Frame interrupt
• UFLWIT: FIFO underflow interrupt test
0: No effect
1: Set FIFO underflow interrupt
• OWRIT: FIFO overwrite interrupt test
0: No effect
1: Set FIFO overwrite interrupt
• MERIT: DMA Memory error interrupt test
0: No effect
1: Set DMA Memory error interrupt
703
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
39.11.33 LCD Interrupt Raw Status Register
Name: LCD_IRR
Access: Write-only
Reset value: 0x0
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
MERIR
29
–
21
–
13
–
5
OWRIR
28
–
20
–
12
–
4
UFLWIR
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
EOFIR
25
–
17
–
9
–
1
LSTLNIR
24
–
16
–
8
–
0
LNIR
• LNIR: Line interrupt raw status
0: No effect
1: Line interrupt condition present
• LSTLNIR: Last line interrupt raw status
0: No effect
1: Last line Interrupt condition present
• EOFIR: DMA End of frame interrupt raw status
0: No effect
1: End Of Frame interrupt condition present
• UFLWIR: FIFO underflow interrupt raw status
0: No effect
1: FIFO underflow interrupt condition present
• OWRIR: FIFO overwrite interrupt raw status
0: No effect
1: FIFO overwrite interrupt condition present
• MERIR: DMA Memory error interrupt raw status
0: No effect
1: DMA Memory error interrupt condition present
704
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40. AC’97 Controller (AC’97C)
40.1
Description
The AC‘97 Controller is the hardware implementation of the AC’97 digital controller (DC’97)
compliant with AC’97 Component Specification 2.2. The AC’97 Controller communicates with an
audio codec (AC’97) or a modem codec (MC’97) via the AC-link digital serial interface. All digital
audio, modem and handset data streams, as well as control (command/status) informations are
transferred in accordance to the AC-link protocol.
The AC’97 Controller features a Peripheral DMA Controller (PDC) for audio streaming transfers.
It also supports variable sampling rate and four Pulse Code Modulation (PCM) sample resolutions of 10, 16, 18 and 20 bits.
705
6289C–ATARM–28-May-09
40.2
Block Diagram
Figure 40-1. Functional Block Diagram
MCK Clock Domain
Slot Number
SYNC
AC97 Slot Controller
Slot Number
16/20 bits
Slot #0
Transmit Shift Register
M
AC97 Tag Controller
Receive Shift Register
Slot #0,1
U
AC97 CODEC Channel
AC97C_COTHR
AC97C_CORHR
X
Slot #1,2
Slot #2
SDATA_OUT
Transmit Shift Register
Receive Shift Register
SDATA_IN
AC97 Channel A
Transmit Shift Register
AC97C_CATHR
AC97C_CARHR
Slot #3...12
Receive Shift Register
D
E
BITCLK
M
AC97 Channel B
AC97C Interrupt
Transmit Shift Register
AC97C_CBTHR
U
Slot #3...12
AC97C_CBRHR
Receive Shift Register
X
MCK
User Interface
Bit Clock Domain
APB Interface
706
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.3
Pin Name List
Table 40-1.
I/O Lines Description
Pin Name
Pin Description
Type
AC97CK
12.288-MHz bit-rate clock
Input
AC97RX
Receiver Data (Referred as SDATA_IN in AC-link spec)
Input
AC97FS
48-KHz frame indicator and synchronizer
Output
AC97TX
Transmitter Data (Referred as SDATA_OUT in AC-link spec)
Output
The AC‘97 reset signal provided to the primary codec can be generated by a PIO.
40.4
Application Block Diagram
Figure 40-2. Application Block diagram
AC-link
AC 97 Controller
PIOx
AC'97 Primary Codec
AC97_RESET
AC97_SYNC
AC97FS
AC97_BITCLK
AC97CK
AC97TX
AC97_SDATA_OUT
AC97_SDATA_IN
AC97RX
707
6289C–ATARM–28-May-09
40.5
40.5.1
Product Dependencies
I/O Lines
The pins used for interfacing the compliant external devices may be multiplexed with PIO lines.
Before using the AC‘97 Controller receiver, the PIO controller must be configured in order for the
AC97C receiver I/O lines to be in AC‘97 Controller peripheral mode.
Before using the AC‘97 Controller transmitter, the PIO controller must be configured in order for
the AC97C transmitter I/O lines to be in AC‘97 Controller peripheral mode.
40.5.2
Power Management
The AC‘97 Controller is not continuously clocked. Its interface may be clocked through the
Power Management Controller (PMC), therefore the programmer must first configure the PMC
to enable the AC’97 Controller clock.
The AC’97 Controller has two clock domains. The first one is supplied by PMC and is equal to
MCK. The second one is AC97CK which is sent by the AC97 Codec (Bit clock).
Signals that cross the two clock domains are re-synchronized. MCK clock frequency must be
higher than the AC97CK (Bit Clock) clock frequency.
40.5.3
Interrupt
The AC’97 Controller interface has an interrupt line connected to the Advanced Interrupt Controller (AIC). Handling interrupts requires programming the AIC before configuring the AC97C.
All AC’97 Controller interrupts can be enabled/disabled by writing to the AC’97 Controller Interrupt Enable/Disable Registers. Each pending and unmasked AC’97 Controller interrupt will
assert the interrupt line. The AC’97 Controller interrupt service routine can get the interrupt
source in two steps:
• Reading and ANDing AC’97 Controller Interrupt Mask Register (AC97C_IMR) and AC’97
Controller Status Register (AC97C_SR).
• Reading AC’97 Controller Channel x Status Register (AC97C_CxSR).
708
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.6
Functional Description
40.6.1
Protocol overview
AC-link protocol is a bidirectional, fixed clock rate, serial digital stream. AC-link handles multiple
input and output Pulse Code Modulation PCM audio streams, as well as control register
accesses employing a Time Division Multiplexed (TDM) scheme that divides each audio frame
in 12 outgoing and 12 incoming 20-bit wide data slots.
Figure 40-3. Bidirectional AC-link Frame with Slot Assignment
Slot #
0
1
2
3
4
5
6
7
8
9
10
11
12
PCM
L SURR
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
RSVED
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
AC97FS
AC97TX
(Controller Output)
TAG
CMD
ADDR
CMD
DATA
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
AC97RX
(Codec output)
TAG
STATUS
ADDR
STATUS
DATA
PCM
LEFT
PCM
RIGHT
LINE 1
DAC
PCM
MIC
Table 40-2.
RSVED
AC-link Output Slots Transmitted from the AC’97C Controller
Slot #
Pin Description
0
TAG
1
Command Address Port
2
Command Data Port
3,4
PCM playback Left/Right Channel
5
Modem Line 1 Output Channel
6, 7, 8
PCM Center/Left Surround/Right Surround
9
PCM LFE DAC
10
Modem Line 2 Output Channel
11
Modem Handset Output Channel
12
Modem GPIO Control Channel
Table 40-3.
AC-link Input Slots Transmitted from the AC’97C Controller
Slot #
Pin Description
0
TAG
1
Status Address Port
2
Status Data Port
3,4
PCM playback Left/Right Channel
5
Modem Line 1 ADC
6
Dedicated Microphone ADC
7, 8, 9
Vendor Reserved
709
6289C–ATARM–28-May-09
Table 40-3.
AC-link Input Slots Transmitted from the AC’97C Controller
Slot #
Pin Description
10
Modem Line 2 ADC
11
Modem Handset Input ADC
12
Modem IO Status
40.6.1.1
Slot Description
Tag Slot
The tag slot, or slot 0, is a 16-bit wide slot that always goes at the beginning of an outgoing or
incoming frame. Within tag slot, the first bit is a global bit that flags the entire frame validity. The
next 12 bit positions sampled by the AC’97 Controller indicate which of the corresponding 12
time slots contain valid data. The slot’s last two bits (combined) called Codec ID, are used to distinguish primary and secondary codec.
The 16-bit wide tag slot of the output frame is automatically generated by the AC‘97 Controller
according to the transmit request of each channel and to the SLOTREQ from the previous input
frame, sent by the AC‘97 Codec, in Variable Sample Rate mode.
Codec Slot 1
The command/status slot is a 20-bit wide slot used to control features, and monitors status for
AC‘97 Codec functions.
The control interface architecture supports up to sixty-four 16-bit wide read/write registers. Only
the even registers are currently defined and addressed.
Slot 1’s bitmap is the following:
• Bit 19 is for read/write command, 1= read, 0 = write.
• Bits [18:12] are for control register index.
• Bits [11:0] are reserved.
Codec Slot 2
Slot 2 is a 20-bit wide slot used to carry 16-bit wide AC97 Codec control register data. If the current command port operation is a read, the entire slot time is stuffed with zeros. Its bitmap is the
following:
• Bits [19:4] are the control register data
• Bits [3:0] are reserved and stuffed with zeros.
Data Slots [3:12]
Slots [3:12] are 20-bit wide data slots, they usually carry audio PCM or/and modem I/O data.
710
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.6.2
AC‘97 Controller Channel Organization
The AC’97 Controller features a Codec channel and 2 logical channels; Channel A and Channel
B.
The Codec channel controls AC‘97 Codec registers, it enables write and read configuration values in order to bring the AC97 Codec to an operating state. The Codec channel always runs slot
1 and slot 2 exclusively, in both input and output directions.
Channel A and Channel B transfer data to/from AC97 codec. All audio samples and modem
data must transit by these two channels. However, Channel A is connected to PDC channels
thus making it suitable for audio streaming applications.
Each slot of the input or the output frame that belongs to this range [3 to 12] can be operated by
either Channel A or Channel B. The slot to channel assignment is configured by two registers:
• AC’97 Controller Input Channel Assignment Register (AC97C_ICA)
• AC’97 Controller Output Channel Assignment Register (AC97C_OCA)
The AC’97 Controller Input Channel Assignment Register (AC97C_ICA) configures the input slot
to channel assignment. The AC’97 Controller Output Channel Assignment Register
(AC97C_OCA) configures the output slot to channel assignment.
A slot can be left unassigned to a channel by the AC’97 Controller. Slots 0, 1,and 2 cannot be
assigned to Channel A or to Channel B through the AC97C_OCA and AC97C_ICA Registers.
The width of sample data, that transit via Channel A and Channel B varies and can take one of
these values; 10, 16, 18 or 20 bits.
Figure 40-4. Logical Channel Assignment
Slot #
0
1
2
3
4
5
6
7
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
PCM
L SURR
LINE 1
DAC
PCM
MIC
RSVED
8
9
10
11
12
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
RSVED
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
AC97FS
AC97TX
(Controller Output)
TAG
CMD
ADDR
CMD
DATA
Codec Channel
Channel A
AC97C_OCA = 0x0000_0209
AC97RX
(Codec output)
TAG
STATUS
ADDR
STATUS
DATA
Codec Channel
PCM
LEFT
PCM
RIGHT
Channel A
AC97C_ICA = 0x0000_0009
711
6289C–ATARM–28-May-09
40.6.2.1
AC97 Controller Setup
The following operations must be performed in order to bring the AC’97 Controller into an operating state:
1. Enable the AC97 Controller clock in the PMC controller.
2. Turn on AC97 function by enabling the ENA bit in AC97 Controller Mode Register
(AC97C_MR).
3. Configure the input channel assignment by controlling the AC’97 Controller Input
Assignment Register (AC97C_ICA).
4. Configure the output channel assignment by controlling the AC’97 Controller Input
Assignment Register (AC97C_OCA).
5. Configure sample width for Channel A and Channel B by writing the SIZE bit field in
AC97C Channel A Mode Register (AC97C_CAMR) and AC97C Channel B Mode Register (AC97C_CBMR). The application can write 10, 16, 18,or 20-bit wide PCM samples
through the AC’97 interface and they will be transferred into 20-bit wide slots.
6. Configure data Endianness for Channel A and Channel B by writing CEM bit field in
AC97C_CAMR and AC97C_CBMR registers. Data on the AC-link are shifted MSB first.
The application can write little- or big-endian data to the AC’97 Controller interface.
7. Configure the PIO controller to drive the RESET signal of the external Codec. The
RESET signal must fulfill external AC97 Codec timing requirements.
8. Enable Channel A and/or Channel B by writing CEN bit field in AC97C_CAMR and
AC97C_CBMR registers.
40.6.2.2
Transmit Operation
The application must perform the following steps in order to send data via a channel to the AC97
Codec:
• Check if previous data has been sent by polling TXRDY flag in the AC97C Channel x Status
Register (AC97_CxSR). x being one of the 2 channels.
• Write data to the AC’97 Controller Channel x Transmit Holding Register (AC97C_CxTHR).
Once data has been transferred to the Channel x Shift Register, the TXRDY flag is automatically
set by the AC’97 Controller which allows the application to start a new write action. The application can also wait for an interrupt notice associated with TXRDY in order to send data. The
interrupt remains active until TXRDY flag is cleared..
712
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 40-5. Audio Transfer (PCM L Front, PCM R Front) on Channel x
Slot #
0
1
2
CMD
ADDR
CMD
DATA
3
4
5
6
7
8
9
10
11
12
AC97FS
AC97TX
(Controller Output)
TAG
PCM
L Front
PCM
R Front
LINE 1
DAC
PCM
Center
PCM
L SURR
PCM
R SURR
PCM
LFE
LINE 2
DAC
HSET
DAC
IO
CTRL
TXRDYCx
(AC97C_SR)
TXEMPTY
(AC97C_SR)
Write access to
AC97C_THRx
PCM L Front
transfered to the shift register
PCM R Front
transfered to the shift register
The TXEMPTY flag in the AC’97 Controller Channel x Status Register (AC97C_CxSR) is set
when all requested transmissions for a channel have been shifted on the AC-link. The application can either poll TXEMPTY flag in AC97C_CxSR or wait for an interrupt notice associated
with the same flag.
In most cases, the AC’97 Controller is embedded in chips that target audio player devices. In
such cases, the AC‘97 Controller is exposed to heavy audio transfers. Using the polling technique increases processor overhead and may fail to keep the required pace under an operating
system. In order to avoid these polling drawbacks, the application can perform audio streams by
using PDC connected to channel A, which reduces processor overhead and increases performance especially under an operating system.
The PDC transmit counter values must be equal to the number of PCM samples to be transmitted, each sample goes in one slot.
40.6.2.3
AC‘97 Output Frame
The AC’97 Controller outputs a thirteen-slot frame on the AC-Link. The first slot (tag slot or slot
0) flags the validity of the entire frame and the validity of each slot; whether a slot carries valid
data or not. Slots 1 and 2 are used if the application performs control and status monitoring
actions on AC97 Codec control/status registers. Slots [3:12] are used according to the content of
the AC’97 Controller Output Channel Assignment Register (AC97C_OCA). If the application performs many transmit requests on a channel, some of the slots associated to this channel or all of
them will carry valid data.
40.6.2.4
Receive Operation
The AC’97 Controller can also receive data from AC‘97 Codec. Data is received in the channel’s
shift register and then transferred to the AC’97 Controller Channel x Read Holding Register. To
read the newly received data, the application must perform the following steps:
• Poll RXRDY flag in AC’97 Controller Channel x Status Register (AC97C_CxSR). x being one
of the 2 channels.
• Read data from AC’97 Controller Channel x Read Holding Register.
713
6289C–ATARM–28-May-09
The application can also wait for an interrupt notice in order to read data from AC97C_CxRHR.
The interrupt remains active until RXRDY is cleared by reading AC97C_CxSR.
The RXRDY flag in AC97C_CxSR is set automatically when data is received in the Channel x
shift register. Data is then shifted to AC97C_CxRHR.
Figure 40-6. Audio Transfer (PCM L Front, PCM R Front) on Channel x
Slot #
0
1
2
TAG
STATUS
ADDR
STATUS
DATA
3
4
5
6
7
8
9
RSVED
RSVED
10
11
12
AC97FS
AC97RX
(Codec output)
PCM
LEFT
PCM
RIGHT
LINE 1
DAC
PCM
MIC
RSVED
LINE 2
ADC
HSET
ADC
IO
STATUS
RXRDYCx
(AC97C_SR)
Read access to
AC97C_RHRx
If the previously received data has not been read by the application, the new data overwrites the
data already waiting in AC97C_CxRHR, therefore the OVRUN flag in AC97C_CxSR is raised.
The application can either poll the OVRUN flag in AC97C_CxSR or wait for an interrupt notice.
The interrupt remains active until the OVRUN flag in AC97C_CxSR is set.
The AC’97 Controller can also be used in sound recording devices in association with an AC97
Codec. The AC‘97 Controller may also be exposed to heavy PCM transfers. The application can
use the PDC connected to channel A in order to reduce processor overhead and increase performance especially under an operating system.
The PDC receive counter values must be equal to the number of PCM samples to be received,
each sample goes in one slot.
40.6.2.5
AC‘97 Input Frame
The AC’97 Controller receives a thirteen slot frame on the AC-Link sent by the AC97 Codec. The
first slot (tag slot or slot 0) flags the validity of the entire frame and the validity of each slot;
whether a slot carries valid data or not. Slots 1 and 2 are used if the application requires status
informations from AC97 Codec. Slots [3:12] are used according to AC’97 Controller Output
Channel Assignment Register (AC97C_ICA) content. The AC’97 Controller will not receive any
data from any slot if AC97C_ICA is not assigned to a channel in input.
40.6.2.6
Configuring and Using Interrupts
Instead of polling flags in AC’97 Controller Global Status Register (AC97C_SR) and in AC’97
Controller Channel x Status Register (AC97C_CxSR), the application can wait for an interrupt
notice. The following steps show how to configure and use interrupts correctly:
• Set the interruptible flag in AC’97 Controller Channel x Mode Register (AC97C_CxMR).
• Set the interruptible event and channel event in AC’97 Controller Interrupt Enable Register
(AC97C_IER).
The interrupt handler must read both AC’97 Controller Global Status Register (AC97C_SR) and
AC’97 Controller Interrupt Mask Register (AC97C_IMR) and AND them to get the real interrupt
source. Furthermore, to get which event was activated, the interrupt handler has to read AC’97
Controller Channel x Status Register (AC97C_CxSR), x being the channel whose event triggers
the interrupt.
714
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
The application can disable event interrupts by writing in AC’97 Controller Interrupt Disable Register (AC97C_IDR). The AC‘97 Controller Interrupt Mask Register (AC97C_IMR) shows which
event can trigger an interrupt and which one cannot.
40.6.2.7
Endianness
Endianness can be managed automatically for each channel, except for the Codec channel, by
writing to Channel Endianness Mode (CEM) in AC97C_CxMR. This enables transferring data on
AC-link in Big Endian format without any additional operation.
To Transmit a Word Stored in Big Endian Format on AC-link
Word to be written in AC’97 Controller Channel x Transmit Holding Register (AC97C_CxTHR)
(as it is stored in memory or microprocessor register).
31
24
23
16
Byte0[7:0]
15
Byte1[7:0]
8
7
0
Byte2[7:0]
Byte3[7:0]
Word stored in Channel x Transmit Holding Register (AC97C_CxTHR) (data to transmit).
31
24
23
–
20
19
16
Byte2[3:0]
–
15
8
7
0
Byte1[7:0]
Byte0[7:0]
Data transmitted on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.
To Transmit A Halfword Stored in Big Indian Format on AC-link
Halfword to be written in AC’97 Controller Channel x Transmit Holding Register
(AC97C_CxTHR).
31
24
23
–
16
15
–
8
7
0
Byte0[7:0]
Byte1[7:0]
Halfword stored in AC’97 Controller Channel x Transmit Holding Register (AC97C_CxTHR)
(data to transmit).
31
24
23
–
16
15
–
8
7
0
Byte1[7:0]
Byte0[7:0]
Data emitted on related slot: data[19:0] = {0x0, Byte1[7:0], Byte0[7:0]}.
To Transmit a10-bit Sample Stored in Big Endian Format on AC-link
Halfword to be written in AC’97 Controller Channel x Transmit Holding Register
(AC97C_CxTHR).
31
24
23
–
16
15
–
8
7
Byte0[7:0]
0
{0x00, Byte1[1:0]}
Halfword stored in AC’97 Controller Channel x Transmit Holding Register (AC97C_CxTHR)
(data to transmit).
31
24
–
23
16
–
15
10
–
9
8
Byte1
[1:0]
7
0
Byte0[7:0]
Data emitted on related slot: data[19:0] = {0x000, Byte1[1:0], Byte0[7:0]}.
715
6289C–ATARM–28-May-09
To Receive Word transfers
Data received on appropriate slot: data[19:0] = {Byte2[3:0], Byte1[7:0], Byte0[7:0]}.
Word stored in AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR)
(Received Data).
31
24
23
–
20
19
16
Byte2[3:0]
–
15
8
7
Byte1[7:0]
0
Byte0[7:0]
Data is read from AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when
Channel x data size is greater than 16 bits and when big-endian mode is enabled (data written to
memory).
31
24
23
Byte0[7:0]
16
15
Byte1[7:0]
8
7
0
{0x0, Byte2[3:0]}
0x00
To Receive Halfword Transfers
Data received on appropriate slot: data[19:0] = {0x0, Byte1[7:0], Byte0[7:0]}.
Halfword stored in AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR)
(Received Data).
31
24
23
–
16
15
–
8
7
Byte1[7:0]
0
Byte0[7:0]
Data is read from AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when
data size is equal to 16 bits and when big-endian mode is enabled.
31
24
23
–
16
15
–
8
7
Byte0[7:0]
0
Byte1[7:0]
To Receive 10-bit Samples
Data received on appropriate slot: data[19:0] = {0x000, Byte1[1:0], Byte0[7:0]}.Halfword stored
in AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR) (Received Data)
31
24
23
–
16
–
15
10
–
9
8
Byte1
[1:0]
7
0
Byte0[7:0]
Data read from AC’97 Controller Channel x Receive Holding Register (AC97C_CxRHR) when
data size is equal to 10 bits and when big-endian mode is enabled.
31
24
–
40.6.3
716
23
16
–
15
Byte0[7:0]
8
7
3
0x00
1
0
Byte1
[1:0]
Variable Sample Rate
The problem of variable sample rate can be summarized by a simple example. When passing a
44.1 kHz stream across the AC-link, for every 480 audio output frames that are sent across, 441
of them must contain valid sample data. The new AC’97 standard approach calls for the addition
of “on-demand” slot request flags. The AC‘97 Codec examines its sample rate control register,
the state of its FIFOs, and the incoming SDATA_OUT tag bits (slot 0) of each output frame and
then determines which SLOTREQ bits to set active (low). These bits are passed from the AC97
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Codec to the AC’97 Controller in slot 1/SLOTREQ in every audio input frame. Each time the
AC‘97 controller sees one or more of the newly defined slot request flags set active (low) in a
given audio input frame, it must pass along the next PCM sample for the corresponding slot(s) in
the AC-link output frame that immediately follows.
The variable Sample Rate mode is enabled by performing the following steps:
• Setting the VRA bit in the AC’97 Controller Mode Register (AC97C_MR).
• Enable Variable Rate mode in the AC‘97 Codec by performing a transfer on the Codec
channel.
Slot 1 of the input frame is automatically interpreted as SLOTREQ signaling bits. The AC’97
Controller will automatically fill the active slots according to both SLOTREQ and AC97C_OCA
register in the next transmitted frame.
40.6.4
40.6.4.1
Power Management
Powering Down the AC-Link
The AC97 Codecs can be placed in low power mode. The application can bring AC97 Codec to
a power down state by performing sequential writes to AC97 Codec powerdown register. Both
the bit clock (clock delivered by AC97 Codec, AC97CK) and the input line (AC97RX) are held at
a logic low voltage level. This puts AC97 Codec in power down state while all its registers are
still holding current values. Without the bit clock, the AC-link is completely in a power down
state.
The AC’97 Controller should not attempt to play or capture audio data until it has awakened
AC97 Codec.
To set the AC’97 Codec in low power mode, the PR4 bit in the AC’97 Codec powerdown register
(Codec address 0x26) must be set to 1. Then the primary Codec drives both AC97CK and
AC97RX to a low logic voltage level.
The following operations must be done to put AC97 Codec in low power mode:
• Disable Channel A clearing CEN in the AC97C_CAMR register.
• Disable Channel B clearing CEN field in the AC97C_CBMR register.
• Write 0x2680 value in the AC97C_COTHR register.
• Poll the TXEMPTY flag in AC97C_CxSR registers for the 2 channels.
At this point AC97 Codec is in low power mode.
40.6.4.2
Waking up the AC-link
There are two methods to bring the AC-link out of low power mode. Regardless of the method, it
is always the AC97 Controller that performs the wake-up.
Wake-up Triggered by the AC’97 Controller
The AC’97 Controller can wake up the AC97 Codec by issuing either a cold or a warm reset.
The AC’97 Controller can also wake up the AC97 Codec by asserting AC97FS signal, however
this action should not be performed for a minimum period of four audio frames following the
frame in which the powerdown was issued.
Wake-up Triggered by the AC97 Codec
717
6289C–ATARM–28-May-09
This feature is implemented in AC97 modem codecs that need to report events such as CallerID and wake-up on ring.
The AC97 Codec can drive AC97RX signal from low to high level and holding it high until the
controller issues either a cold or a worm reset. The AC97RX rising edge is asynchronously
(regarding AC97FS) detected by the AC’97 Controller. If WKUP bit is enabled in AC97C_IMR
register, an interrupt is triggered that wakes up the AC‘97 Controller which should then immediately issue a cold or a warm reset.
If the processor needs to be awakened by an external event, the AC97RX signal must be externally connected to the WAKEUP entry of the system controller.
Figure 40-7. AC’97 Power-Down/Up Sequence
Wake Event
Power Down Frame
Sleep State
Warm Reset
New Audio Frame
AC97CK
AC97FS
40.6.4.3
AC97TX
TAG
Write to
0x26
Data
PR4
TAG
Slot1
Slot2
AC97RX
TAG
Write to
0x26
Data
PR4
TAG
Slot1
Slot2
AC97 Codec Reset
There are three ways to reset an AC97 Codec.
Cold AC’97 Reset
A cold reset is generated by asserting the RESET signal low for the minimum specified time
(depending on the AC97 Codec) and then by de-asserting RESET high. AC97CK and AC97FS
is reactivated and all AC97 Codec registers are set to their default power-on values. Transfers
on AC-link can resume.
The RESET signal will be controlled via a PIO line. This is how an application should perform a
cold reset:
• Clear and set ENA flag in the AC97C_MR register to reset the AC’97 Controller
• Clear PIO line output controlling the AC’97 RESET signal
• Wait for the minimum specified time
• Set PIO line output controlling the AC’97 RESET signal
AC97CK, the clock provided by AC97 Codec, is detected by the controller.
Warm AC’97 Reset
A warm reset reactivates the AC-link without altering AC97 Codec registers. A warm reset is signaled by driving AC97FX signal high for a minimum of 1us in the absence of AC97CK. In the
absence of AC97CK, AC97FX is treated as an asynchronous (regarding AC97FX) input used to
signal a warm reset to AC97 Codec.
This is the right way to perform a warm reset:
• Set WRST in the AC97C_MR register.
718
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• Wait for at least 1 us
• Clear WRST in the AC97C_MR register.
The application can check that operations have resumed by checking SOF flag in the
AC97C_SR register or wait for an interrupt notice if SOF is enabled in AC97C_IMR.
719
6289C–ATARM–28-May-09
40.7
AC’97 Controller (AC97C) User Interface
Table 40-4.
Register Mapping
Offset
0x0-0x4
Register Name
Access
Reset
–
–
–
AC97C_MR
Read/Write
0x0
–
–
–
Reserved
0x8
Mode Register
0xC
Reserved
0x10
Input Channel Assignment Register
AC97C_ICA
Read/Write
0x0
0x14
Output Channel Assignment Register
AC97C_OCA
Read/Write
0x0
–
–
–
0x18-0x1C
Reserved
0x20
Channel A Receive Holding Register
AC97C_CARHR
Read
0x0
0x24
Channel A Transmit Holding Register
AC97C_CATHR
Write
–
0x28
Channel A Status Register
AC97C_CASR
Read
0x0
0x2C
Channel A Mode Register
AC97C_CAMR
Read/Write
0x0
0x30
Channel B Receive Holding Register
AC97C_CBRHR
Read
0x0
0x34
Channel B Transmit Holding Register
AC97C_CBTHR
Write
–
0x38
Channel B Status Register
AC97C_CBSR
Read
0x0
0x3C
Channel B Mode Register
AC97C_CBMR
Read/Write
0x0
0x40
Codec Receive Holding Register
AC97C_CORHR
Read
0x0
0x44
Codec Transmit Holding Register
AC’97C_COTHR
Write
–
0x48
Codec Status Register
AC’97C_COSR
Read
0x0
0x4C
Codec Mode Register
AC’97C_COMR
Read/Write
0x0
0x50
Status Register
AC97C_SR
Read
0x0
0x54
Interrupt Enable Register
AC97C_IER
Write
–
0x58
Interrupt Disable Register
AC97C_IDR
Write
–
0x5C
Interrupt Mask Register
AC97C_IMR
Read
0x0
–
–
–
AC97C_CARPR,
AC97C_CARCR,
AC97C_CATPR,
AC97C_CATCR,
AC97C_CARNPR,
AC97C_CARNCR,
AC97C_CATNPR,
AC97C_CATNCR,
AC97C_CAPTCR,
AC97C_CAPTSR
–
–
0x60-0xFB
0x100- 0x124
720
Register
Reserved
Reserved for Peripheral Data Controller (PDC),
registers related to Channel A transfers
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.1
Name:
AC’97 Controller Mode Register
AC97C_MR
Access Type:
Read-Write
31
–
23
–
15
–
7
–
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
–
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
VRA
25
–
17
–
9
–
1
WRST
24
–
16
–
8
–
0
ENA
25
CHID11
17
24
• VRA: Variable Rate (for Data Slots 3-12)
0: Variable Rate is inactive. (48 KHz only)
1: Variable Rate is active.
• WRST: Warm Reset
0: Warm Reset is inactive.
1: Warm Reset is active.
• ENA: AC’97 Controller Global Enable
0: No effect. AC’97 function as well as access to other AC’97 Controller registers are disabled.
1: Activates the AC’97 function.
40.7.2
AC’97 Controller Input Channel Assignment Register
Register Name:
AC97C_ICA
Access Type:
31
–
23
Read/Write
30
–
22
CHID10
14
15
CHID8
7
6
29
21
13
CHID7
5
CHID5
28
CHID12
20
12
4
CHID4
27
26
19
CHID9
11
18
3
16
CHID8
10
CHID6
2
9
1
CHID3
8
CHID5
0
• CHIDx: Channel ID for the input slot x
CHIDx
Selected Receive Channel
0x0
None. No data will be received during this Slot x
0x1
Channel A data will be received during this slot time.
0x2
Channel B data will be received during this slot time
721
6289C–ATARM–28-May-09
40.7.3
AC’97 Controller Output Channel Assignment Register
Register Name:
AC97C_OCA
Access Type:
31
–
23
Read/Write
30
–
22
CHID10
14
15
CHID8
7
6
29
21
13
CHID7
5
CHID5
28
CHID12
20
12
4
CHID4
27
26
19
CHID9
11
18
3
25
CHID11
17
24
16
CHID8
10
CHID6
2
9
1
CHID3
8
CHID5
0
• CHIDx: Channel ID for the output slot x
CHIDx
722
Selected Transmit Channel
0x0
None. No data will be transmitted during this Slot x
0x1
Channel A data will be transferred during this slot time.
0x2
Channel B data will be transferred during this slot time
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.4
AC’97 Controller Codec Channel Receive Holding Register
Register Name:
AC97C_CORHR
Access Type:
Read-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
27
–
19
–
11
26
–
18
–
10
25
–
17
–
9
24
–
16
–
8
3
2
1
0
27
–
19
CADDR
11
26
–
18
25
–
17
24
–
16
10
9
8
3
2
1
0
SDATA
SDATA
• SDATA: Status Data
Data sent by the CODEC in the third AC’97 input frame slot (Slot 2).
40.7.5
AC’97 Controller Codec Channel Transmit Holding Register
Register Name:
AC97C_COTHR
Access Type:
Write-only
31
–
23
READ
15
30
–
22
29
–
21
28
–
20
14
13
12
7
6
5
4
CDATA
CDATA
• READ: Read/Write command
0: Write operation to the CODEC register indexed by the CADDR address.
1: Read operation to the CODEC register indexed by the CADDR address.
This flag is sent during the second AC’97 frame slot
• CADDR: CODEC control register index
Data sent to the CODEC in the second AC’97 frame slot.
• CDATA: Command Data
Data sent to the CODEC in the third AC’97 frame slot (Slot 2).
723
6289C–ATARM–28-May-09
40.7.6
AC’97 Controller Channel A, Channel B Receive Holding Register
Register Name:
AC97C_CARHR, AC97C_CBRHR
Access Type:
31
–
23
–
15
Read-only
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
27
–
19
26
–
18
25
–
17
24
–
16
11
10
9
8
3
2
1
0
RDATA
RDATA
7
6
5
4
RDATA
• RDATA: Receive Data
Received Data on channel x.
40.7.7
AC’97 Controller Channel A, Channel B Transmit Holding Register
Register Name:
AC97C_CATHR, AC97C_CBTHR
Access Type:
Write-only
31
–
23
–
15
30
–
22
–
14
29
–
21
–
13
28
–
20
–
12
7
6
5
4
TDATA
TDATA
TDATA
• TDATA: Transmit Data
Data to be sent on channel x.
724
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.8
AC’97 Controller Channel A Status Register
Register Name:
AC97C_CASR
Access Type:
31
–
23
–
15
RXBUFF
7
–
Read-only
30
–
22
–
14
ENDRX
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
TXBUFE
3
–
26
–
18
–
10
ENDTX
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
40.7.9
AC’97 Controller Channel B Status Register
Register Name:
AC97C_CBSR
Access Type:
31
–
23
–
15
–
7
–
Read-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
40.7.10 AC’97 Controller Codec Channel Status Register
Register Name:
AC97C_COSR
Access Type:
31
–
23
–
15
–
7
–
Read-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
• TXRDY: Channel Transmit Ready
0: Data has been loaded in Channel Transmit Register and is waiting to be loaded in the Channel Transmit Shift Register.
1: Channel Transmit Register is empty.
• TXEMPTY: Channel Transmit Empty
0: Data remains in the Channel Transmit Register or is currently transmitted from the Channel Transmit Shift Register.
1: Data in the Channel Transmit Register have been loaded in the Channel Transmit Shift Register and sent to the codec.
725
6289C–ATARM–28-May-09
• UNRUN: Transmit Underrun
Active only when Variable Rate Mode is enabled (VRA bit set in the AC97C_MR register). Automatically cleared by a processor read operation.
0: No data has been requested from the channel since the last read of the Status Register, or data has been available each
time the CODEC requested new data from the channel since the last read of the Status Register.
1: Data has been emitted while no valid data to send has been previously loaded into the Channel Transmit Shift Register
since the last read of the Status Register.
• RXRDY: Channel Receive Ready
0: Channel Receive Holding Register is empty.
1: Data has been received and loaded in Channel Receive Holding Register.
• OVRUN: Receive Overrun
Automatically cleared by a processor read operation.
0: No data has been loaded in the Channel Receive Holding Register while previous data has not been read since the last
read of the Status Register.
1: Data has been loaded in the Channel Receive Holding Register while previous data has not yet been read since the last
read of the Status Register.
• ENDRX: End of Reception for Channel x
0: The register AC97C_CxRCR has not reached 0 since the last write in AC97C_CxRCR or AC97C_CxRNCR.
1: The register AC97C_CxRCR has reached 0 since the last write in AC97C_CxRCR or AC97C_CxRNCR.
• RXBUFF: Receive Buffer Full for Channel x
0: AC97C_CxRCR or AC97C_CxRNCR have a value other than 0.
1: Both AC97C_CxRCR and AC97C_CxRNCR have a value of 0.
• ENDTX: End of Transmission for Channel x
0: The register AC97C_CxTCR has not reached 0 since the last write in AC97C_CxTCR or AC97C_CxNCR.
1: The register AC97C_CxTCR has reached 0 since the last write in AC97C_CxTCR or AC97C_CxTNCR.
• TXBUFE: Transmit Buffer Empty for Channel x
0: AC97C_CxTCR or AC97C_CxTNCR have a value other than 0.
1: Both AC97C_CxTCR and AC97C_CxTNCR have a value of 0.
726
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.11 AC’97 Controller Channel A Mode Register
Register Name:
AC97C_CAMR
Access Type:
31
–
23
–
15
RXBUFF
7
–
Read/Write
30
–
22
PDCEN
14
ENDRX
6
–
29
–
21
CEN
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
TXBUFE
3
–
26
–
18
CEM
10
ENDTX
2
UNRUN
27
–
19
–
11
–
3
–
26
–
18
CEM
10
–
2
UNRUN
25
–
17
24
–
16
SIZE
9
–
1
TXEMPTY
8
–
0
TXRDY
25
–
17
24
–
16
40.7.12 AC’97 Controller Channel B Mode Register
Register Name:
AC97C_CBMR
Access Type:
31
–
23
–
15
–
7
–
Read/Write
30
–
22
–
14
–
6
–
29
–
21
CEN
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
SIZE
9
–
1
TXEMPTY
8
–
0
TXRDY
• CEM: Channel x Endian Mode
0: Transferring data through Channel x is straightforward (Little-endian).
1: Transferring data through Channel x from/to a memory is performed with from/to Big-endian format translation.
• SIZE: Channel x Data Size
SIZE Encoding
SIZE
Note:
Selected Channel
0x0
20 bits
0x1
18bits
0x2
16 bits
0x3
10 bits
Each time slot in the data phase is 20 bits long. For example, if a 16-bit sample stream is being played to an AC97 DAC, the first
16 bit positions are presented to the DAC MSB-justified. They are followed by the next four bit positions that the AC’97 Controller
fills with zeroes. This process ensures that the least significant bits do not introduce any DC biasing, regardless of the implemented DAC’s resolution (16-, 18-, or 20-bit).
• CEN: Channel x Enable
0: Data transfer is disabled on Channel x.
1: Data transfer is enabled on Channel x.
727
6289C–ATARM–28-May-09
• PDCCEN: Peripheral Data Controller Channel Enable
0: Channel x is not transferred through a Peripheral Data Controller Channel. Related PDC flags are ignored or not
generated.
1: Channel x is transferred through a Peripheral Data Controller Channel. Related PDC flags are taken into account or
generated.
728
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.13 AC’97 Controller Codec Channel Mode Register
Register Name:
AC97C_COMR
Access Type:
31
–
23
–
15
–
7
–
Read/Write
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
OVRUN
28
–
20
–
12
–
4
RXRDY
27
–
19
–
11
–
3
–
26
–
18
–
10
–
2
UNRUN
25
–
17
–
9
–
1
TXEMPTY
24
–
16
–
8
–
0
TXRDY
• TXRDY: Channel Transmit Ready Interrupt Enable
• TXEMPTY: Channel Transmit Empty Interrupt Enable
• UNRUN: Transmit Underrun Interrupt Enable
• RXRDY: Channel Receive Ready Interrupt Enable
• OVRUN: Receive Overrun Interrupt Enable
• ENDRX: End of Reception for channel x Interrupt Enable
• RXBUFF: Receive Buffer Full for channel x Interrupt Enable
• ENDTX: End of Transmission for channel x Interrupt Enable
• TXBUFE: Transmit Buffer Empty for channel x Interrupt Enable
0: Read: the corresponding interrupt is disabled. Write: disables the corresponding interrupt.
1: Read: the corresponding interrupt is enabled. Write: enables the corresponding interrupt.
729
6289C–ATARM–28-May-09
40.7.14 AC’97 Controller Status Register
Register Name:
AC97C_SR
Access Type:
31
–
23
–
15
–
7
–
Read-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
WKUP and SOF flags in AC97C_SR register are automatically cleared by a processor read operation.
• SOF: Start Of Frame
0: No Start of Frame has been detected since the last read of the Status Register.
1: At least one Start of frame has been detected since the last read of the Status Register.
• WKUP: Wake Up detection
0: No Wake-up has been detected.
1: At least one rising edge on SDATA_IN has been asynchronously detected. That means AC’97 Codec has notified a
wake-up.
• COEVT: CODEC Channel Event
A Codec channel event occurs when AC97C_COSR AND AC97C_COMR is not 0. COEVT flag is automatically cleared
when the channel event condition is cleared.
0: No event on the CODEC channel has been detected since the last read of the Status Register.
1: At least one event on the CODEC channel is active.
• CAEVT: Channel A Event
A channel A event occurs when AC97C_CASR AND AC97C_CAMR is not 0. CAEVT flag is automatically cleared when the
channel event condition is cleared.
0: No event on the channel A has been detected since the last read of the Status Register.
1: At least one event on the channel A is active.
• CBEVT: Channel B Event
A channel B event occurs when AC97C_CBSR AND AC97C_CBMR is not 0. CBEVT flag is automatically cleared when the
channel event condition is cleared.
0: No event on the channel B has been detected since the last read of the Status Register.
1: At least one event on the channel B is active.
730
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
40.7.15 AC’97 Controller Interrupt Enable Register
Register Name:
AC97C_IER
Access Type:
31
–
23
–
15
–
7
–
Write-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: No effect.
1: Enables the corresponding interrupt.
40.7.16 AC’97 Controller Interrupt Disable Register
Register Name:
AC97C_IDR
Access Type:
31
–
23
–
15
–
7
–
Write-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
CBEVT
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: No effect.
1: Disables the corresponding interrupt.
731
6289C–ATARM–28-May-09
40.7.17 AC’97 Controller Interrupt Mask Register
Register Name:
AC97C_IMR
Access Type:
31
–
23
–
15
–
7
–
Read-only
30
–
22
–
14
–
6
–
29
–
21
–
13
–
5
–
28
–
20
–
12
–
4
CBEVT
27
–
19
–
11
–
3
CAEVT
26
–
18
–
10
–
2
COEVT
25
–
17
–
9
–
1
WKUP
24
–
16
–
8
–
0
SOF
• SOF: Start Of Frame
• WKUP: Wake Up
• COEVT: Codec Event
• CAEVT: Channel A Event
• CBEVT: Channel B Event
0: The corresponding interrupt is disabled.
1: The corresponding interrupt is enabled.
732
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41. USB High Speed Device Port (UDPHS)
41.1
Description
The USB High Speed Device Port (UDPHS) is compliant with the Universal Serial Bus (USB),
rev 2.0 High Speed device specification.
Each endpoint can be configured in one of several USB transfer types. It can be associated with
one, two or three banks of a dual-port RAM used to store the current data payload. If two or
three banks are used, one DPR bank is read or written by the processor, while the other is read
or written by the USB device peripheral. This feature is mandatory for isochronous endpoints.
Table 41-1.
UDPHS Endpoint Description
Mnemonic
Nb Bank
DMA
High Band
Width
Max. Endpoint Size
Endpoint Type
0
EPT_0
1
N
N
64
Control
1
EPT_1
2
Y
N
1024
Ctrl/Bulk/Iso(1)/Interrupt
2
EPT_2
2
Y
N
1024
Ctrl/Bulk/Iso(1)/Interrupt
3
EPT_3
3
Y
Y
1024
Ctrl/Bulk/Iso(1)/Interrupt
4
EPT_4
3
Y
Y
1024
Ctrl/Bulk/Iso(1)/Interrupt
5
EPT_5
3
Y
Y
1024
Ctrl/Bulk/Iso(1)/Interrupt
6
EPT_6
3
Y
Y
1024
Ctrl/Bulk/Iso(1)/Interrupt
Endpoint #
Note:
1. In Isochronous Mode (Iso), it is preferable that High Band Width capability is available.
The size of internal DPRAM is 4 KB.
Suspend and resume are automatically detected by the UDPHS device, which notifies the processor by raising an interrupt.
733
6289C–ATARM–28-May-09
41.2
Block Diagram
Figure 41-1. Block Diagram:
APB
Interface
APB bus
ctrl
status
USB2.0
CORE
UTMI
Rd/Wr/Ready
AHB1
DMA
AHB0
AHB bus
Master
AHB
Multiplexeur
Slave
APB bus
Local
AHB
Slave
interface
EPT
Alloc
32 bits
16/8 bits
DPRAM
USB Clock
Domain
734
System Clock
Domain
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.3
Typical Connection
Figure 41-2. Board Schematic
PIO (VBUS DETECT)
15k Ω
(1)
"B" Receptacle
1 = VBUS
2 = D3 = D+
4 = GND
1
2
3
4
DHSDM
39 ± 5% Ω
DFSDM
Shell = Shield
(1)
22k Ω
CRPB
DHSDP
39 ± 5% Ω
CRPB:1µF to 10µF
DFSDP
6K8 ±1% Ω
VBG
10 pF
GND
Note:
The values shown on the 22 kΩ and 15 kΩ resistors are only valid with 3V3 supplied PIOs.
41.4
Functional Description
41.4.1
USB V2.0 High Speed Device Port Introduction
The USB V2.0 High Speed Device Port provides communication services between host and
attached USB devices. Each device is offered with a collection of communication flows (pipes)
associated with each endpoint. Software on the host communicates with a USB Device through
a set of communication flows.
41.4.2
USB V2.0 High Speed Transfer Types
A communication flow is carried over one of four transfer types defined by the USB device.
A device provides several logical communication pipes with the host. To each logical pipe is
associated an endpoint. Transfer through a pipe belongs to one of the four transfer types:
• Control Transfers: Used to configure a device at attach time and can be used for other devicespecific purposes, including control of other pipes on the device.
• Bulk Data Transfers: Generated or consumed in relatively large burst quantities and have
wide dynamic latitude in transmission constraints.
• Interrupt Data Transfers: Used for timely but reliable delivery of data, for example, characters
or coordinates with human-perceptible echo or feedback response characteristics.
• Isochronous Data Transfers: Occupy a prenegotiated amount of USB bandwidth with a
prenegotiated delivery latency. (Also called streaming real time transfers.)
As indicated below, transfers are sequential events carried out on the USB bus.
Endpoints must be configured according to the transfer type they handle.
735
6289C–ATARM–28-May-09
Table 41-2.
USB Communication Flow
Transfer
Direction
Bandwidth
Endpoint Size
Error Detection
Retrying
Bidirectional
Not guaranteed
8,16,32,64
Yes
Automatic
Isochronous
Unidirectional
Guaranteed
8-1024
Yes
No
Interrupt
Unidirectional
Not guaranteed
8-1024
Yes
Yes
Bulk
Unidirectional
Not guaranteed
8-512
Yes
Yes
Control
41.4.3
USB Transfer Event Definitions
A transfer is composed of one or several transactions;
Table 41-3.
USB Transfer Events
CONTROL
(bidirectional)
IN
(device toward host)
Control Transfers (1)
• Setup transaction →Data IN transactions →Status OUT transaction
• Setup transaction →Data OUT transactions →Status IN transaction
• Setup transaction →Status IN transaction
Bulk IN Transfer
• Data IN transaction →Data IN transaction
Isochronous IN Transfer
OUT
(host toward device)
Notes:
• Data IN transaction →Data IN transaction
Interrupt IN Transfer
(2)
• Data IN transaction →Data IN transaction
Bulk OUT Transfer
• Data OUT transaction →Data OUT transaction
Interrupt OUT Transfer
• Data OUT transaction →Data OUT transaction
Isochronous OUT Transfer (2)
• Data OUT transaction →Data OUT transaction
1. Control transfer must use endpoints with one bank and can be aborted using a stall handshake.
2. Isochronous transfers must use endpoints configured with two or three banks.
An endpoint handles all transactions related to the type of transfer for which it has been
configured.
41.4.4
USB V2.0 High Speed BUS Transactions
Each transfer results in one or more transactions over the USB bus.
There are five kinds of transactions flowing across the bus in packets:
1. Setup Transaction
2. Data IN Transaction
3. Data OUT Transaction
4. Status IN Transaction
5. Status OUT Transaction
736
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 41-3. Control Read and Write Sequences
Setup Stage
Control Write
Setup TX
Data Stage
Data OUT TX
Setup Stage
Control Read
No Data
Control
Setup TX
Status Stage
Data OUT TX
Data Stage
Data IN TX
Setup Stage
Status Stage
Setup TX
Status IN TX
Data IN TX
Status IN TX
Status Stage
Status OUT TX
A status IN or OUT transaction is identical to a data IN or OUT transaction.
41.4.5
Endpoint Configuration
The endpoint 0 is always a control endpoint, it must be programmed and active in order to be
enabled when the End Of Reset interrupt occurs.
To configure the endpoints:
• Fill the configuration register (UDPHS_EPTCFG) with the endpoint size, direction (IN or
OUT), type (CTRL, Bulk, IT, ISO) and the number of banks.
• Fill the number of transactions (NB_TRANS) for isochronous endpoints.
Note: For control endpoints the direction has no effect.
• Verify that the EPT_MAPD flag is set. This flag is set if the endpoint size and the number of
banks are correct compared to the FIFO maximum capacity and the maximum number of
allowed banks.
• Configure control flags of the endpoint and enable it in UDPHS_EPTCTLENBx according to
“UDPHS Endpoint Control Register” on page 787.
Control endpoints can generate interrupts and use only 1 bank.
All endpoints (except endpoint 0) can be configured either as Bulk, Interrupt or Isochronous. See
Table 41-1. UDPHS Endpoint Description.
The maximum packet size they can accept corresponds to the maximum endpoint size.
Note: The endpoint size of 1024 is reserved for isochronous endpoints.
The size of the DPRAM is 4 KB. The DPR is shared by all active endpoints. The memory size
required by the active endpoints must not exceed the size of the DPRAM.
SIZE_DPRAM = SIZE _EPT0
737
6289C–ATARM–28-May-09
+ NB_BANK_EPT1 x SIZE_EPT1
+ NB_BANK_EPT2 x SIZE_EPT2
+ NB_BANK_EPT3 x SIZE_EPT3
+ NB_BANK_EPT4 x SIZE_EPT4
+ NB_BANK_EPT5 x SIZE_EPT5
+ NB_BANK_EPT6 x SIZE_EPT6
+... (refer to 41.5.16 UDPHS Endpoint Configuration Register)
If a user tries to configure endpoints with a size the sum of which is greater than the DPRAM,
then the EPT_MAPD is not set.
The application has access to the physical block of DPR reserved for the endpoint through a 64
KB logical address space.
The physical block of DPR allocated for the endpoint is remapped all along the 64 KB logical
address space. The application can write a 64 KB buffer linearly.
Figure 41-4. Logical Address Space for DPR Access:
DPR
x banks
Logical address
8 to 64 B
8 to 64 B
8 to 64 B
8 to 64 B
...
8 to1024 B
64 KB
EP0
8 to1024 B
64 KB 8 to1024 B
8 to1024 B
EP1
...
64 KB
EP2
y banks
z banks
8 to1024 B
8 to1024 B
64 KB
EP3
...
Configuration examples of UDPHS_EPTCTLx (UDPHS Endpoint Control Register) for Bulk IN
endpoint type follow below.
• With DMA
– AUTO_VALID: Automatically validate the packet and switch to the next bank.
– EPT_ENABL: Enable endpoint.
• Without DMA:
– TX_BK_RDY: An interrupt is generated after each transmission.
738
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
– EPT_ENABL: Enable endpoint.
Configuration examples of Bulk OUT endpoint type follow below.
• With DMA
– AUTO_VALID: Automatically validate the packet and switch to the next bank.
– EPT_ENABL: Enable endpoint.
• Without DMA
– RX_BK_RDY: An interrupt is sent after a new packet has been stored in the endpoint
FIFO.
– EPT_ENABL: Enable endpoint.
739
6289C–ATARM–28-May-09
41.4.6
Transfer With DMA
USB packets of any length may be transferred when required by the UDPHS Device. These
transfers always feature sequential addressing.
Packet data AHB bursts may be locked on a DMA buffer basis for drastic overall AHB bus bandwidth performance boost with paged memories. These clock-cycle consuming memory row (or
bank) changes will then likely not occur, or occur only once instead of dozens times, during a
single big USB packet DMA transfer in case another AHB master addresses the memory. This
means up to 128-word single-cycle unbroken AHB bursts for Bulk endpoints and 256-word single-cycle unbroken bursts for isochronous endpoints. This maximum burst length is then
controlled by the lowest programmed USB endpoint size (EPT_SIZE bit in the
UDPHS_EPTCFGx register) and DMA Size (BUFF_LENGTH bit in the
UDPHS_DMACONTROLx register).
The USB 2.0 device average throughput may be up to nearly 60 MBytes. Its internal slave average access latency decreases as burst length increases due to the 0 wait-state side effect of
unchanged endpoints. If at least 0 wait-state word burst capability is also provided by the external DMA AHB bus slaves, each of both DMA AHB busses need less than 50% bandwidth
allocation for full USB 2.0 bandwidth usage at 30 MHz, and less than 25% at 60 MHz.
The UDPHS DMA Channel Transfer Descriptor is described in “UDPHS DMA Channel Transfer
Descriptor” on page 798.
Note: In case of debug, be careful to address the DMA to an SRAM address even if a remap is
done.
Figure 41-5. Example of DMA Chained List:
Transfer Descriptor
UDPHS Registers
(Current Transfer Descriptor)
Next Descriptor Address
DMA Channel Address
Transfer Descriptor
UDPHS Next Descriptor
DMA Channel Control
Next Descriptor Address
DMA Channel Address
DMA Channel Address
Transfer Descriptor
DMA Channel Control
Next Descriptor Address
DMA Channel Control
DMA Channel Address
DMA Channel Control
Null
Memory Area
Data Buff 1
Data Buff 2
Data Buff 3
740
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.4.7
Transfer Without DMA
Important. If the DMA is not to be used, it is necessary that it be disabled because otherwise it
can be enabled by previous versions of software without warning. If this should occur, the DMA
can process data before an interrupt without knowledge of the user.
The recommended means to disable DMA is as follows:
// Reset IP UDPHS
AT91C_BASE_UDPHS->UDPHS_CTRL &= ~AT91C_UDPHS_EN_UDPHS;
AT91C_BASE_UDPHS->UDPHS_CTRL |= AT91C_UDPHS_EN_UDPHS;
// With OR without DMA !!!
for( i=1; i<=((AT91C_BASE_UDPHS->UDPHS_IPFEATURES &
AT91C_UDPHS_DMA_CHANNEL_NBR)>>4); i++ ) {
// RESET endpoint canal DMA:
// DMA stop channel command
AT91C_BASE_UDPHS->UDPHS_DMA[i].UDPHS_DMACONTROL = 0;
// STOP
command
// Disable endpoint
AT91C_BASE_UDPHS->UDPHS_EPT[i].UDPHS_EPTCTLDIS |= 0XFFFFFFFF;
// Reset endpoint config
AT91C_BASE_UDPHS->UDPHS_EPT[i].UDPHS_EPTCTLCFG = 0;
// Reset DMA channel (Buff count and Control field)
AT91C_BASE_UDPHS->UDPHS_DMA[i].UDPHS_DMACONTROL = 0x02;
// NON
STOP command
// Reset DMA channel 0 (STOP)
AT91C_BASE_UDPHS->UDPHS_DMA[i].UDPHS_DMACONTROL = 0;
// STOP
command
// Clear DMA channel status (read the register for clear it)
AT91C_BASE_UDPHS->UDPHS_DMA[i].UDPHS_DMASTATUS =
AT91C_BASE_UDPHS->UDPHS_DMA[i].UDPHS_DMASTATUS;
}
41.4.8
41.4.8.1
Handling Transactions with USB V2.0 Device Peripheral
Setup Transaction
The setup packet is valid in the DPR while RX_SETUP is set. Once RX_SETUP is cleared by
the application, the UDPHS accepts the next packets sent over the device endpoint.
When a valid setup packet is accepted by the UDPHS:
• the UDPHS device automatically acknowledges the setup packet (sends an ACK response)
• payload data is written in the endpoint
• sets the RX_SETUP interrupt
• the BYTE_COUNT field in the UDPHS_EPTSTAx register is updated
An endpoint interrupt is generated while RX_SETUP in the UDPHS_EPTSTAx register is not
cleared. This interrupt is carried out to the microcontroller if interrupts are enabled for this
endpoint.
741
6289C–ATARM–28-May-09
Thus, firmware must detect RX_SETUP polling UDPHS_EPTSTAx or catching an interrupt, read
the setup packet in the FIFO, then clear the RX_SETUP bit in the UDPHS_EPTCLRSTA register
to acknowledge the setup stage.
If STALL_SNT was set to 1, then this bit is automatically reset when a setup token is detected by
the device. Then, the device still accepts the setup stage. (See Section 41.4.8.15 “STALL” on
page 753).
41.4.8.2
NYET
NYET is a High Speed only handshake. It is returned by a High Speed endpoint as part of the
PING protocol.
High Speed devices must support an improved NAK mechanism for Bulk OUT and control endpoints (except setup stage). This mechanism allows the device to tell the host whether it has
sufficient endpoint space for the next OUT transfer (see USB 2.0 spec 8.5.1 NAK Limiting via
Ping Flow Control).
The NYET/ACK response to a High Speed Bulk OUT transfer and the PING response are automatically handled by hardware in the UDPHS_EPTCTLx register (except when the user wants to
force a NAK response by using the NYET_DIS bit).
If the endpoint responds instead to the OUT/DATA transaction with an NYET handshake, this
means that the endpoint accepted the data but does not have room for another data payload.
The host controller must return to using a PING token until the endpoint indicates it has space
available.
Figure 41-6. NYET Example with Two Endpoint Banks
data 0 ACK
t=0
data 1 NYET
t = 125 µs
Bank 1 E
Bank 0 F
PING
ACK
t = 250 µs
Bank 1 F Bank 1 F
Bank 0 E' Bank 0 E
data 0 NYET
t = 375 µs
Bank 1 F
Bank 0 E
PING
t = 500 µs
Bank 1 F
Bank 0 F
NACK
PING
t = 625 µs
Bank 1 E'
Bank 0 F
ACK
E: empty
E': begin to empty
F: full
Bank 1 E
Bank 0 F
41.4.8.3
Data IN
41.4.8.4
Bulk IN or Interrupt IN
Data IN packets are sent by the device during the data or the status stage of a control transfer or
during an (interrupt/bulk/isochronous) IN transfer. Data buffers are sent packet by packet under
the control of the application or under the control of the DMA channel.
There are three ways for an application to transfer a buffer in several packets over the USB:
• packet by packet (see 41.4.8.5 below)
• 64 KB (see 41.4.8.5 below)
• DMA (see 41.4.8.6 below)
41.4.8.5
742
Bulk IN or Interrupt IN: Sending a Packet Under Application Control (Device to Host)
The application can write one or several banks.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
A simple algorithm can be used by the application to send packets regardless of the number of
banks associated to the endpoint.
Algorithm Description for Each Packet:
• The application waits for TX_PK_RDY flag to be cleared in the UDPHS_EPTSTAx register
before it can perform a write access to the DPR.
• The application writes one USB packet of data in the DPR through the 64 KB endpoint logical
memory window.
• The application sets TX_PK_RDY flag in the UDPHS_EPTSETSTAx register.
The application is notified that it is possible to write a new packet to the DPR by the
TX_PK_RDY interrupt. This interrupt can be enabled or masked by setting the TX_PK_RDY bit
in the UDPHS_EPTCTLENB/UDPHS_EPTCTLDIS register.
Algorithm Description to Fill Several Packets:
Using the previous algorithm, the application is interrupted for each packet. It is possible to
reduce the application overhead by writing linearly several banks at the same time. The
AUTO_VALID bit in the UDPHS_EPTCTLx must be set by writing the AUTO_VALID bit in the
UDPHS_EPTCTLENBx register.
The auto-valid-bank mechanism allows the transfer of data (IN and OUT) without the intervention of the CPU. This means that bank validation (set TX_PK_RDY or clear the RX_BK_RDY bit)
is done by hardware.
• The application checks the BUSY_BANK_STA field in the UDPHS_EPTSTAx register. The
application must wait that at least one bank is free.
• The application writes a number of bytes inferior to the number of free DPR banks for the
endpoint. Each time the application writes the last byte of a bank, the TX_PK_RDY signal is
automatically set by the UDPHS.
• If the last packet is incomplete (i.e., the last byte of the bank has not been written) the
application must set the TX_PK_RDY bit in the UDPHS_EPTSETSTAx register.
The application is notified that all banks are free, so that it is possible to write another burst of
packets by the BUSY_BANK interrupt. This interrupt can be enabled or masked by setting the
BUSY_BANK flag in the UDPHS_EPTCTLENB and UDPHS_EPTCTLDIS registers.
This algorithm must not be used for isochronous transfer. In this case, the ping-pong mechanism
does not operate.
A Zero Length Packet can be sent by setting just the TX_PKTRDY flag in the
UDPHS_EPTSETSTAx register.
41.4.8.6
Bulk IN or Interrupt IN: Sending a Buffer Using DMA (Device to Host)
The UDPHS integrates a DMA host controller. This DMA controller can be used to transfer a buffer from the memory to the DPR or from the DPR to the processor memory under the UDPHS
control. The DMA can be used for all transfer types except control transfer.
Example DMA configuration:
1. Program UDPHS_DMAADDRESS x with the address of the buffer that should be
transferred.
2. Enable the interrupt of the DMA in UDPHS_IEN
3. Program UDPHS_ DMACONTROLx:
743
6289C–ATARM–28-May-09
– Size of buffer to send: size of the buffer to be sent to the host.
– END_B_EN: The endpoint can validate the packet (according to the values
programmed in the AUTO_VALID and SHRT_PCKT fields of UDPHS_EPTCTLx.)
(See “UDPHS Endpoint Control Register” on page 787 and Figure 41-11. Autovalid
with DMA)
– END_BUFFIT: generate an interrupt when the BUFF_COUNT in
UDPHS_DMASTATUSx reaches 0.
– CHANN_ENB: Run and stop at end of buffer
The auto-valid-bank mechanism allows the transfer of data (IN & OUT) without the intervention
of the CPU. This means that bank validation (set TX_PK_RDY or clear the RX_BK_RDY bit) is
done by hardware.
A transfer descriptor can be used. Instead of programming the register directly, a descriptor
should be programmed and the address of this descriptor is then given to
UDPHS_DMANXTDSC to be processed after setting the LDNXT_DSC field (Load Next Descriptor Now) in UDPHS_DMACONTROLx register.
The structure that defines this transfer descriptor must be aligned.
Each buffer to be transferred must be described by a DMA Transfer descriptor (see “UDPHS
DMA Channel Transfer Descriptor” on page 798). Transfer descriptors are chained. Before executing transfer of the buffer, the UDPHS may fetch a new transfer descriptor from the memory
address pointed by the UDPHS_DMANXTDSCx register. Once the transfer is complete, the
transfer status is updated in the UDPHS_DMASTATUSx register.
To chain a new transfer descriptor with the current DMA transfer, the DMA channel must be
stopped. To do so, INTDIS_DMA and TX_BK_RDY may be set in the UDPHS_EPTCTLENBx
register. It is also possible for the application to wait for the completion of all transfers. In this
case the LDNXT_DSC field in the last transfer descriptor UDPHS_DMACONTROLx register
must be set to 0 and CHANN_ENB set to 1.
Then the application can chain a new transfer descriptor.
The INTDIS_DMA can be used to stop the current DMA transfer if an enabled interrupt is triggered. This can be used to stop DMA transfers in case of errors.
The application can be notified at the end of any buffer transfer (ENB_BUFFIT bit in the
UDPHS_DMACONTROLx register).
744
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 41-7. Data IN Transfer for Endpoint with One Bank
Prevous Data IN TX
USB Bus
Packets
Token IN
Microcontroller Loads Data in FIFO
Data IN 1
TX_PK_RDY
Flag
(UDPHS_EPTSTAx) Set by firmware
ACK
Token IN
NAK
Cleared by hardware
Data is Sent on USB Bus
Token IN
Data IN 2
Set by the firmware
ACK
Cleared by hardware
Interrupt Pending
TX_COMPLT Flag
(UDPHS_EPTSTAx)
Interrupt Pending
Payload in FIFO
Cleared by firmware
Set by hardware
DPR access by firmware
FIFO
Content
Data IN 1
Cleared by firmware
DPR access by hardware
Load in progress
Data IN 2
Figure 41-8. Data IN Transfer for Endpoint with Two Banks
Microcontroller
Load Data IN Bank 0
USB Bus
Packets
Token IN
Microcontroller Load Data IN Bank 1
UDPHS Device Send Bank 0
Data IN
ACK
Microcontroller Load Data IN Bank 0
UDPHS Device Send Bank 1
Data IN
Token IN
ACK
Set by Firmware,
Cleared by Hardware
Data Payload Written switch to next bank
in FIFO Bank 0
Virtual TX_PK_RDY
bank 0
(UDPHS_EPTSTAx)
Cleared by Hardware
Data Payload Fully Transmitted
Virtual TX_PK_RDY
bank 1
(UDPHS_EPTSTAx)
TX_COMPLT
Flag
(UDPHS_EPTSTAx)
FIFO
(DPR)
Bank 0
Written by
Microcontroller
FIFO
(DPR)
Bank1
Set by Firmware,
Data Payload Written in FIFO Bank 1
Interrupt Pending
Set by Hardware
Set by Hardware
Interrupt Cleared by Firmware
Read by USB Device
Written by
Microcontroller
Written by
Microcontroller
Read by UDPHS Device
745
6289C–ATARM–28-May-09
Figure 41-9. Data IN Followed By Status OUT Transfer at the End of a Control Transfer
Device Sends the Last
Data Payload to Host
USB Bus
Packets
Token IN
Device Sends a
Status OUT to Host
ACK
Data IN
Token OUT
ACK
Data OUT (ZLP)
Token OUT
Data OUT (ZLP)
ACK
Interrupt
Pending
RX_BK_RDY
(UDPHS_EPTSTAx)
Set by Hardware
Cleared by Firmware
TX_COMPLT
(UDPHS_EPTSTAx)
Set by Hardware
Cleared by Firmware
Note: A NAK handshake is always generated at the first status stage token.
Figure 41-10. Data OUT Followed by Status IN Transfer
Host Sends the Last
Data Payload to the Device
USB Bus
Packets
Token OUT
Data OUT
Device Sends a Status IN
to the Host
ACK
Token IN
Data IN
ACK
Interrupt Pending
RX_BK_RDY
(UDPHS_EPTSTAx)
Cleared by Firmware
Set by Hardware
TX_PK_RDY
(UDPHS_EPTSTAx)
Set by Firmware
Clear by Hardware
Note: Before proceeding to the status stage, the software should determine that there is no risk
of extra data from the host (data stage). If not certain (non-predictable data stage length), then
the software should wait for a NAK-IN interrupt before proceeding to the status stage. This precaution should be taken to avoid collision in the FIFO.
746
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 41-11. Autovalid with DMA
Bank (system)
Write
Bank 0
Bank 1
write bank 0
write bank 1
bank 0 is full
Bank 1
Bank 0
Bank 1
write bank 0
bank 1 is full
bank 0 is full
Bank 0
IN data 0
Bank (usb)
Bank 0
IN data 0
IN data 1
Bank 1
Bank 0
Bank 1
Virtual TX_PK_RDY Bank 0
Virtual TX_PK_RDY Bank 1
TX_PK_RDY
(Virtual 0 & Virtual 1)
Note:
In the illustration above Autovalid validates a bank as full, although this might not be the case, in order to continue processing
data and to send to DMA.
41.4.8.7
Isochronous IN
Isochronous-IN is used to transmit a stream of data whose timing is implied by the delivery rate.
Isochronous transfer provides periodic, continuous communication between host and device.
It guarantees bandwidth and low latencies appropriate for telephony, audio, video, etc.
If the endpoint is not available (TX_PK_RDY = 0), then the device does not answer to the host.
An ERR_FL_ISO interrupt is generated in the UDPHS_EPTSTAx register and once enabled,
then sent to the CPU.
The STALL_SNT command bit is not used for an ISO-IN endpoint.
41.4.8.8
High Bandwidth Isochronous Endpoint Handling: IN Example
For high bandwidth isochronous endpoints, the DMA can be programmed with the number of
transactions (BUFF_LENGTH field in UDPHS_DMACONTROLx) and the system should provide
747
6289C–ATARM–28-May-09
the required number of packets per microframe, otherwise, the host will notice a sequencing
problem.
A response should be made to the first token IN recognized inside a microframe under the following conditions:
• If at least one bank has been validated, the correct DATAx corresponding to the programmed
Number Of Transactions per Microframe (NB_TRANS) should be answered. In case of a
subsequent missed or corrupted token IN inside the microframe, the USB 2.0 Core available
data bank(s) that should normally have been transmitted during that microframe shall be
flushed at its end. If this flush occurs, an error condition is flagged (ERR_FLUSH is set in
UDPHS_EPTSTAx).
• If no bank is validated yet, the default DATA0 ZLP is answered and underflow is flagged
(ERR_FL_ISO is set in UDPHS_EPTSTAx). Then, no data bank is flushed at microframe
end.
• If no data bank has been validated at the time when a response should be made for the
second transaction of NB_TRANS = 3 transactions microframe, a DATA1 ZLP is answered
and underflow is flagged (ERR_FL_ISO is set in UDPHS_EPTSTAx). If and only if remaining
untransmitted banks for that microframe are available at its end, they are flushed and an error
condition is flagged (ERR_FLUSH is set in UDPHS_EPTSTAx).
• If no data bank has been validated at the time when a response should be made for the last
programmed transaction of a microframe, a DATA0 ZLP is answered and underflow is flagged
(ERR_FL_ISO is set in UDPHS_EPTSTAx). If and only if the remaining untransmitted data
bank for that microframe is available at its end, it is flushed and an error condition is flagged
(ERR_FLUSH is set in UDPHS_EPTSTAx).
• If at the end of a microframe no valid token IN has been recognized, no data bank is flushed
and no error condition is reported.
At the end of a microframe in which at least one data bank has been transmitted, if less than
NB_TRANS banks have been validated for that microframe, an error condition is flagged
(ERR_TRANS is set in UDPHS_EPTSTAx).
Cases of Error (in UDPHS_EPTSTAx)
• ERR_FL_ISO: There was no data to transmit inside a microframe, so a ZLP is answered by
default.
• ERR_FLUSH: At least one packet has been sent inside the microframe, but the number of
token IN received is lesser than the number of transactions actually validated (TX_BK_RDY)
and likewise with the NB_TRANS programmed.
• ERR_TRANS: At least one packet has been sent inside the microframe, but the number of
token IN received is lesser than the number of programmed NB_TRANS transactions and the
packets not requested were not validated.
• ERR_FL_ISO + ERR_FLUSH: At least one packet has been sent inside the microframe, but
the data has not been validated in time to answer one of the following token IN.
• ERR_FL_ISO + ERR_TRANS: At least one packet has been sent inside the microframe, but
the data has not been validated in time to answer one of the following token IN and the data
can be discarded at the microframe end.
• ERR_FLUSH + ERR_TRANS: The first token IN has been answered and it was the only one
received, a second bank has been validated but not the third, whereas NB_TRANS was
waiting for three transactions.
748
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• ERR_FL_ISO + ERR_FLUSH + ERR_TRANS: The first token IN has been treated, the data
for the second Token IN was not available in time, but the second bank has been validated
before the end of the microframe. The third bank has not been validated, but three
transactions have been set in NB_TRANS.
41.4.8.9
Data OUT
41.4.8.10
Bulk OUT or Interrupt OUT
Like data IN, data OUT packets are sent by the host during the data or the status stage of control transfer or during an interrupt/bulk/isochronous OUT transfer. Data buffers are sent packet
by packet under the control of the application or under the control of the DMA channel.
41.4.8.11
Bulk OUT or Interrupt OUT: Receiving a Packet Under Application Control (Host to Device)
Algorithm Description for Each Packet:
• The application enables an interrupt on RX_BK_RDY.
• When an interrupt on RX_BK_RDY is received, the application knows that UDPHS_EPTSTAx
register BYTE_COUNT bytes have been received.
• The application reads the BYTE_COUNT bytes from the endpoint.
• The application clears RX_BK_RDY.
Note: If the application does not know the size of the transfer, it may not be a good option to use
AUTO_VALID. Because if a zero-length-packet is received, the RX_BK_RDY is automatically
cleared by the AUTO_VALID hardware and if the endpoint interrupt is triggered, the software will
not find its originating flag when reading the UDPHS_EPTSTAx register.
Algorithm to Fill Several Packets:
• The application enables the interrupts of BUSY_BANK and AUTO_VALID.
• When a BUSY_BANK interrupt is received, the application knows that all banks available for
the endpoint have been filled. Thus, the application can read all banks available.
If the application doesn’t know the size of the receive buffer, instead of using the BUSY_BANK
interrupt, the application must use RX_BK_RDY.
41.4.8.12
Bulk OUT or Interrupt OUT: Sending a Buffer Using DMA (Host To Device)
To use the DMA setting, the AUTO_VALID field is mandatory.
See 41.4.8.6 Bulk IN or Interrupt IN: Sending a Buffer Using DMA (Device to Host) for more
information.
DMA Configuration Example:
1. First program UDPHS_DMAADDRESSx with the address of the buffer that should be
transferred.
2. Enable the interrupt of the DMA in UDPHS_IEN
3. Program the DMA Channelx Control Register:
– Size of buffer to be sent.
– END_B_EN: Can be used for OUT packet truncation (discarding of unbuffered
packet data) at the end of DMA buffer.
749
6289C–ATARM–28-May-09
– END_BUFFIT: Generate an interrupt when BUFF_COUNT in the
UDPHS_DMASTATUSx register reaches 0.
– END_TR_EN: End of transfer enable, the UDPHS device can put an end to the
current DMA transfer, in case of a short packet.
– END_TR_IT: End of transfer interrupt enable, an interrupt is sent after the last USB
packet has been transferred by the DMA, if the USB transfer ended with a short
packet. (Beneficial when the receive size is unknown.)
– CHANN_ENB: Run and stop at end of buffer.
For OUT transfer, the bank will be automatically cleared by hardware when the application has
read all the bytes in the bank (the bank is empty).
Note: When a zero-length-packet is received, RX_BK_RDY bit in UDPHS_EPTSTAx is cleared
automatically by AUTO_VALID, and the application knows of the end of buffer by the presence
of the END_TR_IT.
Note: If the host sends a zero-length packet, and the endpoint is free, then the device sends an
ACK. No data is written in the endpoint, the RX_BY_RDY interrupt is generated, and the
BYTE_COUNT field in UDPHS_EPTSTAx is null.
Figure 41-12. Data OUT Transfer for Endpoint with One Bank
Host Sends Data Payload
USB Bus
Packets
Token OUT
Data OUT 1
Token OUT
Set by Hardware
Data OUT 1
Written by UDPHS Device
750
ACK
Data OUT 2
Host Resends the Next Data Payload
NAK
Token OUT
Data OUT 2
ACK
Interrupt Pending
RX_BK_RDY
(UDPHS_EPTSTAx)
FIFO (DPR)
Content
Microcontroller Transfers Data
Host Sends the Next Data Payload
Cleared by Firmware,
Data Payload Written in FIFO
Data OUT 1
Microcontroller Read
Data OUT 2
Written by UDPHS Device
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 41-13. Data OUT Transfer for an Endpoint with Two Banks
Microcontroller reads Data 1 in bank 0,
Host sends second data payload
Host sends first data payload
USB Bus
Packets
Token OUT
Virtual RX_BK_RDY
Bank 0
Data OUT 1
ACK
Token OUT
Data OUT 2
ACK
Token OUT
Set by Hardware
Data Payload written
in FIFO endpoint bank 1
Virtual RX_BK_RDY
Bank 1
Data OUT 3
Cleared by Firmware
Interrupt pending
Set by Hardware,
Data payload written
in FIFO endpoint bank 0
Microcontroller reads Data 2 in bank 1,
Host sends third data payload
Cleared by Firmware
Interrupt pending
RX_BK_RDY = (virtual bank 0 | virtual bank 1)
(UDPHS_EPTSTAx)
FIFO (DPR)
Bank 0
Data OUT 1
Data OUT 3
Read by Microcontroller
Write in progress
Data OUT 1
Write by UDPHS Device
FIFO (DPR)
Bank 1
Data OUT 2
Data OUT 2
Write by Hardware
41.4.8.13
Read by Microcontroller
High Bandwidth Isochronous Endpoint OUT
Figure 41-14. Bank Management, Example of Three Transactions per Microframe
USB bus
Transactions
MDATA0
MDATA1
DATA2
t=0
RX_BK_RDY
Microcontroller FIFO
(DPR) Access
Read Bank 1
MDATA0
t = 52.5 µs
(40% of 125 µs)
Read Bank 2
MDATA1
DATA2
USB line
t = 125 µs
RX_BK_RDY
Read Bank 3
Read Bank 1
USB 2.0 supports individual High Speed isochronous endpoints that require data rates up to 192
Mb/s (24 MB/s): 3x1024 data bytes per microframe.
To support such a rate, two or three banks may be used to buffer the three consecutive data
packets. The microcontroller (or the DMA) should be able to empty the banks very rapidly (at
least 24 MB/s on average).
NB_TRANS field in UDPHS_EPTCFGx register = Number Of Transactions per Microframe.
If NB_TRANS > 1 then it is High Bandwidth.
751
6289C–ATARM–28-May-09
Example:
• If NB_TRANS = 3, the sequence should be either
– MData0
– MData0/Data1
– MData0/Data1/Data2
• If NB_TRANS = 2, the sequence should be either
– MData0
– MData0/Data1
• If NB_TRANS = 1, the sequence should be
– Data0
41.4.8.14
Isochronous Endpoint Handling: OUT Example
The user can ascertain the bank status (free or busy), and the toggle sequencing of the data
packet for each bank with the UDPHS_EPTSTAx register in the three bit fields as follows:
• TOGGLESQ_STA: PID of the data stored in the current bank
• CURRENT_BANK: Number of the bank currently being accessed by the microcontroller.
• BUSY_BANK_STA: Number of busy bank
This is particularly useful in case of a missing data packet.
If the inter-packet delay between the OUT token and the Data is greater than the USB standard,
then the ISO-OUT transaction is ignored. (Payload data is not written, no interrupt is generated
to the CPU.)
If there is a data CRC (Cyclic Redundancy Check) error, the payload is, none the less, written in
the endpoint. The ERR_CRISO flag is set in UDPHS_EPTSTAx register.
If the endpoint is already full, the packet is not written in the DPRAM. The ERR_FL_ISO flag is
set in UDPHS_EPTSTAx.
If the payload data is greater than the maximum size of the endpoint, then the ERR_OVFLW flag
is set. It is the task of the CPU to manage this error. The data packet is written in the endpoint
(except the extra data).
If the host sends a Zero Length Packet, and the endpoint is free, no data is written in the endpoint, the RX_BK_RDY flag is set, and the BYTE_COUNT field in UDPHS_EPTSTAx register is
null.
The FRCESTALL command bit is unused for an isochronous endpoint.
Otherwise, payload data is written in the endpoint, the RX_BK_RDY interrupt is generated and
the BYTE_COUNT in UDPHS_EPTSTAx register is updated.
752
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.4.8.15
STALL
STALL is returned by a function in response to an IN token or after the data phase of an OUT or
in response to a PING transaction. STALL indicates that a function is unable to transmit or
receive data, or that a control pipe request is not supported.
• OUT
To stall an endpoint, set the FRCESTALL bit in UDPHS_EPTSETSTAx register and after the
STALL_SNT flag has been set, set the TOGGLE_SEG bit in the UDPHS_EPTCLRSTAx
register.
• IN
Set the FRCESTALL bit in UDPHS_EPTSETSTAx register.
Figure 41-15. Stall Handshake Data OUT Transfer
USB Bus
Packets
Data OUT
Token OUT
Stall PID
FRCESTALL
Set by Firmware
Cleared by Firmware
Interrupt Pending
STALL_SNT
Set by Hardware
Cleared by Firmware
Figure 41-16. Stall Handshake Data IN Transfer
USB Bus
Packets
Token IN
Stall PID
FRCESTALL
Cleared by Firmware
Set by Firmware
Interrupt Pending
STALL_SNT
Set by Hardware
Cleared by Firmware
753
6289C–ATARM–28-May-09
41.4.9
Speed Identification
The high speed reset is managed by the hardware.
At the connection, the host makes a reset which could be a classic reset (full speed) or a high
speed reset.
At the end of the reset process (full or high), the ENDRESET interrupt is generated.
Then the CPU should read the SPEED bit in UDPHS_INTSTAx to ascertain the speed mode of
the device.
41.4.10
USB V2.0 High Speed Global Interrupt
Interrupts are defined in Section 41.5.3 ”UDPHS Interrupt Enable Register” (UDPHS_IEN) and
in Section 41.5.4 ”UDPHS Interrupt Status Register” (UDPHS_INTSTA).
41.4.11
Endpoint Interrupts
Interrupts are enabled in UDPHS_IEN (see Section 41.5.3 ”UDPHS Interrupt Enable Register”)
and individually masked in UDPHS_EPTCTLENBx (see Section 41.5.17 ”UDPHS Endpoint
Control Enable Register”).
.
Table 41-4.
754
Endpoint Interrupt Source Masks
SHRT_PCKT
Short Packet Interrupt
BUSY_BANK
Busy Bank Interrupt
NAK_OUT
NAKOUT Interrupt
NAK_IN/ERR_FLUSH
NAKIN/Error Flush Interrupt
STALL_SNT/ERR_CRISO/ERR_NB_TRA
Stall Sent/CRC error/Number of Transaction Error
Interrupt
RX_SETUP/ERR_FL_ISO
Received SETUP/Error Flow Interrupt
TX_PK_RD /ERR_TRANS
TX Packet Read/Transaction Error Interrupt
TX_COMPLT
Transmitted IN Data Complete Interrupt
RX_BK_RDY
Received OUT Data Interrupt
ERR_OVFLW
Overflow Error Interrupt
MDATA_RX
MDATA Interrupt
DATAX_RX
DATAx Interrupt
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
Figure 41-17. UDPHS Interrupt Control Interface
(UDPHS_IEN)
Global IT mask
Global IT sources
DET_SUSPD
MICRO_SOF
USB Global
IT Sources
IEN_SOF
ENDRESET
WAKE_UP
ENDOFRSM
UPSTR_RES
(UDPHS_EPTCTLENBx)
SHRT_PCKT
EP mask
BUSY_BANK
EP sources
NAK_OUT
(UDPHS_IEN)
EPT_INT_0
husb2dev
interrupt
NAK_IN/ERR_FLUSH
STALL_SNT/ERR_CRISO/ERR_NB_TRA
EPT0 IT
Sources
RX_SETUP/ERR_FL_ISO
TX_BK_RDY/ERR_TRANS
TX_COMPLT
RX_BK_RDY
ERR_OVFLW
MDATA_RX
DATAX_RX
(UDPHS_IEN)
EPT_INT_x
EP mask
EP sources
(UDPHS_EPTCTLx)
INT_DIS_DMA
EPT1-6 IT
Sources
disable DMA
channelx request
(UDPHS_DMACONTROLx)
mask
(UDPHS_IEN)
DMA_INT_x
EN_BUFFIT
mask
DMA CH x
END_TR_IT
mask
DESC_LD_IT
755
6289C–ATARM–28-May-09
41.4.12
41.4.12.1
Power Modes
Controlling Device States
A USB device has several possible states. Refer to Chapter 9 (USB Device Framework) of the
Universal Serial Bus Specification, Rev 2.0.
Figure 41-18. UDPHS Device State Diagram
Attached
Hub Reset
Hub
or
Configured
Deconfigured
Bus Inactive
Powered
Suspended
Bus Activity
Power
Interruption
Reset
Bus Inactive
Suspended
Default
Bus Activity
Reset
Address
Assigned
Bus Inactive
Address
Suspended
Bus Activity
Device
Deconfigured
Device
Configured
Bus Inactive
Configured
Suspended
Bus Activity
Movement from one state to another depends on the USB bus state or on standard requests
sent through control transactions via the default endpoint (endpoint 0).
After a period of bus inactivity, the USB device enters Suspend Mode. Accepting Suspend/Resume requests from the USB host is mandatory. Constraints in Suspend Mode are very
strict for bus-powered applications; devices may not consume more than 500 µA on the USB
bus.
While in Suspend Mode, the host may wake up a device by sending a resume signal (bus activity) or a USB device may send a wake-up request to the host, e.g., waking up a PC by moving a
USB mouse.
The wake-up feature is not mandatory for all devices and must be negotiated with the host.
756
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.4.12.2
Not Powered State
Self powered devices can detect 5V VBUS using a PIO. When the device is not connected to a
host, device power consumption can be reduced by the DETACH bit in UDPHS_CTRL. Disabling the transceiver is automatically done. HSDM, HSDP, FSDP and FSDP lines are tied to
GND pull-downs integrated in the hub downstream ports.
41.4.12.3
Entering Attached State
When no device is connected, the USB FSDP and FSDM signals are tied to GND by 15 KΩ pulldowns integrated in the hub downstream ports. When a device is attached to an hub downstream port, the device connects a 1.5 KΩ pull-up on FSDP. The USB bus line goes into IDLE
state, FSDP is pulled-up by the device 1.5 KΩ resistor to 3.3V and FSDM is pulled-down by the
15 KΩ resistor to GND of the host.
After pull-up connection, the device enters the powered state. The transceiver remains disabled
until bus activity is detected.
In case of low power consumption need, the device can be stopped. When the device detects
the VBUS, the software must enable the USB transceiver by enabling the EN_UDPHS bit in
UDPHS_CTRL register.
The software can detach the pull-up by setting DETACH bit in UDPHS_CTRL register.
41.4.12.4
From Powered State to Default State (Reset)
After its connection to a USB host, the USB device waits for an end-of-bus reset. The unmasked
flag ENDRESET is set in the UDPHS_IEN register and an interrupt is triggered.
Once the ENDRESET interrupt has been triggered, the device enters Default State. In this state,
the UDPHS software must:
• Enable the default endpoint, setting the EPT_ENABL flag in the UDPHS_EPTCTLENB[0]
register and, optionally, enabling the interrupt for endpoint 0 by writing 1 in EPT_INT_0 of the
UDPHS_IEN register. The enumeration then begins by a control transfer.
• Configure the Interrupt Mask Register which has been reset by the USB reset detection
• Enable the transceiver.
In this state, the EN_UDPHS bit in UDPHS_CTRL register must be enabled.
41.4.12.5
From Default State to Address State (Address Assigned)
After a Set Address standard device request, the USB host peripheral enters the address state.
Warning: before the device enters address state, it must achieve the Status IN transaction of
the control transfer, i.e., the UDPHS device sets its new address once the TX_COMPLT flag in
the UDPHS_EPTCTL[0] register has been received and cleared.
To move to address state, the driver software sets the DEV_ADDR field and the FADDR_EN
flag in the UDPHS_CTRL register.
41.4.12.6
From Address State to Configured State (Device Configured)
Once a valid Set Configuration standard request has been received and acknowledged, the
device enables endpoints corresponding to the current configuration. This is done by setting the
BK_NUMBER, EPT_TYPE, EPT_DIR and EPT_SIZE fields in the UDPHS_EPTCFGx registers
and enabling them by setting the EPT_ENABL flag in the UDPHS_EPTCTLENBx registers, and,
optionally, enabling corresponding interrupts in the UDPHS_IEN register.
757
6289C–ATARM–28-May-09
41.4.12.7
Entering Suspend State (Bus Activity)
When a Suspend (no bus activity on the USB bus) is detected, the DET_SUSPD signal in the
UDPHS_STA register is set. This triggers an interrupt if the corresponding bit is set in the
UDPHS_IEN register. This flag is cleared by writing to the UDPHS_CLRINT register. Then the
device enters Suspend Mode.
In this state bus powered devices must drain less than 500 µA from the 5V VBUS. As an example, the microcontroller switches to slow clock, disables the PLL and main oscillator, and goes
into Idle Mode. It may also switch off other devices on the board.
The UDPHS device peripheral clocks can be switched off. Resume event is asynchronously
detected.
41.4.12.8
Receiving a Host Resume
In Suspend mode, a resume event on the USB bus line is detected asynchronously, transceiver
and clocks disabled (however the pull-up should not be removed).
Once the resume is detected on the bus, the signal WAKE_UP in the UDPHS_INTSTA is set. It
may generate an interrupt if the corresponding bit in the UDPHS_IEN register is set. This interrupt may be used to wake-up the core, enable PLL and main oscillators and configure clocks.
41.4.12.9
Sending an External Resume
In Suspend State it is possible to wake-up the host by sending an external resume.
The device waits at least 5 ms after being entered in Suspend State before sending an external
resume.
The device must force a K state from 1 to 15 ms to resume the host.
758
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.4.13
Test Mode
A device must support the TEST_MODE feature when in the Default, Address or Configured
High Speed device states.
TEST_MODE can be:
• Test_J
• Test_K
• Test_Packet
• Test_SEO_NAK
(See Section 41.5.11 “UDPHS Test Register” on page 775 for definitions of each test mode.)
const char test_packet_buffer[] = {
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
// JKJKJKJK *
0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,0xAA,
// JJKKJJKK *
0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
// JJKKJJKK *
9
8
8
0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, //
JJJJJJJKKKKKKK * 8
0x7F,0xBF,0xDF,0xEF,0xF7,0xFB,0xFD,
0xFC,0x7E,0xBF,0xDF,0xEF,0xF7,0xFB,0xFD,0x7E
* 10}, JK
// JJJJJJJK * 8
// {JKKKKKKK
};
759
6289C–ATARM–28-May-09
41.5
USB High Speed Device Port (UDPHS) User Interface
Table 41-5.
Offset
Register Mapping
Register
Name
Access
Reset
0x00
UDPHS Control Register
UDPHS_CTRL
Read/Write
0x0000_0200
0x04
UDPHS Frame Number Register
UDPHS_FNUM
Read
0x0000_0000
0x08 - 0x0C
Reserved
–
–
–
0x10
UDPHS Interrupt Enable Register
UDPHS_IEN
Read/Write
0x0000_0010
0x14
UDPHS Interrupt Status Register
UDPHS_INTSTA
Read
0x0000_0000
0x18
UDPHS Clear Interrupt Register
UDPHS_CLRINT
Write
–
0x1C
UDPHS Endpoints Reset Register
UDPHS_EPTRST
Write
–
0x20 - 0xCC
Reserved
–
–
–
0xE0
UDPHS Test Register
UDPHS_TST
Read/Write
0x0000_0000
0xE4 - 0xE8
Reserved
–
–
–
0xEC
UDPHS PADDRSIZE Register
UDPHS_IPPADDRSIZE
Read
0x0000_4000
0xF0
UDPHS Name1 Register
UDPHS_IPNAME1
Read
0x4855_5342
0xF4
UDPHS Name2 Register
UDPHS_IPNAME2
Read
0x3244_4556
0xF8
UDPHS Features Register
UDPHS_IPFEATURES
Read
0x100
UDPHS Endpoint0 Configuration Register
UDPHS_EPTCFG0
0x104
UDPHS Endpoint0 Control Enable Register
0x108
Read/Write
0x0000_0000
UDPHS_EPTCTLENB0
Write
–
UDPHS Endpoint0 Control Disable Register
UDPHS_EPTCTLDIS0
Write
–
0x10C
UDPHS Endpoint0 Control Register
UDPHS_EPTCTL0
Read
0x0000_0000(1)
0x110
Reserved (for endpoint 0)
–
–
–
0x114
UDPHS Endpoint0 Set Status Register
UDPHS_EPTSETSTA0
Write
–
0x118
UDPHS Endpoint0 Clear Status Register
UDPHS_EPTCLRSTA0
Write
–
0x11C
UDPHS Endpoint0 Status Register
UDPHS_EPTSTA0
Read
0x0000_0040
–
–
(2)
0x120 - 0x1DC
UDPHS Endpoint1 to 6
0x300 - 0x30C
Reserved
–
0x310
UDPHS DMA Next Descriptor1 Address Register
UDPHS_DMANXTDSC1
Read/Write
0x0000_0000
0x314
UDPHS DMA Channel1 Address Register
UDPHS_DMAADDRESS1
Read/Write
0x0000_0000
0x318
UDPHS DMA Channel1 Control Register
UDPHS_DMACONTROL1
Read/Write
0x0000_0000
0x31C
UDPHS DMA Channel1 Status Register
UDPHS_DMASTATUS1
Read/Write
0x0000_0000
0x320 - 0x370
Notes:
760
DMA Channel2 to 5
(3)
Registers
Registers
1. The reset value for UDPHS_EPTCTL0 is 0x0000_0001.
2. The addresses for the UDPHS Endpoint registers shown here are for UDPHS Endpoint0. The structure of this group of registers is repeated successively for each endpoint according to the consecution of endpoint registers located between 0x120
and 0x1DC.
3. The addresses for the UDPHS DMA registers shown here are for UDPHS DMA Channel1. (There is no Channel0) The
structure of this group of registers is repeated successively for each DMA channel according to the consecution of DMA registers located between 0x320 and 0x370.
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.1
Name:
UDPHS Control Register
UDPHS_CTRL
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
PULLD_DIS
10
REWAKEUP
9
DETACH
8
EN_UDPHS
7
FADDR_EN
6
5
4
3
DEV_ADDR
2
1
0
• DEV_ADDR: UDPHS Address
Read:
This field contains the default address (0) after power-up or UDPHS bus reset.
Write:
This field is written with the value set by a SET_ADDRESS request received by the device firmware.
• FADDR_EN: Function Address Enable
Read:
0 = Device is not in address state.
1 = Device is in address state.
Write:
0 = only the default function address is used (0).
1 = this bit is set by the device firmware after a successful status phase of a SET_ADDRESS transaction. When set, the
only address accepted by the UDPHS controller is the one stored in the UDPHS Address field. It will not be cleared afterwards by the device firmware. It is cleared by hardware on hardware reset, or when UDPHS bus reset is received (see
above).
• EN_UDPHS: UDPHS Enable
Read:
0 = UDPHS is disabled.
1 = UDPHS is enabled.
Write:
0 = disable and reset the UDPHS controller, disable the UDPHS transceiver.
1 = enables the UDPHS controller.
761
6289C–ATARM–28-May-09
• DETACH: Detach Command
Read:
0 = UDPHS is attached.
1 = UDPHS is detached, UTMI transceiver is suspended.
Write:
0 = pull up the DP line (attach command).
1 = simulate a detach on the UDPHS line and force the UTMI transceiver into suspend state (Suspend M = 0).
• REWAKEUP: Send Remote Wake Up
Read:
0 = Remote Wake Up is disabled.
1 = Remote Wake Up is enabled.
Write:
0 = no effect.
1 = force an external interrupt on the UDPHS controller for Remote Wake UP purposes.
An Upstream Resume is sent only after the UDPHS bus has been in SUSPEND state for at least 5 ms.
This bit is automatically cleared by hardware at the end of the Upstream Resume.
• PULLD_DIS: Pull-Down Disable
When set, there is no pull-down on DP & DM. (DM Pull-Down = DP Pull-Down = 0).
Note: If the DETACH bit is also set, device DP & DM are left in high impedance state.
762
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.2
Name:
UDPHS Frame Number Register
UDPHS_FNUM
Access Type:
Read
31
FNUM_ERR
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
12
11
10
FRAME_NUMBER
9
8
7
6
5
FRAME_NUMBER
4
3
1
MICRO_FRAME_NUM
0
2
• MICRO_FRAME_NUM: Microframe Number
Number of the received microframe (0 to 7) in one frame.This field is reset at the beginning of each new frame (1 ms).
One microframe is received each 125 microseconds (1 ms/8).
• FRAME_NUMBER: Frame Number as defined in the Packet Field Formats
This field is provided in the last received SOF packet (see INT_SOF in the UDPHS Interrupt Status Register).
• FNUM_ERR: Frame Number CRC Error
This bit is set by hardware when a corrupted Frame Number in Start of Frame packet (or Micro SOF) is received.
This bit and the INT_SOF (or MICRO_SOF) interrupt are updated at the same time.
763
6289C–ATARM–28-May-09
41.5.3
Name:
UDPHS Interrupt Enable Register
UDPHS_IEN
Access Type:
Read/Write
31
–
30
DMA_6
29
DMA_5
28
DMA_4
27
DMA_3
26
DMA_2
25
DMA_1
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
EPT_6
13
EPT_5
12
EPT_4
11
EPT_3
10
EPT_2
9
EPT_1
8
EPT_0
7
UPSTR_RES
6
ENDOFRSM
5
WAKE_UP
4
ENDRESET
3
INT_SOF
2
MICRO_SOF
1
DET_SUSPD
0
–
• DET_SUSPD: Suspend Interrupt Enable
Read:
0 = Suspend Interrupt is disabled.
1 = Suspend Interrupt is enabled.
Write
0 = disable Suspend Interrupt.
1 = enable Suspend Interrupt.
• MICRO_SOF: Micro-SOF Interrupt Enable
Read:
0 = Micro-SOF Interrupt is disabled.
1 = Micro-SOF Interrupt is enabled.
Write
0 = disable Micro-SOF Interrupt.
1 = enable Micro-SOF Interrupt.
• INT_SOF: SOF Interrupt Enable
Read:
0 = SOF Interrupt is disabled.
1 = SOF Interrupt is enabled.
Write
0 = disable SOF Interrupt.
1 = enable SOF Interrupt.
764
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
• ENDRESET: End Of Reset Interrupt Enable
Read:
0 = End Of Reset Interrupt is disabled.
1 = End Of Reset Interrupt is enabled.
Write
0 = disable End Of Reset Interrupt.
1 = enable End Of Reset Interrupt. Automatically enabled after USB reset.
• WAKE_UP: Wake Up CPU Interrupt Enable
Read:
0 = Wake Up CPU Interrupt is disabled.
1 = Wake Up CPU Interrupt is enabled.
Write
0 = disable Wake Up CPU Interrupt.
1 = enable Wake Up CPU Interrupt.
• ENDOFRSM: End Of Resume Interrupt Enable
Read:
0 = Resume Interrupt is disabled.
1 = Resume Interrupt is enabled.
Write
0 = disable Resume Interrupt.
1 = enable Resume Interrupt.
• UPSTR_RES: Upstream Resume Interrupt Enable
Read:
0 = Upstream Resume Interrupt is disabled.
1 = Upstream Resume Interrupt is enabled.
Write
0 = disable Upstream Resume Interrupt.
1 = enable Upstream Resume Interrupt.
• EPT_x: Endpoint x Interrupt Enable
Read:
0 = the interrupts for this endpoint are disabled.
1 = the interrupts for this endpoint are enabled.
Write
0 = disable the interrupts for this endpoint.
765
6289C–ATARM–28-May-09
1 = enable the interrupts for this endpoint.
• DMA_INT_x: DMA Channel x Interrupt Enable
Read:
0 = the interrupts for this channel are disabled.
1 = the interrupts for this channel are enabled.
Write
0 = disable the interrupts for this channel.
1 = enable the interrupts for this channel.
766
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.4
Name:
UDPHS Interrupt Status Register
UDPHS_INTSTA
Access Type:
Read-only
31
–
30
DMA_6
29
DMA_5
28
DMA_4
27
DMA_3
26
DMA_2
25
DMA_1
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
EPT_6
13
EPT_5
12
EPT_4
11
EPT_3
10
EPT_2
9
EPT_1
8
EPT_0
7
UPSTR_RES
6
ENDOFRSM
5
WAKE_UP
4
ENDRESET
3
INT_SOF
2
MICRO_SOF
1
DET_SUSPD
0
SPEED
• SPEED: Speed Status
0 = reset by hardware when the hardware is in Full Speed mode.
1 = set by hardware when the hardware is in High Speed mode
• DET_SUSPD: Suspend Interrupt
0 = cleared by setting the DET_SUSPD bit in UDPHS_CLRINT register
1 = set by hardware when a UDPHS Suspend (Idle bus for three frame periods, a J state for 3 ms) is detected. This triggers
a UDPHS interrupt when the DET_SUSPD bit is set in UDPHS_IEN register.
• MICRO_SOF: Micro Start Of Frame Interrupt
0 = cleared by setting the MICRO_SOF bit in UDPHS_CLRINT register.
1 = set by hardware when an UDPHS micro start of frame PID (SOF) has been detected (every 125 us) or synthesized by
the macro. This triggers a UDPHS interrupt when the MICRO_SOF bit is set in UDPHS_IEN. In case of detected SOF, the
MICRO_FRAME_NUM field in UDPHS_FNUM register is incremented and the FRAME_NUMBER field doesn’t change.
Note:
The Micro Start Of Frame Interrupt (MICRO_SOF), and the Start Of Frame Interrupt (INT_SOF) are not generated at the same
time.
• INT_SOF: Start Of Frame Interrupt
0 = cleared by setting the INT_SOF bit in UDPHS_CLRINT.
1 = set by hardware when an UDPHS Start Of Frame PID (SOF) has been detected (every 1 ms) or synthesized by the
macro. This triggers a UDPHS interrupt when the INT_SOF bit is set in UDPHS_IEN register. In case of detected SOF, in
High Speed mode, the MICRO_FRAME_NUMBER field is cleared in UDPHS_FNUM register and the FRAME_NUMBER
field is updated.
• ENDRESET: End Of Reset Interrupt
0 = cleared by setting the ENDRESET bit in UDPHS_CLRINT.
1 = set by hardware when an End Of Reset has been detected by the UDPHS controller. This triggers a UDPHS interrupt
when the ENDRESET bit is set in UDPHS_IEN.
767
6289C–ATARM–28-May-09
• WAKE_UP: Wake Up CPU Interrupt
0 = cleared by setting the WAKE_UP bit in UDPHS_CLRINT.
1 = set by hardware when the UDPHS controller is in SUSPEND state and is re-activated by a filtered non-idle signal from
the UDPHS line (not by an upstream resume). This triggers a UDPHS interrupt when the WAKE_UP bit is set in
UDPHS_IEN register. When receiving this interrupt, the user has to enable the device controller clock prior to operation.
Note:
this interrupt is generated even if the device controller clock is disabled.
• ENDOFRSM: End Of Resume Interrupt
0 = cleared by setting the ENDOFRSM bit in UDPHS_CLRINT.
1 = set by hardware when the UDPHS controller detects a good end of resume signal initiated by the host. This triggers a
UDPHS interrupt when the ENDOFRSM bit is set in UDPHS_IEN.
• UPSTR_RES: Upstream Resume Interrupt
0 = cleared by setting the UPSTR_RES bit in UDPHS_CLRINT.
1 = set by hardware when the UDPHS controller is sending a resume signal called “upstream resume”. This triggers a
UDPHS interrupt when the UPSTR_RES bit is set in UDPHS_IEN.
• EPT_x: Endpoint x Interrupt
0 = reset when the UDPHS_EPTSTAx interrupt source is cleared.
1 = set by hardware when an interrupt is triggered by the UDPHS_EPTSTAx register and this endpoint interrupt is enabled
by the EPT_INT_x bit in UDPHS_IEN.
• DMA_INT_x: DMA Channel x Interrupt
0 = reset when the UDPHS_DMASTATUSx interrupt source is cleared.
1 = set by hardware when an interrupt is triggered by the DMA Channelx and this endpoint interrupt is enabled by the
DMA_INT_x bit in UDPHS_IEN.
768
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.5
Name:
UDPHS Clear Interrupt Register
UDPHS_CLRINT
Access Type:
Write only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
UPSTR_RES
6
ENDOFRSM
5
WAKE_UP
4
ENDRESET
3
INT_SOF
2
MICRO_SOF
1
DET_SUSPD
0
–
• DET_SUSPD: Suspend Interrupt Clear
0 = no effect.
1 = clear the DET_SUSPD bit in UDPHS_INTSTA.
• MICRO_SOF: Micro Start Of Frame Interrupt Clear
0 = no effect.
1 = clear the MICRO_SOF bit in UDPHS_INTSTA.
• INT_SOF: Start Of Frame Interrupt Clear
0 = no effect.
1 = clear the INT_SOF bit in UDPHS_INTSTA.
• ENDRESET: End Of Reset Interrupt Clear
0 = no effect.
1 = clear the ENDRESET bit in UDPHS_INTSTA.
• WAKE_UP: Wake Up CPU Interrupt Clear
0 = no effect.
1 = clear the WAKE_UP bit in UDPHS_INTSTA.
• ENDOFRSM: End Of Resume Interrupt Clear
0 = no effect.
1 = clear the ENDOFRSM bit in UDPHS_INTSTA.
• UPSTR_RES: Upstream Resume Interrupt Clear
0 = no effect.
1 = clear the UPSTR_RES bit in UDPHS_INTSTA.
769
6289C–ATARM–28-May-09
41.5.6
Name:
UDPHS Endpoints Reset Register
UDPHS_EPTRST
Access Type:
Write only
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
EPT_6
5
EPT_5
4
EPT_4
3
EPT_3
2
EPT_2
1
EPT_1
0
EPT_0
• EPT_x: Endpoint x Reset
0 = no effect.
1 = reset the Endpointx state.
Setting this bit clears the Endpoint status UDPHS_EPTSTAx register, except for the TOGGLESQ_STA field.
770
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.7
Name:
UDPHS Test SOF Counter Register
UDPHS_TSTSOFCNT
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
SOFCTLOAD
6
5
4
3
SOFCNTMAX
2
1
0
• SOFCNTMAX: SOF Counter Max Value
• SOFCTLOAD: SOF Counter Load
771
6289C–ATARM–28-May-09
41.5.8
Name:
UDPHS Test A Counter Register
UDPHS_TSTCNTA
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
CNTALOAD
14
13
12
11
CNTAMAX
10
9
8
7
6
5
4
3
2
1
0
CNTAMAX
• CNTALOAD: A Counter Load
• CNTAMAX: A Counter Max Value
772
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.9
Name:
UDPHS Test B Counter Register
UDPHS_TSTCNTB
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
CNTBLOAD
14
13
12
11
CNTBMAX
10
9
8
7
6
5
4
3
2
1
0
CNTBMAX
• CNTBLOAD: B Counter Load
• CNTBMAX: B Counter Max Value
773
6289C–ATARM–28-May-09
41.5.10
Name:
UDPHS Test Mode Register
UDPHS_TSTMODEREG
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
4
3
TSTMODE
2
1
0
–
• TSTMODE: UDPHS Core TestModeReg
774
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.11
Name:
UDPHS Test Register
UDPHS_TST
Access Type:
Read/Write
31
–
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
–
8
–
7
–
6
–
5
OPMODE2
4
TST_PKT
3
TST_K
2
TST_J
1
0
SPEED_CFG
• SPEED_CFG: Speed Configuration
Read/Write:
Speed Configuration:
00
Normal Mode: The macro is in Full Speed mode, ready to make a High Speed identification, if the host supports it and then
to automatically switch to High Speed mode
01
Reserved
10
Force High Speed: Set this value to force the hardware to work in High Speed mode. Only for debug or test purpose.
11
Force Full Speed: Set this value to force the hardware to work only in Full Speed mode. In this configuration, the macro will
not respond to a High Speed reset handshake
• TST_J: Test J Mode
Read and write:
0 = no effect.
1 = set to send the J state on the UDPHS line. This enables the testing of the high output drive level on the D+ line.
• TST_K: Test K Mode
Read and write:
0 = no effect.
1 = set to send the K state on the UDPHS line. This enables the testing of the high output drive level on the D- line.
• TST_PKT: Test Packet Mode
Read and write:
0 = no effect.
1 = set to repetitively transmit the packet stored in the current bank. This enables the testing of rise and fall times, eye patterns, jitter, and any other dynamic waveform specifications.
• OPMODE2: OpMode2
Read and write:
775
6289C–ATARM–28-May-09
0 = no effect.
1 = set to force the OpMode signal (UTMI interface) to “10”, to disable the bit-stuffing and the NRZI encoding.
Note: For the Test mode, Test_SE0_NAK (see Universal Serial Bus Specification, Revision 2.0: 7.1.20, Test Mode Support). Force the device in High Speed mode, and configure a bulk-type endpoint. Do not fill this endpoint for sending NAK to
the host.
Upon command, a port’s transceiver must enter the High Speed receive mode and remain in that mode until the exit action
is taken. This enables the testing of output impedance, low level output voltage and loading characteristics. In addition,
while in this mode, upstream facing ports (and only upstream facing ports) must respond to any IN token packet with a NAK
handshake (only if the packet CRC is determined to be correct) within the normal allowed device response time. This
enables testing of the device squelch level circuitry and, additionally, provides a general purpose stimulus/response test for
basic functional testing.
776
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.12
Name:
UDPHS PADDRSIZE Register
UDPHS_IPPADDRSIZE
Access Type:
Read-only
31
30
29
28
27
IP_PADDRSIZE
26
25
24
23
22
21
20
19
IP_PADDRSIZE
18
17
16
15
14
13
12
11
IP_PADDRSIZE
10
9
8
7
6
5
4
3
IP_PADDRSIZE
2
1
0
• IP_PADDRSIZE
2^UDPHS_PADDR_SIZE
APB address bus aperture of the UDPHS
777
6289C–ATARM–28-May-09
41.5.13
Name:
UDPHS Name1 Register
UDPHS_IPNAME1
Access Type:
31
Read-only
30
29
28
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
27
26
25
24
19
18
17
16
11
10
9
8
3
2
1
0
IP_NAME1
23
22
21
20
IP_NAME1
15
14
13
12
IP_NAME1
7
6
5
4
IP_NAME1
• IP_NAME1
ASCII string “HUSB”
41.5.14
Name:
UDPHS Name2 Register
UDPHS_IPNAME2
Access Type:
31
Read-only
30
29
28
IP_NAME2
23
22
21
20
IP_NAME2
15
14
13
12
IP_NAME2
7
6
5
4
IP_NAME2
• IP_NAME2
ASCII string “2DEV”
778
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.15
Name:
UDPHS Features Register
UDPHS_IPFEATURES
Access Type:
Read-only
31
ISO_EPT_15
30
ISO_EPT_14
29
ISO_EPT_13
28
ISO_EPT_12
27
ISO_EPT_11
26
ISO_EPT_10
25
ISO_EPT_9
24
ISO_EPT_8
23
ISO_EPT_7
22
ISO_EPT_6
21
ISO_EPT_5
20
ISO_EPT_4
19
ISO_EPT_3
18
ISO_EPT_2
17
ISO_EPT_1
16
DATAB16_8
15
BW_DPRAM
14
13
FIFO_MAX_SIZE
12
11
10
9
DMA_FIFO_WORD_DEPTH
8
7
DMA_B_SIZ
6
5
DMA_CHANNEL_NBR
4
3
2
1
EPT_NBR_MAX
0
• EPT_NBR_MAX: Max Number of Endpoints
Give the max number of endpoints.
0 = if 16 endpoints are hardware implemented.
1 = if 1 endpoint is hardware implemented.
2 = if 2 endpoints are hardware implemented.
...
15 = if 15 endpoints are hardware implemented.
• DMA_CHANNEL_NBR: Number of DMA Channels
Give the number of DMA channels.
1 = if 1 DMA channel is hardware implemented.
2 = if 2 DMA channels are hardware implemented.
...
7 = if 7 DMA channels are hardware implemented.
• DMA_B_SIZ: DMA Buffer Size
0 = if the DMA Buffer size is 16 bits.
1 = if the DMA Buffer size is 24 bits.
• DMA_FIFO_WORD_DEPTH: DMA FIFO Depth in Words
0 = if FIFO is 16 words deep.
1 = if FIFO is 1 word deep.
2 = if FIFO is 2 words deep.
...
15 = if FIFO is 15 words deep.
779
6289C–ATARM–28-May-09
• FIFO_MAX_SIZE: DPRAM Size
0 = if DPRAM is 128 bytes deep.
1 = if DPRAM is 256 bytes deep.
2 = if DPRAM is 512 bytes deep.
3 = if DPRAM is 1024 bytes deep.
4 = if DPRAM is 2048 bytes deep.
5 = if DPRAM is 4096 bytes deep.
6 = if DPRAM is 8192 bytes deep.
7 = if DPRAM is 16384 bytes deep.
• BW_DPRAM: DPRAM Byte Write Capability
0 = if DPRAM Write Data Shadow logic is implemented.
1 = if DPRAM is byte write capable.
• DATAB16_8: UTMI DataBus16_8
0 = if the UTMI uses an 8-bit parallel data interface (60 MHz, unidirectional).
1 = if the UTMI uses a 16-bit parallel data interface (30 MHz, bidirectional).
• ISO_EPT_x: Endpointx High Bandwidth Isochronous Capability
0 = if the endpoint does not have isochronous High Bandwidth Capability.
1 = if the endpoint has isochronous High Bandwidth Capability.
780
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.16
Name:
UDPHS Endpoint Configuration Register
UDPHS_EPTCFGx [x=0..6]
Access Type:
Read/Write
31
EPT_MAPD
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
–
17
–
16
–
15
–
14
–
13
–
12
–
11
–
10
–
9
8
6
5
4
3
EPT_DIR
2
1
EPT_SIZE
7
BK_NUMBER
EPT_TYPE
NB_TRANS
0
• EPT_SIZE: Endpoint Size
Read and write:
Set this field according to the endpoint size in bytes (see Section 41.4.5 ”Endpoint Configuration”).
Endpoint Size
000
8 bytes
001
16 bytes
010
32 bytes
011
64 bytes
100
128 bytes
101
256 bytes
110
512 bytes
111
1024 bytes(1)
Note:
1. 1024 bytes is only for isochronous endpoint.
• EPT_DIR: Endpoint Direction
Read and write:
0 = Clear this bit to configure OUT direction for Bulk, Interrupt and Isochronous endpoints.
1 = set this bit to configure IN direction for Bulk, Interrupt and Isochronous endpoints.
For Control endpoints this bit has no effect and should be left at zero.
• EPT_TYPE: Endpoint Type
Read and write:
Set this field according to the endpoint type (see Section 41.4.5 ”Endpoint Configuration”).
(Endpoint 0 should always be configured as control)
781
6289C–ATARM–28-May-09
:Endpoint Type
00
Control endpoint
01
Isochronous endpoint
10
Bulk endpoint
11
Interrupt endpoint
• BK_NUMBER: Number of Banks
Read and write:
Set this field according to the endpoint’s number of banks (see Section 41.4.5 ”Endpoint Configuration”).
Number of Banks
00
Zero bank, the endpoint is not mapped in memory
01
One bank (bank 0)
10
Double bank (Ping-Pong: bank 0/bank 1)
11
Triple bank (bank 0/bank 1/bank 2)
• NB_TRANS: Number Of Transaction per Microframe
Read and Write:
The Number of transactions per microframe is set by software.
Note:
Meaningful for high bandwidth isochronous endpoint only.
• EPT_MAPD: Endpoint Mapped
Read-only:
0 = the user should reprogram the register with correct values.
1 = set by hardware when the endpoint size (EPT_SIZE) and the number of banks (BK_NUMBER) are correct regarding:
– the fifo max capacity (FIFO_MAX_SIZE in UDPHS_IPFEATURES register)
– the number of endpoints/banks already allocated
– the number of allowed banks for this endpoint
782
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.17
Name:
UDPHS Endpoint Control Enable Register
UDPHS_EPTCTLENBx [x=0..6]
Access Type:
Write-only
31
SHRT_PCKT
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
BUSY_BANK
17
–
16
–
15
14
12
11
10
9
8
NAK_OUT
NAK_IN/
ERR_FLUSH
13
STALL_SNT/
ERR_CRISO/
ERR_NBTRA
RX_SETUP/
ERR_FL_ISO
TX_PK_RDY/
ERR_TRANS
TX_COMPLT
RX_BK_RDY
ERR_OVFLW
7
MDATA_RX
6
DATAX_RX
4
NYET_DIS
3
INTDIS_DMA
2
–
1
AUTO_VALID
0
EPT_ENABL
5
–
For additional Information, see “UDPHS Endpoint Control Register” on page 787.
• EPT_ENABL: Endpoint Enable
0 = no effect.
1 = enable endpoint according to the device configuration.
• AUTO_VALID: Packet Auto-Valid Enable
0 = no effect.
1 = enable this bit to automatically validate the current packet and switch to the next bank for both IN and OUT transfers.
• INTDIS_DMA: Interrupts Disable DMA
0 = no effect.
1 = If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled.
• NYET_DIS: NYET Disable (Only for High Speed Bulk OUT endpoints)
0 = no effect.
1 = forces an ACK response to the next High Speed Bulk OUT transfer instead of a NYET response.
• DATAX_RX: DATAx Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)
0 = no effect.
1 = enable DATAx Interrupt.
• MDATA_RX: MDATA Interrupt Enable (Only for high bandwidth Isochronous OUT endpoints)
0 = no effect.
1 = enable MDATA Interrupt.
• ERR_OVFLW: Overflow Error Interrupt Enable
0 = no effect.
1 = enable Overflow Error Interrupt.
783
6289C–ATARM–28-May-09
• RX_BK_RDY: Received OUT Data Interrupt Enable
0 = no effect.
1 = enable Received OUT Data Interrupt.
• TX_COMPLT: Transmitted IN Data Complete Interrupt Enable
0 = no effect.
1 = enable Transmitted IN Data Complete Interrupt.
• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error Interrupt Enable
0 = no effect.
1 = enable TX Packet Ready/Transaction Error Interrupt.
• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Interrupt Enable
0 = no effect.
1 = enable RX_SETUP/Error Flow ISO Interrupt.
• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent /ISO CRC Error/Number of Transaction Error Interrupt Enable
0 = no effect.
1 = enable Stall Sent/Error CRC ISO/Error Number of Transaction Interrupt.
• NAK_IN/ERR_FLUSH: NAKIN/Bank Flush Error Interrupt Enable
0 = no effect.
1 = enable NAKIN/Bank Flush Error Interrupt.
• NAK_OUT: NAKOUT Interrupt Enable
0 = no effect.
1 = enable NAKOUT Interrupt.
• BUSY_BANK: Busy Bank Interrupt Enable
0 = no effect.
1 = enable Busy Bank Interrupt.
• SHRT_PCKT: Short Packet Send/Short Packet Interrupt Enable
For OUT endpoints:
0 = no effect.
1 = enable Short Packet Interrupt.
For IN endpoints:
Guarantees short packet at end of DMA Transfer if the UDPHS_DMACONTROLx register END_B_EN and
UDPHS_EPTCTLx register AUTOVALID bits are also set.
784
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.18
Name:
UDPHS Endpoint Control Disable Register
UDPHS_EPTCTLDISx [x=0..6]
Access Type:
Write-only
31
SHRT_PCKT
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
BUSY_BANK
17
–
16
–
15
14
12
11
10
9
8
NAK_OUT
NAK_IN/
ERR_FLUSH
13
STALL_SNT/
ERR_CRISO/
ERR_NBTRA
RX_SETUP/
ERR_FL_ISO
TX_PK_RDY/
ERR_TRANS
TX_COMPLT
RX_BK_RDY
ERR_OVFLW
7
MDATA_RX
6
DATAX_RX
4
NYET_DIS
3
INTDIS_DMA
2
–
1
AUTO_VALID
0
EPT_DISABL
5
–
For additional Information, see “UDPHS Endpoint Control Register” on page 787.
• EPT_DISABL: Endpoint Disable
0 = no effect.
1 = disable endpoint.
• AUTO_VALID: Packet Auto-Valid Disable
0 = no effect.
1 = disable this bit to not automatically validate the current packet.
• INTDIS_DMA: Interrupts Disable DMA
0 = no effect.
1 = disable the “Interrupts Disable DMA”.
• NYET_DIS: NYET Enable (Only for High Speed Bulk OUT endpoints)
0 = no effect.
1 = let the hardware handle the handshake response for the High Speed Bulk OUT transfer.
• DATAX_RX: DATAx Interrupt Disable (Only for High Bandwidth Isochronous OUT endpoints)
0 = no effect.
1 = disable DATAx Interrupt.
• MDATA_RX: MDATA Interrupt Disable (Only for High Bandwidth Isochronous OUT endpoints)
0 = no effect.
1 = disable MDATA Interrupt.
• ERR_OVFLW: Overflow Error Interrupt Disable
0 = no effect.
1 = disable Overflow Error Interrupt.
785
6289C–ATARM–28-May-09
• RX_BK_RDY: Received OUT Data Interrupt Disable
0 = no effect.
1 = disable Received OUT Data Interrupt.
• TX_COMPLT: Transmitted IN Data Complete Interrupt Disable
0 = no effect.
1 = disable Transmitted IN Data Complete Interrupt.
• TX_PK_RDY/ERR_TRANS: TX Packet Ready/Transaction Error Interrupt Disable
0 = no effect.
1 = disable TX Packet Ready/Transaction Error Interrupt.
• RX_SETUP/ERR_FL_ISO: Received SETUP/Error Flow Interrupt Disable
0 = no effect.
1 = disable RX_SETUP/Error Flow ISO Interrupt.
• STALL_SNT/ERR_CRISO/ERR_NBTRA: Stall Sent/ISO CRC Error/Number of Transaction Error Interrupt Disable
0 = no effect.
1 = disable Stall Sent/Error CRC ISO/Error Number of Transaction Interrupt.
• NAK_IN/ERR_FLUSH: NAKIN/bank flush error Interrupt Disable
0 = no effect.
1 = disable NAKIN/ Bank Flush Error Interrupt.
• NAK_OUT: NAKOUT Interrupt Disable
0 = no effect.
1 = disable NAKOUT Interrupt.
• BUSY_BANK: Busy Bank Interrupt Disable
0 = no effect.
1 = disable Busy Bank Interrupt.
• SHRT_PCKT: Short Packet Interrupt Disable
For OUT endpoints:
0 = no effect.
1 = disable Short Packet Interrupt.
For IN endpoints:
Never automatically add a zero length packet at end of DMA transfer.
786
AT91SAM9R64/RL64 Preliminary
6289C–ATARM–28-May-09
AT91SAM9R64/RL64 Preliminary
41.5.19
Name:
UDPHS Endpoint Control Register
UDPHS_EPTCTLx [x=0..6]
Access Type:
Read-only
31
SHRT_PCKT
30
–
29
–
28
–
27
–
26
–
25
–
24
–
23
–
22
–
21
–
20
–
19
–
18
BUSY_BANK
17
–
16
–
15
14
12
11
10
9
8
NAK_OUT
NAK_IN/
ERR_FLUSH
13
STALL_SNT/
ERR_CRISO/
ERR_NBTRA
RX_SETUP/
ERR_FL_ISO
TX_PK_RDY/
ERR_TRANS
TX_COMPLT
RX_BK_RDY
ERR_OVFLW
7
MDATA_RX
6
DATAX_RX
4
NYET_DIS
3
INTDIS_DMA
2
–
1
AUTO_VALID
0
EPT_ENABL
5
–
• EPT_ENABL: Endpoint Enable
0 = If cleared, the endpoint is disabled according to the device configuration. Endpoint 0 should always be enabled after a
hardware or UDPHS bus reset and participate in the device configuration.
1 = If set, the endpoint is enabled according to the device configuration.
• AUTO_VALID: Packet Auto-Valid Enabled (Not for CONTROL Endpoints)
Set this bit to automatically validate the current packet and switch to the next bank for both IN and OUT endpoints.
For IN Transfer:
If this bit is set, then the UDPHS_EPTSTAx register TX_PK_RDY bit is set automatically when the current bank is full
and at the end of DMA buffer if the UDPHS_DMACONTROLx register END_B_EN bit is set.
The user may still set the UDPHS_EPTSTAx register TX_PK_RDY bit if the current bank is not full, unless the user
wants to send a Zero Length Packet by software.
For OUT Transfer:
If this bit is set, then the UDPHS_EPTSTAx register RX_BK_RDY bit is automatically reset for the current bank when
the last packet byte has been read from the bank FIFO or at the end of DMA buffer if the UDPHS_DMACONTROLx
register END_B_EN bit is set. For example, to truncate a padded data packet when the actual data transfer size is
reached.
The user may still clear the UDPHS_EPTSTAx register RX_BK_RDY bit, for example, after completing a DMA buffer
by software if UDPHS_DMACONTROLx register END_B_EN bit was disabled or in order to cancel the read of the
remaining data bank(s).
• INTDIS_DMA: Interrupt Disables DMA
If set, when an enabled endpoint-originated interrupt is triggered, the DMA request is disabled regardless of the
UDPHS_IEN register EPT_INT_x bit for this endpoint. Then, the firmware will have to clear or disable the interrupt source
or clear this bit if transfer completion is needed.
If the exception raised is associated with the new system bank packet, then the previous DMA packet transfer is normally
completed, but the new DMA packet transfer is not started (not requested).
787
6289C–ATARM–28-May-09
If the exception raised is not associated to a new system bank packet (NAK_IN, NAK_OUT, ERR_FL_ISO...), then the
request cancellation may happen at any time and may immediately stop the current DMA transfer.
This may be used, for example, to identify or prevent an erroneous packet to be transferred into a buffer or to complete a
DMA buffer by software after reception of a short packet, or to perform buffer truncation on ERR_FL_ISO interrupt for
adaptive rate.
• NYET_DIS: NYET Disable (Only for High Speed Bulk OUT endpoints)
0 = If clear, this bit lets the hardware handle the handshake response for the High Speed Bulk OUT transfer.
1 = If set, this bit forces an ACK response to the next High Speed Bulk OUT transfer instead of a NYET response.
Note:
According to the Universal Serial Bus Specification, Rev 2.0 (8.5.1.1 NAK Responses to OUT/DATA During PING Protocol), a
NAK response to an HS Bulk OUT transfer is expected to be an unusual occurrence.
• DATAX_RX: DATAx Interrupt Enabl
Similar pages