TC74LCX16240FT TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74LCX16240FT Low-Voltage 16-Bit Bus Buffer (inverted) with 5-V Tolerant Inputs and Outputs The TC74LCX16240FT is a high-performance CMOS 16-bit bus buffer. Designed for use in 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation. The device is designed for low-voltage (2.5-V or 3.3-V ) VCC applications, but it could be used to interface to 5-V supply environment for both inputs and outputs. This device is inverting 3-state buffer having four active-low output enables. It can be used as four 4-bit buffers two 8-bit buffers or one 16-bit buffer. When the OE input is high, the Weight: 0.25 g (typ.) outputs are in a high-impedance state. This device is designed to be used with 3-state memory address drivers, etc. All inputs are equipped with protection circuits against static discharge. Features • Low-voltage operation: VCC = 2.0 to 3.6 V • High-speed operation: tpd = 4.5 ns (max) (VCC = 3.0 to 3.6 V) • Output current: |IOH|/IOL = 24 mA (min) (VCC = 3.0 V) • Latch-up performance: −500 mA • Package: TSSOP • Power-down protection provided on all inputs and outputs 1 2007-10-19 TC74LCX16240FT Pin Assignment (top view) 1OE 1 IEC Logic Symbol 48 1OE 2OE 2OE 1Y1 2 47 1A1 1Y 2 3 46 1A2 GND 4 45 GND 1A1 1A2 1A3 1Y 3 5 44 1A3 1Y 4 6 43 1A4 VCC 7 42 VCC 2 Y1 8 41 40 2A2 GND 10 39 GND 2Y3 38 2A3 11 4OE 1A4 2A1 2A2 2A3 2A1 9 2Y2 3OE 2Y 4 12 37 2A4 3 Y1 13 36 3A1 3Y2 14 35 3A2 GND 15 34 GND 3 Y3 16 33 3A3 3Y 4 17 32 3A4 VCC 18 31 VCC 4 Y1 19 30 4A1 4 Y2 20 29 4A2 GND 21 28 GND 4 Y3 22 27 4A3 4Y4 23 26 4A4 4OE 24 25 3OE 2A4 3A1 3A2 3A3 3A4 4A1 4A2 4A3 4A4 2 1 48 25 24 47 46 44 EN1 EN2 EN3 EN4 1 1 43 41 40 35 1 2 27 26 8 9 11 1 3 33 32 30 29 3 5 6 38 37 36 2 12 13 14 16 1 4 17 19 20 22 23 1Y1 1Y 2 1Y 3 1Y 4 2 Y1 2Y2 2Y3 2Y 4 3 Y1 3Y2 3 Y3 3Y 4 4 Y1 4Y2 4 Y3 4Y 4 2007-10-19 TC74LCX16240FT Truth Table System Diagram Inputs Outputs 1OE 1A1-1A4 1Y1 - 1Y 4 L L H L H L H X Z Inputs Outputs 2OE 2A1-2A4 2 Y1 - 2 Y 4 L L H L H L H X Z Inputs 3OE 2OE 4OE 1A1-1A4 1Y1 - 1Y 4 3 Y1 - 3 Y 4 3A1-3A4 2A1-2A4 2 Y1 - 2 Y 4 4 Y1 - 4 Y 4 4A1-4A4 1/4 Outputs 3A1-3A4 3 Y1 - 3 Y 4 L L H L H L H X Z 3OE 1OE Inputs Outputs 4OE 4A1-4A4 4 Y1 - 4 Y 4 L L H L H L H X Z X: Don’t care Z: High impedance 3 2007-10-19 TC74LCX16240FT Absolute Maximum Ratings (Note 1) Characteristics Symbol Rating Unit Power supply voltage VCC −0.5 to 6.0 V Input voltage VIN −0.5 to 7.0 V Output voltage VOUT Input diode current −0.5 to 7.0 (Note 2) −0.5 to VCC + 0.5 (Note 3) −50 IIK V mA Output diode current IOK ±50 DC output current IOUT ±50 mA Power dissipation PD 400 mW ICC/IGND ±100 mA Tstg −65 to 150 °C DC VCC/ground current per supply pin Storage temperature (Note 4) mA Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook (“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). Note 2: Output in OFF state Note 3: High or low state. IOUT absolute maximum rating must be observed. Note 4: VOUT < GND, VOUT > VCC Operating Ranges (Note 1) Characteristics Symbol Power supply voltage VCC Input voltage VIN Output voltage VOUT Output current IOH/IOL Rating Unit 2.0 to 3.6 1.5 to 3.6 (Note 2) 0 to 5.5 V 0 to 5.5 (Note 3) 0 to VCC (Note 4) ±24 (Note 5) ±12 (Note 6) ±8 (Note 7) Operating temperature Topr −40 to 85 Input rise and fall time dt/dv 0 to 10 V V mA °C (Note 8) ns/V Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND. Note 2: Data retention only Note 3: Output in OFF state Note 4: High or low state Note 5: VCC = 3.0 to 3.6 V Note 6: VCC = 2.7 to 3.0 V Note 7: VCC = 2.3 to 2.7 V Note 8: VIN = 0.8 to 2.0 V, VCC = 3.0 V 4 2007-10-19 TC74LCX16240FT Electrical Characteristics DC Characteristics (Ta = −40 to 85°C) Characteristics H-level Symbol Test Condition VIH ⎯ Min Max 2.3 to 2.7 1.7 ⎯ 2.7 to 3.6 2.0 ⎯ 2.3 to 2.7 ⎯ 0.7 2.7 to 3.6 ⎯ 0.8 2.3 to 3.6 VCC −0.2 ⎯ IOH = −8 mA 2.3 1.8 ⎯ IOH = −12 mA 2.7 2.2 ⎯ IOH = −18 mA 3.0 2.4 ⎯ IOH = −24 mA 3.0 2.2 ⎯ IOL = 100 μA 2.3 to 3.6 ⎯ 0.2 IOL = 8 mA 2.3 ⎯ 0.6 IOL = 12 mA 2.7 ⎯ 0.4 IOL = 16 mA 3.0 ⎯ 0.4 IOL = 24 mA 3.0 ⎯ 0.55 2.3 to 3.6 ⎯ ±5.0 μA 2.3 to 3.6 ⎯ ±5.0 μA VIN/VOUT = 5.5 V 0 ⎯ 10.0 μA VIN = VCC or GND 2.3 to 3.6 ⎯ 20.0 VIN/VOUT = 3.6 to 5.5 V 2.3 to 3.6 ⎯ ±20.0 VIH = VCC − 0.6 V 2.3 to 3.6 ⎯ 500 Input voltage L-level ⎯ VIL IOH = −100 μA H-level VOH VIN = VIH or VIL Output voltage L-level VOL Input leakage current IIN 3-state output OFF state current IOZ Power-off leakage current IOFF Quiescent supply current ICC Increase in Icc per input ΔICC VIN = VIH or VIL VIN = 0 to 5.5 V VIN = VIH or VIL VOUT = 0 to 5.5 V 5 VCC (V) Unit V V μA 2007-10-19 TC74LCX16240FT AC Characteristics (Ta = −40 to 85°C) Characteristics Propagation delay time 3-state output enable time 3-state output disable time Output to output skew Note: Symbol tpLH tpHL tpZL tpZH tpLZ tpHZ Test Condition Figure 1, Figure 2 Figure 1, Figure 3 Figure 1, Figure 3 tosLH (Note) tosHL Min Max 30 1.5 5.4 2.7 50 1.5 5.3 VCC (V) CL(pF) 2.5 ± 0.2 3.3 ± 0.3 50 1.5 4.5 2.5 ± 0.2 30 1.5 7.0 2.7 50 1.5 6.0 3.3 ± 0.3 50 1.5 5.4 2.5 ± 0.2 30 1.5 6.4 2.7 50 1.5 5.4 3.3 ± 0.3 50 1.5 5.3 2.5 ± 0.2 30 ⎯ ⎯ 2.7 50 ⎯ ⎯ 3.3 ± 0.3 50 ⎯ 1.0 Unit ns ns ns ns Parameter guaranteed by design. (tosLH = |tpLHm − tpLHn|, tosHL = |tpHLm − tpHLn|) Dynamic Switching Characteristics (Ta = 25°C, input: tr = tf = 2.5 ns, RL = 500 Ω) Characteristics Test Condition Symbol Quiet output maximum dynamic VOL VOLP Quiet output minimum dynamic VOL |VOLV| VCC (V) Typ. VIH = 2.5 V, VIL = 0 V, CL =30pF 2.5 0.6 VIH = 3.3 V, VIL = 0 V, CL =50pF 3.3 0.8 VIH = 2.5 V, VIL = 0 V, CL =30pF 2.5 0.6 VIH = 3.3 V, VIL = 0 V, CL =50pF 3.3 0.8 Unit V V Capacitive Characteristics (Ta = 25°C) Characteristics Input capacitance Output capacitance Power dissipation capacitance Note: Symbol Test Condition CIN ⎯ COUT ⎯ CPD Typ. Unit 3.3 7 pF 3.3 8 pF 3.3 25 pF VCC (V) fIN = 10 MHz (Note) CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC (opr) = CPD・VCC・fIN + ICC/16 (per bit) 6 2007-10-19 TC74LCX16240FT AC Test Circuit 6.0 V or VCC × 2 Open GND RL Switch Measure Switch tpLH, tpHL Open 6.0 V VCC × 2 tpLZ, tpZL RL CL Output Parameter tpHZ, tpZH @VCC = 3.3 ± 0.3 V @VCC = 2.5 ± 0.2 V GND RL = 500 Ω Figure 1 AC Waveform tr 2.5 ns tf 2.5 ns VIH 90% VM Input (A) 10% GND VOH Output (Y ) VM tpHL VOL tpLH Figure 2 tpLH, tpHL tr 2.5 ns tf 2.5 ns VIH 90% VM Output Enable ( OE ) 10% tpLZ GND tpZL 3.0 V or Vcc Output ( Y ) Low to Off to Low VM tpHZ VX VOH VY Output ( Y ) High to Off to High VOL tpZH VM GND Outputs enabled Outputs enabled Outputs disabled Figure 3 tpLZ, tpHZ, tpZL, tpZH Symbol VCC 3.3 ± 0.3 V 2.7 V 2.5 ± 0.2 V VIH 2.7 V 2.7 V VCC VM 1.5 V 1.5 V VCC/2 VX VOL + 0.3 V VOL + 0.3 V VOL + 0.15 V VY VOH − 0.3 V VOH − 0.3 V VOH − 0.15 V 7 2007-10-19 TC74LCX16240FT Package Dimensions Weight: 0.25 g (typ.) 8 2007-10-19 TC74LCX16240FT RESTRICTIONS ON PRODUCT USE 20070701-EN GENERAL • The information contained herein is subject to change without notice. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer’s own risk. • The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. • Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations. 9 2007-10-19